Partial Regularity for the Solutions
 to Nonlinear Parabolic Systems (*).

M. Giaquinta (**) - E. Giusti (***)

Sunto. - Si estendono a sistemi non lineari di tipo parabolico alcuni risultati di regolarità parziale delle soluzioni di sistemi ellittici.

1. - Introduction.

The aim of this paper is to extend the results and the methods of [6] to nonlinear parabolic systems of partial differential equations:

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{A} u^{\alpha} \varphi_{t}^{\alpha} d z=\sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} \int_{A} a_{i j}^{\alpha \beta}(z, u) u_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} d z, \quad \forall \varphi \in C_{0}^{\infty}\left(A: \mathbb{R}^{z}\right) \tag{1.1}
\end{equation*}
$$

where $A=\Omega \times(0, T)$ is an open set in $\boldsymbol{R}^{n+1}, z=(x, t)$, and the coefficients $a_{i j}^{\alpha \beta}(z, u)$ are supposed to be continuous in $\bar{A} \times \boldsymbol{R}^{N}$ and satisfy the ellipticity conditions:

$$
\begin{gathered}
\left|a_{i j}^{\alpha \beta}\right| \leqslant L \\
\sum_{i, j=1}^{n} \sum_{\alpha, \beta=1}^{N} a_{i j}^{\beta \alpha} \xi_{\alpha}^{i} \xi_{\beta}^{j} \geqslant|\xi|^{2}, \quad \forall \xi \in \boldsymbol{R}^{n N} .
\end{gathered}
$$

In these hypotheses, we shall prove that every weak solution of (1.1) is regular in A, with the possible exception of a singular set Σ, closed in A. If in addition the solution u belongs to the space $W_{p, 10 c}^{1, \frac{1}{2}}\left(A: \boldsymbol{R}^{N}\right)$ for some $p \geqslant 2$, one has

$$
\mathscr{H}_{n+2-p+\sigma}(\Sigma, \delta)=0
$$

for every $\sigma>0, \delta$ being a suitable metric in \boldsymbol{R}^{n+1} and $\mathbb{X}_{\alpha}(x, \delta)$ being the α-dimensional Hausdorff measure relative to the metric δ.

[^0]
2. - Preliminaries.

We shall consider open sets $A=\Omega \times(0, T)$ in \boldsymbol{R}^{n+1}, where Ω is open in \boldsymbol{R}^{n} and $T>0$. A point in \boldsymbol{R}^{n+1} will be denoted by $z=(x, t), x \in \boldsymbol{R}^{n}, t \in \boldsymbol{R}$. If $z_{0}=\left(x_{0}, t_{0}\right)$ is in \boldsymbol{R}^{n+1}, and if $R>0$, we define

$$
\begin{align*}
& B\left(x_{0}, R\right)=\left\{x \in \boldsymbol{R}^{n}:\left|x-x_{0}\right|<R\right\} \tag{2.1}\\
& A\left(t_{0}, R\right)=\left\{t \in \boldsymbol{R}:\left|t-t_{0}\right|<R^{2}\right\} \tag{2.2}\\
& Q\left(z_{0}, R\right)=B\left(x_{0}, R\right) \times \Lambda\left(t_{0}, R\right) \tag{2.3}
\end{align*}
$$

If we introduce in \boldsymbol{R}^{n+1} the metric

$$
\begin{equation*}
\delta\left(z_{1}, z_{2}\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|t_{1}-t_{2}\right|^{\frac{1}{2}}\right\} \tag{2.4}
\end{equation*}
$$

then the set $Q\left(z_{0}, R\right)$ is an open ball of radius R, centered at z_{0}. We shall write Q, Q_{R} instead of $Q\left(z_{0}, R\right)$ (and likewise for B and Λ) whenever it can be done without confusion.

In addition to the usual Sobolev spaces $W_{p}^{1}(A)$, we need the following spaces:
Definition 1. $-V_{p}^{1,0}(A)$ is the completion of $C^{1}(A)$ with respect to the norm:

$$
\begin{equation*}
|u|_{p: A}=\left\{\int_{A}|u|^{p} d z+\sum_{i=1}^{n} \int_{A}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d z\right\}^{1 / p} \equiv\left\{\|u\|_{p, A}^{p}+\sum_{i=1}^{n}\left\|u_{x_{i}}\right\|_{p, A}^{p}\right\}^{1 / p} \tag{2.5}
\end{equation*}
$$

Definition 2. - $W_{p}^{1, \alpha}(A), 0<\alpha<1$, is the completion of $C^{1}(A)$ with respect to the norm:

The following propositions are well-known:
Lemma 1. - Let $A=\Omega \times(0, T)$ be bounded and convex, and let $u \in W_{D}^{1, \frac{1}{2}}(A)$. Then:

$$
\begin{equation*}
\int_{A}\left|u-u_{A}\right|^{p} d z \leqslant e_{1} \delta(A)^{p}\left\{\sum_{i=1}^{n}\left\|u_{x_{i}}\right\|_{p, A}^{p}+|u|_{\frac{1}{2}, v ; A}^{p}\right\} \tag{2.7}
\end{equation*}
$$

where

$$
u_{A}=\frac{1}{\operatorname{meas} A} \int_{A} u d z
$$

and $\delta(A)$ is the diameter of A with respect to the metrio $\delta: \delta(A)=\max \{\operatorname{diam} \Omega, \sqrt{T}\}$.

Lemma 2. - Let A be as before. Then the natural imbedding of $W_{p}^{1, \frac{1}{2}}(A)$ into $L_{p}(A)$ is compact.

