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I. In  the s tudy  of p ro j ec t ive  inva r i an t s  of a space  cu rve  it is of ten  con- 

ven ien t  to cons ide r  the t angen t  sur face  of the curve .  WILCZY~SKI (~) was the  

f i rs t  one who u t i l ized  the p l ane  sect ion of the t angen t  su r face  T of a space  

cu rv e  F made  by  the oscu la t ing  p lane  at an o rd ina ry  point  P of F and cal led 

the oscu la t ing  conic  of the sec t ion  at P the oscu la t ing  conic  of F. Cer ta inly ,  

P is also an o rd ina ry  poin t  of the sect ion.  

On the con t ra ry ,  if we cons ide r  the o ther  p lane  sect ion made  by a p l ane  

pass ing  t h rough  P,  then  P is an in f l ex ion  or a cusp of the sect ion accord ing  

as the t angen t  of F at P is or is not  con ta ined  in =. In  the fo rme r  case we 

have  ob ta ined  (~) a p ro jee t iv i ty  ~ be tween  a p lane  = th rough  the t angen t  t 

and  a point  P~ on t such  that  the p lane  sec t ion  of T made  by = has  P~ for  

its BOMPIA~¢I oseu lan t  0~ (~). 

I t  seems of some in te res t  to inves t iga te  the r e m a i n i n g  case w h e n  the  p lane  

sec t ion  has  P for  a cusp.  Fo r  this pu rpose  we have  to r e p r e s e n t  the  neigh- 
r 

bourhoods  of va r ious  orders  of the  c u rv e  at P by means  of POPA osculan ts  (4) 

and then  a r r ive  at c e r t a in  co r r e sp o n d e n c e s  which  are i n t ima te ly  re la ted  to 

the p ro jec t iv i ty  ~ and  the po la r i ty  $ wi th  respec t  to the oscu la t ing  conic  

of I ~ at P.  

I n  a r ecen t  pape r  BOMt'IA~¢I (5) has  en r i ched  the p ro jec t ive  d i f f e ren t i a l  

geo me t ry  of a space  curve  in the n e i g h b o u rh o o d  of an o rd i n a ry  po in t  by 

(~) E. J. WILCZV~SX b Projec t ive  d i f ferent ia l  geometry  ,of  curves a n d  ru led  surfaces,  
(Leipzig~ Teubner, 1906). 

(~) B. Su, On cer ta in  quadra t i c  cones project ive ly  connected w i t h  a space curve a n d  a 
surface,  ,. T(3hoku Math. Journ. ,~, 88 (1933), 233-244. 

(~) Concerning BOMPIANI oseulants of a plane curve with an inflexion efr. E. BOMP~ANI, 
Per  lo s tudio  pro ie t t i vo -d i f f e renz ia le  del la  singolaritdt,  ~, Boll. dell'Unione Mat. Italiana ~>~ 
5 (1926), 118-120. See also my paper: Note on the project ive  d i f ferent ia l  geometry  o f  space 
curves, ,~ Journ. Chin. Math. See. % 2 {1937), 98-137. 

0) I. POlkA, Geometr ia  pro ie t t i vo -d i f f e renz ia le  delle singolaritdt  delle curve p lane ,  ~ Rend. 
dei Lincei ~, (VI), 2~ (1937), 2"20-,99:2. 

(~) ]~. BOMPJA~I, Sul le  curve sghembe, ~ Scritti matematici offerti a Luigi Berzolari ,>, 
Pavia (1936), 515-552. 
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introducing the plane section of the tangent surface T made by a general  

plane. As a supplement of his investigation we will show that the two corre- 
spondences obtained by BO~[PIA~I jus t  coincide with ~ and 3. 

The remaining part  of this note is devoted to certain configurations pro- 

jectively connected with a space curve and a surface. These results were 
obtained during August, 1937 and the publication has been delayed by war. 

:t. Let P be an ordinary point of an analytic space curve F; the non-homo- 

geneous coordinates w, y, z of P are analytic functions of x so that, taking 
the tangent  t of F at P for the x-axis and the osculating plane at the same 

point for xy-plane with origin P, we have 

y ~ a x  ~ + bx  ~ + c x  ~ + d~c ~ + (6), (1) 
t z = rx2 -4- sx~ ~ + t x  5 -~- u x  6 + (7), 

where  a r  ~ 0 and (n) denotes the terms of degree ~ n in ~c. 
The tangents of F describe a developable surface T, namely, the tangent  

surface. The equations to T are evidently of the form 

i { - - x + ~ ,  

(2) ---- y + 

where y ,  _ d y  z' dz  d-x' - - ~ ;  ~ denotes another  parameter  and ~, ~, ~ the current  

coordinates of a point. 

