On convolution operators leaving L** spaces invariant.

by Jaak PrrTrRE (Liund, Sweden)

Sammary. - It is shown that certain convolution operators, including the Hilbert tramnsform
in the one dimensional case, leave invariant the LP* spaces studied by Campanato,
Stampacchia and others.

0. - Introduction.

The theory of LP:* spaces and various generalizations of these spaces
has been developped by several authors (see JOHN-NIRENBERG [9], MEYERS
(10], Srampaccnra [16], CampanaTo (1], [2], (3], [4], CAMPANATO-MURTHY [5],
SPANNE [15), [15"%] etc.). In particular in [4], CAMPANATO gives in the case p—=2
interesting applications to homogeneous second order elliptic partial differential
equations. The present paper arose from the following question which we
posed to ourselves while studying CamMPANATO’S work. Is it true that the
HILBERT transform, in one variable, or more general transforms in one or
several variables, leaves L#’ spaces invariant, 1< p <oco. We remark that
this question is of some interest also from the following point of view. It is
not known yet whether L#* spaces are stable by interpolation or not.
Therefore it is of importance to find as many operators having the interpolation
property with respect to L?-* spaces as possible. Below (Section 1) we show that
the answer to our above question is affirmative for a large class of convolution
operators of a type first considesed by CorLAR [6], [7] (see also [12], [13],
[14] for other applications of these operators). We give also (Section 2) app-
lications of our results to homogeneous elliptic partial differential equations.
They are of the same nature as those of CAMPANATO (4], now with 1< p <oo,
and operators of arbitrary order, but, on the other hand, since we restrict
ourselves to functions with compact supports only, they are considerably
weaker,

1. - A general class of convolution operators and L» % spaces.

Let ® = ®(r), » > 0, be a positive increasing function. Let us assume
also that @2r) < C®(r). Let 1 <p <oo. We denote by L?® the space of
locally integrable functions f= flx), = (2, ..., #,) € R", such that there
exists a constant C such that for every a,€ E" and every =0 there is a
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number ¢ such that

(1.1) | flor) — o pda < CP D).

[a—=cto| 1

with the obvious modification in the special case p=occ. We provide L#?

with the semi-norm
| flle,® =1inf C

where if is taken over all C that satisfy (1.1). If we identify functions that
differ by a constant we get a norm and the corresponding quotient spaces
becomes a BANACH space, thus complete.

The most important special case is ®@)=1r", 0 <A =<n -+ p. We shall
write L#> in place of L#™. It is known that

Lr if A=0
MoRrrEY space if 0 < A < n

p) 3‘ — *
L JorN~NIRENBERG space if A=n

Lipg, a= ~—" it n<i=n4p

see CAMPANATO [1], [2]; for the gemeral case see SPANNE [15]. The main
contribution of this paper is the following

TurorEM 1.1. - Counsider convolution operators of the form
gfe) = Tfle) = @+ flo) = [ alw — /) dy

where we assume that a = a(x) admits a decomposition of the form

(L.2) “ZEL%
with

(1.3) f%@Mw=Q
(1.4) afw)=0 it |w[=2,
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whenever € Lr, with C independent of f, v/, v,

(L.6) || grad a, g = 0261, 14 =1

with O independent of v.
Theni T maps L»?® continuously into itself, provided

(.7) [ @en® = 6 @i, rzo

with C independent of r.

Before we enter into the details of the proof we give some remarks about
the various conditions entering in the theorem.

ReMARK 1.1. - Since @, has compact support by (1.4), (1.3) can be com-
plemented by

(1.8) fgrad a,dx =20

REMARK 1.2. - CorrLAR [6], [7] (see also [13]) has shown that (1.5) holds
with p =2 if (1.3) and (1 4) hold and moreover

(1.9) llallz, = C,

(1.10) llerad a, ||z, =< C2—.

(Note that (1.10) is (1.6) with p =ocl) It follows then, for instance from
HORMANDER (8], theorem 2.1, that (1.5) holds also with 1< p<oco (see also
[13]). For somewhat different aspects, see [12], [14].

REMARK 1.3. - It is clear that a decomposition of the form (1.2), with
(1.3), (1.4), (1.9), (1.10), (1.6) being satistied, can be found, simply by a suitable
partition of unity, when n is homogeneous of degree-n, with vanising mean
value and bounded gradient on the unit sphere (CALDERON-ZYGMUND transform).