Finally we introduce another family of functional spaces.
Defintion 3. - Let $A=\Omega \times(0, T)$ be bounded and convex, and let δ be the metric (2.4). $\mathcal{C}^{p, \mu}(A, \delta), \mu>0$, is the space of all functions in $L_{p}(A)$ such that:

$$
[f]_{p, \mu ; A}^{p}=\sup _{\substack{z_{0} \in A \\ R>0}}\left[\operatorname{meas}\left(A \cap Q\left(z_{0}, R\right)\right)\right]^{-\mu} \int_{A \cap\left(z_{0}, R\right)}\left|f-f_{z_{0}, R}\right|^{p} d z<+\infty
$$

where

$$
f_{z_{0}, R}=\frac{1}{\operatorname{meas}\left(A \cap Q\left(z_{0}, R\right)\right)} \int_{A \cap Q\left(z_{0}, R\right)} f(z) d z
$$

$\mathfrak{L}^{\mathfrak{p}, \mu}(A, \delta)$ is a Banach space with norm

$$
\left\{\|f\|_{p, A}^{p}+[f]_{p, \mu ; A}^{p}\right\}^{1 / p}
$$

These spaces have been introduced in [1] for the euclidean metric and in [3] for a general class of metrics including (2.4). We have the following result ([3], Theor. [3.1]).

Lemma 3. - If $\mu>1$, then $\mathfrak{L}^{\mathfrak{p}, \mu}(A, \delta)$ is isomorphic to $0^{0, \alpha}(\Omega, \delta)$, the space of α-hölder continuous functions with respect to the metric δ, with $\alpha=((n+2) / p)(\mu-1)$.

In the following, we shall consider vector-valued functions; if $S(A)$ is a topological space of real functions in A, we will denote by $S\left(A ; \boldsymbol{R}^{N}\right)$ the product of N copies of $S(A)$, with the natural topology. It is obvious that Lemmas 1,2 and 3 remain valid for vector-valued functions. Finally, with $S_{\mathrm{loc}}(A)$ we denote the space of all functions f in A which belong to $S\left(A^{\prime}\right)$ for every $A^{\prime} \subset \subset A$.

3. - Linear parabolic systems.

In this Section we collect a number of results concerning linear parabolic systems. Results of this type are known and can be found in the literature, although sometimes in a slightly different form.

By weak solution of the parabolic system

$$
\begin{equation*}
\frac{\partial u^{\alpha}}{\partial t}=\frac{\partial}{\partial x_{i}}\left(a_{i j}^{\alpha \beta}(z) \frac{\partial u^{\beta}}{\partial x_{i}}\right), \quad \alpha=1, \ldots, N \tag{3.1}
\end{equation*}
$$

We mean a function $u \in V_{2,1 \mathrm{loc}}^{1,0}\left(\boldsymbol{A} ; \boldsymbol{R}^{\boldsymbol{N}}\right)$ such that

$$
\begin{equation*}
\int_{A} u^{\alpha} \varphi_{t}^{\alpha} d z=\int_{A} a_{i j}^{\alpha \beta}(z) u_{x_{i}}^{\beta} \varphi_{x_{i}}^{\alpha} d z \tag{3.2}
\end{equation*}
$$

for every $\varphi \in O_{0}^{\infty}\left(A ; R^{N}\right)$. Here and in the following, the summation over repeated indices is understood, the latin indices i, j, \ldots running from 1 to n, and the greek indices α, β, \ldots from 1 to N.

The coefficients $a_{i j}^{\alpha \beta}$ are bounded measurable functions such that

$$
\begin{array}{ll}
a_{i j}^{\alpha \beta} \xi_{\alpha}^{i} \xi_{\beta}^{j} \geqslant|\xi|^{2}=\xi_{\alpha}^{i} \xi_{\alpha}^{i}, & \forall \xi \in \boldsymbol{R}^{n N}, \forall z \in A \tag{3.3}\\
\left|a_{i j}^{\alpha \beta}(z)\right| \leqslant L, & \forall z \in A
\end{array}
$$

The following Lemmas are proved using methods similar to those in [7], Ch. ITI, § 4:

Lemma 4."- Let $u(z)$ be a weak solution of the system (3.1) in $Q_{R_{0}}$. Then $u \in$ $\in W_{2,100}^{1, \frac{1}{1}}\left(Q_{R_{0}} ; \boldsymbol{R}^{N}\right)$, and for every $\varrho_{\sim}^{\dagger} R\left(0<\varrho<R<R_{0}\right)$ we have:

$$
\begin{equation*}
\|u\|_{2,2 ; Q_{e}} \leqslant c_{2}(\varrho, R)\|u\|_{2, Q_{R}} \tag{3.4}
\end{equation*}
$$

Proof. - Let $\varphi^{\alpha}=\omega(t) \eta^{\alpha}(x, t), \operatorname{supp} \omega \subset \Lambda_{R}$. We get from (3.2):

$$
\begin{equation*}
\int v^{\alpha} \eta_{t}^{\alpha} d z=\int F_{i}^{\alpha} \eta_{x_{i}}^{\alpha} d z-\int F^{\alpha} \eta^{\alpha} d z \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
v^{\alpha}=\omega u^{\alpha} ; \quad F_{i}^{\alpha}=a_{i j}^{\alpha \beta} v_{x_{j}}^{\beta} ; \quad F^{\alpha}=u^{\alpha} \omega \tag{3.6}
\end{equation*}
$$

Now let $\beta_{\varepsilon}(t)$ be a mollifier, $\beta_{\varepsilon}(t)=\beta_{\varepsilon}(-t)$; if we put $\eta(x, t)=\beta_{\varepsilon} * \theta=\theta_{\varepsilon}(x, t)$, we obtain

$$
\begin{equation*}
\int v_{\varepsilon}^{\alpha} \theta_{i}^{\alpha} d z=\int F_{i, e}^{\alpha} \theta_{x_{i}}^{\alpha} d z-\int F_{\varepsilon}^{\alpha} \theta^{\alpha} d z \tag{3.7}
\end{equation*}
$$

