Partial Regularity for the Solutions to Nonlinear Parabolic Systems (*).

M. Giaquinta (**) - E. Giusti (***)

Sunto. – Si estendono a sistemi non lineari di tipo parabolico alcuni risultati di regolarità parziale delle soluzioni di sistemi ellittici.

1. - Introduction.

The aim of this paper is to extend the results and the methods of [6] to non-linear parabolic systems of partial differential equations:

$$(1.1) \qquad \sum_{\alpha=1}^{N} \int_{A} u^{\alpha} \varphi_{i}^{\alpha} dz = \sum_{\alpha,\beta=1}^{N} \sum_{i,j=1}^{n} \int_{A} a_{ij}^{\alpha\beta}(z,u) u_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} dz , \qquad \forall \varphi \in C_{0}^{\infty}(A:\mathbb{R}^{N}) ,$$

where $A = \Omega \times (0, T)$ is an open set in \mathbb{R}^{n+1} , z = (x, t), and the coefficients $a_{ij}^{\alpha\beta}(z, u)$ are supposed to be continuous in $\overline{A} \times \mathbb{R}^N$ and satisfy the ellipticity conditions:

$$egin{aligned} |a_{ij}^{lphaeta}| \leqslant & L \;, \ \sum\limits_{i,j=1}^{n} \sum\limits_{lpha,eta=1}^{N} a_{ij}^{etalpha}\, \dot{arxi}_{lpha}^{i} \dot{arxi}_{eta}^{j} \! > \! |arxi|^{2} \,, \qquad orall arxi \in & oldsymbol{R}^{nN} \,. \end{aligned}$$

In these hypotheses, we shall prove that every weak solution of (1.1) is regular in A, with the possible exception of a singular set Σ , closed in A. If in addition the solution u belongs to the space $W_{p,\operatorname{loc}}^{1,\frac{1}{p}}(A:\mathbb{R}^N)$ for some $p\geqslant 2$, one has

$$\mathcal{H}_{n+2-p+\sigma}(\Sigma,\,\delta)=0$$

for every $\sigma > 0$, δ being a suitable metric in \mathbb{R}^{n+1} and $\mathcal{K}_{\alpha}(x, \delta)$ being the α -dimensional Hausdorff measure relative to the metric δ .

^(*) Entrata in Redazione il 19 settembre 1972.

^(**) University of Pisa. Research supported in part by a C.N.R. fellowship at the University of Paris.

^(***) University of Pisa and Stanford University. Research partially supported by NSF Grant GP 16115.

2. - Preliminaries.

We shall consider open sets $A = \Omega \times (0, T)$ in \mathbb{R}^{n+1} , where Ω is open in \mathbb{R}^n and T > 0. A point in \mathbb{R}^{n+1} will be denoted by $z = (x, t), x \in \mathbb{R}^n$, $t \in \mathbb{R}$. If $z_0 = (x_0, t_0)$ is in \mathbb{R}^{n+1} , and if E > 0, we define

(2.1)
$$B(x_0, R) = \{x \in \mathbf{R}^n : |x - x_0| < R\},\$$

(2.2)
$$\Lambda(t_0, R) = \{ t \in \mathbf{R} \colon |t - t_0| < R^2 \},$$

$$Q(z_0, R) = B(x_0, R) \times \Lambda(t_0, R).$$

If we introduce in \mathbb{R}^{n+1} the metric

$$\delta(z_1, z_2) = \max\{|x_1 - x_2|, |t_1 - t_2|^{\frac{1}{2}}\},$$

then the set $Q(z_0, R)$ is an open ball of radius R, centered at z_0 . We shall write Q, Q_R instead of $Q(z_0, R)$ (and likewise for B and A) whenever it can be done without confusion.

In addition to the usual Sobolev spaces $W_n^1(A)$, we need the following spaces:

DEFINITION 1. – $V_p^{1,0}(A)$ is the completion of $C^1(A)$ with respect to the norm:

$$(2.5) \hspace{1cm} \|u\|_{r;A} = \left\{ \int |u|^p dz \, + \sum_{i=1}^n \int \left| \frac{\partial u}{\partial x_i} \right|^p dz \right\}^{1/p} \equiv \left\{ \|u\|_{p,A}^p \, + \sum_{i=1}^n \|u_{x_i}\|_{p,A}^p \right\}^{1/p}.$$

DEFINITION 2. – $W_p^{1,\alpha}(A)$, $0 < \alpha < 1$, is the completion of $C^1(A)$ with respect to the norm:

$$|||u|||_{(x,\,y):A} = \left\{ \|u\|_{p,A}^{p} + \int_{\Omega} dx \int_{(0,\,T)\times(0,\,T)} \frac{|u(x,\,t) - u(x,\,s)|^{p}}{|t - s|^{1+\alpha p}} dt ds \right\}^{1/p} \equiv \left\{ \|u\|_{p,A}^{p} + |u|_{\alpha,\,p:A}^{p} \right\}^{1/p}.$$

The following propositions are well-known:

LEMMA 1. – Let $A = \Omega \times (0, T)$ be bounded and convex, and let $u \in W^{1, \frac{1}{2}}_{p}(A)$. Then:

(2.7)
$$\int_{A} |u - u_{A}|^{p} dz \leq c_{1} \delta(A)^{p} \left\{ \sum_{i=1}^{n} ||u_{x_{i}}||_{p,A}^{p} + |u|_{\frac{1}{2},p;A}^{p} \right\}$$

where

$$u_A = \frac{1}{\max A} \int_A u \, dz \,,$$

and $\delta(A)$ is the diameter of A with respect to the metric $\delta\colon\delta(A)=\max\{\operatorname{diam}\Omega,\sqrt{T}\}.$

LEMMA 2. – Let A be as before. Then the natural imbedding of $W_p^{1,\frac{1}{2}}(A)$ into $L_p(A)$ is compact.

