
On the convergence of solutions of certain 
systems of second order differential equations 

by J. O. C. EZEiLO (][badan, ~igoria) 

Summary. - The object of this paper is to furnish an n-dimensional analogue of a convergence 
result obtained in [3] by Loud for the equation (1.4). 

1. In t roduct ion .  Let  E~ denote the real  Eucl idean n dimensional  space 
with the usual  Eucl idean norm, denoted here by I!']!. This paper  is concerned 
with the equat ion 

(1.1) J~ + C X  -[- G(X) = P(t,  X ,  X )  

in which X,  G and P are elements of E .  with components (x~, x2, ..., x,) ,  
(gl, g~, ..., g~) and (p~, P2, ..., P , )  respect ively and C is a real  constant  
n X n matrix. It is assumed as basic throughout what follows that the part ial  
derivatives ~g~/~x i (1 ___~ i ~ n, 1 ~ j  ~ n) exist and are cont inuous;  and also 
that the dependence of G and P on the arguments  shown in (1.1) is  such 
that solutions of (1.1) exist corresponding to any preassigned initial values. 
The equat ion (1.1) is the vector  version for systems of real second order 
different ial  equat ions of the form: 

(i = 1, 2, ..., n) 

which arise often in the applications.  Two solutions X1,  X2 of (1.1) will be 
said to converge if 

(1.2) I I X ~ ( t ) - - X ~ ( t ) ! ! ~ O  and I I J ;~ ( t ) - - J~2( t ) i l~0  as t ~  c~. 

The problem of interest  here is to determine conditions on C, G and P 
under  which solutions of (1.1) converge. 

In  the case n - - 1  the problem has been examined to quite a considerable 
extent  by a number  of authors. CARTWRIGHT and LIT~i'LEWOOD [1], for example,  
dealt with general  equat ions of the form 

(1.3) x + f(x)ic + g(x) - -  p(t)  

and showed that if g is twice differentiable and satisfies g ( 0 ) =  0 and if 
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fur ther  both f and g' are strictly positive then all ul t imately bounded solutions 
of (1.3) converge provided that l g"(x)] is sufficiently small. A similar result  
was also obtained by REUTER [2]. In  his own contribution LOUD [3] showed 
that for the special case 

(1.4) + c~ + g(x) = p(t) 

in which c is a constant  convergence can be proved without any restr ict ion 
whatever  on g" provided that c > 0 is sufficiently large. My main object in 
t reat ing (1.1) in the present  paper  is to furnish an n-dimensional  analogue 
of this par t icular  convergence result  of LOUD. 

2. Notation. Given any X, Y in E .  the symbol < X, Y >  will be used 

to denote the usual  scalar product in E,~: that is < X, Y > -  xiy~ where 

(x~, ..., x,) and (y~, ..., Yn) are the components of X and Y respectively;  thus 
IIX]I 2~- < X ,  X > .  The Greek letters k, ~t, v, ~, T, ~ and A, with or without 
suffixes, will be used consistently for (real) scalars. The capitals A, B, C, 
D, D~, D2 and J, wherever they occur in the sequel, are n X n matrices 
having real entries only. 

3. S ta tement  of  the  Result.  The main result  of this paper  is the following 
theorem 

TKEOREM. l. - Suppose that 

(i) the Jacobian matr#c J ( X ) ~  (~g~/~x/) is symmetric and  satisfies J(X~) 
J(X2) --  J(X~)J(X~) for any  pa i r  of  vectors X~, X2 in  E~ and  fur thermore the 
eigenvalues ) ,~ -  )~(X) ( i - -  t, 2, .... n) of  J(X) are such that 

k ~ 8 o >  0 for all X a E ,  

where 8o is a finite constant, 

(it) the matri~ C is symmetric and  posit ire definite and  commutes wi th  J, 

(iii) for any  X~, U~ (i - -  1, 2) in  E~, the vector P satisfies 

(3.~) [[ P(t, x~, u~) - P(t, x~, u~)II --< ~ {il x~ - x ~  II + tl u~ - v~ tit 

uni formly  in  t, where ~1 ~ 0 is a constant. 