In  order to obtain the plane section F of T made by the osculating plane 
of F at P we have merely to put ~ - ~ 0  in(2)~ which gives the value for ~t: 

~ - -  3r  r - - ~ s x +  r 3 t x ~ + ( 3  " 

It  follows that the expansion of r at P takes the form 

3 o 3 a s  ~.~ 

+ N --c - - g ~  + ; T I  +(5). 

The neighbourhood of the 4th order of F at P determines a polarity ~' 
between a point PL on the tangent t and the line t,, through P and in the 
esculatig plane ~ ~ 0 such that the corresponding elements are pole and polar 

with respect to any four-point conic of F at P. In  virtue of 13) we easily obtain 
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the equation to the four-point conic, namely, 

3 ~ l s ~  

k bing a parameter. Let the line t, be given by 

(5) ~ = ~ - -  n~ = 0 

and P~ o[ the coordinates (x0, 0, 0), the polarity ~" is then given by the equation 

1 l ( s  ~ )  
(6) x~ = ~ ~ + " 

3. Suppose now that a plane ~z through the tangent t be different from 
the osculating plane. The plane section of T made by u has an inflexion at P 
and consequently determines BOMPIANI osculant 0~ on the tangent t. Deno- 
ting 7: by the equation 
(7) ~ + ~ = 0 

and 0 4 by the coordinates (~co, 0, 0), we have (6) 

1 ~ 2 s 3 b 3 r i  
(8) xo r a a ~" 

This projectivity will be denoted by the letter ~.  It shall be noted that the 
point P and the osculating plane of I' at P correspond to each other. 

As the definition or the equation (8) shows, the projeetivity ~ is determined 

by the neighbourhood of the 4th order of F at P, but it is connected with the 
osculating linear line complex of F, which is determined by the neighbonrhood 
of the 5th order. In fact, we can show that the nul l  p lane  of  any point P~ 

on t with respect to the linear complex coincides with the correspondig plane 7: 
o f  P~ under  ~ .  

To prove this, let us denote the line coordinates of the join of two 
points (~, ~, ~) and (~', ~', ~') by 

r ,  = ~ ' - -  ~'~, r.~ = ~ ' - -  ~'~, r~ = ~ - -  ~', 

r~ = ~/~ - -  ~ '~,  r~ : ~ '  - -  ~, ro : ~ - ~ ' ;  

the equation to the osculating linear complex of F at P is easily found to be (~) 

(9} 3ar3r~ - -  arlr2 + mr  4 + a~r~r~ = O, 
where 
(10) 1 = 3br - -  2as, m = 5art - -  6as ~ - -  9r~-c + 9rbs. 

(~) ~ o r  the deta i l s  err. my  pape r :  On the in tersect ion o f  two curves in  space, <, T6hoku 
Math 5ourn.  ,), 39 (1934), 226-232. 

(7} Cfr. e. g. m y  p a p e r :  I n v a r i a n t s  o f  in tersect ion o f  two curves  in  space, ~ Sei. Rep.  
T6hoku Imp.  •Tniv. >>, (I), 25 (1936), 22-33. 
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Consequently, we obtain the equation to the null plane at the point Pl(xo, O, 0), 

namely, 

(11) (ar + l~o)~ - -  3r~xo~ -~ O. 

Putting this in the form (7) we have the relatiort 

~ = - - ~  3 - - - 2 - +  

which is equivalent to (8). 

4. We come now to consider the plane section of T made by a plane u 
which passes through P but does not contain the tangent t of F at P. The 
equation of 7: is 

(12) ~ + ~(~ - -  n~) ~- 0, 

where ). denotes a parameter. The line of intersection of 7: and the osculating 
plane of F at P is evidehtly t,, given by (5). 

In order to obtain the plane section C in consideration we have to substi- 
tute (2) in {12) so as to determine ~t. The result of computation is as follows: 

yz' - -  y' z + }~n(xy' - -  y) 
= z' + )~(y' - -  n )  ' 

~13) 
=_ ~ { y ' z  - -  y z '  +-  n ( x z '  - -  z) f 

z' + ~lY' - -  n) 

These equations represent the projection of the curve C in the ~-plane. 
Substituting (t) in (13) and putting 

1 
(14) X : - - 5 ~ ,  Y = - - ~  

for the sake of convenience, we obtain 

(: :) (: o) 4r 7b + 4 x (15) X - - x  ~ + 2  + x ~ +  3 + ~ + ~ -  n~ 

+ (  4d+6a- s__kn + 10-~ + 1 4 ~  - t - 2 0 n  ar  abn~ +6--+6anb~ kanbr + 8 ;;3)a~ + ( 6 ) a  8 

[t6) Y = 2 r x ~ + 3  S + n /  + 4 + 4 t + ( J ~ - t -  n + 6 ~  a~ ~ 

a2s ~,  a~r ~ a ~  ar  ~ ~.  rs 1 1 (5at + 8bs + 9cr) A- 5u + 8 n~ + l z  ~ + z l  7 +21 ~ +1~ ~-~ x ~ + (7). 