Finally we introduce another family of functional spaces.

DEFINITION 3. – Let $A = \Omega \times (0, T)$ be bounded and convex, and let δ be the metric (2.4). $\mathcal{L}^{p,\mu}(A, \delta)$, $\mu > 0$, is the space of all functions in $L_p(A)$ such that:

$$[f]_{p,\mu;A}^p = \sup_{\substack{z_0 \in A \ R>0}} \left[\operatorname{meas} \left(A \cap Q(z_0,R)
ight)
ight]^{-\mu} \int\limits_{A \cap (z_0,R)} |f - f_{z_0,R}|^p dz < + \infty$$

where

$$f_{z_0,R} = \frac{1}{\operatorname{meas} (A \cap Q(z_0,R))} \int\limits_{A \cap Q(z_0,R)} f(z) dz.$$

 $\mathcal{L}^{\mathfrak{p},\,\mu}(A,\,\delta)$ is a Banach space with norm

$$\{\|f\|_{p,A}^p+[f]_{p,\mu;A}^p\}^{1/p}.$$

These spaces have been introduced in [1] for the euclidean metric and in [3] for a general class of metrics including (2.4). We have the following result ([3], Theor. [3.1]).

LEMMA 3. – If $\mu > 1$, then $\mathfrak{L}^{\mathfrak{p},\mu}(A,\delta)$ is isomorphic to $C^{0,\alpha}(\Omega,\delta)$, the space of α -hölder continuous functions with respect to the metric δ , with $\alpha = ((n+2)/p)(\mu-1)$.

In the following, we shall consider vector-valued functions; if S(A) is a topological space of real functions in A, we will denote by $S(A; \mathbb{R}^N)$ the product of N copies of S(A), with the natural topology. It is obvious that Lemmas 1, 2 and 3 remain valid for vector-valued functions. Finally, with $S_{loc}(A)$ we denote the space of all functions f in A which belong to S(A') for every $A' \subset A$.

3. - Linear parabolic systems.

In this Section we collect a number of results concerning linear parabolic systems. Results of this type are known and can be found in the literature, although sometimes in a slightly different form.

By weak solution of the parabolic system

$$\frac{\partial u^{\alpha}}{\partial t} = \frac{\partial}{\partial x_i} \left(a_{ij}^{\alpha\beta}(z) \frac{\partial u^{\beta}}{\partial x_i} \right), \qquad \alpha = 1, ..., N,$$

we mean a function $u \in V_{2,loc}^{1,0}(A; \mathbb{R}^N)$ such that

(3.2)
$$\int_A u^\alpha \varphi_t^\alpha dz = \int_A a_{ij}^{\alpha\beta}(z) u_{x_j}^\beta \varphi_{x_i}^\alpha dz$$

for every $\varphi \in C_0^{\infty}(A; \mathbb{R}^N)$. Here and in the following, the summation over repeated indices is understood, the latin indices i, j, \ldots running from 1 to n, and the greek indices α, β, \ldots from 1 to N.

The coefficients $a_{ii}^{\alpha\beta}$ are bounded measurable functions such that

(3.3)
$$a_{ij}^{\alpha\beta} \xi_{\alpha}^{i} \xi_{\beta}^{j} \geqslant |\xi|^{2} = \xi_{\alpha}^{i} \xi_{\alpha}^{i}, \qquad \forall \xi \in \mathbf{R}^{nN}, \ \forall z \in A,$$
$$|a_{ij}^{\alpha\beta}(z)| \leqslant L, \qquad \forall z \in A.$$

The following Lemmas are proved using methods similar to those in [7], Ch. III, § 4:

LEMMA 4. Let u(z) be a weak solution of the system (3.1) in Q_{R_0} . Then $u \in W^{1,\frac{1}{2}}_{2,loc}(Q_{R_0}; \mathbf{R}^N)$, and for every ϱ , R $(0 < \varrho < R < R_0)$ we have:

$$|||u||_{\frac{1}{2},2;Q_{\varrho}} \leqslant c_{2}(\varrho,R) ||u||_{2,Q_{R}}.$$

PROOF. – Let $\varphi^{\alpha} = \omega(t)\eta^{\alpha}(x, t)$, supp $\omega \in \Lambda_R$. We get from (3.2):

$$(3.5) \qquad \qquad \int v^{\varkappa} \eta_{t}^{\varkappa} dz = \int F_{i}^{\varkappa} \eta_{x_{i}}^{\varkappa} dz - \int F^{\varkappa} \eta^{\varkappa} dz$$

where

$$(3.6) v^{\alpha} = \omega u^{\alpha} ; F_{i}^{\alpha} = a_{ij}^{\alpha\beta} v_{xj}^{\beta} ; F^{\alpha} = u^{\alpha} \omega .$$

