Poichè questa rappresentazione analitica della $F(t, \mathbf{H}_0^t(\tau))$ soddisfi (come deve essere) le condizioni III e IV, occorre che i coefficienti di P_n siano continui anche rispetto a t. Ciò resulta facilmente nel caso del ciclo chiuso perchè tali coefficienti sono funzioni di $(t-\tau)$. Ma non mi è riuscito di provare rigorosamente questo teorema nel caso generale, anche ammessa vera la IV sul funzionale. Ritornerò forse su ciò in altra occasione.

ERRATA-CORRIGE

Pag. 144 e segg. Il funzionale deve supporsi definito su tutte le $y(\tau)$ minori o uguali in modulò ad a, e per queste $y(\tau)$ devono valere le (C_1) , (C_2) , (C_3) , (C_4) .

Pag. 151, formula 10, seconda riga. Il segno di valore assoluto va in fine della riga.

Pag. 152, vedi nota di pag. 170.

Pag. 156. Le (C_2') e (C_3') si devono supporre valide anche per $y(\tau)$ in modulo minori o uguali a m.

Pag. 157, riga sesta. Il termine $F(t, \beta' H_0^t(\tau))$ va preso in modulo.

Pag. 160. La III va enunciata nel seguente modo:

Per ogni numero intero e positivo m esista un numero N_m tale che per ogni $H_4(\tau)$, $H_2(\tau)$ continue e minori o uguali in modulo di m e H_s e per tutti i λ e t compresi fra (0, 1) e per ogni ξ di (0, t) sia ecc.

Pure a pag. 160 si noti che H_s essendo un numero non va in grassetto.

Pag. 162. Intendere sempre funzioni in modulo minori o uguali a H_s .