Plane Sections of the Tangent Surface of a Space Curve.

By BucaiN Su (Taiho, Kiangsi, China).

1. In the study of projective invariants of a space curve it is often con-
venient to consider the tangent surface of the curve. WILczyYNsKI (') was the
first one who utilized the plane section of the tangent surface I of a space
curve I' made by the osculating plane at an ordinary point P of I' and called
the osculating conic of the section at P the osculating conic of I'. Certainly,
P is also an ordinary point of the section.

On the contrary, if we consider the other plane section made by a plane n
passing through P, then P is an inflexion or a cusp of the section according
as the tangent of I' at P is or is not contained in wn. In the former case we
have obtained (*) a projectivity 8 between a plane m through the tangent {
and a point P, on { such that the plane section of 7 made by = has P, for
its BoMPIANI osculant O, (%).

It seems of some interest to investigate the remaining case when the plane
section has P for a cusp. For this purpose we have to represent the neigh-
bourhoods of various orders of the curve at P by means of PoPA osculants (%)
and then arrive at certain correspondences which are intimately related to
the projectivity é8 and the polarity & with respect to the osculating conic
of I' at P. '

In a recent paper BOMPIANI (*) has enriched the projective differential
geometry of a space curve in the neighbourhood of an ordinary point by

() E. J. Wirczynsk1, Projective differential geometry .of curves amd ruled surfaces,
(Lieipzig, Teubner, 19086).

() B. Su, On certain quadratic comes projectively comnected with a space curve and a
surface, « Tohoku Math. Journ. », 88 (1933), 233-244.

(®) Concerning BompIANI osculants of a plane curve with an inflexion efr. E. Bompraxi,
Per lo studio proiettivo-differenziale della singolaritd, « Boll. dell’ Unione Mat. Italiana »y
5 (1926), 118-120. See also my paper: Note on the projective differentiol geometry of space
curves, « Journ. Chin. Math. Soe. », 2 (1937), 98-137.

(1) 1. Pora, Geometria proiettivo-differenziale delle singolarits delle curve piane, « Rend.
dei Lincei », (VI), 25 (1937), 220-222,

(®) E. Bowp1ant, Sulle curve sghembe, « Scritti matematici offerti a Luigi Berzolari »,
Pavia (1936), 515-552.
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introducing the plane section of the tangent surface 7 made by a general
plane. As a supplement of his investigation we will show that the two corre-
spondences obtained by BOMPIANI just coincide with & and 8.

The remaining part of this note is devoted to certain configurations pro-
jectively connected with a space curve and a surface. These results were
obtained during August, 1937 and the publication has been delayed by war.

2. Let P be an ordinary point of an analytic space curve I'; the non-homo-
geneous coordinates «, y, # of P are analytic functions of x so that, taking
the tangent ¢ of T' at P for the w-axis and the osculating plane at the same
point for wy-plane with origin P, we have

| ¥ = ax® + b’ + cxt + dax® + (6),
| & = ra® + sa* + t° - U + (),

(1)

where ar == 0 and (n) denotes the terms of degree =# in «.
The tangents of I' describe a developable surface T, namely, the tangent
surface. The equations to T are evidently of the form

r\ E=w+ s
(2) =y + 1,
( C=7¢ 4 p7,
, dy , dz . !
where ¥y = A= denotes another parameter and £, v, { the current

coordinates of a point.
In order to obtain the plane section T' of T made by the osculating plane
of I' at P we have merely to put {=0 in (2), which gives the value for u:

x 1 4¢ 2 )\ ,
p:—gﬁ;{r—gsw+(§?——«gt)w +(3)1.

