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Summary. - Starting with the problem o] ]inding a mass-distribution on a sphere, ad~nitting 
in each point P a density, function o/~he point P and o] the mass contained in. a certain 
domain, depending on P,  She autho~ proves the existence and the uniqueness o] the solution 
of (5) under assumption (1), (2), (3). As a generalization, he also studies hyperbolic partial 
diJjeren$ial equations having solutions periodic in one o] the variables with period depending 
on the others. 

Introduction. 

We start  with the following problem: To find a mass-distribution on a sphere S 
of radius R, admit t ing  a density in each point  of S, and such tha t  this densi ty in a 
point P ,  be a funct ion of the point  P and of the mass contMncd in a certain domain 
of S depending on P.  lV[ore precisely, if ~, O, ~ are the spherical coordinates of P with 

regard to the center of S, 5 is the domain 

(5) ~<<.y<~R, 0-.<~<0, 0 < s < ? ,  

and u the mass of 8, then the density at P will be 

1 83~ 

0 2 sinO ~ 8 0 ~ v  

and the s ta ted problem will lead to an equat ion of the form: 

i 8 ~  
~ sin0 5Q~08~ - - / ( 5 ,  0, ~, u(~, 0, ~)) .  

On the  other  hand,  it  is obvious tha t  the  funct ion u(¢, O, q~) represent ing the  
mass of 5, satisfies the  relat ion 

u(e, 0, ~ + 2~) = u(e, 0, ?) + 2nA(e, 0), 

(*) Entrat~ in Redazione il 24 matzo 1973. 
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2z,~(~, 0) being the mass of 

(~o) ~<.?<R,  O<~t<O, 0~<s< 2z~, 

whereas the density is periodic in q~. I t  follows that  f must satisfy the condition 

f(q, 0, ~ + 2~, u ÷ 2~2(e, 0)) = / (q ,  0, % u). 

This problem will be considered in A, B, E. 
As a generalization, in D we will study the case of hyperbolic partial differential 

equations admitting periodic solutions in one of the variables, with period depending 
on the others. 

The method used is inspired by this of CAESAnI [1], [2], [3]. DA~ PET~0VA~V [4], [5] 
and the authors quoted in these papers. 

A. - Statement of the problem. 

1) Suggested by the consicterations above, we consider the following problem: 

A) Let f(o~, O, % u) be a~n n-dimensional vector function defined on 

(D) 0~<~<R, 0~0~<~, --c>o<~v< + ~ ,  u ~ R  '~, 

and satisfying the condition: 

A~) It exists an n-dimensional vector function )~(o, 0) deflated on 

(D1) 0 < ~ < R ,  0<0 -<z ,  

satisfying the conditions: 

)~(q, O) = 0,  

so that, for every (~, O, % u)~D,  we have: 

(1) f(~, 0, ~ + 2~, u + 2~(~,  0)) = / (o ,  0, ~, u). 

B) Let c~(O, q~), fl(~), Y(~, O) be some three n-dimensional vector-functions, such that: 

a) ~(0, q~) is defined for 0<~0<~76 --c<~< q~< +c% 

b) fl(~) is defined for O<~¢<~R, 

c) 7(~,0) is defined for O<~¢~<R, O<~O<~z~, 
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which satisfy the compatibility conditions: 

~(o, 9) = ~(R), 

(2) ~(~) =~ (o ,  0), 

y(R, 0) = ~(0, 0),  

and the generalized periodicity condition: 

(3) ¢(0, ~ + 2~z) = ~(0, ~v) + 27r~(R, 0). 

We denote by K3 the class of continuous vector-functions defined on 

(d) 0 < ~ < R ,  0<0<~, --oo< 9< + o o ,  

and having on (d) continuous first and second order derivatives, and also the continuous 
third order derivative ~3u/8~80Sq~. 

We denote by K3~ the class of functions u satisfying the condition above and also the 
generalized periodicity condition, 

(4) u(~, 0, ~ + 2~) = u(q, 0, 9) + 2~),(q, 0). 

