Partial Regularity for the Solutions
to Nonlinear Parabolic Systems (*).

M., GIAQUINTA (**) - B, GIUSTI (*¥+¥)

Sunto. - Si estendono a sistemi non lineari di tipo parabolico alecuni risultati di regolaritd
parziale delle soluzioni di sistemi ellittici.

1. — Introduction.

The aim of this paper is to extend the results and the methods of [6] to non-
linear parabolic systems of partial differential equations:
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where A= 2x(0, T) is an open set in R**Y, 2= (z, t), and the coefficients (2, u)
are supposed to be continuous in 4 x RY and satisfy the ellipticity conditions:
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In these hypotheses, we shall prove that every weak solution of (1.1) is regular in A4,
with the possible exception of a singular set X, closed in A. If in addition the solu-
tion u belongs to the space W},ﬁoc(A: R¥) for some p>2, one has

X,

n+2-—z)+o‘(z‘: 5) =0
for every ¢ >0, & being a suitable metric in R"** and J(, §) being the a-dimen-
sional Hausdorff measure relative to the metrie 6.
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2. — Preliminaries.

We shall consider open sets A= 2 x(0, T) in R**, where £ is open in R* and
T >0, A point in R** will be denoted by 2z = (2, 1), xe R", te R. If 2, = (2, 1,) is
in R+, and if R >0, we define

(2.1) B(#y, R) ={¢cR": |r—ax,| <R},
(2.2) Alty, R) = {teR: |t—t,| < R*},
(2.3) Q(z, B) = Bla,, R) x A4y, R) .

If we introduce in R#+! the metrie
(2.4) 8(21, 2) = max{ |m— |, [t,—&[*},

then the set Q(&, F) is an open ball of radius R, centered at z,. We shall write @, @,
instead of Q(z,, B) (and likewise for B and A) whenever it can be done without con-
fusion.

In addition to the usual Sobolev gpaces Wi(A), we need the following spaces:

DEFINITION 1. — V10(A) is the completion of C*(A) with respect to the norm:

n

ou
o

2.5) luim={ Jlras+3 d@’}wE{11“313,A+i§ﬁ%ﬁ§,A}

DEFINITION 2. — Wr*A), 0< o<1, is the completion of C'(A) with respect to the
norm.:

[u(z, £) —u(e,

s = b+ far [ P00 G0t iz e

2 ©,Dx0e,D

The following propositions are well-known:

Levma 1. — Let A= 2 x(0, T) be bounded and convex, and let we Wt(4). Then:

(2.7) f{u-u4”dz<elé(11 {% umﬁif,A—Hu{img}

where

Uyg ==
meas 4

and 8(A) is the diameter of A with respect to the metric 3: 6(A) = max{diam 0, \/T}
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LeMMA 2. — Let A be as before. Then the natural imbedding of Wit(A) into L,(4)
is compact.

Finally we introduce another family of funetional spaces.

DEFINITION 3. — Let A = Q2 x (0, T) be bounded and convex, and let & be the met-
ric (2.4). £%*(4, 8), u >0, is the space of all functions in L (A) such that:

(15,114 = SUp [meas (4 0 Q(zo, B))] ™ f |f = fao 2P @< + 00
BR>0 Anizg, R
where
1
meas (4 N Q(z,, R)) fe)dz .

A 0 Q(zy, R)

f’ﬁ’o:R=

£7#(A, 8) is a Banach space with norm
{715, 4 + U8, e} -

These spaces have been introduced in [1] for the euclidean metric and in [3]
for a general class of metrics including (2.4). We have the following result ([3],
Theor. [3.1]).

LEMMA 3. — If u>1, then £%%(4,9) is isomorphic to C%%(Q,d), the space of
a-holder continuous functions with respect to the metric 0, with o = ((n+2)p)(p—1).

In the following, we shall consider vector-valued functions; if 8(4) is a topclog-
ical space of real functions in A, we will denote by 8(4; R¥) the product of N copies
of 8(4), with the natural topology. It is obvious that Lemmas 1, 2 and 3 remain
valid for vector-valued functions. Finally, with §,(4) we denote the space of all
functions f in A which belong to S(4’) for every A'cc 4.

3. — Linear parabolic systems.

In this Section we collect a number of results concerning linear parabolic systems.
Results of this type are known and can be found in the literature, although some-
times in a slightly different form.

