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Summary, - Staeriing with the problem of finding o mass-distribution on & sphere, admiiling
in each poini P a densily, function of the point P and of the mass contained in a certain
domain depending on P, the author proves the existence and the unigueness of the solubion
of (5} under assumption (1), (2), (3). As a generalization, he also studies hyperbolic partial
differential equations having solutions periodic in one of the variables with period depending
on the olhers.

Introduction,

We start with the following problem: To find a mass-distribution on a sphere S
of radius R, admitting a density in each point of 8, and suech that this density in a
point P, be a function of the point P and of the mass contained in a certain domain
of § depending on P. More precisely, if ¢, , ¢ are the spherical coordinates of P with
regard to the center of S, é is the domain

(9) o<y<R, 0<i<f, O0<s<yp,

and « the mass of J, then the density at P will be

1 o*u
0?sin 6 dp ol op

and the stated problem will lead to an equation of the form:

1 0%

m m = f(Q’ 8, @, u(g, 0, 99)) .

On the other hand, it is obvious that the function (g, 0, ¢) representing the
mass of &, satisfies the relation

u(g, 0, ¢ + 27) = u(o, 0, ¢) + 27A(g, 0),

{*) Entrata in Redazione il 24 marzo 1973,
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27A{g, 0) being the mass of

(8 e<y<R, O<i<l, O0<s<2m,

whereas the densiby is periedic in ¢. It follows that f must satisfy the condition
7(0y 0, ¢ + 27, w + 270, 6)) = f(0, 0, ¢, w) -

This problem will be considered in A, B, C.

As a generalization, in D we will study the case of hyperbolic partial differential
equations admitting periodic solutions in one of the variables, with period depending
on the others.

The method used is ingpired by this of CAESARI [1], [2], [3]. DAN PETROVANTU [4], [5]
and the authors quoted in these papers.

A, — Statement of the problem.

1) Suggested by the considerations above, we consider the following problem:

A) Let f(0,0, ¢, u) be an n-dimensional vector function defined on
(D) O<o<R, O<l<n, —oo<gp< +oo, ucR",

and satisfying the condition:

A.) It exists an n-dimensional veclor function (o, 0) defined on

(Dy) O<o< R, 0<b<m,
satisfying the conditions:

e, 0)=0,
so that, for every (o, 0, ¢, u)e D, we have:
(1) 1(0, 8, ¢ -+ 27, u + 27A(g, 6)) = f(0, 0, @, w) -
B) Let a(0, @), Blo), (0, 8) be some three n-dimensional vector-functions, such that:

a) a0, @) is defined for 0 <O<m, —oo< @< + oo,
bY Blo) is defimed for 0 <o<R,

ey vig, B) is defined for 0<o< R, 0<b«m,
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which satisfy the compatibility conditions:

«(0, ) = B(R),
(2) Ble) =ylo,0),
7(Ra6) = “(6’ 0),

and the generalized periodicity condition:
(3) «(0, ¢ -+ 27) = «(0, ¢) + 27A(R, 0) .

We denote by K, the class of continuous vector-functions defined on

N

(d) 0<o<R, 0<l<m, —oco<@p< + oo,

and having on (d) continuous first and second order derivatives, and also the continuous
third order derivative 0*u[0p000p.

We denote by K,, the class of functions u satisfying the condition above and also the
generalized periodicity condition,

(4) (g, 0, ¢ + 27) = u(o, 0, ) + 27i(g, 0).

We are looking for an n-dimensional vector-function «(p, 8, ¢)€ K, satisfying
the equation

} 1 Bu
(5) mm—ﬂ&ﬁ,%%),

and the conditions on characteristics:

u(R’ 6, @)= (0, ®),
(6) u(g, 0, p) = f(e),
u(g, 6,0) = y(0, 0).

0) Suppose now Ao, 0) is a continuous function having first derivatives and also
the derivative 0*A/0000, so that

1 02

o7sing 59_-80 18 bounded .

Then, taking

(0, 0, ¢) = u(g, 6, @) “"‘PMQ" 0),
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we see that v is a vector-function periodic with respect to ¢, if u satisfies (4). The
eq. (5), becomes

7 —Eai—— (0,6, 0,0
{ 8986899_59’ s 5 0)

where

. 024
g0, 0, p, v) = f(0, 6, @, v + @A) p*sinf — é“g““aﬁ ’

and taking into account the fact that A(r, 0) = 0, relations (6) become:

v(R, 0, @) = «(0, ) — pA(R, 0) = &(0, p) ,
8) v(9, 0, @) = f(0),

o(g, 6, 0) = (g, 0);

& is now a periodic vector function with regard fo ¢.

