On the Periodic Motions Near a given Periodic Motion
of a Dynamical System.

By G. D. BirgrorF and D. C. Lewis Jr. (Cambridge (Mass.) U. 8. A.).

§ 1. Introduetion. — In a recent note (Comptes Rendus, 1921), BIRKHOFF
proved a 2n-dimensional generalization of a simple special case of POINCARE' S
fwo-dimensional geometric theorem. If was there suggested how this theorem
might be useful in establishing the existence of infinitely many periodic
motions (of a dynamical system with fixed energy constant) in the neighborhood
of a given periodic motion of general stable type. This application is carried
out for the first time in the present paper. A summary of the necessary
preliminaries is also given.

Suppose we have a dynamical system with n -+ 1 degrees of freedom
and a given periodic motion of general stable type. By a change of variables
and a reduction of the order of the system with the help of the energy
integral and the elimination of the time, the system can be wriiten in the
Hamiltonian form,

(1.1) .‘%:_g_g, %zjf i=1,2,..
where H is an analytic funection of x=,, %, «,, ¥,,... s, ¥, and {, and
admits the period 2z in ¢. The periodic motion appears as a « generalized
equilibrium » point, », =y, =2, =y, =..=x,=y,=0, and any further
periodie solations of (1.1}, near this equilibrium point and having a period
which is an integral multiple of 2x, correspond fo periodic motions in the
original (2rn + 2jth order system near the given periodic motion.

Let

s == (%05 Yior Tags Yoosee Lngs Yuos )

. i=1,2,..n,
yi“‘gi(xm’ yiO? xﬂo’ y20?“’ xn(}? yno} t)

be the solution of (1.1) which takes on the initial values, ®,,, ¥,,,... Z,0s Yy,
for £ =0, and let

xlizfl(wior y;oa"' wazo: ym); 27:)

Yoo = gidl®es Yyos e Lpos Ynoo 27{)
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These equations define a fransformation 7' of the neighborhood of the ovigin
into itself, and evidently there is a one-to-one correspondence between the
periodic solutions of period 2Zmm and the points that are invariant under 7',
the mih iterate of 7. The following method for detecting these invariant
points was given by BIRKHOFF as a generalization of POINCARE' S geometric
theorem:

Let ®pms Yumser Tnms> Ynm represent the point into which the poin
Xios Yiose Cngs Yo 18 carried by T On account of the well known relative
integral invariants of {L.1}, it is seen that

3
aJ :iél(mimdyim - yimdxtm - miod7 io H yiodmio}
is an exact differential. Changing the variables to the modified polar coor-
dinates, u, = x;* 4 9, and 0, = tan—'(y,/x,), we find that

Ad = 2 (14,005, — 14,,d0;,}-

=1
Now suppose that we are able to find a manifold defined by the equations,
(1.2) wiy=Bi0,5, 050, 0,0), =1,2,.. 0 (B; analytic, periodic)

such that along this manifold 0,, always differs from 0,, by some integral
multiple of 2=, i. e. 8,,, — 8;, = 2k;x. Then we have db,, = db,, and hence

dJ:lgl(uim — U o) B,
i=
along the manifold. Integrating, we get J as a single valued function of
(€05 Yiore Tpys Yuo), unique save for an additive constant, defined over the
manifold. Considered as a function of the 6. s, it must therefore be periodic
and must have at least 27 critical points (‘). But any critical point of J on the
manifold is obviously invariant under 7', since d.J =0 implies that w;,, =u,,,
while we already know that for the point in question 0,0 = 05 + 2k,

The existence of periodic motions therefore depends upon the existence

() A critical point is a point for which dJ=0; these are to be counted with fheir
proper multiplicity. The existence of two critical points — maximum and minimum — is
obvious. An easy method of establishing the existence of 2%-—2 other critical points is to
apply M. Morse’s critical point velations (see, for instance, his paper, Relations between the
Critical Points of a Real Function of n Real Variables, « Trans. Am. Math. Soc. », vol. 27
(1925), pp. 845.356) to the n dimensional torus for which the connectivity numbers (mod 2)
are the binomial coeffieients.
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of manifolds of the type {1.2). To prove that these manifolds really do exist,
we make use of a preliminary normalization of equations (1.1) {*). In terms
of conjugate imaginary variables p , q,,.. P., ¢n, the transformation 7 can
be written in the form

p“ :pio e‘& :TMZ‘UOO) QO) —l.. q)i(po s qo’
Qi =Gis 'V::-J:M,-(po, %) + m‘z(pw QO}