In particular, if $\theta^{\alpha}(x, t)=\gamma(t) \psi^{\alpha}(x)$, with $\gamma \in \mathscr{D}\left(\Lambda_{R}\right)$ and $\psi^{\alpha} \in \stackrel{\circ}{W}_{2}^{1}\left(B_{R}\right)$, we get the equation

$$
\begin{equation*}
\int\left\langle v_{\varepsilon}, \psi\right\rangle \gamma^{\prime} d t=\int\left\{\left\langle F_{i, \varepsilon}, y_{p_{i}}\right\rangle-\left\langle F_{\varepsilon}, \psi\right\rangle\right\} \gamma d t \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle f, g\rangle=\int f^{\alpha} g^{\alpha} d x \tag{3.9}
\end{equation*}
$$

and hence, in the sense of distributions,

$$
\begin{equation*}
\frac{d}{d t}\left\langle\boldsymbol{v}_{\varepsilon}, \psi\right\rangle=-\left\langle F_{i, \varepsilon}, \psi_{x_{i}}\right\rangle+\left\langle F_{\varepsilon}, \psi\right\rangle \tag{3.10}
\end{equation*}
$$

Now let $\hat{f}(\tau)$ denote the Fourier transform of $f(t)$. We have

$$
\begin{equation*}
i \tau\left\langle\hat{v}_{\varepsilon}, \psi\right\rangle=\left\langle\hat{F}_{i, \varepsilon}, \psi_{x_{i}}\right\rangle-\left\langle\hat{F}_{\varepsilon}^{\prime}, \psi\right\rangle \tag{3.11}
\end{equation*}
$$

for every $\tau \in \boldsymbol{R}$ and every $\psi \in \mathscr{W}_{2}^{\mathbf{1}}\left(B_{R}\right)$. In particular, we can choose

$$
\psi=-i \operatorname{sign} \tau \widehat{v}_{\boldsymbol{z}} \sigma(x)^{2}
$$

with $\sigma \in \mathfrak{D}\left(B_{R}\right)$; integrating with respect to τ, we easily get:

$$
\begin{equation*}
\int|\tau|\left|\sigma \hat{v}_{\varepsilon}\right|^{2} d x d \tau \leqslant\left\|\sigma F_{i, \varepsilon}\right\|_{2}\left\{\left\|\sigma v_{\varepsilon, x}\right\|_{2}+\left\|\sigma_{x} v_{\varepsilon}\right\|_{2}\right\}+\left\|\sigma F_{\varepsilon}\right\|_{2}\left\|\sigma v_{\varepsilon}\right\|_{2} \tag{3.12}
\end{equation*}
$$

Finally, if we let $\varepsilon \rightarrow 0$ (remember that for every function $g(x, t)$ with compact support, we have

$$
\left.\int d x \int \frac{|g(x, t)-g(x, s)|^{2}}{|t-s|^{2}} d t d s=2 \int_{-\infty}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t \int|\tau||\hat{g}|^{2} d \tau d x\right)
$$

and choose ω and σ in such a way that $\omega \sigma \equiv 1$ on Q_{ϱ}, we easily get the conclusion of the lemma. q.e.d.

Levicus 5. - With the hypotheses of Lemma 4, we have

$$
\begin{equation*}
\left\|u \mathbf{I}_{2, Q_{e}}<c_{3}(\varrho, R)\right\| u \|_{2, Q_{R}} \tag{3.13}
\end{equation*}
$$

for every $R, \varrho\left(0<\varrho<R<R_{0}\right)$.
Proof. - If $\varphi=\beta_{\varepsilon} * \theta$, we have from (3.2)

$$
\begin{equation*}
\int_{Q_{R}} u_{e}^{\alpha} \theta_{i}^{\alpha} d z=\int_{Q_{R}}\left(a_{i j}^{\alpha \beta} u_{x j}^{\beta}\right)_{e} \theta_{x_{i}}^{\alpha} d z \tag{3.14}
\end{equation*}
$$

In particular, if $\theta=\sigma^{2}(x) \omega^{2}(t) u_{s}$, with $\sigma(x) \in \mathscr{D}\left(B_{R}\right)$ and $\omega(t) \in \mathscr{D}\left(\Lambda_{R}\right)$, we get

$$
0=\frac{1}{2} \int_{B_{R}} \sigma^{2} d x \int_{A_{R}} \frac{d}{d t}\left|\omega u_{\varepsilon}\right|^{2} d t=\int_{Q_{R}}\left(a_{i j}^{\alpha \beta} u_{x_{j}}^{\beta}\right)_{e} \omega^{2}\left(\sigma^{2} u_{\varepsilon}^{\alpha}\right)_{x_{i}} d z-\int_{Q_{R}}\left|u_{\varepsilon}\right|^{2} \omega \omega_{t} \sigma^{2} d z,
$$

whence, if $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\int a_{i j}^{\alpha \beta} u_{x_{j}}^{\beta} u_{x_{t}}^{\alpha} \omega^{2} \sigma^{2} d z=\int|u|^{2} \omega \omega_{t} \sigma^{2} d z-2 \int a_{i j}^{\alpha \beta} u_{x_{j}}^{\beta} \omega^{2} \sigma^{\alpha} \sigma_{x_{t}} d z \tag{3.15}
\end{equation*}
$$

With the usual choice of σ and ω, it is not difficult to get (3.13) from (3.15). q.e.d.
An immediate consequence of the two previous lemmas is
Corollary 1. - Let u be as before. Then for every $\varrho, R\left(0<\varrho<R<R_{0}\right)$, we have

$$
\begin{equation*}
\|u\|_{2,2 ; Q_{Q}} \leqslant c_{4}(\varrho, R)\|u\|_{2, Q_{n}} . \tag{3.16}
\end{equation*}
$$

17 - Annali di Matematica

Let us now recall a result concerning systems with constant coefficients. The proof can be found in [2].

Lemma 6. - Let $u(t)$ be a weak solution of (3.1) in Q, and let the coefficients $a_{i j}^{\alpha \beta}$ be constant in Q_{1}. Suppose further that $u \in L_{2}\left(Q_{1}, \boldsymbol{R}^{N}\right)$. Then for every $\varrho<1$, we have

$$
\begin{equation*}
\frac{1}{\operatorname{meas} Q_{g}} \int_{Q_{e}}\left|u-u_{Q_{\varrho}}\right|^{2} d z \leqslant c_{5} \varrho^{2} \frac{1}{\operatorname{meas} Q_{1}} \int_{Q_{1}}\left|u-u_{Q_{1}}\right|^{2} d z \tag{3.17}
\end{equation*}
$$

We conclude this Section with a simple result concerning the convergence of solutions of parabolic systems.

