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S u m m a r y .  - A boundary-initial value problem for a quasilinear hyperbolic system in one space 
variable is coupled to a boundary-initial value problem for a quasilinear equation of Sobolev 
type in  two space variables of the form Mu~(x, t) + L(t)u(x, t) = ](x, t, u(x, t)) u, here M and 
L(t) are second order elliptic spacial operators. The coupling occurs through one of the 
boundary conditions for the hyperbolic syste~ and the source term in the equation o/Sobolev 
type. Such a coupling can arise in the consideration o /o i l  flowing in a fissured medium and 
out of that medium via a pipe. Barenblatt, Zheltov, and Kochina [2] have modeled flow in 
a fissured medium via a special case of the above equation. A local existence and uniqueness 
theorem is demonstrated. The proof involves the method o/ characteristics, some applications 
of results of R. Showalter and the contraction mapping theorem. 

1.  - I n t r o d u c t i o n .  

To model subsonic flow in a pipe, it  is s tandard practice to use a one-dimensional 
version of Euler 's  equations of motion which includes the friction betweell the fluid 
and the pipe. This system can be reduced to a s tandard hyperbolic system via a 
change of variables [7]. In  [2], B~,~n~]~L~T~, ZHELTOV and KOCI~INA have modeled 
fluid flow in fissured rocks by  an equation of Sobolev type.  Since fluids are ext rac ted  
from fissured rocks through pipes, we shall combine these nmdcls into one system. 
By  consideration as a volumetric  flow rate  per unit  area, the fluid velocity at the 
end of the pipe is used as par t  of the sink te rm in the non-linear part ial  differential 
equat ion of Sobolev type.  The sink te rm is used to model the removal  of fluids 
f rom the fissured medium. The coupling is completed by  requiring tha t  the density 
of the fluid in the pipe at  its end be equal to the density of the fluid in the fissured 
medium at the end of the pipe. The density of the fluid in the medium is re la ted in 
a non-linear fashion to the pressure which is modeled by  the equation of Sobolev 
type  [2]. In  [3], C A ~ o ~  and the author  have discussed a similar coupled system 
involving flow in a porous medium modeled by  a parabolic equation instead of flow 
in the fissured medium. See [3] for some similar results. 

The preceding considerations mot iva te  the s tudy  of the mathemat ica l  problem 
of determining real-valued functions p ~ p(z,  t), q = q(z, t) and w-- - -w(x ,  t) such 

(*) Entrat~ in Redazioae il 28 luglio 1976. 
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tha t  the triple (p, q, w) s~tisfies 

(1.1) 

a) ~p ~P 4- ~(z, t, p, q) ~-~ =- R~(z, t, p, q), O < z < 1 ,  0 < t<  T ,  

~q ~q 
b) -~ 4- ~2(z, t, p ,  q) ~-z = R~(z, t, p ,  q) ,  0 < z < 1, O < t <  T ,  

c) q(1, t ) =  G(t ,p(1)) ,  O < t < ~ T ,  

4) p (z ,O)=po(z ) ,  O < z < l ,  

e) q(z, O) = qo(Z) , O < z < l , 

]) S ( t ) w = ] ( x , t , p ( O , t ) , q ( O , t ) , w ( x , t ) ) ,  x ~ ,  O < t < T ,  

g) B ( w ) = O ,  x ~ 9 ,  O < t < ~ T ,  

h) w(x, O) = of(x), x e 9 ,  

i) p(O, t ) =  ~(t, q(O,t), w(O, t)) , O< t<~T, 

where x = @1, x2)~R ~, t~ is a domain in R '2 which contains the origin, ~9  is the 
boundary  of Y2, S(t) is a t ime-dependent  part ial  differential operator  of Sobolev 
type  to be discussed below, B denotes a boundary  operator,  and 2~, 2,2, R~, R2, 
G, Po, qo, qJ, ], and ~ are known functions of their  respective arguments.  In  our ap- 
plication ~9 represents the fissured medium, {0 < z < 1} represents the pipe and 
z ~ 0 represents the end of the pipe in the fissured medium at  a point  which is taken 
to be the origin of the coordinate system for the fissured medium. 

We shall now describe the operators S(t) and B. To generalize the model used 
by  [2] we shall consider the operator  

(1.2) M ~ (x, t) 4- L(t) w(x, t) ~(t)w =_ ~t 

where M and, for each t~  [0, T], L(t) are elliptic differential operators of order 2 
which satisfy restrictions to be specified ia section 2. We note  tha t  in [2] L(t) was 
a constant  t imes the negative of the Laplacian operator  and M was the ident i ty  
operator  minus a constant t imes the Lap]aeian operator.  

We consider a (~ no-flow ~) condition at the boundary  of ~ [2] which means tha t  
the eonormal derivatives on ~Y2 which are determined b y  the operator  M [1, p. 146, 
2, 11, p. 263] are set equal to zero on 3Y2. 

We shall consider the problem described in (1.1 ]), (1.1 g) and (1.2) in terms of 
a generalized problem involving vector-valued functions w(t) which map t z [0, T] 
to various Banach spaces of functions oil ~9. This reformulat ion will be described 
in detail  in section 2. In  this formulation, the boundary  condition (1.1 g) is a 
(~ natural  ~ or (~ variat ional ~ condition which arises from restriction of the notion 
of a solution to certain types of Banach spaces [1, p. 146, 4, 11, p. 263]. 
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The basic aim of this paper  is to demonstrate  tha t  for T sufficiently small there  
exists a unique solution of (1.1). In  section 2 we give a weaker formulat ion of the 
Sobolev par t  of (1.1) and define the notion of a strong solution to this part .  In  sec- 
t ion 3 we give a definition of weak solution of (1.1) using the strong solution of the 
Sobolev par t  and a reformulat ion Of the h y p e r b o l i c p a r t  of (1.1) into integral equa- 
tions via the characteristics of the hyperbolic equations (1.1a) and (1.1b). In  sec- 
t ion 3 we also formulate  a mapping ~.  A fixed point  of ~ will yield a weak solu- 
t ion of (1.1). We develop a priori estimates in sections 4, 5, and 6 which allow 
preservat ion of the function classes under  the mapping ~.  We obtain a priori 
estimates on the characteristics in section 4, on the solutions of the hyperbolic par t  
in section 5, and on the solutions of the Sobolev par t  in section 6. In  section 7 we 
use the results of seet{ons 4, 5, and 6 to demonstra te  the preservat ion of function 
classes, continuity,  and contract ion properties of the mapping ~.  The s ta tement  of 
the main result  of the paper  is given at  the end of section 7. 