The ®(p,, ¢,) and W(p,, q,) are convergent power series in p,,..q,, be-
ginning with terms of degree 2p -+ 1, where p is arbitrarily large. The M,(pg)
are polynomials with real coefficients of degree p at most in the # produects p,q,,

7
Pes s - P4, - Sebting p.g; =u,, we accordingly write M(u)=1; + 2 ¢, u; + ...
j=1

The significance of the fact that we are dealing with a given periodic motion
of general stable type is that there are no homogeneous linear relations with
integral coefficients (not all zero) connecting the ¢, and 2n, and that the
determinant |c,;;| is not zero. We shall regularly denote by ¢/ the cofactor
of ¢;; divided by the determinant itself, so that

n 4

.\l ij(}lh == E ijckl = 571 .
k=1 k==t
v 1 i+ — .
We now change back to real codrdinates, x, ———1%, yi:%. It is

to be remembered that these changes in cotrdinates do not destroy the Ha-
miltonian form of equations (1.1). The transformation T now appears in the
form,

Byy = Xy COS @; — Yy Sin ; + Xifw,, 7,)

Yio =% SIN @, + 44, 008 9, + Y (i, , 9o).

where, for abbreviation, we have set M,(z,* + #,*)=1,. The Xz, y) and Y, (x. y)
are real convergent power series in @, ¥,, @,, ¥,,.. &,. 4, beginning with
terms of degree 2p + 1. Finally on introducing modified polar covrdinates,
w; =, + Y%, 0, = tan—'(y,/x,), the transformation 7T takes the form

Wy, = Wy + Uty 9,)
B, =0, -1- Mluy) 4 O fu,, 8,).

(") Cf. G. D. BirkuorF, Dymamical Systems, Chapter III, particularly § 9. Also
Chapter VI, § 1.
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The formal expressions for U; and 0, are readily written down:

1 1
Ui, 8) = 2X u,,% cos (0, + @) + QYI-%“;; sin (0, + @) + X7+ Y2
— X, sin (0;, + ¢,) + Y, cos (0;, + @)
1
o2 4 X, cos (B, -+ ;) 4+ Y, sin (0;, + @)

O,(u,, 9,) =arctan

1 1 1

Uju, 8 may be represented as a convergent power series in u,2% u,%.. u,?

‘n»

with coefficients which are analytic periodic functions of 0, 6,,.. 0, of

period 2m. It begins with terms of degree 2p+ 2 in the Vu’s. The expres-
sion for O,u, 8) is not so simple and will be discussed later.

§ 2. Some Fundamental Inequalities. — Lef it be understood once and
for all that the capital letter 4, followed perhaps by a subscript, is used
throughout this paper to denote a suitably chosen positive number, inde-

. u,, 8 . Thus, for example, we know from the power

nd “n
R 1
series development of U(u, 1) in powers of u,2 u,? ... u,? that

pendent of u,, 6 ,.

i

242

" n+1
é/lmf“h[ﬂujl ,
J=1

7" Tt 1
(2.1) | Um, t)| = Ag-{ ) u,} .

The point in 2rn dimensional space whose modified polar cotrdinates are
represented by u,, 6,, u,, 0,,.. u,, 6, will be denoted by the symbel (u, 6).
Sometimes, when the 0’s are not being emphasized and no confusion is
likely to result, this same point will be denoted by the more abbreviated
symbol (u). The « distance > between two such points, (u, 9) and (u, ) is

, /'
defined as % (w; — w;)*. The « distance » is thus independent of the 6’s
=1 "

and is equal to the ordinary distance between two corresponding points (u)
and (#') in »n dimensional space. The distance of (u, 8) from the origin will
be denoted by C.

Let « denote a fixed positive number less than 1/2. We shall show that
the following inequalities hold as long as { is sufficiently small and w,/u; = «
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for all pairs of indices, ¢, j =1, 2,... n:

[ Ugu, )| < 4-Cptt
[0, (u, 0)| < 4-C»
|3, Jou,| < A- Qv
|9U7,/36, | < A-Qo+t
100, /au; | < A.gpt
120,/00, | < A-Cv.

