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§ 1. I n t r o d u c t i o n .  - -  In  a recent  note (Comptes Rendus, 1921), BIRKt~iOFF 
proved a 2n-dimensional  generalization of a simple special case of POI~TCAn~'S 
two-dimensional  geometric theorem. It  was there suggested how this theorem 
might be useful in establishing the existence of infinitely many periodic 
motions (of a dynamical  system with fixed energy constant) in the neighborhood 
of a given periodic motion of general  stable type. This application is carried 
out for the first time in the present  paper. A summary  of the necessary 
prel iminaries is also given. 

Suppose we have a dynamical  system with n - c  1 degrees of freedom 
and a given periodic motion of general  stable type. By a change of variables 
and a reduction of the order of the system with the help of the energy 
integral  and the elimination of the time, the system can be wri t ten in the 
Hamil tonian form, 

(1.1) dx i ~H dye: ~H i - ~  1, 2, ... n, 
d--t- ~ ~y-~+ ~ d t  - -  ~ x  i 

where H is an analytic function of x i ,  y , ,  x~, yz , . . ,  x~, y~ and t, and 
admits the period 2= in t. The periodic motion appears as a << generalized 
equil ibr ium >> point, x ~ y ~ - - x .  2 ~ y ~ -  = - = x , ~ y . ~ 0 ,  and any fur ther  
periodic solutions of (1.1), near  this equil ibrium point and having a period 
which is an integral mult iple of 2=, correspond to periodic motions in the 
original (2n ~ 2)th order system near  the given periodic motion. 

Let 

Y~--~gi(x~o, Y,o, X2o, Y~o,"" x+~o, y~o, t) i z l ,  2,... n, 

be the solution of (1.1)which takes on the initial values, x~0 , y~0,.., x~0, y~0, 
for t - - -0 ,  and let 

x,~=f,(Xio,  y,o,... X~,o, y~o, 2~) 
y,, =g~(x~o, y,o,.., x~0, y~0, 2•). 
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Th ese  equa t ions  def ine  a t r a n s f o r m a t i o n  T of the n e i g h b o rh o o d  of the or ig in  

into itself,  and ev iden t ly  the re  is a o n e - t o - o n e  c o r r e s p o n d e n c e  b e t w e e n  the 

pe r iod ic  so lu t ions  of pe r iod  2mrc and  the poii~ts tha t  a re  i n v a r i a n t  u n d e r  T %  

the ruth i t e ra te  of T. The  fo l lowing  me t h o d  for de tec t ing  these i n v a r i a n t  

poin ts  was  g iven  by  BIRK~o~7~ ~ as a gene ra l i za t i on  of P o I ~ c A n ~ ' s  geomet r i c  

t heo rem : 

Le t  x~m, Y~m~.'. Xnm,  Y,~m r e p r e s e n t  the  poin t  into w h i c h  the poin t  

~ 0 ,  Y~0,... x,~0, y~o is ca r r i ed  by Tm. On accoun t  of the wel l  k n o w n  re l a t ive  

in t eg ra l  i nva r i an t s  of (L1), it  is seen tha t  

d J  = v (X , , f l y im - -  y~mdx,,~ --- x~ody~o q -  y~odx~ o} 
~:1 

is an  exac t  d i f fe ren t ia l .  Changing  the va r i ab le s  to the modi f ied  po la r  co0r- 

d inates ,  u i - ~ x ~ - ~ - Y ~  and  0~ .... tan-~(y~/xi) ,  we f ind tha t  

dJ- -~  ~ (ui,fl0,-,~ - -  u,  odOio ). 

Now suppose  tha t  we are  able to f ind  a man i fo ld  de f ined  by the equat ions ,  

(1.2) u~0~B~(0,0,  0,2o,... 0,~0), i : = l ,  2, . . .  n (B~ analy t ic ,  per iodic)  

such  that  a long  this  man i fo ld  (}~,, a lways  d i f fe rs  f rom 0,o by some in tegra l  

mu l t ip l e  of 27:, i. e. 0~m - -  0g0 ~- 2k~::. T h e n  we have  d0g,,--~ d0,0 and hence  

d J - =  ~' (ui,~ - -  u~o)dOio 
i=1  

along the mani fo ld .  In t eg ra t ing ,  we get J as a s ingle v a l u e d  func t ion  of 

(x~o, Y~o,... x~o, Y,~0), u n i q u e  save for  an  addi t ive  constant ,  de f ined  over  the 

mani fo ld .  Cons idered  as a f unc t i o n  of the 00's, it mus t  t h e r e fo r e  be per iod ic  

and  mus t  have  at least  2 ~ cr i t ica l  poin ts  (~). Bu t  any  cr i t ica l  point  of J on the 

m an i fo ld  is obv ious ly  i n v a r i a n t  u n d e r  T %  since  d J = 0  impl i e s  tha t  u~,,~ =U~o,  

whi le  we a l r eady  know that  for  the po in t  in ques t ion  0~,~ ~ 0~0-~ 2kgn. 