We are looking for an n-dimensional veetor-function u(e, O, ~v)eK~ satisfying 
the equation 

(5) 
1 ~3u 

~2 sin0 ~@~0~9 

and the conditions on characteristics: 

(6) 

- -  - f(e, O, 9, u) , 

u(R, O, qJ) = ~(0, cZ) , 

u(e, o, 9) = ~(~) , 

u(q, o, o) = y(q, o).  

C) Suppose now ~(o~, O) is a continuous function having first derivatives and also 
the derivative 8~J/8~80, so that 

@~ sin0 8~80 

Then, taking 

is bounded. 

v(e, o, 9) = u(e, o, q~)--q~(e, 0), 
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we see that  v is a vector-function periodic with respect to V, if u satisfies (4). The 
eq. (5), becomes 

~Sv 
~ ~0 ~q~ --  g(~' O, % v), (7) 

where 

g (~ 'O '%v)=] ( ~ 'O '~ ' v + ~ 2) Q ~ s i nO  ~ 0 '  

and taking into ~ccount the fact that  R(r, O)-~ O, relations (6) become: 

(8) 

v (R ,  O, ~) = ~(0, ~) - -  ~2 (R ,  O) = ~(0, ~) , 

v(e ,  O, ~) = fl(e) , 

v (e ,  O, O) = Y(e,  O) ; 

is now ~ periodic vector function with regard to % 
Consequently, our problem is equivalent with the problem of finding ~ solution 

of the system (7)-(8), periodic in ~ with period 2u, which, on the other hand, is equiv- 
alent to that  of solving the Volterra non-linear equation 

(9) v(r, O, of) -~ ~(0, (p)-  5(0, o f ) -  ~(0, O) ÷ ~(0, O) + y(r, O ) -  

R O  ~ 

0 0 0 

with the periodicity condition 

I¢ 0 2• 

f f f g(r,t,s,v(r,t, ))aratds 
~ 0 0  

----0. 

Taking into account that  this condition must be satisfied independently of ~o 
and O, it follows that  the relation above can be replaced by 

(10) 
2 ~  

f g(r, t, s, v(r, t, s))ds = O . 
0 

B. - Ex i s t ence  and uniqueness  t h e o r e m s .  

I t  is easy to prove 
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T ~ O l l ~  1. - I f  

A~) g is a continuous and bounded function on (D), and periodic, with period 2z~ 
with regard to % 

A~) ~(0~ ~) is a continuous and bounded function on 

0 < 0 < ~ ,  --  c¢<  q~< + c ~ ,  

and periodic, with period 2~ in q< 

A~) 7(~o, 0) is a cont inuous/unct ion on 

O < ~ < R ,  0 < 0 < ~ ,  

then the equation (9) has a unique solution v(~, 0, ~v) of class K3, defined on every com- 
pact set of 

(D4) (q, 0, ~) ; 0 < q < R ,  0 < 0 < z ~ ,  -- c~c~< c~. 

If ,  in addition g satisfies a Zipschitz condition with respect to v, then the above solution 
is unique. 

By using the fixed points theorems of Schauder and Banach, the proof is standard. 

As u consequence we have 

T t l E O l ~  2. - I f  

B~) f(~, O, % u) is a continuous and bounded vector-function defined on (D), 

B2) ~(0~ q~) is a continuous and bounded vector function defined for 0<0<7~, 

B3) fl(¢) is a continuous vector function defined on 

0 < 9 < R ,  

B4) ~(o, O) is a continuous vector-function defined on 

0 < ~ < R ~  0<0<7c ,  

Bs) )~(~o, 0) is a continuous vector function defined on the same set as ~, which 
satisfies ).(r, O) = 0 and has first order continuous derivatives and also the c~ntinuous 
mixed derivative ~ 2 / ~ 0 .  

B6) The functions ~, fl, y satisfy the conditions (2); 

then the system (5), (6) has a solution in every compact sef of (D,). 
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I f  in addition f satisfies a Lipschitz condition, the solution is unique. 

C. - The periodicity" condition. 

We come now to condition that  v be periodic. 
there exists a /unction y so that v be periodic. 

To this end, denote first: 

We shall prove that, given ~, fi, 2, 

A(O, ~) = ~(0, ~)- -~(0,  q:)--~,(0, O) + a(O, O) = ~(0, q : ) -  

--~(o,  q~)--~(0, o) + ~(o, o ) - - ~ ( t ~ ,  o), 

A(O, qp) satisfies the  relation 

A(O, q~ + 2z~) = A(O, q~) . 