(2.2) ‘<

o

The first of these inequalities follows immediately from (2.1) from the
#
fact that (Zu;)' <n 3 u® =nl*. In order to prove the second inequality, we
j=1
flu, )

.2 v 2,2 with coefficients
. They begin with terms

“ } T +1
of degree 2p +4- 1. Consequently we have | flu, 8)], | glu, G)Q;gAg-{ Euj?‘} ’
j=1

consider briefly the function ©,u, 6). It is of the form, arctan ,

DO

1 1
2 2

where f and g are convergent power series in #,% u,
which are analytic periodic functions of 0,, 0,,... 6,

for w,,... u, sufficiently small. Let us temporarily make the definition:

o oE. . &f (w, ) _ o/l
OL(E; u, 8} = arctan m, s0 that @t‘(%, 6) = ,("—%, u. 6) .

n 3ual
We have (0485w, 0| <4, &, 0)] = 4,4, (2| S as 1ong as 87009,
=t

}.

[ Eg(u, Y)|, and the #’s are sufficiently small. Therefore
i [ 1 21 [ A
! 7.[3u,.2 ‘:Aa-{z(%)
j=1\%,

«1' j=1 "
But, we are assuming that u,u; = «, and therefore we get

1

w1 2

W 2
j=1

1Ouw, 9)| = 4,4,

KT

1 [’ l 210
o, 01< a5 | Bl = 4,0,

j=1

. . . st = . .
as long as { is sufficiently small; here 4, :‘:AFJ%?z N /Va. Similar considerations
1
applied to the partial derivatives of ©,(¢; u, 6), with respect to &, the u,;2 and

the 8's, enable us to obtain the appraisals for 200w, and 230,/88,. The
appraisals for oU;/0u; and 9U,;/30; are even easier.

Annoli di Matematics, Serie IV, Tomo XII. 16
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8 3. A Simplification of the Codrdinate System (w, ). — If we make

the change of variables u; =k§1c’”‘f[ll/[h(u) — ], the transformation 7 is readily

”
seen (since I ¢y 0t == 5“) to take the simpler form:
b=l

Uiy = Uy + Ui{%o P 80)

{3‘1) n
O; =8 + s + E‘lcij%jn + Oyfuy, 6y),
]:

where in accordance with our later notation the dashes over the new va-
riables have been omitted. This change of variables is such that

(3.2) %’;i =, + plu); u;= ai —+ Ps@),

where pyn) is a polynomial in u,, u,,... w, which lacks constant and linear
terms, and P;(u#) is a convergent power series beginning with quadratic terms.

‘We must show that the inequalities of the previous paragraph still hold
for these new variables as long as  is sufficiently small and u,/u; > o for
all pairs of indices ¢, j=1, 2,... n. Here « is a fixed positive number less

than 1/2, and €= V 5 us.

j=1
Let a be any number such that 0 < o < a < % Then starting with (3.2)

it is easily shown that the fact that e,/u, < 1/a (for all pairs of -indices j
and %) implies that u;/u, < 1/a, provided that the u’s are taken sufficiently
small. It also follows from (3.2) that {<4,.T, and that the derivatives
du,/du; are bounded fos small values of the w’s. This is all that is needed
to verify the validity of inequalities (2.2) and (2.1) in the new variables.

Hereafter these new variables will be used exclusively with the dashes
omitted.

% 4. The Behavior of the Image of a Point Under the Iterates of 7. —
Let the mt iterate of T take the point (u,, 0,) into (#,,, 9,,). In this pa-
ragraph we prove two fundamental theorems about the behavior of (u,,) for
large values of m and small values of the u’s.

TaeorEM 1. — If (u,, 0,) is ai o sufficiently small distance from the
origin, then the distance (n, of (um, On) from the origin does not exceed nG,
as long as mgAmCO"M (n=2).
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Proof: From (3.1) and (2.1) we have
n ]p+1
l Auim I - } Wim+,— Wim [ é A2 '[_Elujmj
j:

Hence wu;

dm "

+1
A, A, [ - um}u
=

It follows that u,m can mnot increase to Vu times its initial value for =0
j=1
until

" 2 *% 1’L‘ 9 -
9 (,E u.io) ] g A9{”’ _2‘ ”.7‘0~] — AmSo—P-

j=2 j=t

|
mg—il—(l—n 2){21@,—0 i e. m=A

8 j=1

Hence, as long as m < 4 ,-§,—% we have

K
Y u;
]nt f—
=1

2
}]lu,m} <mn

- .
= Uy J = u? 3 ug,?

j j=1 Jj=1

since u; =0, i. e. {,, <n{, as long as m < 4, -{,~# q. e d.