T h e  ex i s t ence  of pe r iod ic  mot ions  t h e r e fo r e  depends  u p o n  the ex i s t ence  

{i) A critical point is a point for which dJ-~-O; these are to be counted with their 
proper multiplicity. The existence of two critical points - -  maximum and mininmm --  is 
obvious. An easy method of establishing the existence of 2 n -  2 other critical points is to 
apply M. MORSE'S critical point reIations (see, for instant% his paper~ Relations bet.ween the 
Critical Poi~#s of a Real Function of n Real Variables, ~ Trans. Am. Math. Soc. >>~ vol. 27 
(1925), pp. 345.356) to the n dimensional torus for which the connectivity numbers (rood 2) 
are the binomial coefficients. 
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of manifolds of the type (1.2). To prove that these manifolds really do exist, 

we make use of a prel iminary normalization of equations (t.1) (~). In  terms 

of conjugate imaginary variables p~ ,  q~, . . ,  p , , ,  qn ,  the transformation T can 
be wri t ten in the form 

P~, = Pio e~ -- 1M~,(po, qo) -t- OP i(po , qo) 

q ,  ---- q~o e- -  V - -  ~¢(Po,  ~o) + W,(po , qo). 

The ~ (P0 ,  qol and qY,(po , qo) are convergent  power series in p~o,. .:  q.~ be- 
ginning with terms of degree 2p + 1~ where p is arbi trari ly large. The M~(pq) 

are polynomials with real  coefficients of degree p at most in the n products  p~q~, 

P.~q2, ... P,,q,~. Sett ing p~q~ = u~., we accordingly write M~(u) ---" ~,~-4- E c~.juj + .... 
j=l 

The significance of the fact that we are dealing with a given periodic motion 

of g e n e r a l  stable type is that there are no homogeneous linear relations with 
integral coefficients (not all zero) connecting the ,+~ and 2r~, and that the 

determinant  I c,:~I is not zero. W e  shall regular ly  denote by c ~ the cofaetor 
of c~j divided by the determinant  itself, so that 

v CykCth _,_= E Ck,~ C~l = ~jl. • 

We now change back to real coSrdinates, x , - - P i + q i 2  ' y* ~--P~--q'  It is ~ / ~ "  

to be remembered that these changes in coordinates do not destroy the Ha- 

miltonian form of equations {1.1). The transformation T now appears  in the 
form~ 

;v~ i = x~ o cos % - -  Y~o sin ¢?~ + X i ( x  o , Yo) 

y~o = x~ o sin % + Yl0 cos % + Y,(Xo, Yo), 

where, for abbreviation, we have set M,(xo 2 +yo2)-~--%. The .~(x, y) and ~+,(x. y) 

are real convergent power series in x~,  y , ,  x2 ,  y~ , . . ,  x n .  y,~ beginning with 

terms of degree 2p + 1. F ina l ly  on introducing modified polar coordinates, 

u i - - x ,  ~ + y ~ ,  O~--~ tan-~(y~/x~),  the t ransformation T takes the form 

u,, -= U,o + U~(uo, 0o) 
Oi~ = 0~o + 3 U u o )  ~- O,(Uo, 0o). 

(') Cf. G. D. BIRKHOFF~ Dy~amical Systems, Chapter III, particularly- § 9. Also 
Chapter VI, § 1. 
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The formal expressions for U~ and O~ are readily wriSten down: 

1 1 

U~(uo, 0o} - -  .zLU,o='~'~ ~ cos (0~o %- %) + 2Y~u~o ~ sin (0~o %- ~) + X(° %- y 2  

- -  X~ sin (0~o + ~} + Y~ cos (Oi0 + qo~) 
O~(uo, 00) -~ 'arctan 1 

U~o ~ + X~ cos (0~o %- :Pd + Y~ sin (0~ o + qh) 

1 1 1 

Udu , O) may be represented as a convergent power series in u,~ ~, u,z2,.., u ,  2, 
with coefficients which are analytic periodic functions of 0~ 0~... 0,~ of 

period 2::. It  begins with terms of degree 2~-4-2 in the V u ' s .  The expres- 
sion for Oi(u, 0) is not so simple and will be discussed later. 

§ 2. Some Fundamenta l  Inequali t ies .  - -  Let  it be understood once and 
for all that the capital let ter  A, followed perhaps by a subscript, is used 
throughout  this paper  to denote a suitably chosen positive number,  inde- 
pendent  of u~, 0~,... u~, 0~. Thus, for example, we know from the power 

1 1 1 

series development of U,(u, (~) in powers of u~ ~, u2 ~,... u+~ ~ that 

[ n 112p+2 [ n lu.+l 
I K(u, o) I < A,.1 <_ z , 

l j = i  " ] - -  L)=I J 

provided that the u ' s  are sufficiently small. Thus, we may wri te :  

n ] 1 • ~ F ~ 

(2.1) ] U,(u ,  ~)IG A~ j~:tu~ 

The point in 2n dimensional space whose modified polar co(Srdinates are 

represented by u , ,  0~, u~, 0~,... u~, Of, will be denoted by the symbol (u, 0 I. 
Sometimes, when the 0 ' s  are not being emphasized and no confusion is 
l ikely to result, this same point will be denoted by the more abbreviated 
symbol (u). The << distance >> between two such points, (u, 0) and (u', 0') is 

defined as V E(u., - -  u y .  The << distance >> is thus independent  of the O's 
J 

and is equal to the ordinary distance between two corresponding points (u} 
and (u') in n dimensional  space. The d i s t ance  of (u, O) from the origin will 

be denoted by ~. 
Let  ~ denote a f ixed positive number  less than 1/2. We shall show that 

the following inequalit ies hold as long as ~ is sufficiently small and udu j  > 
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for all pairs of indices, i, j = 1, 2,... n :  

(~.~) 
i 

l u,(u, o) l g A. ~+~ 
i O,(u, 0) 1 ~ A.  ~ 
I ~ Ud~u~ I ~ A. ~ 

1 ~o,I~u~ [ < A.  ~-~ 
I ~o~I~O.~ I ~ A. ~ .  