It follows that the expansion of T at P takes the form

. 3 ., Bas.,
(3) ")—-1“& 'i‘“grg
27 bs N 69 s\ 9al iy,
’*‘}i@(?”“) gl tay &0

The neighbourhood of the 4th order of T' at P determines a polarity &
between a point P, on the tangent { and the line 7, throngh P and in the
osculatig plane { =0 such that the corresponding elements are pole and polar
with respect to any four-point conic of T at P. In virtue of (3) we easily obtain
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the equation to the four-point comic, namely,

3 ., 1s -
4 1&& +§;Eﬂ—n+kn = 0,
k bing a parameter. Let the line £, be given by
(5) {e=n—nE=0
and P, of the coordinates (x,, 0, 0}, the polarity § is then given by the equation
1 1/s 3o
©) a=al+ )

3. Suppose now that a plane m through the tangent / be different from
the osculating plane. The plane section of 7 made by = has an inflexion at P
and consequently determines BoMPIANI osculant O, on the tangent f. Deno-
ting = by the equation

aud O, by the coordinates {x,, 0, 0}, we have (%)
i s .0 .7l
(8) o= ;“3&—3&1'

This projectivity will be denoted by the letter . It shall be noted that the
point P and the osculating plane of I' at P correspond to each other.

As the definition or the equation (8) shows, the projectivity B is determined
by the neighbourhood of the 4th order of T' at P, but it is connected with the
osculating linear line complex of ', which is determined by the neighbourhood
of the bth order. In fact, we can show that the null plane of any point P,
on t with respect to the linear complex coincides with the correspondig plome =
of P, under &.

To prove this, let us denote the line coordinates of the join of two
points (5, 7, ¢} and (5, 7, §) by

ro=80 —8y, ry=E8—8f r,=Ef—F,
r, =08 —n' 7'5:72/"'717, ro=0—1;

the equation to the osculating linear complex of T' at P is easily found to be (7)

9) 3ar’r, — arlr, +- mr, + a*r*r, = G,
where
(10) [ = 3br — 2as, m = bart — 6as® — 9rc + Yrbs.

(%) For the details efr. my paper: On the intersection of two curves in space, « Tohoku
Math Journ. », 39 (1934), 226-232.

("} Cfr. e. g; my paper: Invarianis of intersection of two curves in space, « Sei. Rep.
Tohoku Imp. Univ, », (I), 25 (1936), 22-33,



80 BucHIN SU: Plane Sections of the Tangent Surface of a Space Curve

Consequently, we obtain the equation to the null plane at the point P (x,, 0, 0),

namely,
(11) (ar - T, ) — Br*aen = 0.
Putting this in the form (7) we have the relation
1 a(,b s 1
=)

which is equivalent to (3).

4. We come now to consider the plane section of 7' made by a plane =
which passes through P but does not confain the fangent ¢ of I' at P. The
equation of w is
(12) C+4+ Ay —nf) =0,

where A denotes a parameter. The line of intersection of = and the osculating
plane of I' at P is evidently #, given by (5).

In order to obtain the plane section € in consideration we have to substi-
tute (2) in (12) so as to determine p. The result of computation is as follows:

__ Y7 —yz+ dnfry —y)

/ )\ o 3
‘= My'z —ye + nlaz’ — 2) |
VU ¢+ My — n) '

These equations represent the projection of the curve C in the n{-plane.
Substituting (1) in (13} and putting

(14) X=—>n Y=—%

for the sake of convenience, we obtain

(15) X:m?+2{—)+~qm3+ 39—0—4:—7‘—|~’Z-[2+4:i~ x*
a n a  m o wn n*
d 8 ¢ ar ab 0 br a®\ .
%—(4&%—6E+10h+14)\—%2+20ﬁ;+ba—n+6m+8h~é)w +(6)
2, - 2
(16) Y::Zm3+3(s+fg>x*+<4c—:§+4t+6%&;+6%{ +6%@)ws

1
n

abr o S

2 3, 2
-+ (Bat -+ 868 -+ 9or) +-5u +8 e 2 %+ (7).

It follows that the curve C has a cusp at P and therefore that we can repre-
sent the neighbourhoods of various orders by means of Popa’s method.
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For this purpose it is convenient to rewrite the expansions (15) and (16)
in the form used by Popra, namely,

— §?
(17) X =1,

|
Y = A + $t* + CL + Dt + (7).

