On the convergence of solutions of certain
systems of second order differential equations

by J. O. C. HzmiLo (Ibadan, Nigeria)

Summary. - The object of this paper is to furnish an n-dimensional analogue of & convergence
result obtained in [3] by Loud for the egquation (1.4).

1. Introduction. Let E, denote the real Euclidean % dimensional space
with the usual Euclidean norm, denoted here by |/-|. This paper is concerned
with the equation

i
‘e
'

1.1) X4 X+ 6X)= Pt X, X)

in which X, G and P are elements of K, with components (@,, @2, ..., &)
(g1 G2, +or g and (p., Ps, ..., Pu) respectively and C is a real constant
n X n matrix. It is assumed as basic throughout what follows that the partial
derivatives 3gi/3a; (1 <<i<"n, 1=j="n) exist and are continuous; and also
that the dependence of G and P on the arguments shown in (1.1) is such
that solutions of (1.1) exist corresponding to any preassigned initial values,
The equation (1.1) is the vector version for systems of real second order
differential equations of the form:

s 1 . . -
a; +k2 Cix® - Gil®1, ooy ) = Pilt, Ty oey Xy Lay oey L) (t=1,2,..,m
=1

which arise often in the applications. Two solutions X;, X, of (1.1} will be
said to converge if

(1.2) | Xu(#t) — X&) || — 0 and || X,(#) — Xu(t)]| — 0 as ¢ — oo

The problem of interest here is to determine conditions on O, G and P
under which solutions of (1.1) converge.

In the case n =1 the problem has been examined to quite a considerable
extent by a number of authors. CARTWRIGHT and LirTLEWOOD [1], for example,
dealt with general equations of the form

(1.3) @ + flh + glx) = p(t)

and showed that if g is twice differentiable and satisfies g(0) =0 and if
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farther both f and ¢ are sfrictly positive then all ultimately bounded solutions
of (1.3) converge provided that |g"(w)| is sufficiently small. A similar result
was also obtained by REUTER [2]. In his own contribution Loup [3] showed
that for the special case

(1.4) % 4 cx 4 glae) = p(t)

in which ¢ is a constant convergence can be proved without any restriction
whatever on ¢" provided that ¢ > O is sufficiently large. My main object in
treating (1.1) in the present paper is to furnish an n-dimensional analogue
of this particular convergence result of Loub.

2. Notation. Given any X, Y in E, the symbol <X, Y > will be used

to denote the usual scalar product in E,: that is <X, Y > = Z w;y; where
i=1

(@y, o, %) and (¢1, ..., Yu) are the components of X and Y respectively; thus
| X|?= <X, X>. The Greek letters X, y, v, p, v, & and A, with or without
suffixes, will be used consistently for (real) scalars. The capitals 4, B, C,
D, D,, D, and J, wherever they occur in the sequel, are % X » matrices
having real euntries only.

3. Statement of the Result. The main result of this paper is the following
theorem
TamoreM. 1. - Suppose that

() the Jacobian maltric J(X) = (3g:/3%;) is symmetric and salisfies J(X,)
J(X,) = J(X M Xy) for any pair of vectors X,, X, in E, and furthermore the
eigenvalues d; = (X)) =1, 2,..., n) of J(X) are such thal

rZi=8>0 forall Xek,

where B, is a [finite constant,
(i3) the matrixz C is syminelric and positive definite and commules with J,

(i8) for any Xi, Ui (i =1, 2) in E,, the vector P salisfies
B [Pt Xy U)— P, Ko, U || <8 (|| Xo— Xl + || U2 — Ua ]}

uniformly in &, where 3, =0 is a constant.

Let pi = w(X) (¢ =1, 2, ..., n) be the eigenvalues of the matrix C2J and
let o, 0<p<co, be any given constant. Then there exisls a fixed constant A,>0,
whose magnitude depends on 3y, 8, p, C and J only, such that if 8, <A, then
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any two solutions X(t), Y1) of (1.1) such that

3.2) XM || =<e and [YH|<<p for all t=t,
necessarily converge provided that

(3.3) M(p) = max p(X) < 1 l<<i<n [X]|<p)

Observe that if P is independent of X and X the condition (i) of the
theorem is automatically satisfied, with 3, = 0.

Observe also that, when specialized to the scalar equation (1.4) of LouD,
all the conditions of our theorem (including (3.3)) would be met if

(3.4 ¢> 0, g =8 >0, max ¢'(x) < ¢

lel<p

These are the same conditions as in the convergence result [3; Theorem 2]

except that [3] makes use of the condition: max g'(x) <%c“’ which is stronger
than that in (3.4).