Now let $\beta_{\varepsilon}(t)$ be a mollifier, $\beta_{\varepsilon}(t) = \beta_{\varepsilon}(-t)$; if we put $\eta(x, t) = \beta_{\varepsilon} * \theta = \theta_{\varepsilon}(x, t)$, we obtain

(3.7)
$$\int v_{\varepsilon}^{\alpha} \theta_{t}^{\alpha} dz = \int F_{i,\varepsilon}^{\alpha} \theta_{x_{i}}^{\alpha} dz - \int F_{\varepsilon}^{\alpha} \theta^{\alpha} dz.$$

In particular, if $\theta^{\alpha}(x, t) = \gamma(t) \psi^{\alpha}(x)$, with $\gamma \in \mathfrak{D}(\Lambda_R)$ and $\psi^{\alpha} \in \mathring{W}_{2}^{1}(B_R)$, we get the equation

where

$$\langle f,g\rangle = \int f^{\alpha}g^{\alpha}dx\,,$$

and hence, in the sense of distributions,

(3.10)
$$\frac{d}{dt} \langle \nu_{\varepsilon}, \psi \rangle = - \langle F_{i,\varepsilon}, \psi_{x_i} \rangle + \langle F_{\varepsilon}, \psi \rangle .$$

Now let $\hat{f}(\tau)$ denote the Fourier transform of f(t). We have

$$(3.11) \hspace{1cm} i\tau \langle \widehat{v}_{\epsilon}, \psi \rangle = \langle \widehat{F}_{i,\epsilon}, \psi_{x_i} \rangle - \langle \widehat{F}_{\epsilon}, \psi \rangle$$

for every $\tau \in \mathbf{R}$ and every $\psi \in \mathring{W}_{2}^{1}(B_{\mathbf{R}})$. In particular, we can choose

$$\psi = -i \operatorname{sign} \tau \widehat{v}_{r} \sigma(x)^{2}$$

with $\sigma \in \mathfrak{D}(B_R)$; integrating with respect to τ , we easily get:

$$(3.12) \qquad \int |\tau| \, |\sigma \widehat{v}_{\epsilon}|^2 dx d\tau \leqslant \|\sigma F_{i,\epsilon}\|_2 \big\{ \|\sigma v_{\epsilon,x}\|_2 + \|\sigma_x v_{\epsilon}\|_2 \big\} + \|\sigma F_{\epsilon}\|_2 \, \|\sigma v_{\epsilon}\|_2 \, .$$

Finally, if we let $\varepsilon \to 0$ (remember that for every function g(x, t) with compact support, we have

$$\int \! dx \int \frac{|g(x,t)-g(x,s)|^2}{|t-s|^2} dt ds = 2 \int \limits_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} dt \int |\tau| |\widehat{g}|^2 d\tau dx \Big),$$

and choose ω and σ in such a way that $\omega \sigma \equiv 1$ on Q_{ϱ} , we easily get the conclusion of the lemma. q.e.d.

LEMMA 5. - With the hypotheses of Lemma 4, we have

$$\|u\|_{2,Q_{\alpha}} \leqslant c_{3}(\varrho,R) \|u\|_{2,Q_{R}}$$

tor every R, ϱ (0 < ϱ < R < R_0).

PROOF. – If $\varphi = \beta_{\epsilon} * \theta$, we have from (3.2)

(3.14)
$$\int_{Q_{\mathbf{p}}} u_{\epsilon}^{\alpha} \theta_{i}^{\alpha} dz = \int_{Q_{\mathbf{p}}} (a_{ij}^{\alpha\beta} u_{xj}^{\beta})_{\epsilon} \theta_{x_{i}}^{\alpha} dz .$$

In particular, if $\theta = \sigma^2(x)\omega^2(t)u_s$, with $\sigma(x) \in \mathfrak{D}(B_R)$ and $\omega(t) \in \mathfrak{D}(A_R)$, we get

$$0 = \frac{1}{2} \int_{B_R} \sigma^2 dx \int_{A_R} \frac{d}{dt} |\omega u_{\varepsilon}|^2 dt = \int_{Q_R} (a_{ij}^{\alpha\beta} u_{x_j}^{\beta})_{\varepsilon} \omega^2 (\sigma^2 u_{\varepsilon}^{\alpha})_{x_i} dz - \int_{Q_R} |u_{\varepsilon}|^2 \omega \omega_t \sigma^2 dz ,$$

whence, if $\varepsilon \to 0$,

$$(3.15) \qquad \qquad \int \! a_{ij}^{\alpha\beta} \, u_{x_i}^{\beta} \, u_{x_i}^{\alpha} \omega^2 \sigma^2 dz = \int \! |u|^2 \omega \, \omega_t \sigma^2 dz - 2 \int \! a_{ij}^{\alpha\beta} \, u_{x_j}^{\beta} \omega^2 \sigma^{\alpha} \sigma_{x_i} dz \; .$$

With the usual choice of σ and ω , it is not difficult to get (3.13) from (3.15). q.e.d. An immediate consequence of the two previous lemmas is

Corollary 1. – Let u be as before. Then for every ϱ , R (0 < ϱ < R < R_0), we have

$$|||u||_{\frac{1}{2},2;Q_{\varrho}} \leqslant c_{4}(\varrho,R)||u||_{2,Q_{R}}.$$

17 - Annali di Matematica

Let us now recall a result concerning systems with constant coefficients. The proof can be found in [2].