The first of these inequalit ies follows immediately from (2.1)from the 

fact that (E uS-_~<_ n E uj ~ == n~ ~. In  order to prove the second inequality~ we 
j = l  

f(u, o) consider briefly the function Odu , 0). It is of the form, aretan i 

u~ ~ -  g(u, O) 
1 1 1 

where  f and g are convergent  power series in u~ 2, u.9,.., u,~ ~ with coefficients 
which are analytic periodic functions of 0~, 0~,... 0 .  They begin with terms 

of degree 21x d- 1. Consequently we have If(u, 0}1 , i g(u, O) i .......... <2 A~.. [j~=~ u3 ~pH 

for u~,.., u ,  sufficiently small. Let us temporari ly  make the definit ion: 

(9~(~; u, 0) z a r c t a n l _ _ { g [ u ,  0~, so that O~(u, 0 ) = O ,  ; u. 0 . 

n 1 9~+i 
We have I0,({; u, O ) l ~ A 4 ] { f ( u  , 0)[gA~Aa.l~[-  [ Zu,2] ' 

U=i J 
] ~g(u, 0)j, and the u ' s  are sufficiently small. Therefore 

as long as i~f(u,O) i, 

i O,(u, 0) 1 ~ A~A~. E ug// E u -2/ 

1 

= L ~ u ?  / . 
Li=l\u~] J U=l j 

But, we are assuming that ui/uj >~ ~, and therefore we get 

V !  "~ 11% 
L j = I  J 

-3p+l - -  
as long as ~ is sufficiently small; here A s--=-ASn ~ /V~. Similar considerations 

i 
applied to the partial  derivatives of 0~(~; u, 0), with respect to ~, the uj ~, and 
the 0's, enable us to obtain the appraisals for ~O,:/~u~ and ~Oi/~0j. The 
appraisals for ~5~/~uj and ~b~/~Oj are even easier. 

Annal i  di Matematica,  8 e r i e  I V ,  Tomo X I I .  16 
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§ 3. A Simplif ication of  the  CoSrdinate System (u,  0). - -  If  we make 
T~ 

the change of variables  uj ~ E caJ[Mk(u) - -  ~h], the transformation T is readily 

seen k.jc ~j ~ - ~  to take the simpler form: 

(3.1) 
u .  = U,o + U (uo, 0o) 

j = l  

where in accordance with our later notation the dashes over the new va- 
riables have been omitted. This change of variables is such that 

(3.2) u ,  = + p , ( u ) ;  = u ,  + 

where  pi(u) is a polynomial  in u~, u,z,.., u,~ which lacks constant and linear 

terms, and P~(u) is a convergent power  series beginning with quadrat ic  terms. 

We  must  show that the inequalit ies of the previous paragraph still hold 

for these new variables  as long as ~ is sufficiently small and ui/uj ~ ~ for 

all pairs of indices i, j - - 1 ,  2, ... n. Here  :¢ is a fixed positive number  less 

than 1/2, and ~ ~ ] / E  u./~. 
V j ~ l  

- 1 
Let ~ be any number  such that 0 ~ g ~ ~ ~ ~. Then starting with (3.2t 

it is easily shown that the fact that u j / u ~  1/~ (for all pairs o f4nd ices  j 

and k) implies that ui/uk ~ 1/~, provided that the ~t's are taken sufficiently 

small. It also follows from (3.2) that ~ A ~ . ~ ,  and that the derivatives 

~u~./~ul are bounded los small values of the u ' s .  This is all that is needed 

to verify the validity of inequali t ies (2.2) and (2.D in the new variables.  
Hereaf te r  these new variables will be used exclusively with the dashes 

omitted. 

§ 4. The Behavior  of  the  Image of  a Po in t  Under  the  I te ra tes  of  7'. - -  
Let  the / t h  iterate of T take the point (u0, 00) into tu,~, 0,~). In this pa- 
ragraph we prove two fundamenta l  theorems about the behavior of (u,,) for 
large values of m and small values of the u's .  

THEOR, E~ I . -  I f  (Uo, 00) is at a sufficiently small  distance from the 

origin, then the distance ~m, of  (urn, 0~) from the origin does not exceed n~o 

as long as m ~ A,o~o-1 ~ in ~ 2). 
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Proof: F r o m  (3.1) and  (2.1) we have  

] A u . , ,  I = I u ,~ .+ , -  u~m I <  A~./~ u j . ,  I 
LJ=~ J 

H e n c e  u~.~ inc reases  less r ap id ly  wi th  m than  as if du~.~__As[ ' lE!]a"~ 
dm n [j= u,.~j 

¢ 

I t  fol lows that  E u~-,~ can not i nc rease  to Y n  t imes  its in i t ia l  value  for  
j=l 

unt i l  

Hence ,  as long as m=<A~o-~0-~ , we have  

%.,," < :  n u ~ v_. U~o" 
j =~ j J j=~ 

s ince  uj  ~ 0 ,  i. c. ~,, ~ n ~  o as long as m ~  A~o.~o-t ', q. e. d. 