Levma 7. - Let $a_{i j}^{\alpha \beta(\nu)}(z)(y=1,2, \ldots)$ be a sequence of bounded measurable funetions in Q_{1}, verifying (3.2) with L independent of v, and such that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} a_{i j}^{\alpha \beta}(\nu)(z)=a_{i j}^{\alpha \beta}(z) \quad \text { a.e. in } Q_{1} \tag{3.18}
\end{equation*}
$$

Let $u^{(\nu)}$ be a sequence of function in $L_{2}\left(Q_{1} ; \boldsymbol{R}^{N}\right)$, weak solutions in Q_{1} of the system (3.1) with coefficients $a_{i j}^{\alpha \beta(\nu)}$:

$$
\begin{equation*}
\int_{Q_{i}} u^{(v) \alpha} \varphi_{i}^{\alpha} d z=\int_{Q_{1}} a_{i j}^{\alpha \beta(v)}(z) u_{x_{j}}^{(\nu) \beta} \varphi_{x_{t}}^{\alpha} d x, \quad \forall \varphi \in C_{0}^{\infty}\left(Q_{1}, \boldsymbol{R}^{N}\right) \tag{3.19}
\end{equation*}
$$

Suppose further that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} u^{(\nu)}=u \quad \text { weakly in } L^{2}\left(Q_{1} ; \boldsymbol{R}^{N}\right) \tag{3.20}
\end{equation*}
$$

Then $u \in V_{2,100}^{1,0}\left(Q_{1}, \boldsymbol{R}^{N}\right)$, and for every $R<1$ we have

$$
\begin{array}{ll}
\lim _{\nu \rightarrow \infty} u^{(\nu)}=u & \text { strongly in } L_{2}\left(Q_{R}, \boldsymbol{R}^{N}\right), \\
\lim _{y \rightarrow \infty} u_{x_{4}}^{(p)}=u_{x_{4}} & \text { weakly in } L_{2}\left(Q_{R}, \boldsymbol{R}^{N}\right) \tag{3.22}
\end{array}
$$

$(i=1, \ldots, n)$. In addition, $u(z)$ is a weak solution of the system

$$
\begin{equation*}
\int_{Q_{1}} u^{\alpha} \varphi_{t}^{\alpha} d z=\int_{Q_{1}} a_{i j}^{\alpha \beta}(z) u_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} d z, \quad \forall \varphi \in C_{0}^{\infty}\left(Q_{1}, \boldsymbol{R}^{N}\right) \tag{3.23}
\end{equation*}
$$

Proof. - It is easily seen that (3.20) and Lemma 5 imply (3.22), while (3.21) follows from Corollary 1, Lemma 2, and (3.20). Finally, letting $y \rightarrow \infty$ in (3.19), one gets (3.23) at once.

4. - The regularity of solutions of parabolic systems.

We shall consider solutions of nonlinear parabolic systems of partial differential equations:

$$
\begin{equation*}
\int_{A} u^{\alpha} \varphi_{t}^{\alpha} d z=\int_{A} a_{i j}^{\alpha \beta}(z, u) u_{x_{j},}^{\beta} x_{t}^{\alpha} d x, \quad \forall \varphi \in C_{0}^{\infty}\left(A, \boldsymbol{R}^{N}\right), \tag{4.1}
\end{equation*}
$$

where, as usual, $A=\Omega \times(0, T)$ is an open set in $\boldsymbol{R}^{n+1}, z=(x, t), x \in \Omega, 0<t<T$, and we sum over repeated indices, the latin indices running from 1 to n, and the greek indices from 1 to N.

The coefficients $a_{i j}^{\alpha \beta}(z, u)$ are supported to be continuous functions in $\bar{A} \times \boldsymbol{R}^{N}$, and to satisfy the ellipticity conditions:
i) $\left|a_{i j}^{\alpha \beta}(z, u)\right| \leqslant L, \forall z \in \bar{A}, u \in \boldsymbol{R}^{N}$,
ii) $a_{i j}^{\alpha \beta}(z, u) \xi_{\alpha}^{i} \xi_{\beta}^{j}=|\xi|^{2}, \forall \xi \in \boldsymbol{R}^{n N}, z \in \bar{A}, u \in \boldsymbol{R}^{N}$.

We have the following
Lexma 8. - For every $\tau, 0<\tau<1$, and for every $M>0$, there exist two constants ε_{0} and R_{0} such that if $u(z)$ is a weak solution of (4.1), and if for some $z_{0} \in A$ and some $R<R_{0} \cap \delta\left(z_{0}, \partial A\right)(a \cap b=\min \{a, b\})$, we have

$$
\begin{equation*}
U\left(z_{0}, R\right) \equiv \frac{1}{\operatorname{meas} Q_{R}} \int_{Q\left(z_{0}, R\right)}\left|u-u_{Q\left(z_{0}, R\right)}\right|^{2} d z<\varepsilon_{0}^{2} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u_{Q\left(z_{0}, p_{1}\right)}\right| \leqslant M ; \tag{4.3}
\end{equation*}
$$

then:

$$
\begin{equation*}
U\left(z_{0}, \tau R\right) \leqslant 2 e_{5} \tau^{2} D\left(z_{0}, R\right) \tag{4.4}
\end{equation*}
$$

where c_{5} is the constant appearing in Lemma 5.
Proof. - Suppose the lemma is false. Then for some τ and M, there exist sequences $z_{v} \in A, \varepsilon_{v} \rightarrow 0, R_{v} \rightarrow 0$, and a sequence $u^{(p)}$ of weak solutions of (4.1) such that

$$
\begin{align*}
& \left|u_{Q\left(z_{\nu}, R_{\nu}\right.}\right| \leqslant M, \tag{4.5}\\
& D^{(v)}\left(z_{\nu}, R_{\nu}\right)=\varepsilon_{\nu}^{2}, \tag{4.6}
\end{align*}
$$

and

$$
\begin{equation*}
U\left(z_{v}, \tau R_{p}\right)>2 c_{5} \tau^{2} \varepsilon_{2}^{\eta} \tag{4.7}
\end{equation*}
$$