With this, (9) becomes: 

(1]) 
R 0 ¢  

v(9,0, F)-~y(@,O ) ~-A(O,q:)--f f f g(r , t , s ,  v(r , t , s))drdtds .  
0 o o 

Suppose now g has continuous first derivative in v, and let y~(o~, 0) (i =~ 1, 2) be 
two given functions satisfying the same conditions as y(o, O) and v~(~, O, q~) the two 
solutions of (11), corresponding to 7-~  yi. 

We obtain from these: 

(12) v~(e, o, ~ ) -  v,(e, o, ~) = y~(e, o ) -  y~(e, o ) - -  

0 ~p 
@ 

q o o 

s, w(r, t, s))(v~-  vl)drdtds, 

where w(r, t, s) is a vector function of the form: 

(].3) w(r, t, s) = vl(r, t, s) 45 ~[v~(r, t, s) -- vl(r, t, s)], Ifl] < 1 ,  

~g/3v is the  functional matr ix  (3g~/~vj), operating here on the vector  v~--vl .  
Denoting b y  :K(p, O, % r, t, s) the resolvent kernel of the kernel ~g/~v, we obtain: 

(14) V2~V~ = ~"~ ~ ' l - - f  f f :R(e, 0, % r, t, s ) ( y ~ y l ) d r d t d s  . 
0 o o 
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Consider now the operator IF defined by: 

2 ~  

(15) T 7 = ~ ~(~, O) q- ~g(o, O, s, v(o, O, s)) ds, # = eonst. 

0 

where v is the solution of (11) corresponding to y. 
Concerning this operators we shall prove 

T~ORF~lvr 3. - I f  g is a continuous bounded function on (D), has a continuous 
and bounded derivative Og/Ov~ is 2;r-periodic in % 

(16) [lg][ < ~ ,  ~ < M ~ ,  

and satisfies the condition that there exists a constant # so that, for every ~, O~ % w~ the 
relation 

(17) lti + 2~r# ~l[<2zr(~ (~=const. ,  

is satisfied, then (15) has a unique fixed point. I f  ?o is this fixed point, then (15) reduces 
to the periodicity condition (10). 

P g o o F . -  In the Banach space B of continuous functions on [0, R] ×[0, 2z]~ 
with sup-norm, it is easy to see that  T transforms B into itself, and that 

(18) 

1 

0 

~g (q, 0, s, w)(v,,--vl)}ds , 
I~ cv 

Replacing v.~--v~ by his value from (14), we have: 

2xr 

]12'~-T~11 = + #  ~v (~' o, s, ~(~,0, s)) (~,~-~,~)- 
0 

0 

0 0 o 

s; rl, t1, sl)(~2-- ~e1)drldttd81}ds t , 0 <~ s~<27~. 

Choose now tt such that formula (17) be satisfied, and denoting 

1 H (19) ~, = ~ (~, O, s, ~v) ~(~,  O, s; rl, t~, s~) , 



304 ADOLF HA]:~OVICI: Periodic solutiorbs of hyperbolic partial differential equations 

relation (18) gives: 

I t  is obvious tha t  the constants v and ~ depend on g and ~g/~v; we have namely 

co  

~(~o, 0 , ~ ; r , t ,  s) = ~k~(o, 0 ,~ ;  r , t , s ) ,  
i = l  

kl(~, O, % r, t, s) ~g -~ ~-~ (r, t, s; w(r, t, s)) , 

R O ~  

k,(o~, O, ~; r, t, s) = f f f kn_l(O, O, ~; r, t, s)kl(r, t, s)drdtds , 
0 0 

which gives 

F rom (19), it follows 

(27~2nM~R)~ M~ 

M~ 

If we can choose now o, #, ~ and R so tha t  

(~ + 27~1# 1 .v~2R< 1, 

the operator  / '  is a contraction,  and, as a consequence, he has ~ fixed point, which 
is the funct ion we are looking for. 