2. - A weaker formulation of  the Sobolev part. 

We shall adopt  some nota t ion and results of [10]. The space of continuous linear 
operators f rom the normed linear space X to the normed linear space Y will be 
denoted by  L(X,  Y). Let  W be a reflexive and separable Banach space with norm IWlw, 
let W' be its dual, and let  (], v} be the W ' - - W  duality,  i.e. the  value of ] eW'  
on v~W.  

The Sobolev space H~(Y2)~ H ~ is the Hilber t  space of (equivalence classes of) 
real-valued functions in L2(tg) ~ H, all of whose distributional derivatives through 
order k belong to H.  The inner product  and norm are given, respectively,  by  

(2.1) (u, v)1¢ = ~ { f g~uD~vdx: l~I <k} 
~J 

and ]ul~---- ~ u)k. Le t  W be a dense subset of H such tha t  the injection We-> H 
is continuous. For  our application we shall choose W ~ H 1. Then for some C1, 
we have 

(2.2) Iwt.< c~lw[.~. 

Le t  T > 0  and I T ~ [ 0 ,  T]. Le t  m( . , . )  and, for each t a I r ,  l ( t ; . , . )  be con- 
t inuous bifinear forms on W. These forms define the  operator  ~(~ e L(W, W') and 
the family of operators £(t)E Z(W, W') by  the identities 

(2.3) 

and 

(2.4) 

( ,~u,  v} -~ m(u, v),  

(£(t)u, v} --~ l(t; u, v),  

u, v~W , 

u, v~W, t ~ I T .  
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Let  M and L(t) denote the respective restrictions of ~L and £(t) to H.  These restric- 
tions are unbounded operators on H with respective domains given by  

(2.5) D(M) : {u e W: re(u, v) : (Mu, v),  , v EW} 

and for each t ~ IF, 

(2.6) D(L(t)) -~ {ue  W: l(t; u, v) = (L(t)u,v)s ,  y e W } .  

Assume tha t  we are given a function ]: I F ×  W - >  W'. 

DEFInITIOn. - A funct ion w: I F - +  W is a weak solution of 

(2.7) ~w' ( t )  + £(t)w(t) -= ](t, w(t)), w(O) = q~, 

if i t  is continuously diffcrentiable on IF and (2.7) is satisfied (in W') on IF. 

DEFINITIOn. -- A strong solution of (2.7) is a weak solution for which each t e rm 
of the equation is in H o11 IF. Thus, in H,  

a) Mw'(t) -4- L(t)w(t) = ](t, w(t)),  t ~ IT ,  
(2.8) 

b) w(0) = 7~. 

We note  tha t  (2.8) is the equation in terms of vector valued functions which cor- 
responds to (1.1 ]) with the Sobolev operator  defined as in (1.2) aI~d the dependency 
on p(0, t) and q(0, t) temporar i ly  suppressed. We shall specify some strong coereivi ty 
assumptions in section 6 on m(.,  .) and l(t;., .) which will insure tha t  M and L(t) 
are second-order elliptic operators [1]. I f  we choose W ~ H 1, then  the regular i ty  
theory  for elliptic operators [1] will give tha t  

a) D(M) = {ueH~:  m(u,v)---  (Mu, v)~, v ~ H  1} 
(2.9) 

b) D(L(t)) = {ueH~:  l(t; u, v) = (L(t)u, v)s ,  v e i l s } .  

I f  3/2 is smooth enough for the divergence theorem to apply, the condition 
in (2.9) yields the (( variat ional  >> or (( natural  ;> boundary  condition [1, 4, 11] which 
was described in section 1. Thus the boundary  condition (1.1 g) is built  into our 
choice of W in this ease. 

We shall now consider the weaker formulat ion of the Sobolev par t  of (1.1) 
described above. We shall denote by  (S) the Sobolev part o] (1.1): 

a) M w ' ( t ) +  L( t )w( t )=/ ( t ,p (O, t ) ,q (O, t ) ,w( t ) )  in H, t s l T ,  
(2.1o) 

b) w(0) = ~ .  
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For  fu r ther  examples of the Sobotev equations, the concepts and terminology de- 
fined in this section, and references to their  applications, see [10, 11, 12]. We note  
here  tha t  the definitions of weak and strong solutions in this section differ f rom the  
corresponding definitions in [10, 11]. C ~ solutions a.re obtained here under" stronger 
assumptions than  are made to obtain absolutely continuous solutions in [10, 11]. 

3 .  - A weaker formulat ion of  the hyperbolic part.  

Since (1.1) arises from physical considerations, it  is natural  to assume tha t  the 2~ 
and R~ are smooth bounded functions tha t  are defined on 

QT = {(z, t, p, q): 0 < z < l ,  0 < t <  [ ,  --~ c ~ <  p <  0% - -  o o <  q <  c~}. 

I t  is also natural  to assume tha t  there exists a constant  ~ > 0 such that ,  uniformly 
in QT, 

(3.1) 2 ~ < - - d < 0 <  3 < 2 1 .  