LEMMA 6. – Let u(t) be a weak solution of (3.1) in Q, and let the coefficients $\alpha_{ij}^{\alpha\beta}$ be constant in Q_1 . Suppose further that $u \in L_2(Q_1, \mathbb{R}^N)$. Then for every $\varrho < 1$, we have

$$(3.17) \qquad \frac{1}{\mathrm{meas}\,Q_{\varrho}} \int_{Q_{\varrho}} |u - u_{Q_{\varrho}}|^{2} dz \leqslant c_{5} \varrho^{2} \frac{1}{\mathrm{meas}\,Q_{1}} \int_{Q_{1}} |u - u_{Q_{1}}|^{2} dz .$$

We conclude this Section with a simple result concerning the convergence of solutions of parabolic systems.

Lemma 7. – Let $a_{ii}^{\alpha\beta(\nu)}(z)$ $(\nu=1,2,...)$ be a sequence of bounded measurable functions in Q_1 , verifying (3.2) with L independent of ν , and such that

(3.18)
$$\lim_{z \to a_{ii}} a_{ii}^{\alpha\beta(\nu)}(z) = a_{ii}^{\alpha\beta}(z) \qquad a.e. \ in \ Q_1.$$

Let $u^{(r)}$ be a sequence of function in $L_2(Q_1; \mathbf{R}^N)$, weak solutions in Q_1 of the system (3.1) with coefficients $a_{ii}^{\alpha\beta(r)}$:

(3.19)
$$\int_{Q_1} u^{(\nu)\alpha} \varphi_t^{\alpha} dz = \int_{Q_2} a_{ij}^{\alpha\beta(\nu)}(z) u_{x_j}^{(\nu)\beta} \varphi_{x_i}^{\alpha} dx , \qquad \forall \varphi \in C_0^{\infty}(Q_1, \mathbf{R}^N) .$$

Suppose further that

(3.20)
$$\lim_{v\to\infty}u^{(v)}=u \qquad \text{weakly in } L^2(Q_1;\mathbf{R}^N) \ .$$

Then $u \in V_{2,loc}^{1,0}(Q_1, \mathbb{R}^N)$, and for every R < 1 we have

(3.21)
$$\lim_{v \to \infty} u^{(v)} = u \quad \text{strongly in } L_2(Q_R, \mathbf{R}^N) ,$$

(3.22)
$$\lim_{v \to \infty} u_{x_t}^{(v)} = u_{x_t} \quad \text{weakly in } L_2(Q_R, \mathbf{R}^N)$$

(i = 1, ..., n). In addition, u(z) is a weak solution of the system

$$\int_{\mathcal{Q}_{*}} u^{\alpha} \varphi_{i}^{\alpha} dz = \int_{\mathcal{Q}_{*}} a_{ij}^{\alpha\beta}(z) u_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} dz , \qquad \forall \varphi \in C_{0}^{\infty}(Q_{1}, \mathbf{R}^{N}) .$$

PROOF. – It is easily seen that (3.20) and Lemma 5 imply (3.22), while (3.21) follows from Corollary 1, Lemma 2, and (3.20). Finally, letting $v \to \infty$ in (3.19), one gets (3.23) at once. q.e.d.

4. - The regularity of solutions of parabolic systems.

We shall consider solutions of nonlinear parabolic systems of partial differential equations:

$$\int_{A} u^{\alpha} \varphi_{t}^{\alpha} dz = \int_{A} a_{ij}^{\alpha \beta}(z, u) u_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} dx , \qquad \forall \varphi \in C_{0}^{\infty}(A, \mathbf{R}^{N}) ,$$

where, as usual, $A = \Omega \times (0, T)$ is an open set in \mathbb{R}^{n+1} , z = (x, t), $x \in \Omega$, 0 < t < T, and we sum over repeated indices, the latin indices running from 1 to n, and the greek indices from 1 to N.

The coefficients $a_{ij}^{\alpha\beta}(z,u)$ are supported to be continuous functions in $\overline{A}\times \mathbb{R}^N$, and to satisfy the ellipticity conditions:

i)
$$|a_{ij}^{\alpha\beta}(z, u)| \leqslant L, \ \forall z \in \overline{A}, \ u \in \mathbb{R}^N$$

ii)
$$a_{ii}^{\alpha\beta}(z, u) \xi_{\alpha}^{i} \xi_{\beta}^{j} = |\xi|^{2}, \ \forall \xi \in \mathbf{R}^{nN}, \ z \in \overline{A}, \ u \in \mathbf{R}^{N}.$$

We have the following

LEMMA 8. – For every τ , $0 < \tau < 1$, and for every M > 0, there exist two constants ε_0 and R_0 such that if u(z) is a weak solution of (4.1), and if for some $z_0 \in A$ and some $R < R_0 \cap \delta(z_0, \partial A)$ $(a \cap b = \min\{a, b\})$, we have

$$(4.2) \hspace{1cm} U(z_0,\,R) \equiv \frac{1}{\mathrm{meas}\,Q_R} \int\limits_{Q(z_0,\,R)} |u-u_{Q(z_0,\,R)}|^2 dz < \varepsilon_0^2$$

and

$$|u_{Q(z_0,R)}| \leqslant M ;$$

then:

$$(4.4) U(z_0, \tau R) \leq 2c_5 \tau^2 U(z_0, R)$$

where c_5 is the constant appearing in Lemma 5.