If we define

$$
\begin{equation*}
\left.v^{(v)}(z)=v^{(v)}(x, t)=\varepsilon_{v}^{-1}\left(u^{(v)}\left(x_{\psi}+R_{v} x, t_{v}+R_{v}^{2} t\right)-u_{Q(z y}^{(v)}, R_{v}\right)\right\} \tag{4.8}
\end{equation*}
$$

we have $(Q=Q(0,1))$:

$$
\begin{equation*}
\int_{Q} v^{(v) \alpha} \varphi_{i}^{\alpha} d z=\int_{Q} a_{i j}^{\alpha \beta}\left(x_{v}+R_{v} x, t_{v}+R_{v}^{2} t ; \varepsilon_{v} v^{(\nu)}+u_{Q\left(x_{v}, R_{v}\right)}^{(\nu)}\right) v_{x_{j}}^{(\nu) \beta} \varphi_{x_{i}}^{\alpha} d z, \quad \forall \varphi \in C_{0}^{\infty}\left(Q ; \boldsymbol{R}^{N}\right) ; \tag{4.9}
\end{equation*}
$$

and, from (4.6), (4.7):

$$
\begin{align*}
& V^{(\nu)}(0,1)=\frac{1}{\operatorname{meas} Q} \int_{Q}\left|v^{(\nu)}\right|^{2} d z=1 \tag{4.10}\\
& V^{(\nu)}(0, \tau)>2 c_{5} \tau^{2} \tag{4.11}
\end{align*}
$$

From (4.10), passing in case to a subsequence, we get

$$
\begin{array}{ll}
v^{(v)} \rightarrow v & \text { weakly in } L_{2}\left(Q ; \boldsymbol{R}^{N}\right) \\
\varepsilon_{\nu} v^{(\nu)} \rightarrow 0 & \text { a.e. in } Q \\
z_{\nu} \quad \rightarrow \bar{z} ; & u_{Q\left(x_{v}, R_{v}\right)}^{(\nu)} \rightarrow \lambda \tag{4.14}
\end{array}
$$

whence

$$
\begin{equation*}
a_{i j}^{\alpha \beta}\left(x_{v}+R_{v} x, t_{v}+R_{v}^{2} t ; \varepsilon_{v} v^{(\nu)}+u_{Q\left(x_{v}, R_{\nu}\right)}^{(\nu)}\right) \rightarrow a_{i j}^{\alpha \beta}(\bar{z}, \lambda) \quad \text { a.e. in } Q . \tag{4.15}
\end{equation*}
$$

It follows from Lemma 6 that the function v is a weak solution in Q of the system:

$$
\int_{Q} v^{\alpha} \varphi_{i}^{\alpha} d z=\int_{Q} a_{i j}^{\alpha \beta}(\bar{z}, \lambda) v_{x_{j}}^{\beta} \varphi_{x_{i}}^{\alpha} d z, \quad \forall \varphi \in C_{0}^{\infty}\left(Q ; \boldsymbol{R}^{N}\right)
$$

whence, from Lemma 5,

$$
\begin{equation*}
V(0, \tau) \leqslant c_{\mathrm{s}} \tau^{2} V(0,1) \tag{4.16}
\end{equation*}
$$

On the other hand, passing to the limit in (4.10), (4.11), we get

$$
\begin{align*}
& V(0,1) \leqslant \liminf _{\nu \rightarrow \infty} V^{(\nu)}(0,1)=1 \tag{4.17}\\
& V(0, \tau)=\lim _{\nu \rightarrow \infty} V^{(\nu)}(0, \tau) \geqslant 2 e_{5} \tau^{2} \tag{4.18}
\end{align*}
$$

and these inequalities contradict (4.16).
q.e.d.

The constants ε_{0} and R_{0} in the preceding lemma depend on τ, M, n, N, and on the coefficients $\alpha_{i j}^{\alpha \beta}$. In the following, we shall emphasize the dependence on M by
writing $\varepsilon_{0}(M), R_{0}(M)$. The following lemma is essentially an iteration of the preceding.

Lemma 9. - Let $\tau<\left(2 c_{5}\right)^{-\frac{1}{2}}$, and let u be a weak solution of (4.1) such that for some $z_{0} \in A$ and for some $R<R_{0}(2 M) \cap \delta\left(z_{0}, \partial A\right)$, we have

$$
\begin{align*}
& \left|u_{Q\left(z_{\mathrm{f}}, R\right)}\right| \leqslant M \tag{4.19}\\
& U\left(z_{0}, R\right)<\eta_{0}^{2}(M) \tag{4.20}
\end{align*}
$$

where

$$
\begin{equation*}
\eta_{0}(M)=\min \left\{\varepsilon_{0}(2 M), M \tau^{1+n / 2}\left(1-\tau \sqrt{2 o_{5}}\right)\right\} \tag{4.21}
\end{equation*}
$$

Then for every integer $k \geqslant 0$, we have

$$
\begin{equation*}
U\left(z_{0}, \tau^{k} R\right) \leqslant\left(2 c_{5} \tau^{2}\right)^{k} U\left(z_{0}, R\right) \tag{4.22}
\end{equation*}
$$

Proof. - We have, for every $\varrho>0$,

$$
\begin{equation*}
\left|u_{Q\left(z_{0}, x e\right)}-u_{Q\left(z_{0}, \varrho\right)}\right| \leqslant \tau^{-1-n / 2} U\left(z_{0}, \varrho\right)^{\frac{1}{2}} \tag{4.23}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left|u_{Q\left(z_{B}, \tau^{k} R\right)}\right| \leqslant\left|u_{Q\left(z_{0}, R\right)}\right|+\tau^{-1-n / 2} \sum_{j=0}^{k-1} U\left(z_{0}, \tau^{j} R\right)^{\frac{1}{2}} \tag{4.24}
\end{equation*}
$$