It follows that the curve C has a cusp at P and therefore that we can repre- 
sent the neighbourhoods of various orders by means of Popa's method. 
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For this purpose it is convenient to rewri te  the expansions (t5) and (16) 

in the form used by PoPA, namely, 

t X ---- t ~, 
t17t 

} Y :  ~ t  ~ + ~ t  ~ + Ct ~ + 9 t  o + (7). 

In  virtue of (15} there is no difficulty in expanding x into a power series 

of t. A simple calculat ion suffices to demostrate that 

x : t + A t  ~ -I- B t  ~ + Ct ~ + (5), (18) 
where  

119) 5b-~ 

(20~ 

3o 3b 1 a "~ r 
B - -  2 W  2 a + g n +  2 n  ~ 2 i n ,  

b:~ 4 c b ~ b c - - 2 d  8 + - - 6  
C - - ~ 9 ~  a - -  ~ n an  n . ~ + ~  5 ~ - - 3  . 

Substi tuting {18) in the right-hand side of {t6) and reducing, we obtain that 

(or) 
~I -~- 2r, ~ - -  6Ar  + 3 S + n , 

C:6r(B+j~}_t_12[s+ar\A_t_4aS~ _n} a~r 6br r ~ - -  + 4 t - i - 6  j - - -  + 6 - -  
n h T n ~ n '  (or) 

~ = 2r(3C + 6 A B  + A 9 +- 3 s + -~ (4B + 6A ~) 

( 6 a ' r  br r ~ ) + 5A 4 as -t- 4t -~- -+- 6 - + 6 
n ~ n 

1 
+ n- (5at -~- 8bs + 9cr) + 5u -t- 8 a"-Sn~ -t- 12 aS"n --~ 

abr ar" rs 
+ 21 - 7  + 21 -l- 17 - -  

n-.  ~ ),n" 

5 We ~eed to recall some notions due to POPA for a plane curve C 
with a cusp P (9. If the curve be represented in the form (17}, then ~ cusped 

cubics determined by six consecutive points of P on C are representable by 
the equation 

(21) (1 -- uX - v Y ) Y ~ -- a~(X -- ~ Y)~ = O, 

u,, v and ~t being parameters.  The value of b and consequently the line {d} 
joining P and the only inflexion of the cubic (21) will be determined when 
we impose the condition in order that the cubic should pass through a new 

(S) I .  POPA, 1OC. c i t ,  § 1. 

A,~tnali di Matemativa; Serie I~  ~, Tomo XVII I .  
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consecut ive point  of C. In fact, we have that 

2~  

and therefore  that  the l ine (d) has the equat ion  

(22) 3 g ~ X - t  - 2~Y---- 0. 

That  is to say, the neighbourhood of  the 6th order of  C at P determines the 

covariant line {d). 
In  vir tue of successive ne ighbourhoods  of C we can easily de termine  u 

and v and, in consequence,  the cusped cubic (21) which osculates C at P. Thus  

v ~= 2 ~ - - 4  -~-  + 2-~-  ~. 

In part icular ,  we obtain the inflexional  tangent  

(24) u X  + v Y - -  1 ---- O, 

a covariant line determined by the neighbourhood o/ the 8th order of C at P. 
This line intersects the line (d) and the cuspidal  tangent  at the principal 

points 0 i and O~ respectively,  the former being the only inflexion of the 
osculat ing cusped cubic. 

6. Let  us  now apply the above resul t  to the configurat ion considered 
in § 4. F rom (14), (19), (20) and [22) it follows that  the covariant  l ine {d) for 
the plane section C of T made  by the p lane  (12) is given by the equat ions  

(12) ~ + ;~(~ - -  n~) = 0,  

a ~ '-t- a 

Since the lat ter  does not contain k, we have the following theorem:  
Let t ,  be any line in  the osculating plane r: of  a ,space curve F at P and 

through P, but distinct from the tangent t. I f  we consider all the plane sections 
of  the tangent surface T made by planes through t~, then every section has a 
cusp at P and the covariant line (d~ of PoP.~ describes a plane 6).. The corre- 

spondence between t,  and (% is projective. 
This project ivi ty can also be def ined by the following method.  
E l imina t ing  ~v 0 from (6) and (8) we have 

1(: ) + 3  - - 2  s - - 3  b - - 3  r l  
r a a)," 
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The plane (7) has then the equation 

- ~ = O, 
a ~ +  r a 

which is precisely (25). In  other words: The  p r o j e c t i v i t 9  be tween  the l i ne  t :  a n d  

the p l a n e  (% is  the  p r o d u c t  o f  3 a n d  ~ .  

7. Before we proceed to study the loci of other PoPA osculants it is con- 
venient  to give here some remarkable  properties of plane sections of T made 
by a general  plane a, as BOMPIA~I (~) has shown. 

Suppose that the plane o: does not pass through P so that its equation 

is of the form 
(26) ~ + ~ + ~ + ~ = o (~, # o). 