Let ~t~ --~ ~i(X) (i -- 1, 2, ..., n) be the eigenvalues of  the matr ix  C-2J and 
let ~, 0<~<c<~, be any  given constant. Then there exists a fixed constant 5~>0, 
whose magni tude  defends on ~o, ~ P, C and J only, such that i f  ~ 5~ then 



J. O. C. EZEILO: On the convergence of solution~s of certain, etc. 241 

any two solutions X(t), Y(t) of (1.1) such that 

(3.2) [ [ X ( t ) [ [ ~  and IIY(t)[I--~ for all t ~ t o  

necessarily converge provided that 

(3.3) M(t~) ~ max ~t~(X) < 1 (1 ~ i ~_~ n, ]l X tl ~- P) 

Observe that if P is independent  of X and ~: the condition (iii) of the 
theorem is automatical ly  satisfied, with a l -  0. 

Observe also that, when specialized to the scalar equation (1.4) of LORD, 
all the conditions of our theorem (including (3.3)) would be met if 

(3.4) e > 0, if(x) ~ ~o > 0, max g'(x) < c ~ 

These are the same conditions as in the convergence result  [3; Theorem 2] 

except  that [3] makes  use of the condit ion:  maxg ' (w)< 2 c2 which is s t ronger  
than that in (3.4). 

In  view of the fact that the result  of Theorem 1 has been f ramed only 
in terms of ul t imately bounded solutions it is natura l  to inquire  into what 
sort of conditions on C, G and P ensure the existence of such solutions. My 
own investigation of this problem led to the following boundedness  theorem: 

T~EOREM 2. - Suppose, further to the conditions (i) and (it) of Theorem 
1, that G(O)--0 and that the function P satisfies 

(3.5) liP(t, x ,  v)]i   (iIxlJ + [I 

uniformly in t where ~2 > O, ~a > 0 are constants. 
Then there exist constanls A~ > O, ~ > 0 where magnitudes depend only 

on ~o, ~2, ~8 and C such that i f  ~ ,~h2  then every solution X(t) of(1.1) satisfies 

(3.6) II x(t) II <- II Jc(t) ]1 < 

for all sufficiently large t. 

This theorem is a general izat ion of the boundedness theorem in [3] when 
specialized to the equation (1.4), although here we have not at tempted to give 
an explicit  estimate for ~4 in terms of the other constants in the theorem. 

The condition G ( 0 ) :  0 introduces no essential  restr ict ion on the equation 
(1.i). For, by setting G * ( X ) :  G(X)--G(0) and P*(t, X, X )" -P( t ,  X, J ~ ) -  

G(0), we could take the equation (1.1) in the form 

+ CJ~ -{- Ga(X) -- P(t, X, J~) 

Annal~ ~i M a t e m a t i c a  3t 
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in which Ga(0) - -0  and Ga(X) has the same Jacobian  matri.~ J as G(X), and 
in which P* satisfies the same condition (3.5) as before except  that the term 
88 would have to be argumented by the addition of II G(0)[I. 

I t  will have been noted also, on setting X ~ - - X ,  U I - ~ U  and X2--0-----U2 
in (3.1), that the condition (iii) of Theorem 1 does imply that 

II P(t, x,  u)II ]l P t, o, o)II + tl x l[ + l[ v II ). 

Thus, subject  to the conditions (i)-(iii) of Theorem 1, every solution X(t) of 
(1.1) satisfies (3.6) ul t imately,  provided that ~1 is sufficiently small and 
II P(t, o, o)I} bounded for all t ~ 0 .  Under  these c i rcumstances  then the con- 
clusion of Theorem 1 would  be available for any pair  X(t), Y(t) of solutions 
of (1.1) provided that M(~4) < 1. 