In virtue of (15) there is no difficulty in expanding x into a power series
of #. A simple calculation suffices to demostrate that

(18) x=1-+ A + B + C + (b),
where
-3
a  n
56* 3¢ 3b 1da? ¥
v v i 2
(19) B_2OL2 50 Tontog i’
3 2
=9 _99 g% 49m6b—_€"-’;+1(5“—’_}n3§).
a a a n an n A\ m n

Substituting (18) in the right-hand side of {16) and reducing, we obtain that

&:27‘, 53:-6147"4“3(84—%),

k ,31@1+31

|

+ 54(4 2 44ty
n

+ 2 (Bat 4 Sbs -+ 9or)

-+ 17

6br

@:6(B+A°)+19(s+ )A+4~+4t+6ﬂ+n 67,

D =230 + 6AB + 4% +5(s+ )(4B+GA2}

a’r br r?
L6746 >—)
2 a/'&/r
+5u+8a~f+ 12 —
n n
78
an’

5 We need to recall some notions due to Pora for a plane curve C
with a cusp P (®). If the curve be represented in the form (17), then oc® cusped
cubics determined by six consecutive points of P on C are representable by

the equation

(21) (1 —uX —0Y)Y? — ¥ X — pY) =0,
#, v and w being parameters, The value of p and consequently the line (d)

joining P and the only inflexion of the cubic (21) will be determined when
we impose the condition in order that the cubic should pass through a new

(®) L. Popa, loc. cit, § 1.

Awnnoli di Matematics, Serie IV, Tomo X VIIIL
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consecutive point of C. In fact, we have that

288

b= g
and therefore that the line (d) has the equation
(22) 30X +28Y = 0.

That is to say, the neighbourhood of the 6th order of C at P determines the
covariant line (d).

In virtue of successive neighbourhoods of € we can easily determine u
and v and, in consequence, the cusped cubic (21) which osculates C at P. Thus

’u_..z&a__f(@)?

23) |"=*a sl -
| ®_ 8 @
| a* ok 27 &+

In particular, we obtain the inflexional tangent

(24) uX +0vY —1=0,

a covariant line determined by the neighbourhood of the 8th order of C ai P.
This line intersects the line (d) and the cuspidal tangent at the principal
poinis O, and O, respectively, the former being the only inflexion of the
osculating cusped cubic.

6. Let us now apply the above result to the configuration considered
in § 4. From (14), (19), (20) and (22) it follows that the covariant line (d) for
the plane section O of T made by the plane (12) is given by the equations

(12) S+ A — nE) =0,
r 1s b a
(25) (e o mf=0

Since the latter does not contain A, we have the following theorem:

Let t, be any line in the osculating plane © of a space curve I' at P and
through P, but distinct from the tangent t. If we consider all the plane sections
of the tangent surface T wmade by planes through t,, then every section has o
cusp at P and the covariant line (d) of PorA describes a plane ®,. The corre-
spondence between t, and ®, s projective.

This projectivity can also be defined by the following method.

Eliminating «, from (6) and (8) we have
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The plane (7) has then the equation

which is precisely (25). In other words: The projectivity betiveen the line t, and
the plane &, is the product of 8 and .

7. Before we proceed fo study the loci of other PopA osculants it is con-
venient fo give here some remarkable properties of plane sections of T made
by a general plane «, as BoMPIANI (°) has shown.

Suppose that the plane « does not pass through P so that its equation
is of the form
(26) %, + g1 +al o, =0 (2, == 0).

In order to express the representation for the section I', of T made by «
we have as before to substitute (2) in (26) so as o determine p:

2 A o,y 4 L -
1+ o,y + a2

Whel‘e C?k = C{k/ai {k o 2, 3, 4}-
Therefore the projection of I', in the %{-plane is representable in the form

g =YY+ o (yd — Y2 —ay
{27] 1+ “zy, “+ o‘sz’ ’

(= a4+ a(ys — yd) — a2
1+ o,y + af

\

In virtue of (1) the right-hand sides of (27) are expansible in power series of a.
The result of carrying out the computation is as follows:

n = — 00,2 + (4@2&2&; — a — 3baJa* + (3),
¢ = — 3ra,x® + 2| Bara,e, — (r 4+ 2sa,)} e’ 4 (4).