THEOREM IL. — If the point (u,) is such that vj/uxy = 2« for all ordered
pairs of indices j and k, then Ujm/um = as long as m<AM <L, provided
that C, is sufficiently small.

Proof: As in the proof of theorem I, we have

p-1
Ay < A,{ z ujm} < A4,C,t.

As long as m<A4,L,~* we have from theorem I, Aw,, < A4,{+'. Hence

Vi

point (u,,) can move at each application of the transformation 7.
Let wuj /y, = 28,5 = 2. Also let X, =u,/C,, so that the A, are the
« direction cosines » of the ray from the origin through («,). We have

A, < A, 00 =d, which is not less than the greatest distance the
icy

H 2
7/Xk = 2a. Hence n)g > 4ot ;\’; 4a>. Therefore lj - _“:.
=t Vau

We consider some other point (u), which for a certain pair of indices,
J and £, is such that u;/u, = a. The distance between the point (u,) [regarded
as fixed] and the point (u) [regarded as variable subject to the condition

u; — oty —= 0] is given by ‘/Z(u — )%, the minimum valuwe, D, of which
is found by elementary methods to be

= Ujo .__Lu:m —_ (Zp'ik,_: Oﬁ)uko Z ———‘auko L éc)‘kCO 3 z / gl 3 C0 :AM' Co .
Vig- \/1+¢2 V14 a? V14 a® Va(l 4-a)
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This distance cannot be traversed by the point (u,,) upon successive iterations
of T until m=D/d =(4,,/4,,)5, % unless perhaps m first becomes greater
than A,,{,~* at which point the necessary information from Theorem I would
no longer be forthcoming.

Hence the theorem is true as stated, if we denote by A,, the lesser of
the two numbers 4,, and (4,,/4,.).

Let the region E{y, «] denote the collection of points for which { < 7
and u;/u, = o for all pairs of indices j and % Theorems I and II show us
that if (u,, 8,) is a point of R(v, 2a), then the image point (#,,, 9,,) under '™
must lie within B(ny, «) as long as m < 4,0, provided that {, is suf-
ficiently small.

§ 5. The Non-Vanishing Property of the Jacobian. — We now proceed
to prove
TaroreM L. — If K is any positive number and if v is a sufficienily

. . 8im .
small positive nwmber, then for (uy, 9,) in Ry, 2«) the derivative gu differs
. 30

from meyy by a quantity which fends lo zero with C,, as long as m does not

exceed K‘QQ—%H. This tendency lo zero is uniform with respect {o m.

p 2

gSZ::@“(m)’ %’f:wik(m}. [m, k)
will be used as a symbol to denote any linear homogeneous function of
U (), Vyp(m), oo Vpn(), W, (M), W,5(m), ... w,,(m), whose coefficients, depending
upon m and (u,, 0)), are infinitesimals of at least the (p — 1) order in G,
for ; < KG,—v't uniformly for (u,, 8} in Rly, 22). The sum of any definite
number N of the symbols [m, k] is another symbol [in, k], N being assumed
independent of m or {,. Let

Proof: We introduce the notation

2,, 20,
— . } ) 9
—_ auko == Cip a”ko (uo ’ 0)

V(L) =y, vir(0)=0, wu(0)=28u.

Aix

B.1)

Now by the elementary rules for partial differentiation we find

n 30 " 38,
Veplm 4+ 1) =3 g (m) + 2 Climty 10 (10)

(.2) =t M, j=1 U

» a?/hm,,,l 4 auin1+{
y — ¢ A » b .
Wer(m + 1) —;31 3, Vjn(1) +j:1 T W)
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But
aL’im+4 a®i(um s 97’11) aHim+1 a®z(um " “m’
=8 m T3 =Oy
z')ejm 2'>~’jm MUjim au’jm

.

auim+4 . an(um k] em) au’i*n-;—{ . a - zi[z;{uw{;?m}
aejm agjm ’ a%jm M au/jm )

‘We now use the inequalities (2.2) with reference to the point (u,,, 0,,).
These inequalities are here applicable, because from Theorem II u,;,,/u;,, = «
for all pairs of indices j and %, m being restricted in such a way that
m < A,C,~* Remembering from Theorem I that ,, <#n{,, and introduecing
the symbols [m, k], we therefore get from (5.2)

L wgpm 4+ 1) =v;0m —i—%ci-w (#8) -+ [0, k)
(5.3) ‘ al ) xlm) [ it )+ [

UIL ww0m + 1) = swg(m) + [m, K]