THXOnE~ II .  - -  I f  the point (Uo) is such that uj0/u~o ~ 2a for all ordered 
pairs of indices j and k, then, Uam/Ukm ~= :¢ as long as m ~ A,.~. ~o-F, provided 
tha.t ~o is sufficiently small. 

Proof: As in the proof  of t h e o re m I, we have  

As long as m~A~o~o-F ,  we have  f rom t h e o re m I, huim~=A~o ~-I1. H e n c e  

1/° E Au~-~ ~<~--~a~o'A ~ ,,~-1 = d, whi c h  is not  less t h a n  the grea tes t  d i s tance  the 
r i = I  

point  (u,d can move  at each  app l i ca t ion  of the t r a n s f o r m a t i o n  i v. 

L e t  U~o/Uko-----2~/k>2c. Also let  k~ =uio/~o, so tha t  the ~i a re  the 

<< d i rec t ion  cosines  >> of the r ay  f rom the or igin  t h ro u g h  (u0). W e  have  

k.~/~, k > 2~. H e n c e  n),~ ~ > 4~ ~ ~ )~h ~ = 4~ ~. T h e r e f o r e  ),j > 2~ 
= = k : l  = V n "  

W e  cons ide r  some o the r  point  (u), wh ich  for  a ce r t a in  pa i r  of indices,  

j and k, is such  tha t  u~/uk : :¢. T h e  d i s t ance  b e t w e e n  the poin t  (u0) [ regarded  

as f ixed] and  the po in t  (u) [ regarded  as va r i ab le  subjec t  to the condi t ion  

uj  - -  euk := O] is g iven  by  - -  Uio) 2, the m i n i m m n  value,  D, of wh ich  

is found  by  e l e m e n t a r y  me thods  to be 

D = uJ° - -  ~uho __ (2~jh--  ~)uk~ ~ ~uko ~),k~0 > 2 ~ ~ o - - A , "  ~o 
- -  , 

V l - ~ - a  ~ V I + ~  ~ V l - ~ - c d  ¥ ' 1 + ~  ~ -  Y n ( l q - ~  ~) 
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This distance cannot be traversed by the point (u,, ,)upon successive iterations 
of T until  m>_~D/d>(A~JA~a)~o- G unless perhaps m first becomes greater 
than A~o~0-~ , at which point the necessary information from Theorem I would 
no longer be forthcoming. 

Hence the theorem is true as stated, if we denote by A,~ the lesser of 

the two numbers  A,0 and (A~JA~s). 
Let the region R(~, :¢) denote the collection of points for which ~ ~<~ 

and u / u a >  ~ for all pairs of indices j and k. Theorems I and II  show us 
that if (Uo, 0,,) is a point of R(~q, 2~), then the image point (u,~, 0,,} under  T "  
must  lie within R(n~, ~) as long as m ~ A ~ o - e  , provided that ~o is suf- 
ficiently small. 

§ 5. The Non-Vanishing P rope r ty  of  the  Jacobian. - -  We now proceed 

to prove 
THEOREM HI.  - -  I f  K is any  positive number and i f  ~ is a sufficiently 

~Oi~n 
small  positive number, then for (u0, 00) in R(~, 2~) the derivative ~u3o differs 

from mc~j by a qua, ntity which tends to zero with ~o, as long as m does not 

P" 4-1 
exceed K~o 4 . This tendency to zero is un i form with respect to m. 

~O~=v~k(m), au'--w~k(m). Ira, k] Proof: We introduce the notation c~uk0 ~uj,0 

will be used as a symbol to denote any l inear homogeneous function of 
v~(m), %~(m),... yak(m), w~h(nO, w2kOn),.., w~(m),  whose coefficients, depending 
upon m and (uo, 0o) , are infinitesimals of at least the (~t--1) th order in ~0 

for m__< K~o-, ~*  uniformly for (uo, 00) in R(~, 20:). The sum of any definite 
number  N of the symbols Ira, k] is another  symbol [,m, k], N being assumed 

independent  of m or ~0- Let 

(5.1) 
t ~0. 20, 'u , a,~ = au~--o = e,~ + ~ ( o Oo) 

v,~(1) - -  ,~,,,, v,~(o) = o,  w,~(o)  = < ~ .  

Now by the e lementary  rules for partial  differentiat ion we find 

(5.2) 
w,h(m + 1) - -  E ~uim+, vjk(m) A- E ~ui,,+~ --j=l aO~.~ ;=~ auj., wj~(m). 
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But 

- -  8 ,  3 d ~, 

a<(u.~ 0.~t 
~q~m a0jm ' 3uj,n " a~]m 

We now use the inequalit ies (2.2) with reference  to the point (u,,,, 0,,). 
These inequali t ies are here applicable~ because from Theorem II  u~,,/u~,,~ ~o: 
for all pairs of indices j and k, m being restr icted in such a way that 
m < A. ~,-I~. Remember ing from Theorem I that (,~ < n~o, and introducing 
the symbols [m, k], we therefore get from (5.21 

(5,3) ) j=~ 
II. w ~ ( m  + 1) = w,,(m) q-  Ira, k]. 