Consequently, our problem is equivalent with the problem of finding a solution
of the system (7)-(8), periodic in ¢ with period 2z, which, on the other hand, is equiv-
alent to that of solving the Volterra non-linear equation

9) o, 0, @)= a0, p) — &0, p) — &b, 0) + (0, 0) + y(r, 0) —
RO ¢

—ff f g(ry t, 8, v(r, t, 5)) drdtds

¢ 0 0

with the periodicity condition

2

Iy
fff glr, ty s, v(r, t, s))drdtds = 0.
2 0

0

Taking into account that this condition must be satisfied independently of o
and 6, it follows that the relation above can be replaced by

an

(10) J‘g(r, by 8, 0(r,1,8))ds=0.

0

B. — Existence and uniqueness theorems.

It is easy to prove
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TagorEM 1. ~ If

A)) g is & continuous and bounded function on (D), and periodic, with period 2z
with regard to g,

A;) a(l, ) is a continuous and bounded function on

0<li<n, —oco<@p< -+ oo,
and periodic, with period 2z in ¢.

A,) plo,0) is a continuwous function on

0<o<R, o0<l<m,

then the equation (9) has a unigue solution v(p, 8, ) of class K;, defined on every com-
pact set of

(DA) (976797)§ 0<o< R, 0<l<m, —ooCep<oco.

If, in addition g satisfies a Lipschitz condition with respect to v, then the above solution
is unique.

By using the fixed points theorems of Schauder and Banach, the proof is standard.
As a consequence we have
THEOREM 2. ~ If

By) f{o, 0, ¢, u) is a continuous and bounded wvector-function defined on (D),

B;) «(6, ¢) is a continuous and bounded vector function defined for 0 <0< =,
| < o0,

B,) B(o) is a continuous vector function defined on
0<o<R,
B,) ylo,0) is a continuous vector-function defined on
O<o<R, O<b<um,
B;) Mo, 0) is a continuous vector function defined on the same set as y, which

satisfies A(r, 0) = 0 and has first order continuous derivatives and also the continuous
miwed derivative 0%1/0000.

By) The functions «, B, vy satisfy the conditions (2);

then the system (B), (6) has ¢ solution in every compact sef of (D,).
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If in addition f satisfies a Lipschitz condition, the solution is wnique.

C. — The periodicity condition.

We come now to condition that v be periodic. We shall prove that, given o, f8, 2,
there exists a function y so that v be periodic.
To this end, denofe firsh:

A0, @) = (0, ) — (0, ) — a(b, 0) + &(0, 0) = «(0, ) —
— (0, @) — (0, 0) 4 (0, 0) —pA(R, 0)
A(f, p) satisfies the relation
AB, ¢ + 27) = A(6, ) .

With this, (9) becomes:

209
(11) v(g, 6, p) = (o, 6) + A(6, q))——f ff g{r,t, s, 0(r, t, 8)) drdids .

¢ o o

Suppose now g has continnous first derivative in v, and let yi(g, 0) (i =1,2) be
two given functions satisfying the same conditions as y(o, 0) and vi(g, 0, ¢) the two
solutions of (11), corresponding to y = y;.

‘We obtain from these:

(12) 5(0, 0, @) —0:(0, 0, @) = va(0, 6) — o, 0) —

2 & 9 n
——f f f %g (ryty s, wlry 1, 8)) (0, — v,)drdtds
g 0 0

where w{r, ¢, s) is & vector function of the form:
(13) w(r, by, 8) = vy(r, 1, 8) + ylos(r, t, 8) —0:(r, 1, 8)], | <1,

0g/ov is the functional matrix (8g:/0v,), operating here on the vector v, —v;.
Denoting by R(o, 0, ¢, 7,1, s) the resolvent kernel of the kernel dg/ov, we obtain:

R 6§ @

(14) e—v=ri—p— [ [ [ Re, 6, oy, t, Y — ) trdis.

eo 9
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Congider now the operator I’ defined by:

(15) Ty _f{ 0) + (o, 0, 5, v(o, b, 8))}‘13’ @ = const.

where » is the solution of (11) corresponding to y
Concerning this operators we shall prove

TaEOREM 3. — If ¢ is a continuous bounded function on (D), has a continuous
and bounded derivative 0g/dv, is 2m-periodic in @,

(16) gl <, “—aﬁ’ <,

o

and satisfies the condition that there exists a constant u so that, for every ¢, 0, @, w, the
relation

a7 uI + 27t %g”<27w o= const. ,

18 satisfied, then (18) has a unique fized point. If v, is this fized point, then (15) reduces
to the periodicity condition (10).