We proceed to show how the w's can be eliminated from equations (5.3).
Replacing m by m -1 in equations (5.3)1., we have

Vg 4 2) = v u(m 4 1) 4- T c,mwy(m 4 1) 4+ [m + 1, k).
j=1

Subftracting I from this, we get after transposing,

Alvg(m) = vl - 2) — 2v(m - 1) + v(m) =
— 3 eyfropulin - 1) — 10,a(m)] 4 [0 4 1, k] + [m, k.
j=1
We eliminate the wj(m + 1) from these equations with the help of (5.3) II
and thus obfain

(5.4) Awy(m) = [m -1, k] + [, k],

where now the g (m + 1) have already been eliminated from the symbol
[m+1, k. We now solve equations (5.3)I for the w(m) in terms of the
vir(n) and vi(m + 1). We can clearly do this, since the determinant of the
coefficients of the unknowns is precisely the non-zero determinant |c,, | plus
an infinitesimal in §, of order p-—1 at least. Substituting the resulting
expressions for the w;,(m) into the right members (5.4), we see that the
required elimination has been completely effected.

For convenience, let us now introduce the functions g,(m) and the

numbers b, as follows:
(5 5) bik = aik a»nd 3}'5;2(7’”) = ’Uik(?n}, if Ctik g O;
bir==— i and yu(m)=—v;m) it a, <O0.
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We first wish to find out how large the y,lin) can become while m is
.
restricted by the inequality m < 2K, . Evidently, on account of {5.4),
the |y:x | can not increase as rapidly as they would if
n

; |
Vgafon) =+ | Eyim + 1),
]:

where for abbreviation g=24,,-{* 1. A solution (unique for integral values
of ) of this system of difference equations, under the initial conditions,

(5.6) Yl0) =0, yuxll)=bur,
is readily found fo be

n 2 2 . P ¥ 25
(5.7) ym(m):blkm—i—%( ){(1+p+v pe)t —(lrp—Vo%re)

1/ = Lo
=bmn+~<2 bm)p 29(%@92, 92),
N j=1

i 1
where Q is a convergent power series in powers of mp? and 2, which lacks
constant and linear terms.
Let us see how (5.7) behaves as we let {, (and consequently ) approach
zero and allow m to take on values in the range,

_k
0<m<2K{ 7,
_# By 3
i e. < Ca i -2 <0
6.8 de0<m=4._p 2K, , where w Y-y >0
We have from (5.5), {5.1), and (2.2):
(0.9 |bix—|Ci||=p (|ci|=absolute value of ¢,, and not the determinant)

provided that {, is sufficiently small. Here we increase the number 4,,
defining p, if necessary. From the power series development of Q, we have

1 1\2
= Am(mp_2 -+ pg) = 4, (m’p 4 2mp +- g),

11
| Q("npé 3 Pé)
1 1
as long as both mg? and g2 are taken sufficiently small. On account of (5.8)
this requirement is surely fulfilled, if , is sufficiently small; therefore

/

BESVANE Y 1 11 EUUR
‘P QQWP‘—’, P‘z)éflm('nfpg+271@92+92)§A,8(A47292”+2Anp4 +92)

)

n
by (5.8). Hence, since X by, is bounded, we see that the second term in the
j=1
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right hand member of (5.7) tends fo zero with p and §,; (5.7) and {5.9) thus
yield the result that ~
Yalin) — | Con | == 14(C,, m)

where }imf{‘g m) =0 uniformly in m, for the range (5.8).

& o
Lo

82

Now let us see how rapidly the slopes of the y,(m) can decrease, while
we limit m to lie in the range,
—1—*-03 ~—E;4—1
(5.10) O<m<d4,.p * —1=2K7 ¢+ —1

From the above results, it follows that the right hand members of (5.4) can

not exceed, in absolute value, an expression of the form Aigpzﬂ). Hence
the y;; can not decrease as rapidly as they would if they satisfied the dif-

ference relation A2y,,(m) :—Algprm. But, using the initial conditions (5.6),
3
this yields y,(m) = b;m — Amp_ﬁw l mim — 1). Also
3 3 3 1
I m]. . - 4w A 3 —+20
Awp*+ 5 mm — 1) ‘ = %’i 4n2p4+w-~ mpt ._g —2‘—9 Anzp*+ w-{—A”p2+ ,

which tends fo zero with p. Hence, we again obtain the result that ¢,;,(m)
differs from |¢;, |m by an infinitesimal in {,. Thus the true value of #,,(m)
must also have this property. That is, from (5.5),

Vig(m) = 7 = by (m) == c 1,5, , m),

a%ku )

where 14(C,, m) represents an infinitesimal in {,, uniformly with respect to n,
as long as s lies on the range (5.10). It remains only to note that m will

surely lie on the range (5.10), if it satisfies the inequalities

i
0<m<Kg i

provided, as always, that {, is sufficiently small.