Expanding further { in power series of v we have

(28) C=am’ +amn’+ @),
where
a 31
o T Z‘ =
29) 1 oo,
@, = Ty | 6ara e, — ar + (das — 9bria, | .

) E. Boxpraxi, Sulle curve sghembe, loc. cit.
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Now, let us project the curve I' from P in the same plane o, the projec-
tion being denoted by C,. If X and Y be the points on « at which « inter-
sects the tangent of I' at its generic point M and the line PM respectively,
then they describe the curves I'y and 0,, and X must lie on the tangent of C,
at Y. When M approaches P along I' both X and Y approach the point P,,
i. e. the intersection of « and {. Hence C, and I', touch at P, and the common
tangent is the intersection of « and the osculating plane of I' at P.

Let M have the coordinates (x, ¥, #); then those of Y are

E=px, n=0py, C=rz
Since Y must lie on o, we have
plx + &zy -t &sz) + ;‘4 =0

Therefore the projection of ¢, in the n{-plane is given by the equations,

@y

=

L 2,0 4 0,2

| :
? 7

& 0y + 0z

(30)

Expanding the right-hand sides in power series of a by means of (1) and
expressing then { in power serier of 7, we have

(31) C :&0772 ‘”*"5;17}3 + {4)7
where
' a/ _ 7’
[} - = 1
oo
(32) \ ) !
? a, = — (a*ra, + as — 2br).
' atol

9. In virtue of (28) and (31) we can easily prove the two theorems due
to BoMPIANT and appreciate his result by showing that the two correspondences
there obtained coincide with & and 3.

From (29) and (32) it follows that

33) % 8,

3
That is, the invariant of SEerE of I', with respect to C, is equal to i C.

Servais and BoMpIaNI have shown.
The neighbourhoods of the 3rd order of both curves C, and I', at the
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point P, of contact determine a covariant line r of the equation (26) and

1 a, @
34) N A (—’ — :’—)C =0.
( 2(”0 - a’é) @ &y
The latter can be wriften as
(39) 2r*y -+ (2&8 — 3br + 6—_@)@ =0
a

4
if we substitute the values of a,, a; given by (29) and (32). Noticing that the
coordinates of P, are

(36) Xy == = &4) 0, 0,
we can further put (35) in the form
C e 7\7] = 0

provided that

I af,s b 1

1*5(2;“32»—50)
or

1_g98 gb g7l

' r o oA

]

Thus we have the following theorem:

For a point P on the curve I' and oo planes o in space there are only oo
covariant lines r, forming oo' pencils, each of which has point P, on the lan-
gent t of I' at P for ils centre, and o plane = through t for its base. The cor-
respondence between P, and w is the projectivity &.

The neighbourhoods of the 3rd order of (O, and T, also determine a cova-
riant point ¢, in such a manner that the ramaining common chord of any

two four-point conics of C, and T, always passes through the fixed point @,.
The coordinates of Q, are given by

Evan+al+a,=0 (=0 np=—_0"%
a

“a, — = q,

0
or

_ (2ar + asw,)x,
3a*ra,u, — 2ar — asw,

3atra?
— 4

A= = =
Satra,0, — 2ar — asa
2774 4

F=0.
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Denoting the join of this point and P by {,:

=7 —nf=0

we obtain that ~
1 2r 4y

n Bara,

and therefore that the correspondence between P, and {, takes the form
x, 2\ 7

Thus we obfain the following theorem:

For a point P on I and oo® planes o in space all the covariant points Q,
lie in the osculating plane of I' at P. The correspondence between P,, the point
of intersection of « and t, and the line PQ, is the polarity §.

From what was stated above it follows that the polarity § and the pro-

jetetivity &8 are fundamental in the study of plane sections of the tangent
surface of a space curve.