Proof. – Suppose the lemma is false. Then for some τ and M, there exist sequences $z_{\nu} \in A$, $\varepsilon_{\nu} \to 0$, $R_{\nu} \to 0$, and a sequence $u^{(\nu)}$ of weak solutions of (4.1) such that

$$|u_{Q(z_v,R_v)}^{(v)}| \leqslant M,$$

$$(4.6) U^{(v)}(z_v, R_v) = \varepsilon_v^2,$$

and

$$(4.7) U(z_{\nu}, \tau R_{\nu}) > 2c_{5}\tau^{2}\varepsilon_{2}^{\nu}.$$

If we define

$$(4.8) v^{(v)}(z) = v^{(v)}(x, t) = \varepsilon_v^{-1} \left(u^{(v)}(x_v + R_v x, t_v + R_v^2 t) - u_{Q(z_v, R_v)}^{(v)} \right),$$

we have (Q = Q(0, 1)):

$$(4.9) \qquad \int\limits_{Q}v^{(\mathbf{r})\alpha}\,\varphi_{t}^{\alpha}dz = \int\limits_{Q}a_{ij}^{\alpha\beta}(x_{\mathbf{r}}+R_{\mathbf{r}}x,\,t_{\mathbf{r}}+R_{\mathbf{r}}^{2}t\,;\;\varepsilon_{\mathbf{r}}v^{(\mathbf{r})}+u_{Q(x_{\mathbf{r}},\,R_{\mathbf{r}})}^{(\mathbf{r})})\,v_{x_{\mathbf{r}}}^{(\mathbf{r})\beta}\,\varphi_{x_{\mathbf{r}}}^{\alpha}dz\,,\qquad\forall\varphi\in C_{\mathbf{0}}^{\infty}(Q\,;\,\mathbf{R}^{N})\,;$$

and, from (4.6), (4.7):

$$V^{(\nu)}(0,1) = \frac{1}{\operatorname{meas} Q} \int\limits_{0}^{} |v^{(\nu)}|^{2} dz = 1 \; ,$$

$$(4.11) V^{(\nu)}(0, \tau) > 2c_5 \tau^2.$$

From (4.10), passing in case to a subsequence, we get

$$(4.12) \hspace{1cm} v^{(r)} \hspace{0.2cm} \rightarrow \hspace{0.2cm} v \hspace{0.2cm} \text{weakly in } L_2(Q\,;\, \textbf{\textit{R}}^N) \;,$$

$$(4.13) \varepsilon_{\nu}v^{(\nu)} \to 0 a.e. in Q,$$

$$(4.14) z_{\nu} \rightarrow \bar{z} ; u_{Q(x_{\nu}, R_{\nu})}^{(\nu)} \rightarrow \lambda,$$

whence

(4.15)
$$a_{ii}^{\alpha\beta}(x_v + R_v x, t_v + R_v^2 t; \varepsilon_v v^{(v)} + u_{O(x_v, R_v)}^{(v)}) \rightarrow a_{ii}^{\alpha\beta}(\bar{z}, \lambda)$$
 a.e. in Q .

It follows from Lemma 6 that the function v is a weak solution in Q of the system:

whence, from Lemma 5,

$$(4.16) V(0, \tau) \leqslant c_5 \tau^2 V(0, 1) .$$

On the other hand, passing to the limit in (4.10), (4.11), we get

(4.17)
$$V(0,1) \leqslant \liminf_{v \to \infty} V^{(v)}(0,1) = 1$$
,

$$(4.18) \hspace{1cm} V(0, \, \tau) = \lim_{\nu \to \infty} V^{(\nu)}(0, \, \tau) \! \geqslant \! 2e_{\scriptscriptstyle 5} \, \tau^{\scriptscriptstyle 2} \, ,$$

and these inequalities contradict (4.16).

q.e.d

The constants ε_0 and R_0 in the preceding lemma depend on τ , M, n, N, and on the coefficients $a_{ij}^{\alpha\beta}$. In the following, we shall emphasize the dependence on M by

writing $\varepsilon_0(M)$, $R_0(M)$. The following lemma is essentially an iteration of the preceding.

LEMMA 9. – Let $\tau < (2c_5)^{-\frac{1}{2}}$, and let u be a weak solution of (4.1) such that for some $z_0 \in A$ and for some $R < R_0(2M) \cap \delta(z_0, \partial A)$, we have

$$|u_{Q(z_0,R)}| \leqslant M,$$

$$(4.20) U(z_0, R) < \eta_0^2(M),$$

where

(4.21)
$$\eta_0(M) = \min \left\{ \varepsilon_0(2M), \ M \tau^{1+n/2} (1 - \tau \sqrt{2c_5}) \right\}.$$

Then for every integer $k \ge 0$, we have

$$(4.22)_k \qquad \qquad U(z_0\,,\,\tau^k R) \,{\leqslant}\, (2\,c_5\,\tau^2)^k\,U(z_0\,,\,R) \,\,.$$