We proceed to show how the ,v's can be el iminated from equations (5.3). 
Replacing m by m q -1  in equations (5.3)I., we have 

v,,(m -4- 2) := v,k(m q- 1) -,- ~. cowjk(m q- 1) q- [m ~c 1, k]. 
j=l  

Subtract ing I from this, we get after  transposing, 

A'~%k(m) = v ~tm ~ 2) - -  2vik(m -t- 1) -4- v~(m) ~- 

= ~ c,~[~jk(m + 1) - -  w~h(m)] + [m + 1, k] + Ira, k]. 
j=l 

We eliminate the ngaOn 4-1) from these equations with the help of (5.3)II 
and thus obtain 
(5.4) a%~(.~) = [ m +  1, k] + [,,~, ~], 

where  now the w~(m + 1) have already been el iminated from the symbol 
[m q-1,  k]. We now solve equations (5.3) I for the wih(m) in terms of the 
v~(m) and v~k(m + 1). We can clearly do this, since the determinant  of the 
coefficients of the unknowns is precisely the non-zero determinant  t c~.ji pbts 
an infinitesimal in ~0 of order ~- - -1  at least. Substi tuting the result ing 
expressions for the wik(m) into the right members  (5.4), we see that the 
required elimination has been completely effected. 

]:"or convenience, let us now introduce the functions y~k(m) and the 
numbers  b~ as follows: 

(5.5) I bib = aik and yih(mj - -  vik(m), if aih > O, 
b ~ = - - a i h  and yo , (m)~--v ik (m)  if a i k < O .  
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We first wish to find out how large the y~h{m) can become while m is 

restr icted by the inequal i ty  m ~ 2 K ~ o  ~ Evidently, on account  of 15.4), 

the I Y~*] can not increase as rapidly as they would if 

I )] 2~_ ~ y j h ( m + l  , 
A'~Yik(m) --~ q -  n [j=i " 

where for abbreviat ion ; ~---Al6-~0~ -1. A solution (unique for integral values 
of m) of this system of difference equations, under  the initial conditions, 

(5.6) y,~(O) -~  O, y~k(1) ~-- b~k, 

is readily found to be 

(5.7) y , k ( m ) = b  h m + - (  2~ 0~k/! ~ + V 2 ~ +  - -  ~ - -  

• n b = ~ '  / [  2V2~-+-O ~ ] 
1 / , ,  \ _5 { _1 

\/=i ] 

1 1 

where ~2 is a convergent power  series in powers of +he ~ and ~ ,  which lacks 

constant and linear terms. 
Let us see how (5.7) behaves as we let ~0 (and consequent ly  ?) approach 

zero and allow m to take on values in the range, 

0 < m < 2 K ~  o 

(5.8) i . e .  O < m=< A~,~ -~ 2K~o ~ ~ where  ~o__ 4(~ - -  1) > O. 

W e  have from (5.5), ~5.1), and (2.2}" 

(5.9) I b~  - -  I c~  II < '~  ( I ci~ 1 ~-  absolute valne of c~ and not the determinant) 

provided that ~0 is sufficiently small. Here  we increase the number  A~ 
defining h if necessary.  From the power  series development of :Q, we have 

~ mp 2, ~ ~ A~s m~ ~ -t- ~? ~ A,d.m"p --t:- 2m~ + p), 

1 1 

as long' as both m,~ 5 and ~g are taken sufficiently small. On aceotmt of (5.8} 
this requi rement  is surely fulfilled, if ~ is sufficiently small;  therefore 

I I ' 1 I" 

'?b 

by (5.8). Hence,  since E bj~ is bounded, we see that the second term in the 
j = l  
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right hand member  of (5.7) tends to zero with ~ and ~o; (5.7) and (5.9} thus 
yield the result  that 

where lim~(~o, m ) ~  0 uniformly in m, for the range (5.8). 
go=O 

Now let us see how rapidiy the slopes of the y~k('m} can decrease, while 
we limit m- to lie in the range, 

i -±+I 
(5.10) 0 < m < A ~  ~ - -1 - -=2K~o 4 - - 1 .  

From the above results, it follows that the right hand members  of (5.4) can 
3 

not exceed, in absolute value, an expression of the form A~gp ~+~. Hence 
the Y~h can not decrease as rapidly as they would if they satisfied the dif- 

ference relation 52y~h(,m ) -=- -A ,~p  ~+~. But, using the initial conditions (5.6), 

2+i~ 1 
this yields y~(m) - -  bi~m - -  A~,~ ~ "2 r e ( m - -  1). Also 

/ 1 1 - + ~ 1  @ A,9 ~ ° ~+3~ . -+2~, 

which tends to zero with p. Hence,  we again obtain the result  that ylg(m) 

differs from l c~,,]m by an infinitesimal in to. Thus the true value of yi~(m) 
must also have this property. That  is, from (5.5), 

where  t~h(~o, m) represents  an infinitesimal in t0, uniformly with respect to m, 
as long as m lies on the range (5.10). It  remains  only to note that m will 
surely lie on the range (5.10), if it satisfies the inequali t ies 

0 < m S-- K~o --~+a 

provider1, as always, that ~(, is sufficiently small. 