As a consequence we get:  

T m ~ o ~ . ~  4. - I f  ] is a continuous bounded ]unction on D, has a continuous 
and bounded derivative ~g/~v, satis]ies (1), with ~(o, O) satis]ying the condition )~(~, O) -~ 0 
and B 5 o] theorem 2, then (7) has a unique periodic solution. 

D. - Generalization of the problem. 

The problem studied in the above chapters suggests a new one, namely  the problem 
of finding solutions of a hyperbolic equat ion periodic with regard to one of the vari- 
ables, with period depending on the  others. 

A par t ia l  answer to this problem for a part icular  case analogous to the preceeding 
one, will be given in the  

Tm~o~n~  5. - I1 
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11) h(x, y, z, u) is an n-dimensional vector ]unction de]ined on 

(~)) O<~x<~a, O<y<b ,  - - c ~ < z <  + ~ ,  u ~ R  ~, 

12) h(x, y, z, u) is continuous and bounded in (D), has a bounded derivative 
(~h/~v)(x, y, z, w), and, as a consequence satislies a Lipsehitz condition 

(2o~) Ilhll < ~ o ,  < i ~ ,  

2z) ~(y~ z), fi(x, z), ?(x, y) are three n-dimensional continuous vector functions, 
de/ined on: 

(202) [0, b] × (-- c~, c~), [0, a] × (-- c~, + c~), 

respectively, satis]ying the compatibility conditions 

(2o~) 

[0, a] × [0, b], 

~(o, z) = ~(o, z),  

~(x, o) = r(x, o), 

?(0, y) = ~(y, 0), 

3) The function p(x, y) is strictly positive, bounded, has bounded first derivatives 
and bounded mixed derivative: 

~P l ~P I ~P ( 2 o ~ )  p(x,y)~>q>o,  Ip(x,y)l ,  ~ ' Vy ' ~ < p l .  

4) Denoting by ~(x,  y, z; ~, ~, ~) the resolvent kernel o/ the kernel ~h/~v, let Ms 
be the bound o] ~ ,  ~ / ~ x ,  ~:~/~y, ~2X/~x~y, ]or 0 • z • m > 0 ;  i.e. 

ll ll II H t , ~--~II~<M~ (depending, ob~-iously on M~). 

5) Suppose that the constants a, b, p~, q, M~, M2 satis]y the relation 

-+-/~p~[M~(1 + a)(1 -t- b) ÷ M~(1 + 2a)(1 ~- 2b)] < 1, 

then 

1) the equation 

2 0  - A n n a l l  d l  Matemat ica  

(21) ~x ~y~z -- h(x, y, z, n), 
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has a unique solution belonging to K~ on [O, a] ×[0, b] ×[0, m], 
conditions 

u(x, y, O) = ~(x, y} , 

(22) u(x,  o, z) = fi(x, z) , 

u(0, y, z ) =  ~(y, z). 

and satis]ying the 

2) I t  is possible to choose y(x, y) such that the equation (2:[) has a solutio~ u 
periodic in z which satis/ies 

(23) u(x, y, z~ p(x, y)) -~ u(x, y, 0). 

First,  we see tha t  the given problem is equivalent to the one of finding a solu- 
t ion of the Volterra non-linear integral equation 

(24) u(x, y, z) : ~(y, z) ÷ fl(x, z) ÷ y(x, y ) - - y ( x ,  0)--y(0,  y ) - -  

y z 

o 0 0 

satisfying the generalized periodicity condition 

B(x,y,o)÷ff ¢, V, 0 ,  
o o o 

where 

B(x, y, z) = ~.(y, z ÷ p(x, y) ) -- z:(y, z) ÷ fl( x, z ÷ p(x, y) ) -- D(x, z) -- 

-~(o, ~+p(~,y))+ ~(0, o). 

The proof of the existence and uniqueness of a solution of (24) is standard,  by 
using Banach's  fixed point theorem. Therefore we shall not insist on it. 

Concerning the existence of a solution of (24) which, in addition satisfy (25), 
we consider the operator 

0 0 0 

where u(~, ~, ~) is the solution of (24) corresponding to y(x, y) for z =  0, and # a 
constant. 