' , . By 0 . B

Incidentally the theorem just proved shows us that L W0ms O O, o I
mn a(%i()} u?ﬂ? uso:"' u"())

differs from the determinant |¢;;| by an infinitesimal in {, and hence can

not vanish for {, sufficiently small.

§ 6. A Simple Special Case. — We consider here the degenerate case
where, in the transformation (8.1), defining 7, the U; and the ©; are identi-
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cally zero. In this case the 't iterate of T becomes simply:

[ Wy = Uiy == U;
n
O = 6, + 0, 4 m p lcijuj .
J'._‘:

(6.1)

‘We shall use a theorem proved by BoreL {!} in the consideration of the
approximation of irrational numbers by continued fractions. An immediate
corollary of BoreL’s theorem is the following

Lemma. — Corresponding to any positive number ¢ not less than 11
and to any real number § (rational or irrational), two integers p and ¢ can
: _p L1 —g<15y[p=
always be found such that |3 Qi < VBT and vy <q < 1by {pZO].

We consider a positive number, %v;, which we regard as fixed but as

having been chosen sufficiently small in advance. Let u, =u,—=...=u, = 0,
: 2Vn
i —
Let v; = X cyu;. Then
j=1
— o
(6.2 uy = 3 cty;.

j=1

Let v he-a fixed positive number = 1. Then, if v is sufficiently small, we
have 7~ =11. Using the lemma, we choose integers m; and %/ such that
}k{ l{)/g'*!—?)@'!

1 1 -
< —=— and 1 <oy = 15,
VB M,
Write m = m, -, ... m, so that y= < m < 15"y~ And lef
ki=m, o, .y, + ki -m -m,..m,. Then the above inequalities yield
2k, 2r 1 2n 2w
‘Akm e thy — 0 | < ;_—2 < ZZ g, In other words —— — ;= v; +¢;, where
| m S VEmE =N .
{ & I = Azonzy .

Now, using the above definitions for the integers k , %,,... k, and m, we
n

define u,, u,,.. #, by means of the linear equations, 2k;x=md;+m -210i‘7u‘j’
'J:

Ly 2n

and hence I c¢;u;==v; + 5. Solving these equations for the u;, we get with
1
the help of (6.2)

n . _ _ 7
#y = 2 c*(v; 4 &) = up -+, Wwhere |[eg|= % P Cmsiglé 4, .
i=1 i=1 H

(1) BviLe Borer, Lecons swr la théorie de la croissance, p. 149,
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The distance of the point (1) from the point (u) is

n _ [ o )
I (g — wy) = ]/ e < A,
kot

k-1

On the other hand the distance of the pomt (u) from any of the manifolds,

1 w, — 2 n 1 —2
w;, — 2an; =0 {ocf(g}, is found fo be alai® R e Henece,

\1+4a Vol - 427) 2
if 7 is sufficiently small, the point (#) will lie well within the region
By, 22), its distance from the boundary exceeding 4,,-7.
In order to conform with the notation of the rest of the paper we
replace v by E—g-%l (v=8n 4] and u; by u,
this paragraph in the following

We collect the results of

t(; .

TaEOREM IV. — Let the positive nwnbers a<< —;) and W= 8n +4) be

chosen in advance and then held fast. Then il is possible to choose the positive
number v so small that one can always find integers, k, , k,,... ky, and m,
dependent upon v and having the following two properties:
[J.. 1 B
1. 7 2<m<K7} o [K = 15"].
. The solution of the linear equations 2kyr = mds -+ rn.:b ezdugo, yields
3__
a point (u,) lying within the region Ry, 2a), its distance from the boundary
exceeding A,7.
Here 4,, is a suitably chosen positive number, dependent upon =, ¢;, 1,
and «, but independent of .