9. We are now in a position to study the other Pora osculants of the
plane section of 7 made by the plane (12). In order to simplify the calculation
it is necessary to use some canonical expansions of I' instead of (1). Take, for
example, one of the fundamental tetrahedrons associated at P of I' for the
tetrahedron of reference, so that the expansions of I' become (')

y‘:lwzwée?,]‘s_'_(e)?
§ | =3% 15
(87) ) )
y— o T 6 rd
lz_Gw 1093.90 -+ (7).
Thus, putting
1 2
@ =3z, b=c¢=0, d= -1—5—83:
1 1
r=g, 8= =0, u= 1~063
in (19) and (20}, we have
_ 1 L1, B, 51
2w’ 8wt 8’ 5 e 120
1 1 1 1
d=3 S=—5, C=gzgm
1 7 1 11

30 % " 24 an* 24 n?

{t9) Cfv. B. Su, Note on the projective differential geometry of space curves, loc cit., p. 113,
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5

Therefore the plane (25) becomes
(38) dny — 3L =0
which corresponds to the line £,:
(39) (=7 —nE=0.

The quantities # and v given by (23) now take the values

91 1
“=\6w T wm)

31 151

v riE T ew

H

(40) ’
|

and consequently determine the line 0,0,, namely, the inflexional tangent of
the plane osculating cusped cubic of the section in consideration. From (12},
(24) and (40) we obtain the equations of the line 0,0,:

’\ § 4 My — ng) =0,
(41) ’ (QL 2 :;}6 31 1_51C { =0
r Sn‘l+_)n+(5 sV i T aw, T
It follows that the principal point C, has the coordinates
91 2! 91 2!
(42) E=(55+3) =gy ;) o E=0

and therefore that the correspondence belween O, and the plane of the section
is projective.

Especially when O, coincides with 132, the other intersection of ¢, and
the osculating conic of T at P

3
43 =&
(45) n=z&
we have A — — gﬂ and therefore the corresponding plane
8
(4 §— gl — nE) =

The latter can, however, be constructed in the following manner: Denote
by P, the pole of £, with regard to the osculating conic (43) and construct

the corresponding plane PP, P, of P, with respect to ¢8; then the BoMPran:

line I, of the plane section of T made by this plane must he in the plane (44).
In other words:

The plane (44) is one face of the fundamental tetrahedron T(®,).
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In fact, the coordinates of P, are

(45) 7 =gn 0, 0.
Therefore the corresponding point P, of the coordinates ('!)

9
E:S{nm nzémg’ ngmi

satisfy (44), which was to be proved.

10. Let us attend to the principal point O,. The coordinates of this point
must satisfy (38) and (41) so that

411
E 3w
wi+}1_%@8 ’
nk | 2p? 513
1
(46) TET1L
nh | 2p 5%3
4
g%
=111
| S — o,

From this we infer that when the plane revolves about the line t, the corre-
sponding principal point O, describes o ramge of points and the correspondence
i8 projective.

There is no difficulty in finding the base of the range. Elimination of A
from (46) gives the required:

' 3
\ Eza’l’l/ﬂ.
) | |
e (L 18 )y 1 b
\&_,-w- g;;/“}‘*i—s 3% 7]—1"5?2,

Here we will give a construction for this line. We notice first that it
intersects the tangent ¢ of I' at P,, namely, the pole of #, with respect to
the osculating conic. In order to determine another point on (47) it is conve-
nient to consider the line PP,, i. e., the BoMpPIANI line /.. On the latter we

(1) Cfr. B. Su, Note on . . . , loc. ¢it, p. 115
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have geomeirically defined oo® points ¢, depending on a parameter A ('*), whose
coordinates are

& - ’
81X .
*+ fo 7

Substituting (48) in (47) and remembering that

Lo =5 N,

3
we have that ¢ , lies on the line in consideration. Thus follows the result:
—3

For a fixed lne t, the line described by the principal point O, is the join
of P, and Q_,.
2

Further elimination of »n from (47) gives the ruled surface of order 3:

4 . 3
(49) §n3+593€3 —Enl+ 3 =0.