1 ~(O,~, 02,,, Oa,~,... 0 .... ) 
Incidental ly  the theorem just  proved shows us that 

i n ~(Uio ~ U:o ,  Use ,  ... U , o )  

differs from the de terminant  ]ci~[ by an infinitesimal in t0 and hence can 
not vanish for t0 sufficiently small. 

§ 6. I Simple Special @ase. We consider here the degenerate case 
where, in the t ransformation (3.1), defining T, the Ui and the O~ are identi- 
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cally zero. In  this case the m tn iterate of T becomes simply:  

I ~tm ~ ~iO ~ Ui n 

, J=~ 

We shall use a theorem proved by BOREL (~) in the consideration of the 
approximation of irrat ional  numbers  by continued fractions. An immediate 
corollary of BOREL'S theorem is the following 

LE~I~A. - -  Corresponding to any positive number  y not less than t l  
and to any real number  ~ (rational or irrational), two integers p and q can 

P V-~I lq=~ < q < 1 5 7 ~  [ _ =  ] always be found such that ~ - -  < and ~" . p ~ 0  . 

1 
We consider a positive number,  2~, which we regard as fixed but as 

having been chosen sufficiently small in advance. Let u~ -~ ~ . . . . .  u~, - -  
2V " 

Let  v~ : E cij2tj. Then 
rt 

(6.2} u~ : Z c~kvl. 
)=t  

Let v be a fixed positive number  ~ 1. Then, if ~ is sufficiently small, we 
have ~ - ' ~  11. Using the lemma, we choose integers mi and k[ such that 

i kl ~ + v ~  i 1 1 and ~ - ~ < , m ~ < 1 5 ~  -2v 

Wri te  m z m ~ - m  2 . m  3.. .m,,  so that ~ - ' ~ m ~ 1 5 " ~  -~n~. And: let 
k~ = m~ • m. z ... m~_~ • k(  - mi+~ - ,tn~+.~ ... m , .  Then  the above inequalit ies yield 

I 2r: 1 < 2~ - - - - ~ v ~ + s ~ ,  where 12k~r: '-~ - -  vi < Y5 md m I ~ - -  == \/--~ ~ "  In  other words 2k#: 

Now, using the above definitions for the integers k , ,  k~,.., k,, and m, we 

define u~, u.~,.., u,, by means of the l inear equations, 2 k ~ = ~ m ~ + m ~ c ~ j u j ,  
j = l  

and hence V % u j ~  vi + si. Solving these equations for the ui, we get with 
] -1  

the help of (6.2) 

where < A  
i=1 i = I  i 

(1) ]~]I~ILE ]~OREL, Legons sur la thdorie de la cro'tssance, p. 1~9, 
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The distance of the point (u} from tile point (;~) is 

- -  9 O, u,,l < 
V k.:l ! k- I 

0n  the other hand the distance of the point (u) from any of the manifolds, 

u t - - 2 g u j  ..... 0 g < 2 '  is found to be :ii:~ 2~tt,~____ 2~ .-- 
~; ~<--4-~ ~ \ n(1 -1- 4~ ~) 2" 

if ~ is sufficiently small, the point (u) will lie well within the region 

R0) , 2~), its distance from the boundary  exceeding A~3- ~. 
In  order to conform with the notation of the rest of the paper we 

replace v by ~ - 4  8n [ ~ > 8 n - t - 4 ]  and ut by u~/. We  collect the results  of 

this paragraph in the folh)wing 

T ~ , o ~ m f  IV. - -  Let the positive numbers c~ < ~ and ~(>= 8n + 4) be 

chosen in advance and then held fast. Th,en it is possible to choose the positive 
number ~l so small  that one can always find integers, k~, k~,.., k~, and m, 
dependent upon "~ and having the following hvo properties: 

p 1 p 

1. ~ - ~ + ~ < m ~ <  K~ [ K =  15"]. 

2. The solution of  the linear equations 2kivc ~ m S i - 1 - m E  cijujo , yields 
j = l  

a point  (u/) lying wi thin  the region R(~, 2~.), its distance from the boundary 
exceeding A ~ .  

Here  A~ is a sui tably chosen positive number,  dependent  upon n~ c~j, p, 

and ~, but  independent  of ~. 