Proof. - We have, for every $\rho > 0$,

$$|u_{Q(z_0,\,\tau\varrho)}-u_{Q(z_0,\,\varrho)}|\!<\!\tau^{-1-n/2}U(z_0,\,\varrho)^{\frac{1}{2}},$$

whence

$$|u_{Q(z_{\mathfrak{q}},\,\tau^{k}R)}| \leqslant |u_{Q(z_{\mathfrak{q}},\,R)}| + \tau^{-1-n/2} \sum_{j=0}^{k-1} U(z_{\mathfrak{q}},\,\tau^{j}R)^{\frac{1}{k}}\,.$$

For k = 0, the inequality (4.22) is trivial. Suppose now that $(4.22)_k$ is true for every $k \le k$. From (4.24) and (4.21), we easily get

$$|u_{\mathbf{Q}(\mathbf{z}_0, \mathbf{r}^k \mathbf{R})}| \leqslant 2M,$$

while from $(4.22)_k$, recalling that $2c_5\tau^2 < 1$, we obtain at once

$$(4.26) U(z_0, \tau^k R) < \varepsilon_0^2(2M).$$

From (4.25), (4.26), and the preceding Lemma, we get $(4.22)_{k+1}$. q.e.d. We can now prove the first part of the regularity theorem.

THEOREM 1. – For every weak solution u(z) of (4.1), there exists an open set $A_0 \subset A$ such that u(z) is (locally) α -hölder continuous (with respect to the metric δ) in A_0 , for every $\alpha < 1$.

PROOF. - Let $z_0 \in A$ be such that

$$\sup_{\mathbf{0} < R < \delta(z_{\mathbf{0}}, \partial A)} |u_{Q(z_{\mathbf{0}}, R)}| \leqslant M/2 < + \infty,$$

$$\liminf_{R\to 0^+} U(z_0,\,R)=0\;.$$

Let $\alpha = 1 - \sigma$, $0 < \sigma < 1$, and let $\tau = (2c_5)^{-\frac{1}{2}\sigma}$. There exists an $R < R_0(2M) \cap \delta(z_0, \delta A)$ such that

$$U(z_0, R) < \eta_0^2(M)$$
.

Since U(z, r) and $u_{Q(z,r)}$ are continuous functions of z and r (r > 0), there exists an s, 0 < s < R/2, such that for every $z \in Q(z_0, s)$, we have

$$|u_{Q(z,R_z)}| \leqslant M ,$$

$$(4.30) U(z, R_z) < \eta_0^2(M) ,$$

with $R_z = R - \delta(z, z_0) > R/2$.

From (4.29), (4.30), and Lemma 8, we get for every k:

$$(4.31) U(z, \tau^k R_z) \leqslant (2c_{\rm h} \tau^2)^k U(z, R_z) \leqslant \tau^{2k(1-\sigma)} \eta_0^2.$$

For every ϱ , $0 < \varrho < R/2 < R_z$, let h be the integer such that

$$\tau^{h+1}R_z < \varrho \leqslant \tau^h R_z$$
.

We have

$$(4.32) \hspace{1cm} U(z,\,\varrho) \! \leqslant \! \left(\frac{\varrho}{\tau^{h+1}R_z} \right)^{n+2} \! U(z,\,\varrho) \! \leqslant \! \tau^{-n-2} \, U(z,\,\tau^h R_z) \! \leqslant \! \tau^{-n-4+2\sigma} \left(\frac{\varrho}{R_x} \right)^{2(1-\sigma)} \! \eta_0^2 \; ,$$

whence

(4.33)
$$U(z, \varrho) \leqslant \left(\frac{2}{R}\right)^{2-2\sigma} \eta_0^2 (2c_5)^{((n+4)/2\sigma)-1} \varrho^{2(1-\sigma)}$$

for every $z \in Q(z_0, s)$ and every $\varrho < R/2$.

It is easily seen that (4.33) implies that u(x) belongs to $\mathfrak{L}^{2,\mu}(Q(z_0,s),\delta)$ with $\mu=1+(2/(n+2))(1-\sigma)$, so that the theorem follows at once from Lemma 3. q.e.d.

REMARK 1. - The set $\Sigma = A - A_0$, which is closed in A, will be called the singular set of u(z). A point z_0 is not in Σ if and only if (4.27) and (4.28) are satisfied.

With minor charges in the argument, one can show as in [6] that if the coefficients $a_{ii}^{\alpha\beta}$ are uniformly continuous in $\overline{A} \times \mathbb{R}^N$, then (4.28) alone is sufficient for the regularity of z_0 .

5. - The singular set.

In this Section, we shall obtain an upper bound for the Hausdorff dimension of the singular set Σ .

LEMMA 10. – Let u(z) be a function in $L_2(A)$, and let $z_0 \in A$ be such that

$$(5.1) U(z_0, R) \leqslant c_6 R^{2\varepsilon}$$

for some $\varepsilon>0$ and some $c_{\rm 6}$ depending on u and $z_{\rm 0}$. Then there exists, and is finite, the limit

$$\lim_{\varrho \to 0^+} u_{Q(z_0,\varrho)}.$$

PROOF. - Let $f(r) = u_{Q(z_0,r)}$. We have, for $z \in A$ and $0 < \sigma < \varrho < \delta(z_0, \partial A)$,

$$|f(\varrho)-f(\sigma)|^2 \leq 2\{|u(z)-f(\varrho)|^2+|u(z)-f(\sigma)|^2\}.$$

Integrating over $Q(z_0, \sigma)$,

$$\sigma^{n+2}|f(\varrho)-f(\sigma)|^2 \leq c_7 \{\varrho^{n+2} U(z_0,\varrho) + \sigma^{n+2} U(z_0,\sigma)\},$$

whence, using (5.1),

$$|f(\varrho) - f(\sigma)| \leq c_8 \sigma^{-1 - n/2} \{ \varrho^{n + 2 + 2\varepsilon} + \sigma^{n + 2 + 2\varepsilon} \}^{\frac{1}{2}}.$$