By weak solution of the parabolic system

w8 f .5 0U
(3.1) o (a (#) ax,) e=1,...,N,

we mean a function ue V3 (4; RY) such that

(3.2) f wigfde = f el 0% de
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for every pe 05(4; R™). Here and in the following, the summation over repeated
indices is understood, the latin indices 4, 4, ... running from 1 to «, and the greek
indices «, f§, ... from 1 to N.

The coefficients ajf are bounded measurable functions such that
(3.3) afE 8> Ef =ELE,  VEeR™, Vzed,

laf(z)| <L, Veed .

The following Lemmas are Pproved using methods similar to those in [7],
Ch. 111, §4:

LEMMA 4.7~ Let u(z) be a weak solution of the system (3.1) in Qzr,- Then uc
€ Wit o(@z,; RY), and for every o, B (0<o<R< R,) we have:
(3.4) loelly, 20, < 2(0) Bl q, -

Proor. — Let ¢ = o)y (x, 1), suppwcdy. We get from (3.2):

(3.8) j vy de = f Fin de —flf"“n“dz
where
(3.6) = wu”; F} = aﬁ}s@ﬁj ; F=4w.

Now let S,(f) be a mollifier, B,(t) = f(—1); if we put 5w, 1) = 0 = 0,(x, 1), we
obtain

(3.7) f@:e;;dz - fpgeegdz—fpze“dz .

In particular, if 6%, t) = y(f)y* (@), with yeD(4y) and "€ W;(BR), we get the
equation

(3.8) [<ves 0yt =[{<Fy e pa> — <oy Yyt
where
(3.9) <t o> =[feae,

and hence, in the sense of distributions,
d
(3.10) i ey 9o = —Fiey Yoo + <Fey 90 .

Now let 'f(r) denote the Fourier transform of f(f). We have

(3.11) By, 9> = T, o, vy —<F,, 9D
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for every e R and every ye W;(BR). In particular, we can choose
p = —isign 19,0(x)*
with o D(By); integrating with respect to 7, we easily get:

(3.12) [1zl 100, dwdz < |07 o{ oo,

wVela} + (0T[5 [ove]s -

Finally, if we let ¢—>0 (remember that for eveiry function g{z, t) with compact sup-

port, we have
f‘g %0 it—SP ® das —-wadtﬁﬁ}?{?dtdw),

and choose w and ¢ in such a way that wo=1 on @,, we easily get the conclusion
of the lemma. q.e.d.

LeMMA 5. — With the hypotheses of Lemma 4, we have

(3.13) luls,q, <50, B

[2,93
for every R, o (0<< o< R<Ry).

PROOF. — If ¢ = f,% 0, we have from (3.2)

(3.14) Q{ 0t de = f (0Pub), 6% de .

In particular, if 0 = o%(®)w*({t)u,, With o(x)e D(Bg) and w(t) e D(Ag), we get
fazdwf—- |ewows|2dt ——f a,,ﬁuw, (0™ ug)g d ~—f[ue| wwiodz ,

whence, if ¢—0,
(3.15) f agf ul w0 oPds = f luPowc®de—2 |af ul *o*o, d .

With the usual choice of ¢ and w, it is not difficult to get (3.13) from (3.15). q.e.d.
An immediate consequence of the two previous lemmas is

COROLLARY 1. — Let u be as before. Then for every o, B (0 < o < R< R,), we have

(3.16) llwlly, 2.0, <cale; B)| ], -

17 — dnnali di Matemalica
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Let us now recall a result concerning systems with constant coefficients. The
proof can be found in [2].

LeMMA 6. — Let w(t) be a weak solution of (3.1) in Q, and let the coefficients a?f be
constant in Q.. Suppose further that we LyQ,, RY). Then for every o<1, we have

(3.17)

1
— 2 2 — e |2dz .
cas0, flu ug, |2z < 650 prvry f]u ug,|2dz
@, a

We conclude this Section with a simple result concerning the eonvergence of solu-

tions of parabolic systems.

Levwma 7. — Let aﬁf"’)(z) (v=1,2,...) be a sequence of bounded measurable func-
tions in @y, verifying (3.2) with L independent of v, and such that

(8.18) Lim a¥?(2) = a®P(z)  a.e. in Q.

Y300 “?

Let u"” be a sequence of function in Ly(Q,; RY), weak solutions in Q, of the system (3.1)
with coefficients oy :

(3.19) f U = f PO Petdw,  VpeCr(Q, RY).