Proor. - In the Banach space B of continuous functions on [0, B]Xx[0, 2x],
with sup-norm, it is easy to see that T transforms B into itself, and that

og
H i:”f{ — 1) +/’Lf\ (0,8, 8, w)(v, ““’01)}513 ’

Replacing v,— v, by his value from (14), we have:

TS S
(18) “TVZ_T%H = ” f{(% +u 8_197 (97 0, s, w(e, 0, S))) (yo— 1) —

8
b ((9,0 s, w(o, 0, 8)) ) fff (05 0y 85 774y By 81) (v — 1) drydt, dsl}ds

Choose now g such that formula (17) be satisfied, and denoting

0<s<2m.

3
(19) » :u_a.%(g, 0, 5, 1) Rlo, 0, 5; 7y, b, SI)H,
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relation (18) gives:
| Tya— Tyif < (o + 2| plpm*R) |y —p. -

It is obvious that the constants » and ¢ depend on g and dg/ov; we have namely

Rio, B, @; 7y 8y 8) = 2 ko, 0, @; 7,8, 8),
=1
cg
k{0, 0, @, 1yt 8) = %(7 t, 85 w(r, t,8)),
R O ¢
ko, 0, 57,1, 8) kn_1(0,0, @57, 8)k(r, 1, 8)drdids,
-1

which gives
‘ (2n*n M, R)*
1R]< ;_“W M,.
From (19), it follows

(Qmn M, R)*
(k1)

ve=M; >
k

If we can choose now o, u, » and R so that
o+ 2mlul mR< 1,

the operator 7' is a contraction, and, as & consequence, he has a fixed point, which
is the function we are looking for.
As a consequence we get:

THEOREM 4. — If f is a continuous bounded function on D, has & continuous
and bounded derivative 0g/ov, satisfies (1), with A(o, 8) satisfying the condition A(g, 0) =0
and B, of theorem 2, then (7) has a unique periodic solution.

D. — Generalization of the problem.

The problem studied in the above chapters suggests a new one, namely the problem
of finding solutions of a hyperbolic equation periodic with regard to one of the vari-
ables, with period depending on the others.

A partial answer to this problem for a particular case analogous to the preceeding
one, will be given in the

THEOREM b. - If
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1,) hiw, y, 2, u) is an n-dimensional vector function defined on

(D) O<ae<a, O<y<b, —oo<z< + oo, wucke,

AN

1,) k(z, y, 2, u) is continuous and bounded in (D), has a bounded derivative
(Ch/ov)(x, 4, 2, w), and, as a consequence satisfies o Lipschitz condition

oh

(20y) |h| < M,, ” 3

“< M,

2)) aly, 2), B(®,2), y(z,y) are three n-dimensional continuous vector functions,
defined on:

(20,) [0, ] X (— o0, o0}, [0, a] X (— 00, + o0}, [0, a] x [0, ],
respectively, satisfying the compatibility conditions

(0, 2) = §(0, 2},
(20,) Bz, 0) = y(x, 0
v(0, ¥) = «(y, 0),
3) The function p(x, y) is strictly positive, bounded, has bounded first derivatives

and bounded mixed derivative:

(20,) P, Y)>q>0, |p(@, 9|

4) Denoting by Rz, y, z; &, n, L) the resolvent kernel of the kernel oh/ov, let M,
be the bound of R, oR[ow, OR [0y, 0*R[ox0y, for 0 <z<m >0; d.e.

R
2

5) Suppose that the constants a, b, p;, q, M,, M, satisfy the relation

e esssaly

4 pupa [ M1+ a)(1 4 b) + M,(1 -+ 2a)(1 +2b)] < 1,

R
23

2R

IR], e

lg M, (depending, obviously on M,).

’

then
1) the equation
o%u

(21) Sw oy

h(x7 y’ Z, ‘u) ?

20 — Annali di Matematica
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has o unique solution belonging to K, on [0, a]x[0, 5] x[0,m], end satisfying the
conditions

ww, ¥, 0) = y(=, ¥},
(22) u(‘% Oy z) = ﬁ(w’ 2) ’
(0, ¥, 2) = a(y, 2) .

2) It is possible to choose y(»,y) such that the equation (21) has o solution u
periedic in z which satisfies

(23) u(% Yy 2, pla, 3/)) = u(r, y, 0).

First, we see that the given problem is equivalent to the one of finding a solu-
tion of the Volterra non-linear integral equation

(24) w(@, y, 2) = aly, &) 1 p(z, 2) + y(@, y) —y(x, 0) — (0, y)—

—B(0,2)+ (0, 0) + [ [ [ (g, n, & we, n, &) aanac .

000
satisfying the generalized periodicity condition
(25) B(@,y,0) + [ [ [ 1(& n, & i, n, 0)) dgdnac=o,
g 0 0
where
B(wy yaz):“(yyz"l’p("% :’/))-‘7 ¥,z +/3( plw, .7/)) ﬁ(wyz)_‘

—B(0, 2+ p(z, y)) + (0,0) .