In  order to express the representat ion for the section r~ of T made by a 

we have as before to substitute (2) in (26) so as to determine ~: 

- -  y 

~t : - -  1 + ~2Y' + %z' 

w h e r e  o: h = gh / a ,  (k == =,') 3, 4). 

T h e r e f o r e  t he  p r o j e c t i o n  of r a  in  t he  ~ - p l a n e  is  r e p r e s e n t a b l e  in  the  f o r m  

_ y - - ,  x y '  + ~ ( y z '  - -  y ' z )  - -  ~4Y- ' !~ - -  _ = , 

{27) 1 + %y' + %z' 

' - 

1 + ~y + a~z' 

In virtue of (1) the right-hand sides of (27) are expansible in power series of x. 
The result  of carrying out the computation is as follows: 

9 - -  - -  
= - -  2 a ~ z  + (4a-~.~a~ - -  a - -  3 b ~ ) x  2 + (3), 

: - -  3r~4x  ~ + 2 ~ 3 a r % ~  4 - -  (r + 2s~,) I a~ ~ + (4). 

Expanding fur ther  ~ in power series of ~7 we have 

(28) 

w h e r e  

(29) 

a m - -  

a i 2 - ~ - -  

= ao~ ~ + a,~I~ + (4), 

3 1 

4 a ~ 4  

1 
c~ a ~-~ 1 6a~r%a,  - -  a r  + {4as - -  9br)~ 41- 

(9) E. ~OMPIANI, Sulle curve sghembe, loc. tit: 
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Now, let us project the curve P from P in the same plane ~, the projec- 

tion being denoted by C~. If  X and Y be the points on :¢ at which a inter- 

sects the tangent of F at its generic point M and the line P M  respectively, 
then they describe the curves F~ and C~, and X must lie on the tangent of C~ 

at Y. W h e n  M approaches P along F both X and Y approach the point P ~  
i. e. the intersection of a and t. Hence C~ and F~ touch at P~ and the common 

tangent is the intersection of ~ and the osculating plane of I ~ at P. 

Let M have the coordinates (x, y, z); then those of Y are 

Since Y must lie on ~, we have 

+ + -%z) + = O. 

Therefore the projection of C~ in the ~ - p l a n e  is given by the equations, 

(30) 

! 65,iy 

I - I ~ ~ - -  -~4Z 

Expanding the right-hand sides in power series of x by means of (1 )and  
expressing then ~ in power serier of ~, we have 

(31) 
where 

(32} 
i 

- r 

a 2 ~ 4  

l a~ a:: ° (a'raz + as - -  2br). 

9. In  virtue of (28) and (31) we can easily prove the two theorems due 
to BO•PIANI and appreciate his result  b y  showing that the two correspondences 

there obtained coincide with ~ and $. 
From t29) and (32) it follows that 

a 0 3 
(33)  = 

3 
That is, the invariant  of SEGICE of r a with respect to C~ is equal to ~,  as C. 

Servais anal BOMPIA~I have shown. 
The aeighbonrhoods of the 3rd order of both curves C~ and F~ at the 
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point P~ of contact determine a covariant 

1 Ia~ 
+ 

The lat ter  can be wri t ten as 

(35) 2 r ~  + (2as - -  3br + 
\ 

line r,, of the equation (26) and 

aj]; = o 

if we substitute the values of a~, a~ given by (29) and (32). Noticing that the 
coordinates of P~ are 

o _  

(36) x0 ~ -  ~4, 0, 0, 

we can fur ther  put  (35) in the form 

=-0 
provided that 

o r  

). '-:-3r r a 

1 
'J~'. r a a ~," 

Thus we have the following theorem: 

For a po in t  P on t h e  curve 17 a n d  c~ :~ p lanes  ~ in  space there are only  ~"~ 

covariant  lines r 0 f o rming  ~ pencils ,  each o f  which has p o i n t  P~ on the tan-  

gent  t o f  g at  P for its centre, a n d  a p lane  ~z through t for i ts base. The cor- 

respondence between P~ a n d  7: is the projeet ivi ty  ~ .  

The neighbourhoods of the 3rd order of C~ and P~ also determine a cova- 

r iant  point Q~ in such a manner  that the ramaining common chord of any 
two four-point conics of C~ and F~ always passes through the fixed point Q~. 
The coordinates of Q~ are given by 

o r  

= ( 2 a t  + 

3a~ra~a4 - -  2ar - -  asa 4 

3 a ~ r ~ 4  ~ 2ar - -  as~ 4 ' 

a o - -  a o 

a i  ~ o  a ~  - -  _ ~  a o 
a o  a o 
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Denoting the join of this point and P by t ,  : 

~=~ - - n ~ = O  
we obtain that 

1 2r a-- s:c 4 
n 3ar~ 4 

and therefore that the correspondence between P~ and t,, takes the form 

1 1 (s 

Thus we obtain the following theorem:  

For a point P on P and c~ :3 planes o: in  space all the eovariant points Q~ 

lie in the osculating plane of F at P. The correspondence between P~, thepoin t  

of intersection of  ~ and t, and the line PQ~ is the polariO 3. 
From what was stated above it follows that the polarity $' and the pro- 

jetct ivi ty ~ are fundamental  in the study of plane sections of the tangent 
surface of a space curve. 