SBuppose further that

(8.20) limu”=u  weakly in L*Q,; RY).

P> 00

Then ue Vyn (@, RY), and for every R<<1 we have

(8.21) limu®=u strongly in Ly(Qg, RY),
(3.22) limuy) =wu,  weakly in LyQz, RY)

(i=1,...,n). In addition, u(z) is a weak solution of the system

(3.29) f% gids= [ f Dubids, VpeOP@:, RY).

Proor. — It is easily seen that (3.20) and Lemma 5 imply (3.22), while (3.21)
follows from Corollary 1, Lemma 2, and (3.20). Finally, letting ¥+ oo in (3.19),
one gets (3.23) at once. g.e.d.
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4. — The regularity of solutions of parabolic systems.

We shall consider solutions of nonlinear parabolic systems of partial differential
equations:

(4.1) fu“qv?‘dz: af (2, wub g de,  VoeCP(4, RY),

A4 A

where, as usaal, 4 = 02x (0, T) is an open set in R, 2= (a,1), v, 0<i< T,
and we sum over repeated indices, the latin indices running from 1 to », and the
greek indices from 1 to N.

The coefficients ag‘f(z, u) are supported to be continuous functions in 4 xRY,
and to satisfy the ellipticity conditions:

) a3z, w)| <L, Vee 4, uec R",
i) (e, u) ELEL= £, VE€R™, ze 4, ucR".
We have the following
Levma 8. — For every v, 0 << v<<1, and for every M > 0, there ewist two constanis

g, amd R, such that if u(2) is a weak solution of (4.1), and if for some z,c A and some
R< By 8(z, 04) (@ Nb=min {a, b}), we have

4.2) Ulzy, B) = ens Q f}u — U, B A2 < &)
Qo, B)

and

(4.3) [, m| <M ;

then :

(4.4) Uz, TR) <2051 U2, B)

where ¢, is the constant appearing in Lemma 5.

Proor. — Suppose the lemmas is false. Then for some 7 and M, there exist se-
quences €4, ¢—>0, B,—0, and a sequence " of weak solutions of (4.1) such
that

(4.5) %(z,, <M,
(4.6) U=,, R,)=¢,
and

(4.7) Uls,, 7R,) > 20,76, .
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If we define

(4.8) (@) = v, 1) = &7 (u” (@, + Ryx, 1, + B3t) —ugl, z,},

we have (@ =Q(0,1)):

(4.9) f o g de = f af (@4 B,w, t,4 Bjt; 6,0+ ug), ol ghde, Ve OF(Q; RY);
Q Q

and, from (4.6), (4.7):

1
) — ()] 2 —
(4.10) V®(0,1) = easQﬁ” Pde =1,
Q
(4.11) V0, 7) > 26,77

From (4.10), passing in case to a subsequence, we get

(4.12) o s weakly in L,(@; RY),

(4.13) £, =0 a.e. in @,

(4.14) 4 >E; U,y A

whence

(4.15) af(w, + Ry, t, + B2t; 6,0 + ugyy 5)) —>aif (% 1) ae. in Q.

It follows from Lemma 6 that the function » is a weak solution in ¢ of the system:
[otorde=[aif(z Dfgnde, Ve CT(@; BT,
@ a

whence, from Lemma 5,

(4.16) V(0, ) <e; 2 V(0, 1) .

On the other hand, passing to the limit in (4.10), (4.11), we get

(4.17) V(0, 1) <liminf V*¥(0,1) =1,
F—>00
(4.18) V(0, 7) = lim V*(0, 7)>2¢,72,
and these inequalities contradict (4.16). g.e.d.

The constants & and R, in the preceding lemma depend on 7, M, %, N, and on
the coefficients a?f. In the following, we shall emphasize the dependence on M by
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writing g,(M), By(M). The following lemma is essentially an iteration of the pre-
ceding.

LemmA 9. — Let v< (205)"%, and let w be o weak solution of (4.1) such that for some
2 €A and for some R < By(2M) N 8(z,, 04), we have

(4.19) [y, m) <M 4

(4.20) Ulzy, Ry <M,

where

(4.21) no( M) = min {&,(2 M), Mz*2(1 —1V26,)} .