If n=1 we can take a(x)=_ (HILBERT transform).

B[

REMARK 1.4. - If ®(r)=17* then (1.7) holds provided 0 <X < 5 p. Thus
our theorem can be applied to L#* spaces, 0 = A < % + p.

Annali @i Matematica 38
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After these remarks we proceed to give the

PrOOF oF THEOREM [.1:

We write

gulx) = T.fla) = a, * flo) = f afx — y) [ly)dy.

0
Let f€ L»® We want to show that g= X ¢, € L»?,

yEm—C0
To this end, given r we shall give an estimate of

([ [ 19t0)—<Jras);

|zlsr
for a suitable .
Assume first 2v < r. Then we may write, by (1.3} and (1.4),

oo} = f afew — 9) (flg) — o) dy, @) < v

fyl=azr
with any o. (Note that |y |=2r if |2 |=r and |x— y|= 2(=7)!) Applying
{1.5) we get

(1.11) (f]Egv(ac)[l’dac);éC( f |f(y)-c]pdy>%

2V r

lwl=r yl=2r

1

= C(O@r)r < C(OW)

if we choose o conveniently and note that ®(2r) = C®(r) by assumption.
Nexi assume 2° > r. Then, by (1.8),

grad g,(x) = f grad a,(x — y) (fly) — o) dy

je—yl=2Y

for any o,. It follows, by (1.6) and HOLDER'S inequality, that
[ rad g | = [ | rad a3 iy )o

X ( f | fly) — o, ;pdy)% < o2~ @@2.2)r

lyl=<z.2Y

= 027+ @@, |2 <,
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as in the previous case, if we note also that |y|<<2.2 if | —y|=<2" and
| <<r (< 2. Thus
(1.12) ( f | 9ulz) — 2,(0) ;pdx)zsé et o) @@, 2>

EED

By summation we get from (1.11) and (1.12)

( f | glx) — = ]Pdac);“a = C’(d)(r));? -—I—r%+1 z 2‘”(;"'1) (@(2“));7,
2¥>r

BIE<y

with t= X ¢,(0), or if we use finally (1.7)

2V>r

" 1
(1.13) -t¥1’dw\)§é

[m!‘ir

If we apply (1.13) to f(x — x,) we obtain

i

< f | gte) — = padm)% = C(@(r)s

je—mo| =1

with C independent of x,, r, ©. Thus by (1.1) g€ L»® and the proof is
complefe.

We conclude this Section by indicating still a generalisation of the
preceding result.

REMARK 1.5. - Instead of L»® we can consider following CAMPANATO
(2], [3], [b] the more gemeral spaces L¥® where k is a integer =>0. These
are obtained by replacing (1.1) by

| fle) — Z oy P’dx)l’< O(@fr ))117,
jsk
|| <t

where X o’ stands for a general polynomial of degree < k. It is easy to
i<k
see how to extend theorem 1.1 to this case. The main changes occur in con-

ditions (1.3}, (1.6) and (1.7); for instance (1.6) has to be replaced by

” gradk—‘d’av ”Lq = Gz_v(§+k) y _% + 'Z‘i = 11

where grad®+* stands for a (k+-1)th gradient. We leave the details to the reader.
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2. - Application to elliptic partial differential operators.

‘We shali only consider the simplest case.
Let PyD)} be any homogeneous elliptic partial differential operator of
order m and denote by D™ any pure derivation of order m,

. 3 Ny a ", .
D __(551) <§m_,,> , W=y + ... - Wy,
We define o by
. gn
e) = 5+

where ¢ denotes the FoURIER transform ; thus formally we have

a(m)::@n)“"fe”i PE(:;) dt.

By remark 1.3 we can apply theorem 1.1 (provided (1.7) is fulfilled). Taking
f == Py(D)u where u is any function m times continuously differentiable and
with compact support, we obtain

(2.1) | D"u ||poe < C| Po(D)u ||poe.
Next we consider homogeneous partial differential operators of the form
(2.2) P, D) = Py(D) + Zam(x)D™.