In view of the fact that the result of Theorem 1 has been framed only
in terms of ultimately bounded solutions it is natural to inquire into what
sort of conditions on O, G and P ensure the existence of such solutions. My
own investigation of this problem led to the following boundedness theorem:

TuHEOREM 2. - Suppose, further to the conditions (i) and (4i) of Theorem
1, that GO)=0 and that the function P satisfies

(35) | P, X, U)|| <o || X||+ | U]) +

uniformly in t where 3, >0, 3, > 0 are constants.
Then there exist constants A,> 0, 8, >0 where magnitudes depend only
on 3o, 8, 8 and C such that if 3,< A, then every solution X(t) of (1.1) satisfies

(3.6) X<, [Xo|<s,

for all sufficiently large .

This theorem is a generalization of the boundedness theorem in [3] when
specialized to the equation (1.4), although here we have not attempted to give
an explicit estimate for 8, in terms of the other constants in the theorem.

The condition G(0) =0 introduces no essential restriction on the equation
(1.1). For, by setting G*X)= G(X)— G(©0) and P¥¢, X, X)=P(¢t, X, X) —
~— G(0), we could take the equation (1.1) in the form

X+ 0X + ¢¥X)= P, X, X)

Annali di Matematica 3
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in which G%0) =0 and G*X) has the same Jaccbian matrix J as G(X), and
in which P* satisfies the same condition (3.5) as before except that the term
3; would have to be argumented by the addition of || G(0)]|.

It will have been noted also, on setting X, =X, U, =U and X, =0= 10U,
in (3.1), that the condition (4i) of Theorem 1 does imply that

| P, X, )| < || P, 0, Of + (| X[+ [ U]

Thus, subject to the conditions (¢)-(¢%) of Theorem 1, every solution X(t) of
(1.1) satisties (3.6) ultimately, provided that 8, is sufficiently small and
Il P, 0, 0)|] bounded for all #=0. Under these circumstances then the con-
clusion of Theorem 1 would be available for any pair X(#), Y(t) of solutions
of (1.1) provided that M(3,) < 1.

4, Some preliminary results. The two algebraic results (Lemmas 1 and
2) which follow will be required at various stages in the proofs of Theorem
1 and 2. In line with our restrictions elsewhere the enfries in the matrices
"4, B here are all real.

Lemya 1. Let A and B be two n X n symmelric positive definite matrices
and assume that A and B commute. Then the eigenvalues v; (i =1, 2, ..., n)
of the matrix AB ore all real and salisfy

“4.1) min v; == 3,8 > 0

1=i=<n
where 8,, 8 are the least eigenvalues of A, B respectively.

Proor. - Since 4 and B commute and are symmetric 4B is clearly
symmetric so that its eigenvalues are all real.

To turn now to (4.1) ome notes that, since 4 and B commute and are
symmetric there exists certainly (see, for example, [4; Theorem 9-33, p. 213])
a non-singular mafrix P such that

P—*AP = diag (8], &%,..., 0 = D,
P—*BP = diag 3/, %%,..., Sw) =D,

where 3, >0, 8/ >0 (i =1, 2,..., n) are the eigenvalues of A, B respectively.
Thus AB, being equal to PD, D,P~% is similar to D.D, = diag (3;3;, &%, ...
vy O, Bn). Hence every eigenvalue of AB is of the form 2877 >0 for some
4 and (4.1) now follows.
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Levma 2. - Lot A be an n X n symmetric matric. Then
4.2) <AX, X> =38, X|?
for all X e E, where 3, is the least eigenvalue of A.

Proor. - Since 4 is symmetric there exists an orthonal matrix O such that
(4.3) 0A0T = diag (3, %%, ..., &)= D

where OT denotes the transpose of O and 8; (i = 1, 2,..., n) are the eigenvalues
of A. Now let X be any vector in E,. Then, O being orthogonal, we have
that || OX || = || X||. Hence

Ba | X | =3 || OX|I"
=< DOX, 0X>
= < 0TDOX, X >
=<4X, X >,
by (4.3), and thus (4.2) is proved.

5. Proof of Theorem 1. Assume that the conditions (4)-(¢%5) of Theorem 1
hold and let X(#), Y(?) be two solutions of (1.1) satisfying (3.2). It is to be
-shown now that, as ¢ — oo,

G.1) [ Xt)— Y| —~ 0 and | X@)— Y@ — 0,

provided that (3.3) is satisfied.
Our main tool in its proof is the scalar function V= V(, 7} defined,
for any pair of vectors v in E,, by

5.2) 2V =1 CE+n [+ [
Consider the function ¢(f) given by

(5.3) o(t) = V(X(t) — Y(t), X(t) — Y(®))
It will be shown that

(5.4) ot) - 0 as ¢ — oo.