Then for every integer k>0, we have

(4.22), Ulz, 7 R) < (20572 U(2,, R) -

Proor. — We have, for every ¢ >0,

(4.23) gt rr— Y| < T~ "2 Ulzy, 0)F,
whence
E~1 )
(4.24) o, 1] < Mgy ] + 7722 Y Ulzg, TR)Y.
i=0

For k= 0, the inequality (4.22) is trivial. Suppose now that (4.22), is true for every
h<k. From (4.24) and (4.21), we easily get

(4.2b) gy, om | <2M
while from (4.22),, recalling that 2¢,72<C1, we obtain at once
(4.26) U(zy, 7°R) < 22 M) .

From (4.25), {4.26), and the preceding Lemma, we get (4.22)u4,. g.e.d.
We ean now prove the first part of the regularity theorem.

THEOREM 1. — For every weak solution u(2) of (4.1), there exists an open set A,C A
such that w(z) is (locally) o-holder continuous (with respect to the metric 8) in A,, for
every o<1,

ProoF. — Let z,€.4 be such that

(4.27) Sup gy, | <M2<+ o0,
0 R<b(z,,04)

(4.28) liminf U(zy, B) = 0.
R0+
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Let a=1—0, 0<o<1, and let 7= (2¢,)7¥. There exists an R< R, (2M)N
N 8(z,, 6A) such that

U2y, R) <na( M) .

Since Uz, r) and wuy, , are continuous functions of z and » (r > 0), there exists an s,
0 < s < R/2, such that for every ze((z,, s), we have

(4.29) [gu, myl <M ,
(4.30) Ulz, R,) <ns(M) ,

with R, = R — d(z, 2,) > /2.
From (4.29), (4.30), and Lemma 8, we get for every k:

(4.31) Ule, T°R,) < (20, 7°)* U(2, R,) < 72 ,
For every g, 0< o< R/2<R,, let h be the integer such that

R, < o< TR, .

‘We have
Q w2 n Q 2(1—0) R
432)  Ueo<|mng) Uke<r U@ PR)<T*w (=) o,
whence
2 2--20
(4.33) Uz, ‘9){‘“("1%) 75(2¢;)(v0i20)-1 gati-a)

for every ze@{z,, s) and every p << R/2.
It is easily seen that (4.33) implies that w(w) belongs to £**(Q(z, s), §) with
p=1-+(2/(n+2))(1—0), so that the theorem follows at once from Lemma 3.  qg.e.d.

ReMARK 1. — The set 2= A — 4,, which is clogsed in A, will be called the sin-
gular set of w(2). A point 2, is not in 2 if and only if (4.27) and (4.28) are satisfied.

With minor charges in the argument, one can show as in [6] that if the coeffi-
cients a2 are uniformly continuous in 4 xRY, then (4.28) alone is sufficient for the
regularity of z,.

5. — The singular set.

In this Section, we shall obtain an upper bound for the Hausdorff dimension
of the singular set 2.
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LEMMA 10. — Let u(z) be a function in L,(A), and let z,€ A be such that
(5.1) U2y, B) < g R®

or some & > 0 and some Cg dep(mdm on u and Zye Then there exists, and is ﬁm'te the
g H ’
limit

lim Uiz, 0) *

o+
Proor. — Let f(r) = ug,, ,- We have, for ze 4 and 0 <o <o < d(%, 04),
f(e) — Ho) ]2 <2{|u(e) — (o) |* + lu(e) — f(o)[*}-
Integrating over Q(z,, o),
a"+*f(0) — f(0) P < e {@"* Ulay, 0) + 0"+ Ul2, 0)},
whenee, using (5.1),
(6.2) [f(0) — f(0)| < ggor-niz{gntttee | gnizizel},
In particular, we have

[f(27%0) — f(27 o) < 0s27% 07
and, if A<F,

k—1

(3.3) f2 ™ o)~ 12" )| <e0e’ 3277,

so that the sequence f(2"‘g) converges, as h— oo, to some real number A. It is
easily seen that 4 does not depend on g; in fact, from (5.2) we get

oy o) =1tz 7‘)}<08{ max [p, r]*t? }2 ’

and the right-hand side of (5.4) tends to zero as ¢ —oco. Finally, choosing k=0
in (5.3) and letting k— oo, we get

(@) — Al < 600®
which proves the lemma. g.e.d,

REMARK 2. ~ The preceding lemma and Remark 1 show that a point 2, is regular
if there exist constants £ >0 and ¢, such that

Ulzy, R) < cgR*
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for every R << 6(z,, 04); or, what is the same, if there exists a ¢ > 0 such that

(5.5) lim R™°U(z,, R) = 0 .