9. We are now in a position to study the other P o P a  osculants of the 

plane section of T made by the plane (12). In  order to simplify tile calculation 

it is necessary to use some canonical  expansions of F instead of (1}. Take, for 
example, one of the fundamenta l  tetrahedrons associated at P of F for the 

te trahcdron of reference, so that the expansions of F become (~") 

(37) 

Thus, putt ing 

i 1 . ,  y = ~ x- - -  ~ o~  ~ + (6), 

I 1 xa 1 
z = ~ - -  1-6 °~x~ + (7). 

1 20a : 
a = ~ ,  b = c - - O ,  d - -  15 

1 1 03 r--~-~, s = t : O ,  u - -  l0 

in (19) and (20}, we have 

1 1 1 
A - -  2n '  B = s n  ~ 3kn '  

1 1 1 
----3' ~ - -  2n '  ~ - - 8 n  ~ 

3~ 7 1 i 1 
~- O~ -f-24 ~,n ~ 24 n :~" 

5 1 0= o ~ + ~ ;  

1 
6),n' 

(10) Cfr. B. Su, Note on the projective differential geometry of@ace curves, loc cit., p. 113. 
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Therefore the plane (25) becomes 

(38) 4n~ - -  3~ - -  0 

which corresponds to the line t , :  

(39) ~-----~ - -n~  ~ 0 .  

(40) 

The quantities u and v given by (23) now take the values 

3 3 1 151 
I v = 5  0~ +~ ~-' + 3-~ n ~ 

and consequently determine the line 0~0~, namely, the inflexional tangent of 
the plane osculating cusped cubic of the section in consideration. From (12}, 
(24) and (40) we obtain the equations of the line 0~0.~: 

~41) (~1  2 / (3 3 1  1 5 1 \  
+ 1 : 0 .  

It follows that the principal point Q has the coordinates 

(42) ~= n + X ] ,  ~ = n ~ n + X ]  , ~ = 0  

and therefore that the correspondence between O~ and the plane of the section 
is projective. 

Especially when O~ coincides with t 3  the other intersection of t, and 
the osculating conic of F at P 

3 2  (43) ~ _~ ~ ~, 

8 
we have ). : - - ~ n  and therefore the corresponding plane 

8 
(44) ~ - -  5 n(~ --  n~) : 0. 

The latter can, however, be constructed in the following manner: Denote 

by /~ the pole of t. with regard to the osculating conic (43) and construct 

the corresponding plane P/~P~ of /~, with respect to ~3; then the Bo~PIA~I 
line l 5 of the plane section of T made by this plane must lie in the plane (44). 
In other words: 

The plane (44) is one face of the fundamental tetrahedron T(Pt). 
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(45) 

In  fact,  the coordinates  of P~ are 

4 
Xo = i~ n, O, O. 

There fore  the cor responding  point  P~ of the coordinates  (~) 

9 9 s 

sa t is fy  (44), which  was to be proved. 

10. Le t  us a t tend to the pr inc ipa l  point  0 r The coordinates  of this point  

mus t  sa t i s fy  (38) and  (41) so that  

41  1 
3~ n 7" 

g ~ - ~ l  1 1  4 ' 
n--~ + 2 n ~ 5 nO~ 

(46) -~ 1 1 I 4 nO 3 , 
n-~ + 2 n ~ 5 

4 ~n 
4 

_ _  _ _  _ _  ~. nO s n)~ d-  2 n ~ , 0 

F r o m  this we infer  tha t  when the plane revolves about the line tn the corre- 
sponding principal point O~ describes a range of points and the correspondence 

is projective. 
There  is no d i f f icu l ty  in f ind ing  the base of the range.  E l inf ina t ion  of )~ 

f rom (46) gives the r equ i r ed :  

= : tn~ .  
(47) ~ t 16 4 

Here  we wil t  give a cons t ruc t ion  for this  line. W e  notice f irst  that  it 

in tersects  the t angen t  t of F at [) , ,  namely ,  the pole of t .  wi th  respect  to 

the oscula t ing  conic. In  order  to de te rmine  ano ther  point  on (47) it is conve- 

n ient  to consider  the l ine PP~, i. e. ,  the BOMPIANI l ine l~. On the la t ter  we 

( l i )  C f r .  ]3. S u ,  N o t e  o n  . . • , l o c .  t i C ,  p .  115,  
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have geometrical ly defined ~o 2 points  Qx depending  on a parameter  ). (:~), whose 
coordinates are 

3x0 ~ =  
81k 

1 + i0(1 - -  X) 0aa:3° 

9 

t48) ~ = 81X , , .~' 
1 + 10(1 - -  t) 03x° 

9 , 3  

= 81x 
1 "q_ Oaa~ao ,, io(1 - x) 

Subst i tu t ing  {48) in (47) and remember ing  that 

4 
a3 0 ~ ~ gb~ 

we have that  Q ~ lies on the line in consideration. Thus  follows the resul t :  

For a fixed line t,  the line described by the principal point O~ is the join 
of Pi and Q ~. 