In view of the definitions (5.2) and (5.3) this will surely imply (5.1) and the
theorem will thereby be proved.
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For the proof of (5.4) we shall require an estimate for ¢(f). The starfing
point for this is the definition (5.3) from which, in view of (5.2), it is clear that

=< O0X—-Y)+X—Y, 0OX—VN+X—V>4+<X-7, X—-7>,

where <, > is the scalar product referred to in § 2. Observe now that, X(#)
and Y(¢) being solutions of (1.1),

X=—0X—GX)+ Pt X, X)
Y=—CY— GY)+ P4, Y, Y)

By substituting these values in the expression for ¢ above and then simpli-
tying, it can be verified that

(5.5) = —¢ + P
where

5.6) 0 =<O0X—Y), GX)—FY)> +<CX—Y), X—Y>+
+2<X—7 GX)— GY)>
and

6.7) o, =<2X—~YV)4+0X—Y), Pt, X, X)— P{t, Y, Y)>.

It remains now to obtain estimates for o,, ¢, separately. Since C is symmetric
and non singular the expression (5.6) for ¢, can be rewritten thus:

(5.8) = || 30X — ¥) + 8 1C (G(X) — GV} | +
+(1—=)<OX-Y), X—Y>+<0X—Y), GX)— GY)>—
— <30 X)) — GY)), AX)— GY)>,

where & is any non-zero real constant. For our present purpose it is conve-
nient to work with a fixed >0 satisfying:

(6.9) M(p) <& <1.

The possibility of choosing such a & is assured by the condition (3.3) which
we shall henceforth assume to hold. With 3 so fixed it is quite clear that
the second member in (5.8) is non negative. In fact, since C is symmetric
and positive definite we have from Lemma 2 that

(5.10) 1—<OX—7Y), X—Y>=25| X — Y|

where 8; = %(1 — 3%, >0, 3, here being the least eigenvalue of C.
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In order to obtain an estimate for the last two members in (5.8) we note that

6.11) G(X)— G(Y) = f JEX — Yds

0

where £ =s8X (1 —s) Y and J is the Jacobian matrix defined in Theorem
1; so that the two members in question may be combined as follows:

<OX—7), GX)— GY)>—
— <0 G(X) — AY)), GX)— GY)> = U lcpldsldsz
where °°
hr="di(81, 8, X(), Y(1)) =<{C—3"*CIE) (X —Y), JE)X — ¥)>,

with § =X 4- (1 —s)Y (¢ =1, 2). Since J is assumed symmetric we also
have that

hh=<DX—-Y), X—Y>

where D = J(&,){ C — 3*C~*J(§,)}. This matrix D is obviously symmetric, in
view of the hypotheses (4), (i4) of the theorem. Hence, by Lemma 2,

<DX—7Y), X—Y>=8| X— YA,

where 3 is the least eigenvalue of D. Since D depends explicity on & =
= 8 X(f) 4 (L — 8)Y(t), it is clear that d; is an explicit function of ¢ An
estimate of its lower bound which is valid for all sufficiently large #, cun
be obtained by using the result of Lemma 1. But first rewrite D) in the form:

(5.12) D = 52J(E)C (5] — O—*J(Ey) )

where I is the # X n identify matrix. Next observe that, since each & in
(5.12) stands for X 4 (1 —s)Y where O=<"s;< 1| and since X, Y are the
solutions of (1.1) satisfying (3.2),

lGl<s[X||4+01—s)] Y
<sip+ (1 —sp
=p

for all t =1¢,. In view of this bound on £, it is clear from the definition,
in (3.3), of M(p) that the eigenvalues v; (i =1, 2,..., %) of 8] — C—2J(%;) which
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are all real since 2°I— C~?J(E;) is symmetric, necessarily satisfy, for all { =1,

(5.18) > —Mp), @G=12 .., n
>0

by (5.9). Now the rearrangement (5.12) has exhibited D as a produgt of the
three symmetric, pairwise commuting, matrices:

3=%J(E), C, 81 — C~2J(Ey).
By successive application of Lemma 1 to these matrices, first with

A=3"*JE) and B=C,
and then with
A =82JE)C and B =2%1— C%JE,),

one can verify readily that, subject to (5.13) and to the hypotheses (¢), (4), of
Theorem 1 that