4. Some p re l iminary  resul ts .  The two algebraic resul ts  (Lemmas 1 and 
2) which follow will  be required  at various stages in the proofs of Theorem 
1 and 2. In line with our restr ict ions elsewhere the entries in the matrices 
A, B here are all real. 

LE~i)~A 1. Let A and B be two n X n symmetric positive definite matrices 
and assume that A and B commute. Then the eigenvalues v~ ( i - - 1 ,  2, ..., n) 
of the matr ix  A B  are all real and satisfy 

(4.1) rain v~ ~ ~ b  > 0 

where ~ ,  ~b are the least eigenvalues of A, B respectively. 

PROOF. - Since A and B commute and are symmetric  A B  is clearly 
symmetr ic  so that its e igenvalues are all real. 

To turn  now to (4.1) one notes that, since A and B commute and are 
symmetr ic  there exists certainly (see, for example,  [4; Theorem 9-33, p. 213]) 
a non-singular  matr ix P such that 

P - ~ A P  = diag (~', *' , ..., 

P - 1 B P  = diag (~', ~', ..., . j  - -  D~ 

where $[ > 0, ~' > 0 (i - -  1, 2, ..., n) are the eigenvalues of A, B respectively.  
Thus AB, being equal  to PD1 D2P -1, is similar to D1D2 = diag ($'1~, ~'2~', ... 

" ~ i  > some ..., $~, 8,). Hence  every eigenvalue of A B  is of the form ' "  0 for 
"i and (4.1) now follows. 
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L E ~ A  2. - Let  A be an  n X n symmetr ic  matr ix .  Then 

(4.2) < i X ,  X > ~ ~ [[ X [I 2 

for al l  X e 1~'~ where ~ is the least eigenvalue of A. 

PRoof.  - Since A is symmetr ic  there exists an orthonal matr ix  0 such that 

(4.3) OAO T = d i ag (~ ,  ~ ,  ..., ~ )  --  D 

where 0 T denotes the transpose of 0 and $~- (i = 1, 2, ..., n) are the eigenvalues 
of A. Now let X be any vector in E~. Then, 0 being orthogonal, we have 
that II o x l ]  = [[ X[I. Hence 

~o II x II ~ = ~. II o i  It ~ 

< DOX, OX> 

- -  < OTDOX, X > 

: < A X ,  X > ,  

by (4.3), and thus (4.2) is proved. 

5. P r o o f  o f  Theorem 1. Assume that the conditions ( i)( i i i )  of Theorem 1 
hold and let X(t) ,  Y(t)  be two solutions of (1.1) satisfying (3.2). It is to be 
shown  now that, as t ~ c~, 

(5.1) l[ X(t )  - -  ~(t)[[ --~ 0 and [[ X ( t ) - -  Y(t)[[ - -  0, 

provided that (3.3) is satisfied. 
Our main tool in its proof is the scalar function V =  V(~, ~q) defined, 

for any pair of vectors ~, ~1 in E , ,  by 

(5.2) ~ v  = [1 e~ + ,~ [[~ + [[ ,~ ft. 

Consider the funct ion ?(t) given by 

~(t) =_- v ( x ( t ) -  Y(t), ) t ( t ) -  £(t)). (5.3) 

It will be shown that 

(5.4) 

In  view of the definit ions (5.2) and (5.3) this will surely imply (5.1) and the 
theorem will thereby be proved. 
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For  the proof of (5.4) we shall require  an estimate for q~(t). The start ing 
point for this is the definit ion (5.3) from which, in view of (5.2), it is clear that 

~ =  < ¢ ( x - y ) + 2 - } ' ,  c ( 2 - 2 ) + 2 -  ~2> + < 2 - ~ ,  2 - - ~ > ,  

where <,  > is the scalar product referred to in § 2. Observe now that, 
and ]~'(t) being solutions of (1.1), 