In particular, we have

$$|f(2^{-i}\rho) - f(2^{-i-1}\rho)| \leq c_0 2^{-i\varepsilon} \rho^{\varepsilon}$$

and, if h < k,

$$|f(2^{-h}\varrho) - f(2^{-k}\varrho)| \leq c_9 \varrho^{\epsilon} \sum_{j=h}^{k-1} 2^{-j\epsilon},$$

so that the sequence $f(2^{-h}\varrho)$ converges, as $h\to\infty$, to some real number λ . It is easily seen that λ does not depend on ϱ ; in fact, from (5.2) we get

$$|f(2^{-i}\varrho) - f(2^{-i}r)| \leqslant c_8 \left\{ \frac{\varrho^{n+2+2\varepsilon} + r^{n+2+2\varepsilon}}{\max{[\varrho, r]^{n+2}}} \right\}^{\frac{1}{2}} 2^{-i\varepsilon},$$

and the right-hand side of (5.4) tends to zero as $i \to \infty$. Finally, choosing h = 0 in (5.3) and letting $k \to \infty$, we get

$$|f(\rho)-\lambda| \leqslant c_{10}\rho^{\epsilon}$$
,

which proves the lemma.

q.e.d.

REMARK 2. – The preceding lemma and Remark 1 show that a point z_0 is regular if there exist constants $\varepsilon > 0$ and c_5 such that

$$U(z_0,R) \leqslant c_6 R^{2\varepsilon}$$

for every $R < \delta(z_0, \partial A)$; or, what is the same, if there exists a $\sigma > 0$ such that

(5.5)
$$\lim_{R \to 0^+} R^{-\sigma} U(z_0, R) = 0.$$

Let us observe that if the coefficients are uniformly continuous, then it is sufficient to require (5.5) with $\sigma = 0$. This will give a slight difference between the two cases. Let us now recall the Hausdorff measure.

DEFINITION 4. – Let δ be the metric (2.4), and let α be a non-negative real number, The α -dimensional Hausdorff measure of a set $X \subset \mathbf{R}^{n+1}$, with respect to the metric δ . is given by

$$\mathcal{H}_{\alpha}(X; \ \delta) = \lim_{\epsilon \to 0^+} \inf \left\{ \sum_i \delta(x_i)^{\alpha}; \ \bigcup_i X_i \supset X; \ \delta(X_i) < \epsilon \right\}.$$

The δ -Hausdorff dimension of a set X is the infimum of the numbers α such that $\mathcal{K}_{\alpha}(X;\delta)=0$.

The next lemma is a simple modification of Theorem 1 of [5].

LEMMA 11. – Let $f \in L_{1,loc}(A)$, and, for $0 < \alpha < n+2$, let

$$F_lpha = \left\{ z_{\scriptscriptstyle 0} \in A : \limsup_{arrho
ightarrow 0^+} arrho^{-lpha} \int\limits_{arrho(arrho_{\scriptscriptstyle 0}, arrho)} |f| \, dz > 0
ight\}.$$

Then we have

$$\mathcal{H}_{\alpha}(F_{\alpha}, \delta) = 0$$
.

The following result concludes the proof of the regularity theorem.

THEOREM 2. – Let $u \in W^{1,\frac{1}{2}}_{p,\log}(A; \mathbf{R}^n)$, $p \ge 2$, be a weak solution of (4.1). Then for every $\sigma > 0$, we have

$$\mathfrak{R}_{n+2-n+\sigma}(\Sigma,\,\delta) = 0.$$

If the coefficients are uniformly continuous, we can take $\sigma = 0$ in (5.6).

REMARK 3. – From Lemma 4, it follows at once that for every weak solution u(z) of (4.1), we have $\mathcal{H}_{n+\sigma}(\Sigma)=0$, $\forall \sigma>0$.

PROOF. OF THEOREM 2. – According to Remark 2, it is sufficient to prove that $\Re_{n+2-p+\sigma}(E_{\sigma}, \delta) = 0$, where

$$E_{\sigma} = \left\{ z_{\scriptscriptstyle 0} \in A : \limsup_{R o 0^+} R^{-2\sigma/p} \ U(z_{\scriptscriptstyle 0} \, , \, R) > 0
ight\}.$$

We have

$$R^{-2\sigma/p}\,U(z_0\,,\,R)\leqslant c_{.1}\Big\{R^{-n-2-\sigma}\int\limits_{Q(z_0,R)}|u-u_{Q(z_0,R)}|^pdz\Big\}^{2/p}\,,$$

and, by Lemma 1,

$$\begin{split} R^{-2\sigma/p} \, U(z_0 \, , \, R) \leqslant c_{12} \left\{ & \left[R^{p-2-n-\sigma} \int\limits_{Q(z_0 \, , \, R)} \sum_{i=1}^n |u_{x_i}|^p \, dz \right]^{2/p} + \right. \\ & \left. + \left[R^{p-n-2-\sigma} \int\limits_{B(x_0 \, , \, R)} dx \int\limits_{A(t_0 \, , \, R) \times (A(t_0 \, , \, R)} \frac{|u(x, \, t) - u(x, \, s)|^p}{|t-s|^{1+p/2}} \, dt \, ds \right]^{2/p} \right\}. \end{split}$$

The functions $|u_{x_i}|^p$ belong to $L_{1,loc}(A)$, whence, by Lemma 11, the first integral at the right-hand side tends to zero $\mathcal{K}_{n+2-p+\sigma}$ almost everywhere.