For $k=0$, the inequality (4.22) is trivial. Suppose now that (4.22) $)_{k}$ is true for every $h \leqslant k$. From (4.24) and (4.21), we easily get

$$
\begin{equation*}
\left|u_{Q\left(z_{0}, z^{k} R\right)}\right| \leqslant 2 M \tag{4.25}
\end{equation*}
$$

while from $(4.22)_{k}$, recalling that $2 c_{5} \tau^{2}<1$, we obtain at once

$$
\begin{equation*}
U\left(z_{0}, \tau^{k} R\right)<\varepsilon_{0}^{2}(2 M) \tag{4.26}
\end{equation*}
$$

From (4.25), (4.26), and the preceding Lemma, we get (4.22) $)_{k+1}$. q.e.d.
We can now prove the first part of the regularity theorem.
Theorem 1. - For every weak solution $u(z)$ of (4.1), there exists an open set $A_{0} \subset A$ suoh that $u(z)$ is (locally) α-hölder continuous (with respect to the metric δ) in A_{0}, for every $\propto<1$.

Proof. - Let $z_{0} \in A$ be such that

$$
\begin{gather*}
\sup _{0<R<\delta\left(z_{0}, \partial A\right)}\left|u_{Q\left(z_{0}, R\right)}\right| \leqslant M / 2<+\infty \tag{4.27}\\
\liminf _{R \rightarrow 0^{+}} U\left(z_{0}, R\right)=0 \tag{4.28}
\end{gather*}
$$

Let $\alpha=1-\sigma, 0<\sigma<1$, and let $\tau=\left(2 c_{5}\right)^{-b \sigma}$. There exists an $R<R_{0}(2 M) \cap$ $\cap \delta\left(z_{0}, \delta A\right)$ such that

$$
U\left(\tau_{0}, R\right)<\eta_{0}^{2}(M)
$$

Since $U(z, r)$ and $u_{Q(z, r)}$ are continuous functions of z and $r(r>0)$, there exists an s, $0<s<R / 2$, such that for every $z \in Q\left(z_{0}, s\right)$, we have

$$
\begin{align*}
& \left|u_{Q\left(z, R_{z}\right.}\right| \leqslant M \tag{4.29}\\
& U\left(z, R_{z}\right)<\eta_{0}^{2}(M) \tag{4.30}
\end{align*}
$$

with $R_{z}=R-\delta\left(z, z_{0}\right)>R / 2$.
From (4.29), (4.30), and Lemma 8, we get for every k :

$$
\begin{equation*}
U\left(z, \tau^{k} R_{z}\right) \leqslant\left(2 c_{5} \tau^{2}\right)^{k} U\left(z, R_{z}\right) \leqslant \tau^{2 k(1-\sigma)} \eta_{0}^{2} \tag{4.31}
\end{equation*}
$$

For every $\varrho, 0<\varrho<R / 2<R_{z}$, let h be the integer such that

$$
\tau^{n+1} R_{z}<\varrho \leqslant \tau^{h} R_{z}
$$

We have

$$
\begin{equation*}
U(z, \varrho) \leqslant\left(\frac{\varrho}{\tau^{h+1} R_{z}}\right)^{n+2} U(z, \varrho) \leqslant \tau^{-n-2} U\left(z, \tau^{h} R_{z}\right) \leqslant \tau^{-n-4+2 \sigma}\left(\frac{\varrho}{R_{x}}\right)^{2(1-\sigma)} \eta_{0}^{2} \tag{4.32}
\end{equation*}
$$

whence

$$
\begin{equation*}
U(z, \varrho) \leqslant\left(\frac{2}{R}\right)^{2-2 \sigma} \eta_{0}^{2}\left(2 \epsilon_{5}\right)^{((n+4) / 2 \sigma)-1} \varrho^{2(1-\alpha)} \tag{4.33}
\end{equation*}
$$

for every $z \in Q\left(z_{0}, s\right)$ and every $\varrho<R / 2$.
It is easily seen that (4.33) implies that $u(x)$ belongs to $\mathcal{L}^{2, \mu}\left(Q\left(z_{0}, s\right), \delta\right)$ with $\mu=1+(2 /(n+2))(1-\sigma)$, so that the theorem follows at once from Lemma 3. q.e.d.

Remaris 1. - The set $\Sigma=A-A_{0}$, which is closed in A, will be called the singular set of $u(2)$. A point z_{0} is not in Σ if and only if (4.27) and (4.28) are satisfied.

With minor charges in the argument, one can show as in [6] that if the coeffcients $a_{i j}^{\alpha \beta}$ are uniformly continuous in $\bar{A} \times \boldsymbol{R}^{N}$, then (4.28) alone is sufficient for the regularity of z_{0}.

5. - The singular set.

In this Section, we shall obtain an upper bound for the Hausdorff dimension of the singular set Σ.

Lemma 10. - Let $u(z)$ be a function in $L_{2}(A)$, and let $z_{0} \in A$ be suoh that

$$
\begin{equation*}
U\left(z_{0}, R\right) \leqslant c_{6} R^{2 \varepsilon} \tag{5.1}
\end{equation*}
$$

for some $\varepsilon>0$ and some ε_{6} depending on u and z_{0}. Then there exists, and is finite, the limit

$$
\lim _{Q \rightarrow 0^{+}} u_{Q\left(z_{0}, Q\right)}
$$

Proof. - Let $f(r)=u_{Q\left(z_{0}, r\right)}$. We have, for $z \in A$ and $0<\sigma<\varrho<\delta\left(z_{0}, \partial A\right)$,

$$
|f(\varrho)-f(\sigma)|^{2} \leqslant 2\left\{|u(z)-f(\varrho)|^{2}+|u(z)-f(\sigma)|^{2}\right\}
$$