J~ --  - -  C X -  G(X) -t- P(t, X,  2 )  

2---- - -  C Y - -  G(Y)-t- P(t, Y, Y). 

x(t) 

By substituting these values in the expression for ¢p above and then simpli- 
fying, it can be verified that 

(5.5) ~ =  - - ~  + ~ 

where 

(5.6) 

and 

~ , = <  c (x - -  Y), o (x) - -  a(Y)> -~- < c ( x - -  :?), x - -  Y> + 

+ 2 < 2 - -  Y, G(X) -- O(Y) > 

(5.7) ¢72 = < 2 ( 2  - -  "2) -t- C ( X  - -  Y), P(t ,  X ,  2 )  - -  P(t ,  ¥ ,  }7) > .  

It  remains now to obtain est imates for ~ ,  qo~ separately. Since C is symmetr ic  
and non singular  the expression (5.6) for % can be rewri t ten thus:  

(5.8) ~ =- [] ~C~12(2-- Y)  + ~-~C-~/2{G(X) - -  G(Y)} ]]~ n u 

-1- (1 --8~)< C(X -- 1}'), 2 - -  2 >  + < C(X- -  :Y), G(X) - -  G(Y) > - -  

- -  < ~ - ' c  -~ { o ( x )  - ~ ( y ) } ,  ~ ( x ) -  G(Y) >, 

where  ~ is any non-zero real constant. For  our present  purpose it is conve- 
nient  to work with a fixed ~ > 0 sat isfying: 

(5.9) M(~) % ~ < 1. 

The possibility of choosing such a ~ is assured by the condition (3.3) which 
we shall henceforth assume to hold. With ~ so fixed it is quite clear that 
the second member  in (5.8)is non negative. Iu  fact, since C is symmetr ic  
and positive definite we have from Lemma 2 that 

(5. lo)  (1 -- ~) < 0 ( 2  - ]?), 2 - ~ - >  ~ 2 ~  Ir 2 - :?lr 

where 8 5 - - - ~ ( 1 -  ~ 2 ~ >  0, ~c here being the least eigenvalue of C. 
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In order to obtain an estimate for the last two members  in (5.8) we note that 

(5.1]) 

1 

G(X) - -  G(Y)  - -  f - ~:)ds 
0 

where ~ ~ s X  + (1 - -  s) Y and J is the ffacobian matr ix  defined in Theorem 
1; so that the two members  in question may be combined as follows: 

< C ( X -  y), e ( X ) -  G(Y)> --  
1 1 

0 0 

where 

~b, = ~bx(sx, s=, X(t), Y(t)) ~ < { C - -  8-=C-xJ(~,) }(X--  Y), J(~2)(X - -  Y)  >,  

with ~ i = s i X + ( 1 - - s ~ ) Y  ( i =  1, 2). Since J is assumed symmetr ic  we 
have that 

qx = < D ( X  - -  Y) ,  X - -  Y > 

also 

where D ~- J(~2) t C - -  ~-2C-~J(~t)}. This matr ix  D is obviously symmetric,  in 
view of the hypotheses (i), (ii) of the theorem. Hence,  by Lemma  2, 

< D ( X - -  Y), X - -  Y > ~ a l I Z - -  ~11', 

where ~a is the least eigenvalue of D. Since D depends explicity on ~ i =  
- - s t X ( t ) + ( 1 - - s i ) Y ( t ) ,  it is clear that ~a is an explicit funct ion of t. An 
est imate of its lower bound which is valid for all suff iciently large t, can 
be obtained by using the result  of Lemma 1. But first rewri te  D in the form: 

(5.12) D = ~-2J(~2)C { 8~I - -  C-2J(~) } 

where I is the n X n identi ty matrix.  Next  observe that, since each ~ in 
(5.12) stands for s ~ X + ( 1 - - s i ) Y  ~here  0 ~ s , ~ l  and since X~ Y are the 
solutions of (1.1) satisfying (3.2), 