Let  now B be the Banaeh space of continuous functions on [0, a] × [0, b] with 
the sup-norm; taking into account (20), one can eusily see t ha t  T transforms B 
into itself. 
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I f  now y~ ~nd 7~. ~re two functions s~tisfying the s~me conditions ~s y, ~nd u~ 
a, nd u~ ~re the corresponding solutions of (2~t), we h~ve:  

u~(x, y, z)--u~(x, y, z) = 7~(x, y ) -  y~(x, y) + 

+ ~ (~, ~, ~, o), (~, ~, ~))(u~--u~)d~d~d~, 
0 0 0 

where 

w(~, ~, ~) - -  u~(~, ~, ~) + v[u~(~, v, $ ) -  u~(~, ~, ~)], Iv]< :t, 

9ond ~h/~u is the Fr~chet  der ivat ive  of h. 

Denot ing  b y  :~(x, y, z, $, ~, ~) the resolvent  kernel  of the kernel  ~h/~u, we e~n write:  

(27) u~(x, y, z)--u~(x,  y, z) = 7~(x, y)--7~(x,  y) + 

+ f X ( x ,  y, z; ~, ~, ~)(7~(~, v)-7~(~, ~))a~d~dg. 
0 0 0 

On the other  hund, we huve 

(28) 
0 0 0 

# ~ ( ~ ,  v, ~, ~($,v, ~)) (7~-rO + 

~h , ~t)(72 -- 7~)d~ldwd~l} d~dvd~ 
0 0 o 

and  if we pu t :  

?; 
and if we put: 

" ~h (29) ~ (x ,  y, z, ~, ~7, ¢) = ~ (~, ~, ~, ,~) x(~, ~, ¢, ~ ,  ~ ,  ~l)d~d~d¢~, 

(28) becomes:  

  fff[l (30) f 7 ~ -  ~7 ~-  ~x~y p( -~ ,  y) + ~ ~ (~' ~' ¢' ~(~' ~' ~)) 
0 0 0 

I f  we denote also 

(31) p(x, y) I q- #~,u (~' V, ~, w) -[- /~.~(x, y, z, ~, n, ~) = A(x, y, z, ~, z/, ~), 
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(30) gives: 

~ ( x , v )  

T ~ -  T~I = f A(x, y, z; x, y, ~)(~(x, y)- -~(x,  yl)d~ + 
0 

x 

0 

y 

op f A(x, y, z; x, + ~ ~], p(X, y))(~2(X, ~ ) -  ~i(X, T])) d~] -~- 

0 

+ ~ y, 2, ~, p(x, y))(~,~(~, v)-~,~(~, ~))d~@ + 
0 0 

v ~ ( x , v )  

+ ~ (x, y, ~; x, ~, ~))~(x, ~ ) -~ (x ,  ~))@d~ + 
0 0 

+ -~x (x, y, z; 2, y, ~)(y~(~, y) --y~(~, y))dSd~ + 
0 O 

0 0 

+-~  ~T~x (X,y,z;~,~,p(x,y))(~,~(~,~)--~,~(~,~))d~@+ 
0 0 

f f f  ~ 
+ ~ (x, y, ~; 2, ~, ~)(~(~, ~)-~(~,  ~))a~a~. 

o O I) 

It follows 

where 

~-~p~(l +a) ( l  ~-b)][A] I-t-pl(a-~b+ 2ab) ~.x[Tplab ~ . 

Taking into account (31) and the relation 

t i].~lr~< ~ ]l:~]labpl<M1M~abpl for O<~$~z<~p, 
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it follows: 

hence: 

or 

1 
]IAI] <~  + #(_n±l + M~), 

~A P[ P~+/~M2; 

v<p~ {1 +._, ( } 
~ ) ( l + a ) ( l + b )  q~(a-i-b+ 2ab)+ 2 p[-~ +P~q2]ab + 

-~- /~Pl { (M1 -~ ]I2)(1 -[- a)(1 + b)pl -4:- M2(a + b --}- 2ab) + i2ab  } 

~<~[lq +(P~+O(a+b+ < ab) ~- + + #pt-~(~ + a)(1 + b) + 

~- #p~M~(1 + 2a) (1 + 2b), 

tha t  is, taking into account  the hypotheses,  

T<I. 

I t  then follows that  T has a unique fixed point. But  this fixed point  satisfies obviously 
the generalized periodicity condition. Our theorem is then proved. 
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