For the second integral, we observe that the function

$$f(x, s, t) = \frac{|u(x, t) - u(x, s)|^p}{|t - s|^{1 + p/2}}$$

belongs to $L_{1,loc}(\tilde{A})$, $\tilde{A} = \Omega \times (0, T) \times (0, T)$. If we denote by $\xi = (x, t, s)$ a point in \tilde{A} , by $\tilde{\delta}$ the metric

$$\tilde{\delta}(\xi_1, \, \xi_2) = \max \left\{ |x_1 - x_2|, \, |t_1 - t_2|^{\frac{1}{2}}, \, |s_1 - s_2|^{\frac{1}{2}} \right\},\,$$

and by \tilde{Q} the ball in the metric $\tilde{\delta}$, we get easily that

$$R^{p-n-2-\sigma} \int_{\tilde{Q}(\xi_0,R)} f(\xi) d\xi$$

tends to zero $\widetilde{\mathcal{R}}_{n+2-p+\sigma}$ almost everywhere. From that remark, it follows at once that $\mathcal{R}_{n+2-p+\sigma}(E_{\sigma}, \delta) = 0$.

In the case of elliptic systems in \mathbb{R}^n , one was able to prove (see [6] and [5]) that

$$(5.8) H_{n-n+\sigma}(\Sigma) = 0, \forall \sigma > 0,$$

for continuous coefficients, and

$$(5.9) H_{n-n}(\Sigma) = 0$$

with the assumption of uniform continuity, H_{α} being the α -dimensional Hausdorff measure with respect to the usual metric in \mathbb{R}^n . Comparing (5.8) and (5.9) with the conclusion of Theorem 2, it seems at first that the introduction of the time variable gives a jump of two in the dimension of the singular set. The following argument shows that this is not the case. Let us first observe that the restriction of the metric δ to the t-axis gives the metric $d(t_1, t_2) = |t_1 - t_2|^{\frac{1}{2}}$ so that the Hausdorff measure $\mathcal{H}_{\alpha}(X, d)$ verifies

$$\mathcal{H}_{\alpha}(X, d) = H_{\alpha/2}(X)$$
, $\forall X \in \mathbf{R}_t$,

 H_{β} being the usual Hausdorff measure in \mathbb{R}^1 .

On the other hand, δ coincides with the usual metric when restricted to \mathbb{R}^n , so that the Hausdorff measure is also the same:

$$\mathcal{K}_{\alpha}(X, \delta) = X_{\alpha}(X), \quad \forall X \in \mathbf{R}_{\alpha}^{n}.$$

Finally, if π_1 and π_2 are the projection operators on \mathbf{R} and \mathbf{R}^n , respectively, we have the following inequality ([4], Th. 2.10.25):

$$(5.10) \qquad \qquad \int\limits_{\mathbf{R}}^{*} H_{\alpha} \left\{ \pi_{2} \left(\Sigma \cap \pi_{1}^{-1}(t) \right) \right\} dH_{\beta/2}(t) \leqslant \mathfrak{K}_{\alpha+\beta}(\Sigma, \delta)$$

for every non-negative α , β .

In particular, if we choose $\beta=2$ and $\alpha=n-p+\sigma$, we conclude from (5.10) and (5.6) that

(5.11)
$$H_{n+\sigma-n}(\Sigma \cap \pi_1^{-1}(t)) = 0 \quad \text{for almost every } t.$$

A similar result, with $\sigma = 0$, holds for uniformly continuous coefficients.

REFERENCES

- [1] S. CAMPANATO, Preprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa, 17 (1963), pp. 175-188.
- [2] S. Campanato, Equazioni paraboliche del secondo ordine e spazi $\mathfrak{C}^{2,\theta}(\Omega,\delta)$, Ann. di Mat. pura e appl., 73 (1966), pp. 55-102.
- [3] G. DA PRATO. Spazi $\mathfrak{L}^{(p,\theta)}(\Omega,\delta)$ e loro proprietà, Ann. di Mat. pura e appl., **69** (1965), pp. 383-392.
- [4] H. Federer, Geometric measure theory, Springer-Verlag, 1969.
- [5] E. Giusti, Precisazione delle funzioni in H^{1,p} e singolarità nelle soluzioni deboli di sistemi ellittici non lineari, Boll. U.M.I., 1 (1969), pp. 71-76.
- [6] E. Giusti M. Miranda, Su'la regolarità nelle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rat. Mech. Anal., 31 (1968), pp. 173-184.
- [7] O. A. LADYŽENSKAJA V. A. SOLONNIKOV N. N. URAL'CEVA, Linear and quasilinear operators of parabolic type, Am. Math. Soc. (1968).