Integrating over $Q\left(z_{0}, \sigma\right)$,

$$
\sigma^{n+2}|f(\varrho)-f(\sigma)|^{2} \leqslant c_{7}\left\{\varrho^{n+2} U\left(z_{0}, \varrho\right)+\sigma^{n+2} U\left(z_{0}, \sigma\right)\right\}
$$

whence, using (5.1),

$$
\begin{equation*}
|f(\varrho)-f(\sigma)| \leqslant c_{8} \sigma^{-1-n / 2}\left\{\varrho^{n+2+2 e}+\sigma^{n+2+2 \varepsilon}\right\}^{\frac{1}{2}} . \tag{5.2}
\end{equation*}
$$

In particular, we have

$$
\left|f\left(2^{-i} \varrho\right)-f\left(2^{-i-1} \varrho\right)\right| \leqslant c_{9} 2^{-i z} \varrho^{\varepsilon},
$$

and, if $h<k$,

$$
\begin{equation*}
\left|f\left(2^{-h} \varrho\right)-f\left(2^{-k} \varrho\right)\right| \leqslant c_{9} \varrho^{\varepsilon} \sum_{j=h}^{k-1} 2^{-j \varepsilon} \tag{5.3}
\end{equation*}
$$

so that the sequence $f\left(2^{-h} \varrho\right)$ converges, as $h \rightarrow \infty$, to some real number λ. It is easily seen that λ does not depend on ϱ; in fact, from (5.2) we get

$$
\begin{equation*}
\left|f\left(2^{-i} \varrho\right)-f\left(2^{-i} r\right)\right| \leqslant c_{8}\left\{\frac{\varrho^{n+2+2 \varepsilon}+r^{n+2+2 \varepsilon}}{\max [\varrho, r]^{n+2}}\right\}^{\frac{1}{2}} 2^{-i \varepsilon} \tag{5.4}
\end{equation*}
$$

and the right-hand side of (5.4) tends to zero as $i \rightarrow \infty$. Finally, choosing $h=0$ in (5.3) and letting $k \rightarrow \infty$, we get

$$
|f(\varrho)-\lambda| \leqslant c_{10} \varrho^{2}
$$

which proves the lemma. q.e.d,

Remark 2. - The preceding lemma and Remark 1 show that a point z_{0} is regular if there exist constants $\varepsilon>0$ and c_{5} such that

$$
U\left(z_{0}, R\right) \leqslant c_{6} R^{2 \varepsilon}
$$

for every $R<\delta\left(z_{0}, \partial A\right)$; or, what is the same, if there exists a $\sigma>0$ such that

$$
\begin{equation*}
\lim _{R \rightarrow 0^{+}} R^{-\sigma} U\left(z_{0}, R\right)=0 \tag{5.5}
\end{equation*}
$$

Let us observe that if the coefficients are uniformly continuous, then it is sufficient to require (5.5) with $\sigma=0$. This will give a slight difference between the two cases.

Let us now recall the Hausdorff measure.
Definition 4. - Let δ be the metric (2.4), and let α be a non-negative real number, The α-dimensional Hausdorff measure of a set $X \subset \boldsymbol{R}^{n+1}$, with respect to the metric δ. is given by

$$
\mathscr{H}_{\alpha}(X ; \delta)=\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{\sum_{i} \delta\left(x_{i}\right)^{\alpha} ; \bigcup_{i} X_{i} \supset X ; \delta\left(X_{i}\right)<\varepsilon\right\}
$$

The δ-Hausdorff dimension of a set X is the infimum of the numbers α such that $\mathscr{H}_{\alpha}(X ; \delta)=0$.

The next lemma is a simple modification of Theorem 1 of [5].
Lemma 11. - Let $f \in L_{1, \text { loc }}(A)$, and, for $0<\alpha<n+2$, let

$$
F_{\alpha}=\left\{z_{0} \in A: \limsup _{\varrho \rightarrow 0^{+}} \varrho^{-\alpha} \int_{Q\left(z_{0}, \varrho\right)}|f| d z>0\right\} .
$$

Then we have

$$
\mathscr{H}_{\alpha}\left(F_{\alpha}, \delta\right)=0
$$

The following result concludes the proof of the regularity theorem.
Theorem 2. - Let $u \in W_{p, \text { loo }}^{1, \frac{1}{b}}\left(A ; \boldsymbol{R}^{n}\right), p \geqslant 2$, be a weak solution of (4.1). Then for every $\sigma>0$, we have

$$
\begin{equation*}
\mathscr{H}_{n+2-p+\sigma}(\Sigma, \delta)=0 \tag{5.6}
\end{equation*}
$$

If the coefficients are uniformly continuous, we can take $\sigma=0$ in (5.6).
Remark 3. - From Lemma 4, it follows at once that for every weak solution $u(z)$ of (4.1), we have $\mathscr{H}_{n+\sigma}(\Sigma)=0, \forall \sigma>0$.

Proof. of Theorem 2. - According to Remark 2, it is sufficient to prove that $\mathcal{H e}_{n+2-p+\sigma}\left(E_{\sigma}, \delta\right)=0$, where

$$
E_{\sigma}=\left\{z_{0} \in A: \limsup _{R \rightarrow 0^{+}} R^{-2 \sigma / p} U\left(z_{0}, R\right)>0\right\}
$$

We have

$$
R^{-2 \sigma / p} U\left(z_{0}, R\right) \leqslant c_{11}\left\{R^{-n-2-\sigma} \int_{Q\left(z_{0}, R\right)}\left|u-u_{Q\left(z_{0}, R\right)}\right|^{p} d z\right\}^{2 / p},
$$

and, by Lemma 1,

$$
\begin{aligned}
R^{-2 \sigma / p} U\left(z_{0}, R\right) \leqslant c_{12} & \left\{\left[R^{p-2-n-\sigma} \int_{Q\left(z_{0}, R\right)} \sum_{i=1}^{n}\left|u_{x_{i} i}\right| p d z\right]^{2 / p}+\right. \\
& \left.+\left[R^{p-n-2-\sigma} \int_{B\left(x_{0}, R\right)} d x \int_{A\left(t_{0}, R\right) \times\left(A\left(t_{0}, R\right)\right.} \frac{|u(x, t)-u(x, s)|^{p}}{|t-s|^{1+p / 2}} d t d s\right]^{2 / p}\right\}
\end{aligned}
$$

The functions $\left|u_{x_{i}}\right|^{p}$ belong to $L_{1,100}(A)$, whence, by Lemma 11, the first integral at the right-hand side tends to zero $\mathscr{H}_{n+2-n+\sigma}$ almost everywhere.