The proof of the existence and uniqueness of a solution of (24) is standard, by
using Banach’s fixed point theorem. Therefore we shall not insist on it.
Concerning the existence of a solufion of (24) which, in addition satisfy (25),
we consider the operator
’\OB . @ Y z)(ac,‘y) 1
0

¢ 0

(26)

where u(£,n, {) is the solution of (24) corresponding to y(z, ¥) for #=0, and u a
constant.

Let now B be the Banach space of continuous funetions on [0, a] X [0, b] with
the sup-norm; taking into account (20), one can easily see that T transforms B
into itself.
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If now vy, and y, are two functions satisfying the same conditions as y, and u,
and u, are the corresponding solutions of (24), we have:

s (2, Yy 2) — s,y ¥, 2) = ya(@, ¥) — iz, ¥) +

&y z’\h
+ff f %@ (5 7, £y w, (&, 7, 5)) (uz“”'ul)dfdﬂdfy
000
where

w(&, n, §) = ui(&, m, §) + nlua(é, Ny &) —us(&, 1, 0)1, ["71< 1,

and oh/ow is the Fréchet derivative of .
Denoting by R (=, y, 2, &, , {) the resolvent kernel of the kernel 0h/du, we can write:

27 {2, Yy 2) — Ui (2, Y, 2) = yal@y ¥) —yale, ¥} -+

+ [ [ [8@ 95 0, 00l ) — &, m) dsimd.
¢ 6 ¢
On the other hand, we have
82 oy p(m.,w) 1 8h
(28) 0 0 0
h & n ¢
+ /L"éa f f [ Ri&m, 05 & m, Cl)(h"%)d&d’?ld&} dédndl

and if we put:

.@ % z ak ‘
(29) Rz, y, 2 & Ny 8) = J f f % (&, 1, L, w) R, Ny &y &1y My G1)AE AN, AL,
& m &
(28) becomes:

o ¥ plEw)

~

2 1 oh
_U—Gm"ff f[ +Ha—%(57777c7w(§’7715)>+

Pz, y)
©uRao,y, 4 &, C)] [ya&, 1) — 6, m)dEdmdz .

If we denote also

oh
31) I+ #% & n, Ly wy+ pRi, 9, 2, &, n, L) =A@, 9,2 &7, £,

px, ¥)
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(30) gives:

plz.v)

Tyy— Ty, = f A, y, 2; 3, ¥, C)('}’z(% ¥) — (e, ?/))d§+

1]

af (01,23 & 4, DUy 9)(4(Es 1) — 1, ) E +

o [ \
-+ 8—11; f A(CL‘, Ys 25 2, pla, ?/))(’}’2(-70, 7)) — (@, n))dn -+
0

82
ang ff x; Yy 25 & n, p(o, ?/))(72(5777) (&, n))d«fdn+

y pla, y)

+f f (@, Y, 2; 2y 1, 0))yale, ) — yi(w, n)) dndl +

® plz.y)
]

0 0

oA
% (60, Y, %5 57 Y, C)('}’z(gy Y) ”*'}’1(5’ i‘/))dEdZ +

5 ) waA
+ 8_5 f f @ (xa Y, 25 &, p(2, y))(VZ(S’ n)—nlé n))dfd’ﬁ +

* oA
o y 5;@ Uy 25 &y D0 9) (el 1) — (&, m) dEdyy +

2y ple.y)

+ff f f\,— ’%275’779C)(%(fsﬁ)—%(fyﬁ))dfd?’]-

It follows

1 Tye—= Ty <7llya—mil

where

T=p,(1+a)d 4 D)|A| + pi(a + b 1 2ab)

E_A_ - p,ab 04
Ey M 55;5?—/ .

Taking into account (31) and the relation

‘5{1‘<% Rlabp, < M, M,abp, for O0<i<z<p,
’ i au



ApoLr HATMOVICI: Periodic solutions of hyperbolic partial differential equations 309

it follows:
1
”AH <§ _I_ﬂ(ll[l + M),
04 o) p
%] < -
Al pi o ,
590—83/ <q4 -+ 'q: + puM,;
hence:

T<P1{“1q'(1+“)(1—|—b)—!—%(a+b—{—2ab)+(2fl—,§—{—pl)ab} +

P
+ ,u_pl{ (M, + My)(1 + a)(1 4 b)p, -+ My(a+ b+ 2ab) + M,ab }a

or

1
T<%[1 + (fi; +1) (a+b+ ab) (% 4 2)] - up ML+ a)(L 4 D) +
+ up M1+ 2a) (1 + 2b),

that is, taking into account the hypotheses,
T<1.

It then follows that T has a unique fixed point. But this fixed point satisfies obviously
the generalized periodicity condition. Our theorem is then proved.
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