I f  a classical smooth solution (p, q, w) of (1.1) exists, we can define the characteristics 

(3.2) z ~ = z , ( ~ ; z , t ) ,  m a x ( O , t ~ ) < r < t ,  i = 1 , 2  

ms solutions of the initial value problems 

(3.3) 
dz~ ___ ) . ( z .  ~:, p(z~, ~), q(z. 3)), a) 

b) z~(t) = z ,  

ma x (0 ,  t ~ )<z<t ,  i = 1 , 2  

i = 1 ~ 2  . 

Here  we define 

(3.4) t~ = t~(z, t) ,  i ~ 1, 2 

to be the  unique t ime at  which the characteristic z~ assumes the value z = i -  1. 
F rom the bounds on 2~ in (3.1), we can take :r su~c ien t ly  small t ha t  ff h or t2 is 
positive, the characteristic emanating from (0, tl) or (1, t2) using 2~ or respectively 21 
does not  strike the opposite boundary  for positive t. In  other words, we can restrict  Y 
so tha t  we have at  most  one bounce of a characteristic to consider. 

I f  we integrate  (1.1a) and (1.1b) along their  respective characteristics as in [5, 6, 9], 
we see tha t  for 0 < t < T, any classical solution of (1.1) must  satisfy (H) the hyperbolic 
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part o/ (1.1): 

(3.5) 

t 

a) p(~, t) = po(~(o; ~, t)) + f R ~  (~(~; ~, t), ~, p(~l(~:; y., t), ~), q(z~(~; ~, t), ~)) dr 
0 

b) 
t 

q(z, t) -~ qo(z~(0; z, t)) ~- fR~ (z2(~:; z, t), T, p(z~(~:; z, t), ~), q(z2(~; z, t), z))d~ 
0 

or (3.5b) and 

(3.6) p(~, t) = ;(t~(~, t), q(o, t~(~, t)), ~(o, t~(~, t))) 
t 

+~R~(z~(~; ~, t>, ~, p(~1<~; ~, ,), ~), q(~<~ ~, t), ~))d~ 
t~(z, t) 

where q(O, tl(z, t)) is computed by  replacing z and t in (3.5b) by  0 and t~(z, t) respec- 
tively, or (3.5a) and 

(3.7) q(~, t) = e(to(~, t), pO,  t~(~, t))) 
t 

+ J'R~ (~(~; ~, t), ~, p (~(~ ~ o, t), ~), q(~(~; ~, t), ~)) d~ 
t2Cz, t) 

where p(1, t~(z, t)) is computed from (3.5a) by  the replacement of z and t by  1 and  
t~(z, t) respectively. 

D E F I N I T I O N .  - -  A weak solution of (1.1) is any triple of functions (p, q, w) such 
that  p and q are continuous for 0 < z < l  and 0 < t < T  and satisfy (H) the  hyper-  
bolic par t  of (1.1), which is described by  (3.5a), (3.5b), (3.6) and (3.7), and w is a 
strong solution of (S) the Sobolev par t  of (1.1) described b y  (2.10). 

We shall now describe the mapping which will furnish our solution via an ap- 
plication of the contraction mapping theorem. We take w(0, t) ir~ (3.6) and replace 
it b y  a function v = v(t). After solving the hyperbolic par t  of (1.1) for p and q, 
we subst i tute  p(0, t) and q(0, t) into (1.1]) and solve the Sobolev par t  of (1.1) for w. 
The mapping ~6 is obtained by  setting 

(3.8) w(O, t) = ~v(t). 

In  order to demonstrate  tha t  ~6 is a contraction for T sufficiently small, we need to 
obtain some a priori estimates. 
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4. - A priori est imates  on  the solut ions o f  the characteristic equations.  

We shall use a l emma  from the theory  of ordinary  differential equations.  

LE~I~IA 4.1 [8]. - Le t  y and Y be two functions satisfying 

(4.1) 

a) y' -~ ](x, y ) ,  ] x - - a ] < h ,  

b) y(a) = ~ ,  

c) ~' = F(x, ~) ,  I x - - a l < h ,  

d) Y ( a )  = f i .  

Then,  for I x - -  a I < h, 

(4.2) I Y ( x ) - - y ( x ) t  < e x p  {Ph}[ la-- f i [  ~- sup I ] - - F I ] ,  

where h is a posi t ive constant  and P is the m a x i m u m  of the uniform Lipschitz con- 

s tants  on ] and F .  
We assume t h a t  p = p(z, t) and q ~ q(z, t) are uni formly  Lipschitz continuous 

in z and t wi th  Lipschitz constant  K > I .  Le t  C > 1  denote a constant  which 
bounds ~ ,  i = 1, 2 and  all their  first der ivat ives in absolute value. We then  make  

simple applicat ion of the  mean  value theorem to obtain 

(4.3) t~i(Z $, T, p(Z $, ~), q(Z $, T)) - -  ~i(Z$, T, p(Z$,  ~), q ( z , ,  T)) I -~ 3 C K I z *  - -  z , ] ,  

i = 1 , 2 .  

A similar es t imate  holds for the  ~ variable.  Recalling (3.4), we let 

(4.4) t(~J) = t i (z ( ' ,  t) j = 1, 2 

denote the  t imes t ha t  the characterist ics zi, i = 1, 2, emana t ing  f rom the points 
(z (j), t), s tr ike the  bounda ry  z = i - - 1 .  We then  obtain f rom L e m m a  4.1 and  (4.3) 

the following lemma.  

LEPTA 4.2. - For  max{0, t~ 1), t~ 2)} < T < t < T,  

(4.5) Izi(T; z (1), t) - -  zi( T ; z (~), t)l < e x p  { 3 C K t }  lz(1) - -  z(~' I . 