H Jt II x lJ  + (1 - s,/H r l l  

__< s~p + (1 - -  s~)~ 

for all t ~ t o .  In  view of this bound on ~,  it is c lear  from the definition, 
in (3.3), of M(~) that the eigenvalues yi (i : 1, 2, ..., n) of ~ 2 I ~  C-2J(~i) which 
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are all real since ~I--C-2J(~i) is symmetric,  necessari ly satisfy, for all t ~ t o  

(5.13) y ~ )  ~ - -  M(~), (i - -  1, 2, ..., n) 

> 0  

by (5.9). Now the rea r rangement  (5.12) has exhibited D as a produ.ct of the 
three symmetric ,  pairwise commuting,  matr ices :  

~-~J(~2), C, ~ 2 I -  C-2J(~). 

By successive application of Lemma 1 to these matrices, first with 

A----~-2J(~) and B - - C ,  

and then with 

A -- 8-~J(~)C and B ~ ~ I - -  C-2J(~), 

one can verify readily that, subject to (5.13) and to the hypotheses (i), (ii), of 
Theorem 1 that 

5d ~ ~-~o~e {~ - -  M(~)} 

for all t ~ to, where 8 o ) 0  is the least eigenvalue of C. Hence  on combining 
the various results, 

. ~ 2 ~ o H x -  yH ~, t>_to, 

where ~o ------ 1 ~-~o~ [ ~ - -  M(~)]. Thus 

(5.14) < C(X--  Y), G(X)--  G(~)> --<~-2C-~{ G(X)-- G(Y)}, G(X)-- G(Y)> 

1 1 

- f f , IY - >_ . 
0 0 

From (5.8), (5.10) and (5.14) one obtains that 

(5.15) % ~ 289 ti X --  Y[I 2 + 2~[I X - -  ~ tl 2, t~___ to, 

which is the desired est imate for ~1. 
The procedure  for est imating ¢~2 from (5.7) is much more straightforward. 

Indeed, by SC•WARZ'S inequality,  we have that 

fr2t _<~7(tlX- Yll+lIx- iTtl)IIP(t, X, Z)--P(t, Y, ~2)lj 
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for some constant  ~ ~ 0  whose magni tude  depends only on C. Bu~ 

IIP(~, x, z ) - ; , ( t ,  ~; ? ) l ] ~ ( l l z -  r l ] + [ l x -  21i), 

by (3.1). Hence  

(5.16) 

From (5.5), (5.15) and (5.16) it is clear that if 

(5.17) ~1 ~ min (~6~ -1, ~5~7 -1) 

(5.18) T--~-- 88(lJX-- Y]I~+ Jp2 - Y1[2), t ~ t o ,  

where ~s -" rain (~ ,  86). 
It  will be observed from the definit ion (5.2) of V(~, ~j) that 

for all vectors ~, ~ in E~, where ~9 > 0 is a constant whose magni tude depends 
only on C; so that in part icular ,  since ~0(t)~_ V ( X - -  ~, i f ( - -  Y), 

o_<v(~)<_ ~o(llx- rH~+ Ij2(-- ?II~). 

Thus the inequality~ (5.18) implies that 

+ ~1o~ ~ o (t ~ to) 

where ~ o -  ~s~9-I~ O. In tegra t ion  of this inequal i ty  for ~ yields the resul t :  

~(t) ~ ~(to)e -~o(t-to) (t ~ to). 

On let t ing t ~ c~ in this we obtain (5.4), and this completes the verification 
of Theorem 1. I t  should be recal led that the inequal i ty  (5.18) was obtained 
subject to the restr ict ion (5.17) on ~1, so that the theorem has been proved 

v. - - 1  with 5~ --  min(~6% , 8~7-~). 