2 

Fur the r  e l iminat ion of n from (471 gives the ruled surface of order 3: 

1491 4 3 ~ 

11. If  X be e l iminated from (41), then we obtain the locus of the line 0102: 

3 ~_ 151  2 ¢  (~ 1 5 1 \ . ,  
f501 ¢ + ~  ~ 8 u  ~ ~ - 2 ~ + n  + 0 ~ + ~ ) ~ - = 0 ,  

a quadric corresponding to the line t , .  This  result  follows also from the fact 
that  O, and O~ describe two projective ranges of points on the lines (47) 
and tn. The  principal  points O, and O. 2 are therefore the points of contact  of 
the quadric  with the planes  (38) and {12) respectively. 

W h e n  the line tu varies the corresponding quadric  (50) envelopes an alge- 
braic surface of order 6, as it may easily be seen by e l iminat ing n from (50) 
and its der ived equat ion with respect to n. 

{iS) Cfr. ]~. Str: N o t e  o n  . , . ; foe. c i r ,  p. l i 8 .  

A n n a l i  d i  M a t e m a t i c a ,  Serie IV~ Tomo X¥III .  12 
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In the same way we can show that  the locus of the osculat ing cusped 

cubic is a cubic surface when the plane of the section revolves about the 

line t ,  and that this cubic surface envelopes an algebraic surface of order I0. 

12. As an application of the above results  we shall derive some eova- 

riant figures for a pair  of intersecting space curves and, in part icular,  for 

the asymptotic  curves passing' through a generic point on a surface. 

Let  C and C-be two space curves having 0 for their point of interse- 

ction with distinct tangents t, -i but with the same osculating plane (t, t ) .  If  

t and t be taken as axes ~c and y ,  then the expansions of the two em'ves in 

the neighbourhood of 0 are of the form (I) for C and 

x = ~y~ + ~y3 + yy~ + ~y~ + (6), 
~51) 

z ~ ay~ -t- zy~ -4- ~y~ + ¢py6 + (7) 

for 

For  every line t,  through 0 and in the plane (t, t) there exist two planes, 

each of which passes through one of t and t; and corresponds to the tangent 

surface of the curve in the manner  quoted in § 6. Denoting t~ by the equa- 

tions (5), we obtain these plane s 

(52) h ~ + r 

~ + ( 1 ~  
(53) ~ 2 

t~ 

~ u ~ = O .  

Especial ly when t,~ coincides with t- the plane (52) becomes 

r -4- ( I s  
154) a ~ \2 ? 0. 

Similarly, when t~ coincides with t there is obtained the plane 

~ +  -- ~ = 0 .  (55) ~ ~ ~ 

These planes intersect  in the dual line of BOMI~IA~I (~3). Thus we have a new 

definition Of this covariant line. 
In  general, the planes (52) and (53) corresponding to the same line t,, 

intersect in a line through O, whose locus is a quadric cone of the equation 

(~s} Cfr. my paper: Inva~'iants . . . ~ loc. cit, p. 24. 
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It  shall be noted that the polar of the plane (t, ~ with respect to (56) is also 
the dual line of BOMHA~L 

Especially when the curves C and C are the two asymptotic curves through 
a non-parabolic point 0 of a non-ruled non-degenerate surface S. then, using 
usual notations, we have the cone 

1 

where ~, ~, are fundamental  quantities of F~:BtNI and 

(58) 4) ~ log ~y2 V log ~2~, 

This cone being covariant with respect to projective deformations was obtained 
by R. CALAPSO (~) and thus possesses a new definition. The above result gives 
further significances for the first edge of CaREEI~. 

13. We proceed to establish certain further configurations projectively 

connected with the curves C and C~ 

The projectivity between a plane 6) through t, and the principal point 0~ 
of the section made by 6) suggests us to research what position on t~ the 
poin~ 02 should take in order that the corresponding planes with respect to 

the tang6nt surfaces of C and C always coincide. 

For a plane through t~ there are in general two points O~ and (J2 on t~, each 
of which stands for the second principal point of the plane section of the tangent 

surface of each curve made by 6), so that the correspondence between 02 and O~ 
is projective. Hence the position we have to determine must be one of the 
double points of this projectivity. 0 is evidently the double point, since the 

corresponding planes coincide with (t, D. it  follows that there exists another 
point D on each line t,  and therefore one plane 6) through t~ satisfying the 
required condition. 