B y  integrat ing (3.3) along the characterist ics we obtain 

t 
(4.6) z'J) = ( i - - 1 )  -~-f~i(zi(7~; z (j,, t), T, p(~i(~; z (j,, t), ~), q(zi(~;  ~(J), t), ~ ) ) ( ~  

t[J) j = 1 , 2 ,  i : 1 , 2 .  

22 - Annali di 3latematica 
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Subtracting j ~ 2 oi (4.6) from j-----1, we obtain 

t max(t~ I), t~ ~) 

(~.7) 
max(t~ I), tl~)> rain(t~ 1), t~ ~>) 

where the choice of the sign ~nd ~rgument ~or the second term depends upon the t~ ~), 
~ 1, 2. Solving for the second term on the right hand side of (4.7), rec~lling (3.1) 

and using (4.3) ~nd Lemma 4.2, we obtain the following result. 

LE~MA 4.3. -- For i ~ 1 ,  2, 

(4.s) It~(z% t)-- t~(z% t)] < a-~(1 + 3CKt e x p  {3CKt})]z (~)- z(2)]. 

Integrat ing along the characteristics emanating from (z, t (~)) and (z, t (~)) and 
using the techniques of the last proof coupled with Gronw~ll's Lemma we obtain 
the following result. 

L ~ A  4.4. - F o r  0 <t(~)< T, j : 1, 2~ and max (0, t~ ~), tl~))< ~ < m i n  (t (~), t(2)), 

(4.9) tz~(~; z, t (~)) --z~(~; z, t(~))l < C exp (3CKI ' } [ t  (~) - - t  (2)] 

where t (j) here denotes the time tha t  the characteristic z~ emanating from (z, t (j)) 
strikes the boundary  z = i -  1. 

An argument similar to those of the two preceding results yields our last estimate. 

LE~I~A 4.5. For  0<t(J~<2?, ] = 1 ,  2, 

(4.10) I t i (z ,  t (1)) - -  t i ( z  , t'2))l < (~-1 C ( l  -~- 3CKT e x p  (3CKT})]t (1) - -  t(~)[. 

We note tha t  if we restrict 

(4.1]) T <  ( 3 C K )  -1 , 

we can simplify our previous results. 

LE3~MA 4.6. -- For i = 1, 2, 0 < t  (j)< T, j ~ 1, 2, 

(4.12) 
a) It~(z(1), t) - -  t~(z (2), t)[ < 4~-1[z (1)- z(~)[ 

b) It~(z, t ¢~))-t~(z,  t(~))l < 4C~-~tt(~)--t(2)] . 

Finally, noting the results of Lemma 4.2, Lemma 4.4 and Lemma 4.6 we see 
tha t  with the restriction given in (4.11) 

(4.13) ~2 ---- 4C~ -I 
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can be used as a uniform Lipschitz constant  for z~ and t~. ~Vithout loss of general i ty  

we can assume tha t  C2 >1 .  

5. - A priori estimates for the solution of the hyperbolic part of  (1.1). 

Since the hyperbol ic  pa r t  of (1.1) consists of integral  equations which involve 

the characteris t ic  equations (2.3), we shall need the es t imates  of section 4 in the  

es t imates  derived below for p = p(z, t) and q = q(z, t). We first s ta te  the assump- 

tions we shall make  on the  da ta  functions R1, R~, ~, G, Po and qo- 
We  assume t h a t  R~, R2, and their  first der ivat ives  are bounded  in absolute 

value b y  C in Q~. We assume t h a t  ~ = ~(t, q, w), G = G(t, p), and their  first de- 

r iva t ives  are bounded  in absolute value b y  C in {(t, q,w):  t ~ I r , - - ~  q ~  c~, 
- -  c~ < w <c~} and {(t, p) : t ~ I t ,  - -  ~ < p < c~} respectively.  5Iext we assume tha t  

Po = po(z), qo = %(z), ~nd their  first der ivat ives are bounded  in absolute value b y  
C on 0 ~ z  ~ 1 .  Finally,  in order to obta in  continuous functions p and q we mus t  

sat isfy the following compat ib i l i ty  conditions upon the da ta :  

(5.1) 
a) po(O) = i'(o, %(0), q~(o)), 

b) qo(1) ---- G(O, po(1)) .  

The es t imates  f rom this section will be  used to show tha t  the mapp ing  described 
in section 3 will re ta in  certain funct ion classes. As in section 4, we shall assume 
tha t  p = p(z, t) and q = q(z, t) are uni formly  Lipsehitz continuous in z and t wi th  

Lipschitz  constant  K ~  1. I n  the mapping,  we replace w(0, t) in (3.6) b y  a func- 
t ion v = v(t). We shall assume tha t  v is Lipschitz continuous with constant  V ~ 1 
and  t h a t  the  absolute vMue of v is bounded  above b y  C. 

I n  the  es t imates  below we obtain  an es t imate  for the  Lipschitz constant  for p 

and q af ter  hav ing  assumed the  one above.  This is because the mapp ing  of section 3 
requires the  solution of an auxi l iary hyperbol ic  sys tem which has a mapp ing  of its 
own [5, 6, 9]. Thus,  oar  es t imates  mus t  reflect the  re tent ion of the various function 

classes th rough  tha t  mapp ing  as well. 
F r o m  (3.5)-(3.7) we easily obta in  the  first est imate.  

L]~M~A 5.1. - For  0 < z < l  and t ~ I T ,  

(5.2) 
a) ]p(z,t)l<(1-i-t)C 

b) [q(z, t)l < (1 + t) C.  