§ 7. T h e  G e n e r a l  ( lase .  - -  W e  need the following elementary lemma: 

L m ~ A .  - -  Let  f~(u,, u~,.., u , ,  t) [i == 1, ,~,'~ ... n] be defined for 0<_ t__< 1 
and for (u) in some closed n dimensional  region S. Let  all the f~(u,, u.~,.., u,~, O) 
vanish together for one and only one set of values for the u ' s ;  viz. u~ = u / .  
Let  K denote the shortest distance from (u') to the boundary  of S. Suppose 
that f~ is of class C" and that the Jacobian,  

g---~ c~(f,, f~,.., f,,) 
~(u~, u~, ... u,,)' 

is nowhere zero for (u) in S and 0 ~< t ~< 1. Let  g~j(u,, u~,.., u,, ,  t) represent  

the cofactor of 3f~/~u~ in J divided by J itself, so that 

Annal i  di Matemat ica ,  S e r i e  I V ,  T o m o  XII. 17 
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Piua l ly  denote  by M an upper  bound  for the funct ions ,  

Tha t  is, I ]:?~1 ~ M for (~) in S and  0 ~ t ~ 1. 
Then  there  exists  a un ique  set of func t ions  u,(t b u:(t) .... u,,(tb of class C", 

def ined  on some in terval ,  0 ~ t <__ t, , such that  [~[u,(l). u~(t),.., u,dt), t] ~ O. 
;4 

F u r t h e r m o r e  u~(0)= u [  and t, is the lesser  of the two number s  1 and V~-~[" 

This  l e m m a  is for our  purposes  more  advan tageous  t han  the u sua l  

<< impl ic i t  func t ion  theorem >>, because  it gives us a def in i te  appra isa l  for 

the in te rva l  on which  the func t ions  u~(t),.., u.( t)  are defined.  W e  give a 

br ief  ind ica t ion  of the proof:  Necessary  and  suf f ic ien t  condi t ions  on a set of 

funct ions ,  u~(t} .... u,(t) ,  tha t  al l  the f~[u~(t), ... u,(t) ,  t] ~ O, are that  

dt ~:, ~-u~ d~/- + ~_ 0 and f , [ , , (O) , . . ,  u,,(O), O] = O. 

Solving for the der iva t ives  

du,: 
tions, dt = Fi(u~, u~,. . ,  u . ,  

be solved u n d e r  the in i t ia l  

f rom the known  exis tence  

equat ions .  

of the us we get a sys tem of d i f fe ren t ia l  equa- 

t), in the s t andard  form. These equat ions  are to 

condi t ions  Cti(O) ~ '  ti .  The l emma  now follows 

theorems for  sys tems of o rd ina ry  d i f fe ren t ia l  

W e  consider  va lues  for ~, not  only  suf f ic ien t ly  smal l  for the va l id i ty  of 

theorem IV, but  also so smal l  that  al l  the resul t s  of the preceding  pa rag raphs  

hold if ~o ~vJ .  W e  fo r thwi th  choose a set of va lues  for k~, k2, . . ,  k , ,  and m, 

depend ing  on ~q and sa t i s fy ing  the condi t ions  of theorem IV, 

p 1 P - -  !!1 +1  ---~+:[ 
(7.1) ~ - s + ~ = < m ~ K ~  =< K~o ~ • 

Now it is easi ly proved by induc t ion  tha t  T m may  be wr i t t en  in the form 

uim = % + U+~(u0, ~0) 
(72) 

i Olin = I)~o ÷ m'~s + m E d -  O~,,(uo, 0o) CijU~o 
,i=1 

where  

(7.3) Oi,Ju0, %) = E (m - -  1 --  v Uj(u~, 0~) -t- Z Odu~ , 0~). 
v = O  j v--O 

W e  wish to show that  the equat ions,  (}~m- 0~0 ~ 2k~rc can be solved for 

the ~,o, u ~ , . . ,  u ,  0 in terms of the 0~o ~ 0,,,,... 0, o. For  this  purpose  we r e g a r d  
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the 0's as f ixed and try to solve the equations,  

(7.4) cI)~(u, ~ .... u,,o} 
2kiT: '~ 1 

q- ,5~ t- ~ c ¢ 0  o t -  O~.,(uo, rio) = O, 
1t/ ' j= l  lit 

for the uo's. Since ,mq)~ differs from 0~ m by a constant, 2ki te+ 0.i0, it appears 

that ~q)i 1 SO~., , which, according to theorem III, differs from % by an 

infinitesimal in {0, uniformly with respect  to ir G lll, being required not to 

( i~+~, means ~)-;j.;~ [l~n O,:,,(u0 , ~o)1 tends to zero exceed K~o-~+~>_K~ ~ ). This tha~ 

with "q, uniformly with respect to m, and, hence, in particular,  if m is de- 
termined as in theorem IV. W e  assume ahvays that (u0) lies in R(~, 2cq. 

It  will be convenient  at this stage to introduce a parameter  t and con- 
sider the equations, 

2ki= '~ t 
(7.5} D(u.,,,... U,,o, t) =-  -4- & -t- ~ c;;U~o t- (%,tUo 0o) = 0 .  

' / i t ,  ' j--1 " '11~ ' 

We allow I to assume values on the interval 0~< t < 1, and we shall try to 
solve (7.5) for the u0's as functions of t. Evidently, if we can do this, all 

we need to do is to set t = -1  to get the required solution of (7.4). 
W e  try to apply the lemma. In the first place 