6. Proof of  Theorem 2. Assume now that all the conditions of Theorem 
2 are fulfilled. Replace (1.1) by the equivalent  system: 

(6.1) J~ = y,  y = - -  c y - -  G(X) + P(t,  x ,  y )  

which is obtained from (2.1) on setting X ~ Y. To prove the theorem we 
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shall show that, subject to the stated conditions, there exist constants ~ 4 ~ 0  
and 5 2 > 0 ,  whose magnitudes depend on ~0, ~2, ~ and C, such that every 
solution (X, Y) of (6.1) satisfies 

(6.2) ]I x(t)II --< ~,, 1] Y(t)II <~ ~, 

for all suff iciently large t, provided that ~2 ~ 52. 
For  the proof we stroll make use of the function V--V(X,  Y)defined by 

(6.3) 

1 

2V--]12Y+ CX[[2+ [[ CXII~+ 8 f < G(sX), X>ds,  
0 

Here G(sX) stands for G(sxl, s~z, ..., sx,), s being a dummy variable of 
integration.  Note that, by (5.11), 

:t 

G(sX) =/sJ(~)Xd~ (~ = s~X), 
0 

sinee G(o)--0. Thus the last term in (6.3) equals 

J- 1 

0 0 

and is therefore nonnegative, since J is assumed positive definite. Hence  

(6.4) 2 v >~ It 2 ~ + v x  it 2 + II c x  II ~ 

uniformly in X and Y. 
In  addition to the inequali ty (6.4), we shall a l s0  require  an estimate for 

d V(X(t), Y(t)) corresponding to any solution (X, Y) of (6.1). As far  as 
" / ' = h i  
the first two terms in (6.3) are concerned their differentiat ion presents no 
difficulty. To handle the differentiat ion of the third term we shall use the result :  

( <  G(sX), X > ds = <G(x), J~ >. d (5.5) 3~ 
J 

0 

This result  is, o f  course, not true for general  vector functions G. Its validity 
is assured here only because of our special restrict ions on the matr ix  J. 
Indeed~ on performing the different iat ion on the left hand side of (6.5) one 
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finds that 

(6.6) 

1 

d-t < G(sX), X > ds = 
0 

1 1 

0 0 

J being the usual Jacobian matrix. But, since J is assumed symmetric, 

< sJ(sX)J~, X > --  < sJ(sX)X,  _~ >;  

and therefore the second integral on the right hand side of (6.6) equals 

1 

(6.7) f < sJ(sX)X,  J~ > ds 
0 

Now 
1 1 

0 0 

1 

0 

1 

--  H(X) - -  f G(sX)ds. 
0 

Hence the integral (6.7) in turn equals 

1 

< G(X), J; > - -  f < G(sX), J; > ds. 
0 

On combining these results with (6.6) we obtain that 

1 1 

f d-t ~ G(sX), X > ds ----- ~ G(sX), 
0 0 

1 

- -  f < O(sX), 
0 

J; > ds + < G(X), X >  - -  

J~ > ds 

= < a(x),  R > 

A n n a t i  eli M a t e m a t i c a  32 
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and this proves (6.5). Coming then to V~ there is now now difficulty in veri- 
fying from (6.1) and (6.3) that 

!Y-- < 2Y + CX, -- CY--  2CY--  2G(X) + 2P(t, X, Y) ~ + 

+ < CX, C Y >  + 4 < G(X), Y >  

= - - 2  {< c E  Y >  + < cx ,  G ( X ) > -  < 2 Y +  CX, P(t, X, Y)>}. 

Since C is symmetric it is clear from Lemma 2 that 

<cY, Y>->-~oll YI? 

where ~ ,  the least eigenvalue of C, is positive since C is positive definite. 
11. 

Next, by (5.11), G ( X ) = f J ( s X ) X  ds since a(o)--0; and hence 
0 

J. 