I n  order to es t imate  the  Lipsehitz constants  for p and q f rom (3.5)-(3.7) we mus t  
consider three  basic eases for characterist ics z (j) ~,  j = 1 ,  2 emanat ing  respect ively  
f rom (z (1), t (1)) and (z (~), t(2)). 
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Case I :  ~ e i t h e r  cha rac te r i s t i c  z~ j), j - ~ 1 , 2 ,  hits  a l a te ra l  b o u n d a r y  be-  

fore  h i t t i ng  t h e  base  t ~ - 0 .  

Case I I :  B o t h  charac te r i s t i cs  ~(j) ~ , j ~ 1, 2, h i t  t he  s a m e  la te ra l  b o u n d a r y  

pr ior  to  t = 0. 

Case I I I :  Only  one of t he  charac te r i s t i cs  z~ ~), j = l ,  2, hi ts  a l a t e ra l  
b o u n d a r y  while  t he  o the r  hi ts  t he  base  t = 0. 

W i t h  no loss of genera l i ty ,  we res t r i c t  our  cons idera t ion  to  t he  l a te ra l  b o u n d a r y  
z : 0 a n d  the  b e h a v i o r  of z(~ ), j ~ 1, 2. T h e  analys is  for  t he  b o u n d a r y  z : 1 is 
s imilar  excep t  for t he  omiss ion of t he  effect  of t he  func t ion  v = v(t). 

F o r  Case I ,  we ob t a in  the  fol lowing es t ima te .  

L ] ~ A  5.2. - W h e n  ne i the r  charac te r i s t i c  hi ts  t he  l a te ra l  b o u n d a r y  pr ior  to  
t = 0 and  w h e n  O<t(J )<t<T,  O < z ( J ) < l ,  j ~ 1 ,  2, 

(5.~) 
a) Ip(z (~), t (~)) - - p ( z  (2), t(~))] < C2(2C + 3CKt){Iz(1)-- z(~) I + lt(~)-- t(~)l} 

b) ]q(z (~), t(~)) - q(z (~), t(2))] < 0~(2C + 3CKt){]z(~)--z (~)] ~- ]t(~)--t(~)l}. 

P~oo~ .  - I t  suffices to  consider  zl and  (3.5a) since a s imi lar  a r g u m e n t  will ho ld  
for  z2 a n d  (3.5b). S u b s t i t u t i n g  (z (~'), t(J)), ] -~1 ,  2 in (3.5a) and  sub t r ac t ing ,  we  ob t a in  

(5.5) p ( z  (1), t (1)) - -p(z (2) ,  t (~)) ~.  po(zl(O ; Z (1), t(1))) - -po(z l (O;  Z (2,, t(a))) 

rain(t(1), t(2)) 

0 

- -  .~I(Zl(T; Z (2), t(2'), T, p(ZI(T ; Z (2), t(2)), T), q(Zl(T ; Z (2), t(2)), T ) ) l d T  

max(t(1), g(2)) 

f R l d T .  
min(t (1), t(2)) 

T h e n  f r o m  the  m e a n  va lue  t h e o r e m  and  the  resul ts  of sect ion 4, we ob ta in  

(5.6) [p(z(1), t<~))- p(z(~), t~))] < 

< {Ca C + 3CKC~ m i n  (t (~), t(2))}{lz ̀~) - -  z(~)[ -~ It (1) - -  t(~)l} ~- Clt (~) - -  t (2)l 

f r o m  which  (5.4) follows. 
F o r  Case I I ,  f r o m  (3.6) we see t h a t  the  difference in p(z(1), tc1)) and  p(Z (2), t (2)) will  

i nvo lve  a difference in  t he  ~ t e rms ,  which  will  i n t r o d u c e  the  L ipsch i t z  c o n s t a n t  V 
and  severa l  in tegra ls  s imilar  to  the  ones t r e a t e d  above .  A n  app l i ca t ion  of t he  m e a n  
va lue  t h e o r e m  and  use  of L e m m a  3.6 yie lds  t he  fol lowing es t ima te .  
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LEM~A 5.3. -- When both  characteristics hit  a lateral boundary  prior to t :  O 
and when 0<z(J )< l ,  0<t(J)<t~ j-----l, 2, 

(5.7) 
a) [p(z (~), t (~)) - - p ( z  (2), t(m)[ < CC~{5C ÷ 5CKt ÷V}{lz(~)--z(2) I + tt(~)-- t(-~)l} , 

b) ]q(z(% t (~,) --  q(z(~), t(~))[ < CQ{5C + 5CKt}{Iz(~)-- z(~'l ÷ I t ( , -  t(2)l} • 

Final ly we consider Case I I I .  F rom the theory  of ordinary differential equa- 
tions [8], we know there is a unique characteristic z, with characteristic direction 2~ 
passing through the origin. Uniqueness also prevents  intersections of this charac- 
teristic with zl(r; z (~), t (1)) and z~(r; z (2), t<2)). Then using the Jordan  Curve Theorem 
we can split this case up into a combination of the two cases described above. 
Combining the cases above we obtain the follo~dng result which holds for all cases. 

LEM/gA 5.4. - F o r  Cases I~ I I ,  and I I I ,  0<z(J )< l ,  and O<t(J)<<.t, j : 1 , 2 ,  

(5.s) 
a)  ]p ( z  '1), t(~') - -  p(z(% t(~))] < CC~{7C ÷ 8CKt + V}{Iz(~)- z(~)] + I t(1)- t(2)l}, 

b) Iq(z'% t(1))-- q(z(% t(~')l < CC~{7 C + 8CKt}{lz(~)--z(2'1 ÷ It(~)-t(~'l}. 

6. - A priori estimates for the solution of  the Sobolev part of (1.1). 

We shall list for future  reference some basic assumptions we shall make on the 
Sobolev par t  (S) from (2.10). 