R—0+*

Let us observe that if the coefficients are uniformly continuous, then it is sufficient
to require (5.5) with ¢ =0. This will give a slight difference between the two cases.
Let us now recall the Hausdorff measure.

DEFINITION 4. — Let § be the metric (2.4), and let o be a non-negative real number,
The o-dimensional Hausdorff measure of a set X c R™', with respect to the metric 6.
is given by

K3 8) = lim inf{ S 6@y U X0 X; 6(X,) < e} .

The o-Hausdorff dimension of a set X 1is the infimum of the numbers oo such that
J(X;0)=0.

The next lemma is a simple modification of Theorem 1 of [5].

LevmA 11. — Let f€ Ly 1,,(4), and, for 0 <o <<n 4 2, let

Fu_—_{z(,eA:lin}»%gpg‘“ f |fldz> 0}.
¢ Q(z4,0)
Then we have

JQM(F“, 5) =0.
The following result concludes the proof of the regularity theorem.

THEOREM 2. — Let ueW},ﬁoc(A; R"), p>2, be a weak solution of (4.1). Then for
every o >0, we have

(5.6) J€n+2—p+a(2? 8)=0.

~

If the coefficients are uniformly continuous, we com take o =0 in (5.6).

REMARK 3. ~ From Lemma 4, it follows at once that for every weak solution u(z)
of (4.1), we have X, (2)=0, Yo > 0.

Proor. oF THEOREM 2. — According to Remark 2, it is sufficient to prove that
Jen+2—p+a(E¢n 0)=0, where
B, = {zo € A: Timg sup B2 U2y, ) > o} .
We have
2/,
B Uley, By <oaf B [ ju— g, @],

Q(z¢.R)



M. GiaquiNTa - E. Grusti: Partial regularity for the solutions, efe. 265

and, by Lemma 1,

13 2fn
R‘z"“’U(zo,R)gclg{[li’l’“z‘"“’f zmm[”dz] +
i=1

Q(%y, R)

[t — s|t+o2
B, B)  Alte, B X (Alfo, B)

The functions [u,[|° belong to L (4), whence, by Lemma 11, the first integral
at the right-hand side tends to zero X,.,_,., almost everywhere.
For the second integral, we observe that the function

,t - ’ v
f(‘% 8, 1) = lu(m}glsz?ff/ZS)l

belongs to LI’IOC(A~), A=0x(0,T)x(0, T). If we denote by &==(2,¢,s) a point
in 4, by & the metrie

8(&, &) = max{[mlwwz], {tl_“tZP‘, [31”‘321&}’7
and by @ the ball in the metric 8, we get easily that
B [ f e
Qg0 B)

tends to zero ¥, .,_,4s almost everywhere. From that remark, it follows at once
that 3, 0, (H, 6)=0. q.e.d.
In the case of elliptic systems in R", one was able to prove (see [6] and [5]) that

(5.8) H, ,.(2)=0, VYo>0,

for continuous coefficients, and

(5.9) H, (Z)=0

with the agsumption of uniform continuity, H, being the a-dimensicnal Hausdorff
measure with respect to the usual metric in R*. Comparing (5.8) and (5.9) with
the conclusion of Theorem 2, it seems at first that the introduction of the time vari-
able gives a jump of two in the dimension of the singular set. The following argu-
ment shows that this is not the case. Let us first observe that the resfriction of the
metric & to the f-axis gives the metric d(f,,t,) = [t;—%,/ so that the Hausdorff
measure J (X, d) verifies

XX, d)y=H,,(X), VXcR,,

Hg being the usual Hausdorff measure in R
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On the other hand, & coincides with the usual metric when restricted to R, so
that the Hausdorff measure is also the same:

¥ X, ) =X X), VXIcR".

Finally, if &, and 7, are the projection operators on R and R, respectively, we
have the following inequality ([4], Th. 2.10.25):

*
(5.10) [B {2 O\ 0) }aHgalt) < 3 52, 9)
R

for every non-negative «, f.
In particular, if we choose =2 and o« =n—p -+ o, we conclude from (5.10)
and (5.6) that

(5.11) H, , (ENna;'t)=0  for almost every ¢.

A similar result, with ¢ = 0, holds for uniformly continuous coefficients.
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