Ba = 58,3, { 3¢ — M(p)}

for all {=+¢,, where §,>0 is the least eigenvalue of (. Hence on combining
the various resulfs,

G =28, | X — Y5,  t=t,

L 37803, { 8° — M(p)}. Thus

where &; = 9

B1d) <X —7Y), GX)— GY)>— <520~ GX)— G(Y)], GX)— G(Y)>

1 1
=jf¢1(81, 82y X, Y)ds,ds, =23 | X — Y|, t=t.
¢ ¢

From (5.8), (5.10) and (b.14) one obtains that
(5.15) 0 =25 X — Y+ 25| X — Y[, t=t,
which is the desired estimate for ¢,.
The procedure for estimating ¢, from (5.7) is much more straightforward.

Tndeed, by ScHWARZ'S inequality, we have that

o2 | << B3| X — Y[+ X — YD PG, X, X)— P, ¥, V)|
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for some constant 3, =0 whose magnitude depends only on C. Buf
| P, X, X)— P, ¥, V)|=a(|X— Y[|+]X— Y|,
by (3.1). Hence

(5.16) Lo | << 83| X — Y|+ | X — Y|)?
< B3| X— Y+ |X— TP)

From (8.5), (6.15) and (5.16) it is clear that if
(6.17) 8; << min (33,7, 3;8,7)
(5.18) p=—3(|X— Y[+ [|X—T[), t=t,

where & = min (5, &)
It will be observed from the definition (5.2) of V(E, ) that

0<< VE ) <3|Ef + ]

for all vectors §, v in E,, where 3, > 0 is a constant whose magnitude depends
only on C; so that in particular, since ¢(f)= V(X — Y, X — Y),

0==9(O)=<3(| X — Y| + [ X — Y|*).
Thus the inequality, (5.18) implies that
P =0 (1=t
where 3y, = 3:8,7* > 0. Integration of this inequality for ¢ yields the result:
P(t) << pllo)e—nlt=0) (2 = £).

On letting £ — co in this we obtain (5.4), and this completes the verification
of Theorem 1. It should be recalled that the inequality (5.18) was obtained
subject to the restriction (5.17) on 3,, so that the theorem has been proved
with A, = min (3:8,7*, §,3,~%).

6. Proof of Theorem 2. Assume now that all the conditions of Theorem
2 are fulfilled. Replace (1.1) by the equivalent system:
(6.1) X=y, =—CY — ((X)+ P, X, Y)

which is obtained from (2.1) on setting X = Y. To prove the theorem we
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shall show that, subject to the stated conditions, there exist constants 3,>0
and A,>0, whose magnitudes depend on 8, 8,, 3, and C, such that every
solution (X, Y) of (6.1) satisfies

6.2) (X =<2, [YBO][<8
for all sufficiently large #, provided that 8,=<C A,.

For the proof we shall make use of the function V= V(X, Y) defined by

(6.3) 2V =

2Y + CX ||* 4 || CX | -+ 8f< G(sX), X>ds,

Here G(sX) stands for G(sx,, s®., ..., $x»), s being a dummy variable of
integration. Note that, by (5.11),

G(sX) = f JEOXd  (E=s:X),

0

since (o) = 0. Thus the last term in (6.3) equals

sfs( f( < I X)X, X>}dx> ds

and is therefore nonnegative, since J is assumed positive definite. Hence
(6.4) 2V =|[2Y 4 OX | 4 || CX |

uniformly in X and Y.
In addition to the inequality (6.4), we shall also require an estimate for
7 E% V(X(t), Y(#) corresponding to any solution (X, Y¥) of (6.1). As far as

the first two terms in (6.3) are concerned their differentiation presents no
difficnlty. To handle the differentiation of the third term we shall use the result:

% f < G(sX), X>ds = <Gw), X>.

o

(5.5)

This result is, of course, not true for general vector functions G. Its validity
is assured here only because of our special vestrictions on the matrix oJ.
Indeed, on performing the differentiation on the left hand gide of (6.5) one
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finds that
1

(6.6) % f < GsX), X>ds =

0

1 1
— f < G(sX), X> ds + ] <sd(sX)X, X> ds,
1] 0

J being the usual Jacobian matrix. But, since J is assumed symmetric,
<sI(sX)X, X> = <sJsX)X, X>;

and therefore the second integral on the right hand side of (6.6) equals

1

6.7) f< sJ(sX)X, X > ds

0
Now
1 1

f sJ(sX)Xds = / sgg G(sX)ds

= sG’(sX)l1 e f G(sX)ds

= G(X)— f G(sX)ds.