(I) m( . , . )  and l ( t ; . , . )  are uniformly strongly coercive over W. Thus there 
are constants k,,~ and ks such tha t  

a) [m(u,u)[ >kmlul~ for u e w ,  
(6.1) 

b) II(t;u,u)l>k~[u[~ for u e W ,  t e l r .  

(II) For  each pair u, v ~W, the function t ~ l(t; u, v) is continuous, so there 
is a constant  K~ with 

(6.2) ]l(t; u, v)l <g~luJ~lvl/ ,  u, veW,  t e IT. 

(III)  For  each tEI~,, D(L(t)) : D(L) for a fixed D(L). M is ((stronger ~> than  
L(t) for each t e I~; i.e.,  D(M)¢_ D(L). Also, there is a constant  K1 such tha t  

(6.3) [L(t)w[. < KI[MwI~ . 

(IV) There are constants K2, Ka, Ks and K5 such tha t  for ]: I~ × R  2 × W--> W', 
we have 

(6.4) I](t, p(O, t), q(O, t), w(t)) I ,< K2lw(t)l~ , 
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and 

(6.5) 

a) l/(t, p(O, t), q(O, t), u) -- /( t ,  p(O, t), q(O, t), v)]~ <K~lu--v].~ , 

b) I/(t, p~(O, t), q(O, t), w) --  /(t, p~(O, t), q(O, t), w)l.<K~]p~(O , t)--p~(O, t)l,  

e) [1(% p(O, t), q~(O, t), w) -- /( t ,  p(O, t), q~(O, t), w)l.<K~lq~(O, t)--g~(O, t)[. 

Also /: IT × R  ~ × W -~ W'  is continuous. 
Then if we choose W ~  HI~ under  the above assumptions,  we have  the  following 

result  due to Showalter.  

T~Eo~E~6.1 .  [10J. - I f  9 e D(M),  there  exists a unique strong solution of (S) 

which has an integral  representa t ion given b y  

t 

( 6 . 6 )  w(t) -~ G(t,  O)q~ ÷ f G(t, s) M-I  /(s, p(o, s), q(O, s),w(s)) as.  
0 

I n  the s t a t ement  above~ G(t, s) is the linear p ropaga tor  [4, 10]. We note  t ha t  since 

the  in tegrand in (6.6) is continuous (see section 7), we can use the  R iemann  in- 
tegral  in (6.6) to obta in  a C ~ solution ins tead of the  Bochner  integral  which yields 

an absolutely continuous solution as in [10]. 
Since we are working with supremum norms for the  hyperbol ic  pa r t  and we 

wish to pu t  our results together  via a mapping,  we mus t  obta in  es t imates  for the  

Sobolev pa r t  in te rms of the  sup remum or L~-norm. We need L ~ bounds on w'(t), 
where w(t) is the  solution of (S), to use as Lipsehitz constants  for the mapp ing  7~. 

F r o m  the Sobolev L e m m a  [~] we know tha t  each w'(t) ~ H~(~) ~-- H ~ (has a unique 
representa t ive  which) is an absolutely continuous function on ~ ,  and we have  an 

es t imate  of the  form 

(6.7) /W'(t)IL~(~) < rff-61w'(t)lH~(t-~) 

after  ident ifying each such w with  this representat ive.  We mus t  then  obtain H~-norm 
est imates  on our results. 

F r o m  Assumpt ion  (I) (6.1) and  elliptic operator  theory  [1] we know there exists 

a constant  K7 such tha t  for each t ~ IT, 

(6.s) I w'(t)r.~ < ~:,lMw'(t)l~r. 

Thus f rom above we shall obta in  es t imates  on Iw~(t)lL® f rom bounds on ]Mw'(t)l,. 
We first differentiate !Mw(t)l ~ with respect  to t, use the  Schwarz Inequa l i ty  and 

the  tr iangle inequal i ty  on (2.8a) to obtain 

d iMw(t)l~___ 2(Mw'(t), Mw(t)) .  (6.9) d~ 

< ~lMw'(t)L.l~w(t)l. 

< 2 (lL(t)w(t)]. ÷ 1/I.)I~w(t)l- • 
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Using the fact tha t  W~-~H (is norm-imbedded) coupled with (2.5), (6.1) and the 
Schwarz inequality, we obtain for some Ks, 

(6.10) ]w(t)l~ < Kslw(t)l~ 

< Ksk~llm(w(t), w(t))[ 

= ~:8 k~ll (l~/Sw(t), ~(t)).r 

< Ks k ~ l J i w ( t )  j.]w(t)l.  . 

Then combining (6.4) with (6.10) we obtain 

(6.11) If(t, p(0, t), q(0, t), w(t)) I, < K2Ksk~l]Mw(t)], • 

Next  by  combining (6.3), (6.9) and (6.11), we have 

d _ _  - 1  r~ (6.12) at [Mw(t)f~ < O.(K~ ÷ K ~ K ~  )[Mw(t)~. 

K~]Mw(t)]~ , 

where (6.12) defines Kg. Then by  Gronwall's Lemma, if F e D(M), we have that  
for some positive constant K~o, 

(6.13) IMw(t)l. < [Mw(O)t. exp {K~ T} --= K~o. 

We can now use (2.10a), (6.3), (6.11), (6.13) and the triangle inequali ty to obtain 

(6.14) tMw'(t)l, < IL(t)w(t)l, ÷ I](t, p(0, t), q(O, t), w(t))I, 

.<< (K~ ÷ K2Ksk~)lMw(t)ln 

< (K1 ÷ K2Kst~I)Klo ~ K n .  