11. If X be eliminated from (41), then we obtain the locus of the line 0,0,:
- . 3 151 . 2, (3 151\,
B T s g =2 2 (0, Lo,
a quadric corresponding to the line t,. This result follows also from the fact
that O, and O, describe two projective ranges of points on the lines (47)
and #,. The principal points O, and O, are therefore the points of contact of
the quadric with the planes (38) and (12) respeetively.

When the line {, varies the corresponding quadric (50) envelopes an alge-
braic surface of order 6, as it may easily be seen by eliminating # from (50)
and its derived equation with respect to 7.

{12} Ofr. B. Bu, Nofe on . . . ; loc. eit., p. 118

Annali di Motematica, Serie IV, Tomo XVIII, 12
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In the same way we can show that the locus of the osculating cusped
cubie is a cubic surface when the plane of the secfion revolves abouf the
line ¢, and that this cubic surface envelopes an algebraic surface of order 10.

12. As an application of the above results we shall derive some cova-
riant figures for a pair of intersecting space curves and, in particular, for
the asymptotic curves passing through a generic point on a surface.

Let C and C be two space curves having O for their point of interse-
ction with distinct tangents #, £ but with the same osculating pléme ¢ ¢). 1t

{ and ¢ be taken as axes x and y, then the expansions of the two curves in
the neighbourhood of O are of the form (1) for C and

51) o = ay® -+ By’ + vy + % + (6),
_ =gy’ +oy' + + oy +(7)
for C.
For every line f#, through O and in the plane (¢, f) there exist two planes,
each of which passes through one of { and {; and corresponds to the tangent
surface of the curve in the manner quoted in § 6. Denoting £, by the equa-

tions (b), we obtain these plane s

. r 1s b a\,

2) ey o =0

5: Ppgflo B e\

53] “g+<2p : 2%)?;—0.

Especially when £, coincides with { the plane (52} becomes

5 r ls b\, _

(54) at (2 r a)° 0-

Similarly, when ¢, coincides with ¢ there is obtained the plane
- e lo B\ _

(55) P+ (% m)c_o.

These planes intersect in the dual line of BoMPIANI (**). Thus we have a new
definition of this covariant line.

In general, the planes (52) and (3) corresponding to the same line &
intersect in a line through O, whose locus is a quadric cone of the equation

. 1 w7 1s b\ | 1 .,
(56} 3§€+(é"§"g)“=§3a”"*‘(‘z‘;-—oz)cﬁﬂ““%'-

{#3) Ofr. my paper: Invariants . . . , loe. cit,, p. 24
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It shall be noted that the polar of the plane (¢, {) with respeect to (56) is also
the dual line of BoMPIiaNI.

Especially when the curves € and C are the two asymptotic curves through
a non-parabolic point O of a non-ruled non-degenerate surface S, then, using
usual notations, we have the cone

1 1 9,

(67) (& + 5 ‘FCXW +3 CDC) = 15 515"
where B, v are fundamental quantities of FuBINT and
__3log By? __dlog By

(58) (I)__-—a?z——, V== v

This cone being covariant with respect to projective deformations was obtained
by R. CAnAPSO (') and thus possesses a new definition. The above result gives
further significances for the first edge of GREEN.

13. We proceed to establish certain further configurations projectively
connected with the curves ¢ and C.

The projectivity between a plane & through f, and the principal point O,
of the section made by & suggests us to research what position on f, the
point O, should take in order that the corresponding planes with respect to
the tangent surfaces of ¢ and C always coincide.