< CX, G(X)> = f <  CX, J(sX)X> ds 
0 

1 

= f<:J(sx)cx, 
0 

since J is assumed symmetric. But, by Lemma 2, 

< g(sx)cx, x >  >_ ~12 II x ]? 

where ~12 = ~o3c)0, ~ being the least eigenvalue of C and ~o the constant 
in hypothesis (i) of Theorem 1. Hence 

1 

< cx,  V(X)> >_a,~f ll Xl? ds= ~l~IlXl?. 
0 

As for the remaining term in the expression (above) for I?, application 
of SC~WARZ'S inequality yields the estimate: 

i 2 < 2 ~ +  cx,  P(t, x, y)>l_<~3([txiI+ltyH)LLp(t, x, :~)}I, 

for some constant ~s ~ 0 whose magnitude depends only on C. By (3.5) this 
gives that 

I 2 < 2 Y +  CX, P(t, X, ~ ) > I ~ l ~ ( ] t X i l + l l  yli)(~2{JlZiI+II Y l ]}+~)  

<_ 2 ~ . ( l l X I ?  II Y i r ) +  ~ - ( I i x l ? +  II ~II'>% 

where ~1~ = 21/2~8~18. 
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Thus, on gathering together our estimates of the various therms in the 
expression for ~', we arrive at the inequal i ty:  

Hence,  if ~ where fixed so that 

1 
~ ~ 2rain (~8~,-1, 8~,~x~-~) (6.8) 

then 

1 
where ~1~ = 2min(~n,  ~2). Note that the last inequal i ly  for ~" implies also that 

(6.9) T?~--~I~(JIXJI~-[-II YIi~), if (][X]12_(. I] vll2_Lij ~1/2j ~_ ~6 ~__ 2~za~ls_x. 

With the aid of (6.4) and (6.9) it is a fair ly s traightforward met ter  to 
prove (6.2) by using an adaptation of the main idea behind Y o s ~ e t z i w i ' s  
proof of [5; Lemma 1]. Indeed let (X(t), Y(t))  be any solution of (6.1). It  is 
easy to see that it cannot  sa, tisfy 

(6.10) II x(t)tI 2 + II Y(t)Ir ~_> ~ 

for all t~_~0. For, suppose on the contrary  that (6.10) where true for all 
t ~ 0 .  Then by (6.9) we would have that 

d V(Z( t ) ,  o 

which would in turn  imply that 

V(X(t ) ,  Y(t))  --. - -  co  as t ~ o o  

in contradict ion to the fact, implicit  in (6.4), that V is nonnegative. Thus 
there exists a t, ~ 0 such that 

(6.11) II X(t~)1] 3 + II Y ( t J  H '~ < ~. 

We observe next  that, in view of (6.4), a constant  ~7 > ~6, whose magni tude  
depends only ~6 and C, can be determined such that 

(6.12) max V(~, ~ ) <  rain V(~, ~). 
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It will now be shown that our solution X(t), ]((t) satisfying (6.ll) must 
necessarily satisfy 

(6.13) ]1X(t)II 2 -}- I] Y ( t )  I[ 2 < 8~7 , t ~ tl , 

thereby verifying (6.2). 
Suppose indeed that (6.13) were not the ease. Then in view of (6.11) there 

exist t= and ta, t~ ~ t= ~ ta such that 

(6.14) [I X(t~) I[ ~ if-[I Y (t2) []~ - -  8~6 

II i ( t . )II  ~ + 1t Y(t~)i? - -  ~,% 

and such that 

(6.15) ~ < It X(t)lI~ + It Y(t) lI~ ~ ~,~, t , ~ t ~ t ~ .  

But, by (6.9), (6.15) implies that 

V(tz) ~ V(ts) 

and this is contradictory-to the result :  

Y(t2) < v(t~) 

implied by (6.12) and (6.14). Thus X(t ) ,  Y ( t )  must satisfy (6.13). This completely 
verifies the theorem, with (see (6.8)) 

i 
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