For the purpose of calculating the coordinates of D we have merely to 
consider the principal point 0.~ af the plane 

(59) ~ ~,t~ - n~) -=  0 

with respect to the curve C, for the principal point 0: of the same plane 

(~4) 1~. CALAPSO~ Sugli  e~ ti proiett ivi  legati al generico punto  d i u n a  superficie~ (, Att i  
Acad. Gioenia  ,)~ Catania, (5), 19 (1933), Mere. XIV~ 1-6. I was no~ aware  of the cone of Calapso 
unt i l  a paper  of E. Bortolott i  appeared.  Cfr. ENEA BORTOLOTTI~ Quadviche di Moutard e 
fascio canonico~ ~ )Rend. R. Accad. dei  Li~lcei ~, (VI)~ 25 ~1937), 158-165. 
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may  easi ly be obta ined by in t e r chang ing  a, b, c, d, ... : r, s, t,:..; 
1 

~' ~' 7' 8' "'" ; ~' ~' z .... ; n and  --- ).n respect ive ly .  

F r o m  (19) and (20) we obtain 

n and ). wi th  

(60) 
.~r~ g 3 ~ 3  s - -  - -  , 

Cb 

b~r cr br a~r r ~ bs a,s 
~ = 2 1 - a -  ~- - 9 - + 1 5 - + 3 a  n n. ~ - -  6 ~ - - 1 2  --a - - 8 - - + 4 t . n  

F u r t h e r  subs t i tu t ion  of these values  in (23) gives 

(61)  u = _ _ 9 0 + 4  t_ 21S "~ bs (~¢~s ) 1  9 a  ~ r 
-a r ~ - ~  r- ~ + 9 -  4- - -  -- 6b 6 ar r 4 n ~ ),n" 

The coordinates  of O~ are consequen t ly  given by 

( 6 2 )  - -  n u  ' n = - u '  = ° "  

In  the same way  we have  tha t  the coordinates  of ()._, a re  

(63) ~ = - - u '  r j = . - - u ,  ~ = 0 '  

whe re  

(64) ,a - - - 9 - Y +  - - - - - - + 9 - - +  - - 6 ~  n - -  ~~n ~ + 6  

F r o m  (62) and (63) it 

o ther  when ,  and  only when,  

(65) 
This  gives the value  of )~: 

follows that  these points ()~ and O~ coincide each  

1 9 9 1 
(66) 6(a~ ~- ~r) ~, = 4 a ~ n  ~ - -  ~ a"~ n - +- 

- - + - - - -  ÷ n +  

, a r 4 r ~ ar] 

+ l a (  9 7 4 :  31~~ ~ )  / 5 a s  )I  . . . .  ~- ~ 9 + - -  • 

Subs t i tu t ing  this in (61) and  (62)we have that  the coordinates  of O~ ~ 6., ~ D 
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are  g iven  by the e q u a t i o n s  

a ? + ~ r 9  ,, 1 9 

A - - - - - - - 9  + r  ---6~ 
r 4 r ~ ar/  -~ 

I ( ~ / ! ~: 21~ ~ __~\ ~5as )I  ln' - r 9 - . ~ - + - - ~ - - 9 ~  + ~ + ~ - - ~ ~  

~ i = n ~ ,  ~ = 0 .  

T h e r e fo r e  the  locus  of D is a noda l  cub ic  in  the  p lane  (t, t ) :  

9 2 3 9 a ~  ~ + 7~ a r~' (67) (a~ -t- a r ) ~  - -  

+ i r ( 9 ~ - - 4 ~  2 1 ~  
,o 4 

r 4 r ~ 

w h e n c e  we  obta in  tha t  th ree  
t ions  ~ 0 and  

(68) 1 r ( 9 7  4 ~- 2 1 ~  
- ~ + - - ~ 4  - 

1 (9 ° a r 4 r ~ 

+ c@ -t- a r  --~ O, 

(5= ob)l , 
9 bs I + ~ = O, 

poin ts  of in f t ex ion  lie on the l ine of the  equa- 

C 5o. 

9 a t  + r \ ~ - - - 6 ~  ~ 

(71) 

u~ ~ - -  6(ap -4- ar)n, 

u2 - "  6(a~ + ~r), 

9 9 1 
u 3 -~- ~ (~zc~n~ _ ,~ 0¢a~ _ 

n 

+ a ( 9  7 4 ~- 
, ~Z t9 

- - ~ e  9 - -  + . . . . . .  
r 

21  ~2 

4 r ~ at~ 4- ct 13 T - -  6 ~  

a eovaria~t line determined by the neighbourhoods of the 5th order of both the 

curves C and C. T h e  l ines  j o i n i n g  D and  each  in f l ex ion  are 

(69) ° a-,o~ - -  a~r,i 3 - -  0 

and  the re fo re  apo la r  to the t angen t s  t and  t- 

I f  the  c o r r e s p o n d i n g  p lane  ~) of D be deno ted  by the equa t i on  