Finally, combining {6.7), (6.8) and (6.14), we have 

W' ~ K . (6.15) I (t)Ir~(~)'~-K6K7 1 1 ~ K 1 2  

Since this constant K12 is independent  of t, we have 

(6.16) sup ]w'(t)lL~(.e)<K~.. 
O ~ t ~ T  

We have just  proved the following lemma. 
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L E ~ A  6.1. - There exists a positive constant  KI~ which is independent  of the  
Lipschitz constant  K of the functions p and q to be determined in section 7 such tha t  

~w (x, t) <KI~.  (6.17) sup sup ~-~ 
O ~ t ~ T  ~ce~Q I 

Note. We shall note  at this point  tha t  the Lipschitz constant  V for v --~ v(t) can 
be set equal to K ~  and will be independent  of the Lipschitz constant  K for p and q. 

7. - Preservation of  function classes and continuity of  ~ .  

We shall consider the mapping described b y  (3.8) and show tha t  if v - ~  v(t) is 
in a certain funct ion class, then for t sufficiently small, w = w(0, t) is in the same 
class. We first consider the hyperbolic par t  of the mapping ~.  Since Lemma 5.1 
gives a uniform bound on p and q, we can restr ict  oar a t ten t ion  to the Lipsehitz 
constants for p and q. I f  we restr ict  T as in (4.11) to simplify the form of some 
constants,  t ha t  will incorporate  the  T <  C -~ restrict ion tha t  was necessary to 
restr ict  our consideration of one bounce of a characteristic off a lateral  boundary  
which we assumed in section 3. 

We know tha t  V, the  Lipschitz constant  for v, can be set equal to K~ from (6.17) 
which is independent  of K,  the Lipschitz constant for p and q. F rom (5.8) we see 
tha t  for preservat ion of the Lipschitz classes for p and q we must  select K such tha t  
for T suitably restr icted 

Le t  

(7.2) K = 7 C ~ C 2 ÷  CC~V~-  1 .  

Subst i tut ing (7.2) into (7.1) leads to the restriction 

(7.3) ~ <  (56¢'c~+ sc~¢~v + sc~c2) -1 

while the  subst i tut ion of (7.2) into (4.11) yields 

(7.~) T < (21C ~ C~ ÷ 3C 2 C~ V ÷ 3¢) -1 . 

Note  tha t  (7.4) is automatical ly satisfied when (7.3) holds. Thus under  the restric- 
t ion (7.3), the Lipschitz classes for p and q are preserved under  the mapping when K 
is chosen as in (7.2). Thus the mapping ~ takes a compact  and convex subset of the 
Banach space of continuous functions on [0, T] with the uniform norm topology 
into itself. We now shall show tha t  this mapping is continuous. 
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Fi rs t  define 

(7.5) 

and  

(7.6) 

I]/11~= sup I/(z, ~)I 
O~z~l 

IIIvlll,= sux~ lv(~)l. 

Le t  (pj, qj), j = l ,  2 denote solutions of the  hyperbol ic  pa r t  of (1.1) which cor- 

respond respect ively  to the  functions v~, j = 1, 2. The techniques of section 4 and 

L e m m a  4.1 allow us to obta in  the  following lemma.  

L]~,IA 7.1. - For  O < z < 1 and max(0,  t~) < ~ < t < T, 

(7 .7 )  IZ(1)( "~ ' i  " Z ,  t )  - -  z ~ 2 ) ( ~ ; z , t ) ] < C e x p { 3 C K t } t { l l p ~ - - p . l [ t +  llq~ - -  qu i l t } ,  i = 1,2, 

-(~) corresponds to the  i - th  characteris t ic  emana t ing  f rom (pj, qj)~ ] = 1 ,  2. where ~i 
In teg ra t ing  along the characteristics,  we use s tandard  est imates as in the proof 

of L e m m a  4.3 to obtain the  nex t  result. 

(7.s) 

L~A 7.2. - For  0 < z < 1 and O < min(t~ ~), t~ 2)) << t < T, 

[t~)(z, t)--t~2)(z, t)l < 5-~[(C -J- 2CK)tC exp {3CKt} + C]. 

" t { l l P l - - P 2 [ I t ' J - l i q l  - -  q2H t} , i=1 ,2 .  

We use L e m m a  7.1 and L e m m a  7.2 in the est imates of the differences of for- 

mulas  (3.5)-(3.7) into which we subst i tute ,  p~  qj, and vj, ] = 1, 2. Tedious bu t  
e lementa ry  est imations involving the  three cases of section 5 yield the following 

est imate.  

LE)I)IA 7.3. - There exists a constant  C3 which depends only upon C, K, and  V 

such tha t  for 0 < t < T, 

(7.9) IlPl--P2[It-J- [tql--q~llt<C,t{l[Pl--P~]lt~- llq~-q~]lt}-J-c][[vl-v21prt. 

Also, if we restr ic t  T to sat isfy 

(7.10) 

we have  

(7.11) 

T < (2C8) -1 , 

[[Pl--P~II~+ ]lql-q211t<2CHIvl-v~H[~. 

We shall now use the  representa t ion  of the solution of (2.10) given in (6.6) to 
es t imate  the  continuous dependence of w upon p and q. F i rs t  we shall derive some 
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necessary est imates  on the norms of the operators  in (6.6). We will need the following 
lemma.  

LE~[)IA 7.4. - Le t  X ~  i----1, 2, be Banach  spaces with respect ive norms I ' l l .  
Le t  Y~ be a subset  of X~ which is a Banaeh  space with  norm ll'/[~ and assume 

lyli<c~lly[l ~ when y belongs to Y~ ~nd c, are posi t ive constants.  Le t  A be a bounded 
linear t ransformat ion  f rom X~ to X~ such theft A maps  Y~ to Y~. Then A is bounded  
f rom Y~ to Y~. 