§ 7. The General Case. — We need the following elementary lemma:

Lemma, — Let filu,, #,,... u,, §) [i =1, 2,... n] be defined for 0t 1
and for (u) in some closed # dimensional region S. Let all the fiu, , w,,... %, , 0)
vanish together for one and only one set of values for the u's; viz u;, = u,.
Let K denofe the shortest distance from (u') to the boundary of S. Suppose
that f; is of class C” and that the Jacobian,

J — _?.(L’_f?l_'_f' f”}

a(%i 5 Uy yeee “n)

bl

is nowhere zero for (#) in S and 0<{=<1. Let gyun,, #,,... u,, {) represent
the cofactor of 9f;j/ou; in J divided by J itself, so that

i 3?/5? o g af}
Eovan= o,

Annali di Matematica, Serie IV, Tomo XII. 17
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Fiually denote by M an upper bound for the functions,
B, g,y O = —Z gy AN

That is, | F;| <M for (#) in S and 0 = ¢ =< 1.

Then there exists a unique set of functions u,(f), u,(f). ... 1,(f), of class C”,
defined on some interval, 0 ==¢=<{¢ . such that fiu,(f). u,(f),... u.(f), {]=0.
Furthermore #i{0) = @;" and £, is the lesser of the two numbers 1 and _E

VaulM

This lemma is for our purposes more advantageous than the wusual
« implicit funection theorem », because it gives us a definite appraisal for
the interval on which the functions w,(f),... u,(f) are defined. We give a
brief indication of the proof: Necessary and sufficient conditions on a set of
functions, @ (f), ... #,(f), that all the fifu,(f),... u,{f), {] = O, are that

af; _ % of; d?"'.i__l_afi

dt ot

= =j:1 %i; 7t =0 and fju,(0),.. %,0), 0]=0.

Solving for the derivatives of the u; we get a system of differential equa-

%:Fi(u“ Uy, .. U,, t), in the standard form. These equations are to
be solved under the initial conditions u;(0)=1;. The lemma now follows
from the kpown existence theorems for systems of ordinary differential

fions,

equations.

We consider values for 7, not only sufficiently small for the validity of
theorem IV, but also so small that all the results of the preceding paragraphs
hold if ¢, <v. We forthwith choose a set of values for &, k,,... k,,, and m,
depending on v and satisfying the conditions of theorem 1V,

_e, 1 b
(7.1) g iom <Ky ¥ < KT,

.
4&4—1.

Now it is easily proved by induction that T may be written in the form

\ Uipn = Wiy - Uim(“oa Ho)

(7.2) ' g
| O = Uiy + b + 7"}?»-.§Jicij%io 4 Oynlury, 0,)
j=1
where
wm—2 L] ) m—1
(7.3) Oimltty, o) = B (e — 1 — v)| B cyUjlu,, Gy)! + 3 Oyu,, 9,).
v="0 i=1 v—>0

We wish to show that the equations, 6, — 8, = 2k;x can be solved for
the u,,, ,,,.. Uy, in terms of the 6,;, b, ,... 6,,. For this purpose we regard
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the s as fixed and try to solve the equations,

- Bkﬂt S’ﬁ 1 9

{14) (I)@'(Urm yoer Upp) = — i - 5‘({-:-41&'“[2[/}0 - n Oy, , B,) = O,

for the u,’s. Since m®; differs from 0;, by a constant, 2k~ 8;,, it appears
that 0Dy = i i
0 DU 4,

o
infinitesimal in {,, uniformly with respect to m, i being required not to

; which, according fo theorem III, differs from ¢; by an
e

tends fo zero
du

Jo
with %, uniformly with respect to m, and, hence, in particular, if m is de-
termined as in theorem IV. We assume always that (u,) lies in Ry, 2a).

It will be convenient at this stage to introduce a parameter { and con-

B ) e |1
exceed K, 4+1<_Z Ky 4+1). This means that — L?? Oinle, s #o)

sider the equations,
(7.5) filthy, ooty B = — 2im ~+ i - .%c,-jum +4- g Ogftt,, 0,) = 0.

' ' : i j=1 m
We allow ¢ to assume values on the interval 0 <¢=1, and we shall try to
solve (7.5) for the w,s as funcfions of £ Evidenﬂy; if we can do this, all
we need to do is to set £=1 to get the required solution of (7.4).