For the second integral, we observe that the function

$$
f(x, s, t)=\frac{|u(x, t)-u(x, s)|^{p}}{|t-s|^{1+x / 2}}
$$

belongs to $L_{1, \mathrm{loc}}(\tilde{A}), \tilde{A}=\Omega \times(0, T) \times(0, T)$. If we denote by $\xi=(x, t, s)$ a point in \tilde{A}, by $\tilde{\delta}$ the metrie

$$
\tilde{\delta}\left(\xi_{1}, \xi_{2}\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|t_{1}-t_{2}\right|^{\frac{1}{2}},\left|s_{1}-s_{2}\right|^{\frac{1}{2}}\right\}
$$

and by \widetilde{Q} the ball in the metric $\tilde{\delta}$, we get easily that

$$
R^{p-n-2-\sigma} \int_{\tilde{Q}\left(\xi_{0} ; R\right)} f(\xi) d \xi
$$

tends to zero $\widetilde{\mathscr{H}}_{n+2-p+\sigma}$ almost everywhere. From that remark, it follows at once that $\mathscr{H}_{n+2-p+\sigma}\left(E_{\sigma}, \delta\right)=0$.
q.e.d.

In the case of elliptic systems in \boldsymbol{R}^{n}, one was able to prove (see [6] and [5]) that

$$
\begin{equation*}
H_{n-p+\sigma}(\Sigma)=0, \quad \forall \sigma>0, \tag{5.8}
\end{equation*}
$$

for continuous coefficients, and

$$
\begin{equation*}
H_{n-p}(\Sigma)=0 \tag{5.9}
\end{equation*}
$$

with the assumption of uniform continuity, H_{α} being the α-dimensional Hausdorff measure with respect to the usual metric in \boldsymbol{R}^{n}. Comparing (5.8) and (5.9) with the conclusion of Theorem 2, it seems at first that the introduction of the time variable gives a jump of two in the dimension of the singular set. The following argument shows that this is not the case. Let us first observe that the restriction of the metric δ to the t-axis gives the metric $d\left(t_{1}, t_{2}\right)=\left|t_{1}-t_{2}\right|^{\frac{1}{2}}$ so that the Hausdorff measure $\mathscr{H}_{\alpha}(X, d)$ verifies

$$
\mathscr{H}_{\alpha}(X, d)=H_{\alpha / 2}(X), \quad \forall X \subset \boldsymbol{R}_{i}
$$

H_{β} being the usual Hausdorff measure in $\boldsymbol{R}^{\mathbf{1}}$.

On the other hand, δ coincides with the usual metric when restricted to \boldsymbol{R}^{n}, so that the Hausdorff measure is also the same:

$$
\mathscr{H}_{\alpha}(X, \delta)=X_{\alpha}(X), \quad \forall X \subset \boldsymbol{R}_{x}^{n}
$$

Finally, if π_{1} and π_{2} are the projection operators on \boldsymbol{R} and \boldsymbol{R}^{n}, respectively, we have the following inequality ([4], Th, 2.10.25):

$$
\begin{equation*}
\int_{\mathbb{R}}^{*} H_{\alpha}\left\{\pi_{2}\left(\Sigma \cap \pi_{1}^{-1}(t)\right)\right\} \bar{d} H_{\beta / 2}(t) \leqslant \mathscr{H}_{\alpha+\beta}(\Sigma, \delta) \tag{5.10}
\end{equation*}
$$

for every non-negative α, β.
In particular, if we choose $\beta=2$ and $\alpha=n-p+\sigma$, we conclude from (5.10) and (5.6) that

$$
\begin{equation*}
H_{n+\sigma-p}\left(\Sigma \cap \pi_{1}^{-1}(t)\right)=0 \quad \text { for almost every } t \tag{5.11}
\end{equation*}
$$

A similar result, with $\sigma=0$, holds for uniformly continuous coefficients.

REFERENCES

[1] S. Campanato, Preprietà di hölderianità di alcune classi di junzioni, Ann. Scuola Norm. Sup. Pisa, 17 (1963), pp. 175-188.
[2] S. Campanato, Equazioni paraboliche del secondo ordine e spazi $\mathcal{L}^{2, \theta}(\Omega, \delta)$, Ann. di Mat. pura e appl., 73 (1966), pp. 55-102.
[3] G. Da Prato. Spazi $\mathbb{L}^{(p, \theta)}(\Omega, \delta)$ e loro proprietà, Ann. di Mat. pura e appl., 69 (1965), pp. 383-392.
[4] H. Federer, Geometric measure theory, Springer-Verlag, 1969.
[5] E. Giusti, Precisazione delle funzioni in $\mathbb{H}^{1, p}$ e singolarità nelle soluzioni deboli di sistemi ellittici non lineari, Boll. U.M.I., 1 (1969), pp. 71-76.
[6] E. Giusti - M. Miranda, Sulla regolarità nelle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rat. Mech. Anal., 31 (1968), pp. 173-184.
[7] O. A. Ladxžzenskaja - V. A. Solonnikov - N. N. Ural'ceva, Linear and quasilinear operators of parabolio type, Am. Math. Soc. (1968).

[^0]: ${ }^{*}$) Entrata in Redazione il 19 settembre 1972.
 (**) University of Pisa. Research supported in part by a C.N.R. fellowship at the University of Paris.
 (***) University of Pisa and Stanford University. Research partially supported by NSF Grant GP 16115.