For a plane through #, there are in general two points 0, and 0, on £,, each
of which stands for the second principal point of the plane section of the tangent
surface of each curve made by @, so that the correspondence between 0, and 0,
is projective. Hence the position we have to determine must be one of the
double points of this projectivity. O is evidently the double point, since the

corresponding planes coincide with (f, ). Tt follows that there exists another
point D) on each line £, and therefore one plane & through #, satisfying the
required condition-

For the purpose of calculating the coordinates of D we have merely to
consider the principal point O, of the plane

(59) Ay —nE) =0
with respect to the curve C, for the principal point O, of the same plane

(*%} R. Cavarso, Sugli enti proiettivi legati al generico punio di una superficie, « Atti
Acad. Gioenia », Cataxia, (5), 19 (1933), Mem. XIV, 1-8. T was not aware of the cone of Calapso
until & paper of B. Bortolotti appeared. Ofr. Enma Borrororr, Quadriche di Moutard e
fascio canonico, « Rend. R. Accad. dei Lincei », (VI), 25 (1937), 158-165.
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may easily be obtained by interchanging a, b, ¢, d,...: 7. 8, {,:..; n and % with
1
By 7 8y ey £, 0, Ty - and — An respectively.

From (19) and (20) we obtain

‘a:%ﬂ, %:3(8»—26—7‘»—@:\),
(60) " a n
r

@

bs as

2 2
br @ g ypbs gy
AT a n -

@ =21 97 15 4 397
a n "

Further substitution of these values in (23) gives

21 s° 9bs _{_(5@3_%)1 9a._61.
n  4n? AR

s - c 1
e i S F b

The coordinates of O, are consequently given by

y w a
(bZ} gz*'l/_ﬁt’ VI=“@, L=0.

In the same way we have that the coordinates of O, are

<4 o

where
oY T, %162 @_c f)occf "y _? o s P
64 u= 9a+45~_4?+9a9+(§? 6@);@ St 466

From (62) and (63) it follows that these points 0, and 0, coincide each
other when, and only when,

This gives the value of X:

il £ 1__9 292 2
{66) b(ap+ow)i-_2iaa%—1aa;&+
¢ ¢ 218 bs 5“,M*>?
+koc(-«—9a 22 &;)~ (‘_Z'b 68) | -+
{ L_Emﬂfwﬁﬂ @%_ )
+?a( AP R P 2r GbE

O
I
o

Substituting this in (61) and (62) we have that the coordinates of 0, =
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are given by the equafions

ap+or 9 1

— i o e N2
nw—__4ap%2 4ocrn
¢ t  21s bs Dag
- —4- — — s— —06
(0G4 TR T )
SRR L P
—37(95&_'45 4 ocp)+P 2 r 6 n’
w=mnk =0
Therefore the locus of D is a nodal cubic in the plane (¢, {):
9 A
(67) (ag + ar)en — (—i' a*pg® + i atry?
, 210_2_ Bo bas .
+?r(9——-4— T 9“P)+p<§? 6b§§~q
¢ i 218 bs bao .

whence we obtain that three points of inflexion lie on the line of the equa-

tions { =0 and
(68) 37(92» 4g+g¥f- 9B“)+p<g@—bb>fa
bas
rlay — )|

40" o
21 ¢* bs
_.;p<9& ~4~ w28 9&)+
+ apg + or = 0,

a covariant line determined by the neighbourhoods of the 5th order of both the
curves C and C. The lines joining D and each inflexion are
(69) a°el® — a'ry® == 0
and therefore apolar to the tangents ¢ and ¢

It the corresponding plane @ of D be denoted by the equation

then we have
u, = — 6(ap -+ arn,
u, == 6(ag -+ ar),
%, == - o’n’ ——-9-@(1‘31
(71) * T4 47" n

+a@g_4a+%i~9&)

Das
e 4o Tap —M(??“Gb)

o)

N c ,t 21¢ bs
\ zd(ga 41‘+Z';;§_96;‘>+
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and therefore the envelope of @ is a cone of the 3rd class:

- 9 9
(72) 4 a0t} + i aq’u} — 6{op + ar)u,u,u, -+

bag

a(z) o 6{5) 5 wn, +

2 2 £ D
+=G/ 91’__43_*__];9;,_ 9@)—}—& ?9”_9__65 E%@?:O.
o p 4t ap 2r yorE
This cone, being determined also by the neighbourhoods of the 5th order of C
and C, has three cuspidal tangent planes, which are concurrent in the line
(73)

21 °
e 99__45_,_._1__{’__4_9@
} a r o 4 ar

Ein:il=

1 (g¢ 4t S gbs bas .0
.,_.loc{Qa 4T+4?”2 9(“’ +@29 Gﬁ)t

14. Having thus obtained several remarkable configurations, we shall now
apply them to the interesting case where (. and ( are asymptotic curves of

a surface and then derive certain new elements projectively associated at a
generic point O of the surface.