(70) u ~  q-  u ~  -t- u3~ - -  O. 
t h e n  we  have  
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and there fore  the enve lope  of 6) is a cone of th~ 3rd c lass :  

9 :t~.~..3 _ 6(a~ + ~r)u,u2u 3 + 9 a ~ u ~  + ~ ~.~ 
(72) 4 7~ 

- + - - - - - -  + a  - - 6 ~  u'~u 2 +  
a r 4 r "~ ~'1 ~ ' f  

Th~s cone, being determined also by the neighbourhoods of the 5th order of C 

and C, has three euspidal tangent planes, which are concurrent in the line 

(73) [,: ~ • { ~-- 

}~ 9 - - 4  t- 21s~ := ÷ - - - - - - 9  + a  --- r 4 r  ~ h~ 2 o  

9-~-  ~-' . . . .  4 ~ - 9  + ~  

• - -  6(ap + ~r). 

14. H a v i n g  thus  ob ta ined  severa l  r e m a r k a b l e  conf igura t ion% we shall  now 

app ly  them to the in te res t ing  case w h e r e  C and C are  asympto t i c  curves  of 

a su r face  and then der ive  cer ta in  new e lements  p ro j ec t i ve ly  associa ted  at a 

gener ic  point  0 of the surface .  

Set t ing,  as usual ,  0 - -  log ~7 and 

1 

1 
M =  %~ - -  ,20J  - - 2 p , .  - -  7% - -  ?, , ,  

the nodal  cubic  (67) in case is g iven by 

(74) 
45 

+ 3"( I - -  2L + 50~ (log y)~ + ~ 5 . ,  

- - 3 ~ l - - 2 M + 5 O v ( l ° g ~ ) v + Y " 7  4 5 W ~ + ~  7 0  i ~  - -  O. 

The re fo re  the three points of inflemion are the intersections of the tangents of 
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SEGRE and the covariant line: 

(75~ 

(76) 

°' 

3~ - -  2M + 50. (log ~). + I~" 5 W~ + _ ~,0 
~, 4 

- -  3~, I -- 2L + 50~ (log ~,)~ + ~uu~ 450~ + ~- ~W ~ + ---0. 

In  the same way we obtain a cone of the 3rd class, namely, 

45 

+ 3~ l --  2M + 5Ov (log ~L + 

+ I -  + + o 4 -6- u,u~ = -  

• ~} • ~ = 3¥ l - -  2L + 50~ (log ¥)~ -~ 

• 3~ I - -  2M + 5% flog ~)~ + 

- 4o~  

The three cuspidal tangent planes are concurrent in the covariant line 

(77} ~u~ 5 ~ 25 I 

Ywy : ~ 5 . ~ + ~ +  I 

and each of  them intersects the tangent p lane of the surface in one tangent of 
SEC~nE. 

15. W e  shall conclude this paper with a remark on the elements deter- 

mined by the neighbourhoods of tile 6th order of both curves C and C~ As 

was shown before, there are two quadrics, each of them being con- 

strueted with respect  to each curve and to the same line t~ in the plane {t, t--L 

These quadrics intersect in t,, and a twisted cubic so that there is such 

a twisted cubic corresponding to t~, It is easily seen that this element may 

be found by using the value of u given by (6t) and that of v derived from 
(19), (20) and (~3): 

9 ~ c  6 d 9b~S 9cs  2bt 5u (78) v - =  - -  -- + + - -  + - ~ j +  
a~r ar a~r ~ 2 ~ ar 2 

+ - 8 - ~ + 4 a r . ~  6 ~ +  - 9r~ + + n \ r ar 2 r '~ 8 "r ~ / 
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Without  expressing the equations of these quadrics we merely note that 

one constructed by means of C and t is given by 

(79) ~ - - 9 a t +  r - - - - 4 - - r  ~ + 9 ~ - r  

+ ( 9 b c  _ 6 d  9b~s + 9 c s  bt 
a-i 'r a r  ~ ~ r= + 2 ~ + -  - -  

33 s :~ 3 bs "2 ast\ 1 
+ ~ + ~{ r--T--6-~)~ ÷ a  

( - - ~ 1 6 r ~ q +  31 + ~ r  ~ ==0. 

5 ct~t 

2 r: 

It follows that these q~tadrics intersect  in t, /-and a conic, whose plane passes 

through 0 when, and only when 

(81) a~ - -  :or == 0. 

In  the case of two asymptotic curves of a surface the last condition is 

evident, so that we are led to a conic through 0 projeetively connected to 

the surface at O. 

+ ~ + 4 e  ~ 6 e~] + ~ i  

7 --~ lO~ ~(~  ! ~ 21)~ 1 ~0. 

In the same way we obtain another quadric for C and t:  

+ ( 9 h _ 6 -  9 