P~ooF. - See [12]. 
F r o m  (6.1a), one can show tha t  ~i~-~: W'--> W with 

(7.12) 11 ~ - 1  IIL(W',W) ~'~ km 1" 

F r o m  [4] and (2.9a) we know tha t  M - ~ : H - - ~ D ( M ) c H  2. Since H ~ - > W '  and 
H 2 ~-~ W = H ~, the hypotheses  of L e m m a  7.4 are satisfied and we know tha t  there 
exists some constant  C4 such tha t  

(7.13) 

Using (2.3), (2.4), (6.1), and (6.2) we also see t ha t  

(7.14) I~¢ -~ ~(t)u]~ < k ~ T l m ( ~  -~ ~(t)u, ~t~ -~ ~(t)u) ] 

= k ~ K ~ ( t ) u ,  ~ - ~  ~(t)u>l 

= k~lll(t; u, ~ - 1  ~(t)u)] 

< K ~ k ; l t u l w ] ~ - l ~ ( t ) U I w ,  

and we have  tha t ,  independent  of t, 

(7.15) I1~(~ -1 ~(t)IIL(W,W) ~ K~]~m 1" 

Then since dt~-l£(t): W--> W,  M-~L(t ) :  D ( L ) c H  2 - ~ D ( M ) c H  ~ and H2~-> W - ~  H ~, 
we can again apply  L e m m a  7.4 for each teJ[T to obtain tha t  [[M-~L(t)]I~(~)(L).D(~5)) 
is bounded  above with the  bounds depending upon t. At  this point  we need the  
following addit ional  assumpt ion:  

(V) The mapp ing  t--> M-1L( t )  is continuous in the uniform operator  topology 
on L(D(L), D(M)). 

Then since 11 M-1L(t)I]L(9(L).D(M)) is bounded  above for each t ~ I z ,  which is a com- 
pac t  set, we see t ha t  there exists a constant  C 5 such tha t ,  uni formly in t, 

(7.16) -1 ~< 
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Using (7.16) and defining the linear propagator as in [4, 10] we see tha t  

t 

(7.17) II o(t, 8)I1~(.(~),.(~)) < exp fc~ d~ 
8 

< exp C 5 T .  

We now use the integral represengation of the solution given by (6.6) to estimate 
the continuous dependence of w upon p ~nd q from the hyperbolic part  of (1.1). 
Le t  w~(t) be the solution generated by p~(0, t) and q~(0, t) in (6.6). Note tha t  since 
D(L) and /?(M) are contained in //3 by (2.9), we are using the H 2 norm on them. 
Using (6.5), (7.14), (7.16), (7.17) and assumption (III),  we obtain 

t 

(7.1s) I~,~(t/-w~(t)l., <. fG(t,  s)M-1[](8, p~(0, s), q~(O, s), w~(s)) - -  
0 

- i(s, p2(o, s), q~(o, s), w~(s))] as ~. 

M-1 

t 

• fl/(s, pl(o, s), q~(o, 81, w~(s)) - / ( s ,  p~(o, 81, q~(o, s), w~(s))I, as 
0 

t 

< (exp ¢~T)C,f(K, Ip~(O, s ) -  p2(O, s)l ÷ KsIq~(O, s) --q~(O, s)] -},- 
0 

÷ K~lw~(s) -- w~(s)l.~} ds 

< (exp C~T)C4[max{K~, Ks}t{llp~--p~llt + ]lq~-- q21[~} ÷ 

t 

0 

Final ly from Gronwall's Lemma we have tha t  

(7.19) Iwl(t) -w~(t)l~, < c ,  max{K~, go} exp {c5 T} exp {Ks C, exp (C5 ~)T}t. 

---c6t{llpl-p211~+ Ilql- q2tl~}. 

We can now apply (6.7) to see tha t  for each t ~ Iz, we have 

(7.20) 

~Tow due to the definition of the norms Jll'Hl~ and II'[[t in (7.5) and (7.6) and the 
fact tha t  K4C 6 is independent of t~ we have the following result. 
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LEPTA 7.5. - For  t e l z  there are constants  K~C6 such tha t  

(7.21) Ill w~(O,. ) - -  w~(O, .)Ill ~ < K~ C6 t{ I1Pl - -  P2 lit -'~ H q l  - -  q2 II d. 

Then f rom (7.11) we obtain  the  result  

L]~)IM~ 7.6. - For  t E I z  

(7.22) Itlw~(O, . ) -  w~(o ,  . )lll~ < 2 C K ~ C o t l l l V l - -  v~lll, . 

Now the restr ict ion (7.10) guarantees tha t  the hyperbol ic  pa r t  of (1.1) is uniquely 
solvable for a given v. Theorem 6.1 guarantees t ha t  the  Sobolev pa r t  of (1.1) is 
uniquely solvable. Thus the  mapp ing  ]3 is well-defined for T restr ic ted b y  (7.10). 
The cont inui ty  of ]3 follows f rom L e m m a  7.6. Final ly  b y  restr ict ing T to sat isfy 

(7.23) T < (2 CK~ C6) -~ , 

we see b y  (7.22) t ha t  the  mapp ing  is a contraction.  An applicat ion of the  contrac- 

t ion mapp ing  theorem guarantees  a unique fixed point  of the  mapp ing  which is a 

weak solution of (1.1) as defined in section 3. 
We thus s tate  the  major  result  of this paper  while avoiding a cata log of ~s- 

sumpt ions  upon the data.  

TK]~OR]~. - I f  T satisfies all of the restrictions (7.3), (7.10), and  (7.23), ~ unique 
weak solution of (1.1) exists. I t  is composed of a we~k solution of the hyperbol ic  

par t  (H) of (1.1) when w(0, t) in ~ in (3.6) is replaced b y  a Lipschitz continuous func- 
t ion v -~ v(t) and a strong solution of the  Sobolev pa r t  (S) when Lipsehitz continuous 

p(O, t) and q(O, t) are subs t i tu ted  into f. 
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