Setting, as usual, 6 = log fy and

P

L= Guu 9 8?&3 — QPH _58?) - {30,

L

M= 0y — 500° — 2Py — 0 — 7,

the nodal cubic (67) in case is given by

(74) % Br(BE" — 1) — 20vEy

4 Un 5 2 2;' 2
+3~(3—~2L + 5, (log 1), +@B - k-%@‘lfigﬂ“

% ol
— 38} — 2M + 59, (log 3), + =22 —-Zwe+§ d)gg‘- = 0.

Therefore the three points of inflexion are the intersections of the tangents of
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SEGRE and the covariont line:

(75) g

8~3y%m 2L Mi—:')ﬁu(logﬂu—i—%&“—

In the same way we obtain a cone of the 3rd class, namely,

7Y

45 ) Yoo 5 2 =
§ + 58, (log B, -+ 41F+ <I>§i§

5., 25
— 2 — 2 —{},
R BW | -+ 208y =0

(76) 2 (ot + ) — 403y,
Yoo By 25
+3§;—~9M+5ﬁv{log§)v+%~zlﬂz S0 L
+3‘(}——2L+58u(log\') +§%ﬁ—z®2 —Aﬁwgu‘fuzz().

The three cuspidal tangent planes are concurrent in the covariant line

7 £ P Buu 5 9 25
(77) &:T}:C:&*%—’L+5@ (log ), + "% — ~ @ +_pw$
B 4 6
5 25
:3ﬁ3—9M+5e,,(1og§)v+L;z_..4wz S (p%

: — 408y

and each of them intersects the tangent plane of the surface in one fangent of
SEGRE.

15. We shall conclude this paper with a remark on the elements deter-
mined by the neighbourhoods of the 6th order of both curves C and C. As
was shown before, there are two quadrics, each of them being con-
structed with respect to each curve and to the same line £, in the plane (1, 7).
These quadrics intersect in £, and a twisted cubic so that there is such
a twisted cubic corresponding to #, It is easily seen that this element may

be found by using the value of u given by (61) and that of v derived from
(19), (20) and (23):

be b*s 9 ¢s bt bu
7 =9 =" —6— — 2
(78) v )cm‘ 60&1" 9&1 +2m + (,m~2+,2fr-2
238 3bs* .8t L C b3 bs 3Bat 27 as?
Sritaa %5 ﬁ@;+ Pk zw*"§ﬁ)+

15ab 150\ b o 3a o0 T8\ 1
( ) i — (21, + 2@@*

8 rn? 9 p?
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Without expressing the equations of these quadrics we merely note that
one constructed by means of ( and # is given by
a r 4 ar

be d b's  9es bt Dau

— 5o+ 25 45—

ar 7 ar* 2+ o 20r*
23 s* + 3bs*
Brt 4yt

_E! 21Y L T8\l
&e6m+<.41a+27)$€_—.0.

(79) tf(~9
—6%8;)(:4—@:

In the same way we obtain another quadric for C and ¢:

el 9¥ gt 2L oo
(80) 5?< 9&+4;—.4P2+9;p>g
2 = ‘
+<9@i’~—6§——9§—2+?1§ g BT Doy
e ept 2p° 2
23 38 aot i
76

B -
_.ngepg+(21&+% <|=o.
It follows that these quadrics intersect in f, { and a conic, whose plane passes
through O when, and only when
(81} ap — or = 0.

In the case of two asymptotic curves of a surface the last condition is
evident, so that we are led to a conic through O projectively connected to
the surface at O.