Before we make precise the assumptions on the coefficients au(x), we
shall say a few words about multipliers in L® ¢ spaces.
Denote by M?® the space of locally bounded measurable functions g
such that
1
|9(e) — gle) | = 02| — s |), @ — 2] =3

with C independent of x and wx,. Here and in the sequel

Q@ 1

i f X (‘D(p))%%E
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Note that if ®(r) = r* then

g 1 fO0=i<mn

if A=mn

tn<iz=n+p

where ~o stands for equivalence.
We have the following

Levma 2.1, - Let g€ LN M® and let f€ Lp O Le-*. Then gf € LPOLP:®
and we have for any B, 0 < R =<1 the following inequality

(2.3) Hof lzpoe =

é(Gl sup [g(x) | + C. sup -_;%—

jop—agol << B

+ (s supl g + €. sup 1

joo—o| =
where, C,, Cs, C, are constants that depend on R while as O, is independent
of K. Moreover if

1

To_n _idp
2.4) {p » (D(p)) p? <oo

then C,—0 as B—0.

If ®(r) =1+* then (2.4) holds if n <A =<+ p.

We prostpone the somewht tedious proof of the lemma for a moment
and proceed to ifs consequences,

We have the following

THEOREM 2.1. - Asswume that the coefficients a,(x) of the operator P{wx, D)
given by (2.2) belong to M". Assume @ satisfies (1.7). Let

S e | @) — W (o) |
PEEI T (r— )
where

Qr) =1 if (2.4) holds,

Qy(r) = max ((r), 1) otherwise.
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There exists a number 8, >0 (dedending on Py(D) and © only) such that if
% < &, then we have the inequality

| Dot = O(]| Pl Dy o + 3 || D™ )

for any function w which is m limes continuously differentiable and with
compact support, with C independent of u.

This follows at once from lemma 2.1 combined with (2.1), by the usual
Korx type armument. See MiranDA [11], p. 120, or many other places. We
omit details.

REMARK 2.1. - Inequality (2.5) clearly is of the CAMPANATO type (see [4]).
However this author allows functions with no particular restriction on the
support. We could as well have treated functions with arbitrary support and
even lower order terms in (2.2) but then would at once appear rather
unpleasant remainder terms of the type || D*f|pp® with & <<m and the whole
thing becomes not any more so simple. Maybe CAMPANATO'S approach
combined with our results would give a possibility to get rid of these ferms.

Finally we indicate the

Proor oF LEMMA 2.1:
Let x, and r be given. For any ¢ we have then

26) s=( [ st — glwio|ras) =
lo—agl =
=( [ 1o e ire—cpacpio) [ o0 —gwras)e =
(w—o| =1 gl 5
entanlt [ |1 =epuioion o Q22
le—ag|=r =

1

ZR' Then we take ¢ =0 and get

Assume first » >

1

J = (@(r))p (D(R))"psup [g@) | |1 ]lze.
This accounts for the term with coefficient C, in (2.3).

Assume next ré%R. Then by (1.1} wo can find ¢ such that

| i) — o pda)p = 20()5 | /-

|oe—aeg| S
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If we insert this estimate in the next but last term of (2.6) we get the
term with coefficient C, which is thus independent of E. It remains to find
an estimate for |o|. To this end we consider v, =2, k=0, 1, ..., N, where

N = B < ry. We denote by or, k=0, 1, ..., N, the corresponding numbers

constructed by the above procedure. (Note in particular that oy = 0!). Using
now a well-known idea originating from MORREY (see e.g. CAMPANATO [1]
or SPANNE [15]) we get

for —or | = C’r;{‘g(( f [ fix) — ox [P dm)% L

le—ap|=<cr,

+{ [ 17— ok lrazfs).

ool <Try

Using the above estimates for ( f [flx) — o ]Pdm>;7 we get

{e—ao|
lc\élco—cll-’—101‘021—]—"'101\7—1—61\7{%
¥ d
= o [ @ 7lne+ BE) 1 1as)
with C independent of E. If we insert this estimates in the last term of {2.6)

we get the remaining therms of (2.3); indeed we find

n R
pQ i 1
o= Csup 22 [} (@(p»pdf

[IA

and

0= OR™» sup —— =0R p—; <oo.
r=iR (D(r))p f P_% @(o)}% dp

B

5

It is also plain that C,— 0 as R — 0, provided (2.4) holds true.
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