We try to apply the lemma. In the first place

ofi 3 11
e 3: RNV DI o 2% 6
U5y G+t Ln O; mlo 0)}

which differs from ¢; by an infinitesimal in v. Hence, if we denote by g;; the

of; in Nys oy [)

ou;, ey s Ugyyeen Uyy)
see that gy differs from ¢¥ by an infinitesimal in v. Hence |g;| < 4,,.
Also it follows from (7.3), (2.2), (7.1), and from the elementary fact that

m—2

Zm—1—v)= 1 mm — 1) that

cofactor of

, divided by the Jacobian itself, we

y=10 _ —2
i 3
[ot| | Oim (146, 9y = A,n .
Hence, we find that
VB = ! - ofi 1 < —§x>+‘~’ —'?Zp,+2
Lyl = f —j:lgfa * = nd, 4,7 =4,

which is the M of the lemma.
In the second place, we know from theorem IV that for {=0 equa-
tions (7.5} have one and only one solution, @ ,,, ,,,.. %,,, which lies well
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within the region R(v. 2«). For the region § of the lemma, we shall take a
certain # — 1 dimensional sphere fogether with its interior. The center of §
is to be the point (#') and the radius is to be 4,,*. By theorem IV the
whole of S lies within R{y, 20). The « K » of the lemma is therefore equal
to 4,.%%

Hence a unique set of solving functions u,,(f), u,,(?),... %, (f) exists, the

interval of definition being 0 <{<1{, , where {, is the lesser of the two
3
numbers, Ag,,_w and 1. Hence, if v is taken sufficiently small, {, =1, and

(1), #,,(1), ... %,,(1) satisty (7.4), as required. The solution (u,), thus obtained,
also has the property that its distance from (u,) does not exceed 4,,n".
Hence {, exceeds an infinitesimal of the first order in 7.

For a fixed sufficiently small value of % and with a corresponding fixed
choice for the %; and m, the solution (u#,) is unique, at least so far as the
region K(v, 2z) is concerned. For suppose there were a second soluftion (at,)
corresponding to each element of an infinite sequence of n’s tending to zero.
We can join the two points (#,) and f(u,) with a straight line segment,
which lies wholly within R(7, 2«) and whose direction cosines we denote
by A, Aysee An. Since 0, has the same value (viz. 8 -+ 2k;x) at both ends

2 238,
of the segment, its directional derivative, & %
j=1U5,

A;, must vanish at some
intermediate point P;. We know, by theorem III, that

i ) S B W T PR N7
R R LR LR
where (P, %) tends to zero with %, uniformly as to P or the Vs, Hence

n [ 2 n n 2
% | S e, + P, n)] =0=31 (_): ci,-xj)
=1 d=1 \j=1

i=11]j
- an infinitesimal in v, where, of course, the }; depend upon 7. Let A,

A,,... A, Dbe the set of values for the X; which, under the condition 2 %;* =1
j=1

% I 2 n /0 2 n [/ n 2
makes X ( Z oij)\i) a minimam. Then we infer that = ( ) C?'JA.?) <z ( M) c.éj?\j> —an

i=1\j=1 i=1\j=1 i=1\j=1
infinitesimal in v. But, since the A; are independent of %, this implies that

SeA; =0 for A; not all zero; and thus we obtain a contradiction of the
=1 )
hypothesis that the determinant of the c; is different from zero.

The obtained unique values for w,,, #,,.. #,,, Which satisfy (7.4) may
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be regarded as single valued functions, Bif,,, 8,,,... 6,,) of the 8 s. They
are obviously periodic of period 2=, since the @; are also. The implicit
function theorem, furthermore, shows that they are analytic in the neighborhood
of any point (6, 6,,,... 0, ). We have thus proved the following theorem,
which is the main result of this paper:

TuEoREM V. — If is possible fo find a manifold in the space of the 2n

1
variables, n.,, 9,,.. uw, O (or the original wvariables xi = u,,2 cos by,
1

Yio = u,,2sin By) defined by equations of the type,
i, = BilB,,, V0,0 900)s i=1,2..n

along which, for a suitable choice of the integer m, the 6y, differ from the by
by integral multiples of 2m. The B; are analytic single-valued non-vanishing
periodic functions of period 2w in the 9)s. It is asswmmed that w (which ap-
pears in the equalions defining T) is not less than than 8n + 4.

Furthermore this manifold may be faken in such a way that, given a
positive nuwimber « <7 i, the us, satisfy the following relations:

Ug . . . PR
iﬁg% for all pairs of indices i, j=1, 2,.. n.
jo

1.

2. g‘; ;. f (= §,*] is arbitrarily small.
j=1 e
3. 0=m <K, ¢, where K= 15,
Item 2, of course, implies that there are an infinite number of manifolds
of the type described in the theorem.