~fi ~ I10 im(?~  ° 0o}] 

which differs from cq by an infinitesimal in ~q. Hence,  if we denote by g~)the 

cofactor of S~ 3(f~, f,~,.., f , )  divided by the Jacobian itself, we 3u:j ° in ~(u,~, U~o,.,. u,,o)' 

see that gq differs from c ~y by an infinitesimal in ~q. Hence  ] g # ] ~ A ~ 4 .  
Aiso it follows from (7.3), {2.2), (7.1)) and from the e lementary  fact that 
m--2 l 
E (m-- 1--v)=)m(m--1) that 

v : 0  

iV l= 11 o+ t,,o ooi < 
i~ti i r a -  . . . .  5 • 

Hence,  we find that 
3 

I 2~ p+2 - p < + 2  
- -  E gi~ ~ = nA~4d~5"~ ~ A26 ~ ~ 

I j = l  

which is the M of the !emma 

In the second place, we know from theorem IV that for t --=0 equa- 
tions (7.5} have one and only one solution, u'10 ~ u%,. . ,  u ' ,0 ,  which lies well 
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within the region R{~, 2~}. For the region S of the lemma, we shall take a 

certain n - - 1  dimensional sphere together with its interior. The center  of S 

is to be the point (u L) and the radius is to be As3~ ~. By theorem IV the 

whole of S lies within R(~, 2e). The << K >> of the ]emma is therefore equal  

to A~'~L 
Hence  a unique set of solving functions u~o(t), u~o(t),.., u,o(t } exists, the 

interval of definition being 0~< t<__t~, where  t~ is the lesser of the two 
s 

numbers,  As7 - ~ e  and 1. Hence,  if ~1 is taken sufficiently small, t~-----1, and 

u,,(1), u20(1),.., u,o(1 ) satisfy (7.41, as required.  The solution (uo), thus obtained, 
also has the property that its distance from (u0') does not exceed As3~l ~. 

Hence  ~0 exceeds an infinitesimal of the first order in ~. 

For  a fixed sufficiently small value of ~1 and with a corresponding fixed 

choice for the ki and m, t h e  solution (u0) is unique, at least so far as the 

region R01 , 2~} is concerned. For  suppose there were a second solution (u0) 

corresponding to each element of an infinite sequence of ~ 's  tending to zero. 

W e  can jo in  the two points (u0} and (u0) with a straight line segment, 
which lies wholly within R(~, 2~) and whose direction cosines we denote 

by k~, ks,.., k , .  Since 0ira has the same value (viz. ,010 + 2k~r~) at both ends 

demvatlve, E ~ ,  must  vanish at some of the segment, its directional  " " " ~'~ 
j=l euio 

intermediate  point P~. W e  know, by theorem III ,  that 

u . .~16V~,3 1 v ~O+m ~ ~i(P, ~) 

where zi(P, ~t) tends to zero with ~, uniformly as to P or the ),'s. Hence  

i° )V= °(° E %).~ + ":dP~, ~1 0 = Y, 2] %.Z.~ 
i = 1 1  j = l  i = 1  \ i = l  / 

-P an infinitesimal in ~, where, of course, the k~ depend upon ~1- Let  h~, 

A s A,, be the set of values for the )t~ which, under  the condition E ),,~--~ 1 
' " '" ./=1 

makes E { E c~ik~} a, minimum. Then we infer that E { E cijA~} ~< E { E Cij),S} - - -  all 
~=~ U=~ "/ ~=~\i=~ "/- - i=~\ i=~ "/ 

infinitesimal in ~1. But, since the A~ are independent  of :q, this implies that 
~4 

2 %A.~ = 0  for h~ not all zero: and thus we obtain a contradict ion of the 
i = l  

hypothesis  that the determinant  of the %- is different  from zero. 
The obtained unique values for u~0 , u.~0,.., u ,  0, which satisfy (7.4) may 
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be r ega rded  as s ingle v a l u e d  funct ions ,  Bi(0~o, 0~0 .... 0,0) of the Oo'S. They  

are  obv ious ly  per iodic  of per iod  27:, s ince the (I)i are also. The  impl ic i t  

func t ion  theorem,  fu r the rmore ,  shows that  they  are analy t ic  in the ne ighborhood  

of any  poin t  (0to , 0~,,,... 0.o }. W e  have  thus  proved  the fo l lowing theorem,  
wh ich  is the  ma in  resul t  of this p a p e r :  

T~EOREM V. - -  It  is possible to find a manifold in  the space of  the 2n 

variables, u,o, 0,o,... U~o, 0n0 (or the original variables X~o ~ uto 2 cos 0to, 
1 

Yto = u~,> ~ sin 0m) defined by equations of the type, 

uio = Bi(O~o, 0~o, ... 0,,o), i - -  1, 2, . . .  n,  

along which, for a suitable choice of  the integer m, the Oa,~ differ from the O,o 
by integral multiples of  2=. The B~ are analytic single-valued non-vanishi~9 
periodic functions of period 2T: in the ~o' s. It  is assumed that ~ (n'hich, ap- 
pears in the equations defining T} is not less than than 8n + 4. 

Furthermore this manifold may be taken in 8uch a way th, at, given a 
1 

positive number a ~ ~, the [li~ , satisfy the following relations: 

1. ui~ > 2~ for all pairs of  indices i, j --- 1, 2, ... n. 
11%--  
n 

2. v uj02[= ~o~] is arbitrarily small. 
j = l  

[L 

3. 0 ~ m ~ K~o -~+1, where K ~ 15 n. 

I t em 2, of course ,  impl ies  that  there  are  an inf ini te  n u m b e r  of mani fo lds  
of the  type  de sc r ibed  in the  theorem.  