Hence the integral (6.7) in turn equals
1
<@X) X>— f < G(sX), X > ds.
0
On combining these results with (6.6) we obtain that

1 1
% f< G(sX), X>ds—_—f< G(sX), X > ds 4 < A(X), X> —
0 "0

1
~f< G(sX), X >ds
]

.

=< qX), X>

Annali 4i Matematice 32
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and this proves (6.5). Coming then to V, there is now now difficulty in veri-
fying from (6.1) and (6.3) that

V=<2Y+ CX, — CY — 2CY — 2G(X) + 2P(t, X, Y)> +
+ <X, CY>4+4<GX), Y>
=—2{<0Y, Y>4+<0X, GX)>—<2Y+ CX, P, X, Y¥)>|.
Since C is symmetrie it is clear from Lemma 2 that
<C0Y, Y>=%||Y|?
where 3., the least eigenvalue of C, is positive since C is positive definite.

1
Next, by (6.11), G(X)= f J(X)X ds since G(o)=0; and hence
0

< CX, HX)> = f < CX, JsX)X > ds

1
- f < J(sX)CX, X > ds,
0

since J is assumed symmetric. But, by Lemma 2,
<JI(EX)CX, X> =8, || X |

where 8, = 3,5,>0, 3, being the least eigenvalue of C and 3, the constant
in hypothesis (¢) of Theorem 1. Hence

< 0X, GX)>= Bme X | ds = by || X |1

As for the remaining term in the expression (above) for V, application
of ScHWARZ S inequality yields the estimate:

12<2Y 4 CX, P, X, ¥)>| <3 (| X[+ YIDIPE X, V)],

for some comstant 5,3 >0 whose magnitude depends only on C. By (3.5) this
gives that

12<2Y + CX, P(t, X, 1)>|<3u(| X[+ Y DG X+ Y]]+ 22
= 28,8 [| X[ Y[[*) 4 Bus| X 1P 4[| Y[F)

where 3, = 24%8:9,5.
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Thus, on gathering together our estimates of the various therms in the
expression for V, we arrive at the inequality:

Vs — 2310 — 8:310) | Y1 — 208, — 3:309) || Y |2 4 3wl | X |2+ | T |[2)1

Hence, if 8, where fixed so that

i

6.8) By =< 5 MiN (81201577, B12015™7)

Do

then
Vs — B(| X+ | YIP)+ Sl X[ VI

where 515::%111111{811, 3;2). Note that the last inequalily for V implies also that

(6.9) V=8| XIF L VIR, i ([ X2 1] Y1) =8 == 2803,

With the aid of (6.4) and (6.9) it is a fairly straightforward metter to
prove (6.2) by using an adaptation of the main idea behind YosHIZAWA’S
proof of [6; Lemma 1]. Indeed let (X(), Y(t)) be any solution of (6.1). It is
easy to see that it cannot satisfy

(6.10) [ XO+ YO =2

for all t=0. For, suppose on the contrary that (6.10) where true for all
t=0. Then by (6.9) we would have that

. a R
Vity =2 VX(), Y)<— 885, <0, =0,

which would in turn imply that
ViX(t), Y{)~ —co as t - co

in contradiction to the fact, implicit in (6.4), that V is nonnegative. Thus
there exists a ¢, == 0 such that

6.11) | X 1?4 Y() P < By -

We observe next that, in view of (6.4), a constant 3,, > 5,,, whose magnitade
depends only &, and C, can be determined such that

(6.12) max V(E )<< min VE, ).
[1&1[3+{In| [P=92, [1&1124-1 | 2=87, 4
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It will now be shown that our solution X(#), Y(f) satisfying (6.11) must
necessarily satisfy

(6.13) XA+ YBOR <

177

t=>1t,,

thereby verifying (6.2).
Suppose indeed that (6.13) were not the case. Then in view of (6.11) there
exist £, and #;, £, <1y <{; such that

(6.14) [ X () [P 411 Y (8) IF = &,
i X(ts) 112 -+ li Y{ts) iiz = 83‘7
and such that

(6.15) | XOF+IYOP<3,, tt=t.

oD
But, by (6.9), (6.15) implies that

Vit > V(ts)
and this is contradictory: to the result:

V(ta) << V(ty)

implied by (6.12) and (6.14). Thus X(#), Y (f) must satisfy (6.13). This completely
verifies the theorem, with (see (6.8))

| B — —
hl p == 5 Inln (8115131, 5128131)'

2
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