On invariant immersions.

Koica: Ociue (Toxio)

Summary. - Theory of immersions salisfying the condition that tangent spaces to an immer-
sed submanifold are invariané under the curvature trausformation.

§ 1. - Definitions and Preliminaries.

Let M and M be differentiable manifolds with Riemannian metrics g and
g respectively. To simplify notations, we denote them by (M, g) and (M, g),
Let I' and T be the Riemannian connections associated with (M, g) and (M, g)
respectively and let V7 and 57 be the covariant differentiations with respect to
I and T respectively. Let 9C(M) and (M) be the Lie algebras of differentiable
vector fields on M and M respectively. The curvature tensor fields R and
R of I' and T are given by

RX, Y)Z =xVvZ — VyVsZ — Tz, 14
for X, Y, Ze® (M) and

BX, V'Z = 5972 — TVl — UF, 1l
for X, Y, Ze 9(M). Then we have

(L.1) R(X, Y+ R(Y, X) =0,
(1.2) RX, Y)Z+ RY, Z)X + R(Z X)Y=0 (BiaNcHT'S lst identity),
(1.3) (VxB)\Y, Z)+ (V¥R)\Z, X) 4+ (VzB)(X, Y) =0 (Braxocur’s 2nd identity),

(1.4) g\B(X, Y)Z, U)=yg(R(Z, U)X, Y),

for X, Y, Z, Ue (M) and

(L.1y RX, Y+ R(Y, X)=0,

(1.2y R(X, Y)Z + R(Y, Z)X + Rz, X)Y =0,
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(L.3y (VzR)IY, Z) + (VzR)Z, X)+ (TzB(X, ¥) =0,
(1.4 gB(X, Y)Z, U)=g(R(Z U)X, Y),
(LY 9RX, V)2, U)+gRX, YT, Z)=0

form of f:(M, g)
~> &C(M) given by

(1.6) X, ¥) = TpsfY — 957,

where f denotes the differential map of f.
Let 9(f(M)) denote the set of all vector fields normal to fiM).
ProrositioN 1.1. - II{X, Y)e 9U/M)) for any X, Ye (M)

Proor. - From the definition of Riemannian connections,

2T Y, [Z) =X+ glfY, [Z)+ Y- glfX, f2)— [Z - glfX, {Y) + g([fX, fY), [2)

+ gllif2, X}, 1Y) —9lfY, 12z}, X)
= 29(VxY, Z)

= 2(fVxY, f2).

Hence we have

dTfY  [VxY, fZ)=0

for any X, Y, Ze9(M). This implies that II{X, Y) is normal to /(M).
(Q. B. D.\.

The following Proposition is fundamental.

ProrosirioN 1.2. - (The equation of Gauss-Codazzi).

BIfX, fY)fZ = [RX, Y)Z + II|X, +Z)
— IY, V«Z)— II{X, Y), Z)

+ va * II(Y7 Z} - ﬁfy * II(X: Z’
for X, Y, Z e (M)
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Proor. - From the equation (1.6) we have

VT2 = G VvZ + Vi - INY, Z)
= fVxVvZ + (X, VvZ)+ G+ IY, Z).

Similarly we obtain

Vvl 4 = [UyVxZd + IIY, VxZ) + Gy I(X, Z)
and

Vx4 = Vs, nZ + IIX, Y], 2).

These, together with the definition of curvature tensor fields, prove our
assertion. (Q. E. D).

An isometric immersion f: (M, g)— (M, g) is said to be minimal at xe M
provided that for one (and hence every) orthonormal frame X, .., X, at @
we have Z II[X;, Xi)=0. f is said to be minimal if it is minimal at every

=]
point of M, -

An isometric immersion f: (M, g)— (M, g) is said to be umbilic at ce M
if II{X, X) has the same value for every unit vector X at . f is said to be
umbilic if it is umbilic at every point of M.

An isometric immersion f: (M, g)~> (M, g) is said to be folally geodesic
it IT=0.

Let (M, g) be a hypersurface of (M, g) with an isometric immersion f.
Let £ be the unit normal field to fiM). By Proposition 1.1 we can write

IIX, Y)= H(X, Y) - &

H is a tensor field of type (0, 2) on M. We call H the second fundamental
tensor of f. An isomefric immersion [ is umbilic if and only if H = ¢g,
where ¢ is a function on A,

R(X, Y} (vesp. E(I—(, Y)) defines, at each point of M(resp. M), a linear tran-
sformation of the tangent space to M{resp. M) at the point. We call them
the curvature transformations of T' and T.

An isometric immersion f: (M, g)— (M, g) is called an invariant immer-
sion if, for any X, Ye % (M), the carvature transformation R(fX, fY) leaves
the tangent space o f(IM) at each point invarvians. M is called an invariant
submanifold of M.

An isometric immersion f: (M, g)— (M, g) is called a strongly invariant
immersion if, for any X, Ye®C(M), the curvature transformation R(X, Y)
leaves the tangent space to f(M) at each point invariant. M is called a strongly
invariant submanifold of M.
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It is clear that a strongly invariani immersion is an invariant immersion,

ProposITION 1.3. - An ésometric immersion [: (M, g)—>(M, g)is an inva-
riant immersion if and only if

(L.7) 9(BIfX, [Y)(Z, §=0
for X, Y, Ze &%(M) and £ e QUfIM).

PROPOSITION 1.4. - An isometric immersion [: (M, g)— (M, g) is a strongly
invariant immersion if and only if

(1.7) 9(B(X, Y)2, & =0,
(1.8) 9\R(fX, §f2, &) =0
and

(1.9) g(RE, £)/2, &) =0

for X, Y, Ze (M) and &, ¥, £" e OUf(M)).
ProposiTiON 1.5. - Let (M, g) be a hypersurface of (M, g). Then (M, g)
is an invariant hypersurface if and only if
(VxH|Y, Z) — (VvH)}X, Z) =0
for Y, Y, Ze9%(M).

§ 2. - Invariant immersions.

THEOREM 2.1. - Every isomelric immersion of a manifold into a manifold
with constant curvalure is an tnvariant immersion.

Proor. - Let (M, g) be a manifold with constant curvature and let
M, g)—(M, g) be an isometric immersion. The curvature tensor field B of
(M, g) is given by

(X, VZ=Fk{glY, )X —gX, )Y}

tor X, Y, Ze 9&(8—[}, where k is a constant.
It we set X =fX, Y=[Y, Z={Z for X, Y, Ze (M), then

R(fX, YfZ =k {g(Y, 2)fX —g(X, Z)fY ).

This implies that B(fX, fY)fZ is tangent to f(}M). (Q. E. D.).
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Conversely we have the following

TuaroreM 2.2. - If every isomelrically immersed submanifold of (M, g) is
an invariant submanifold, thew (M, g) is o space of constani curvature.

ProoF. - Let f: (M, g)—(M, g} be an invariant immersion. Then we have
gR(IX, [YIfX, & =0

for any vectors X, Y tangent to M and any vector & normal to f{M).

Since (M, g) and [ are arbitrary, we may think of fX, fY and £ as an
arbitrary orthogonal triplet of vectors of M. Now our assertion follows from
the following lemma.

LeMMA (A. Frankow [1}). - If
gRX, V)X, Z) =0

for every orthogonal triplet X, Y, Z € T-(M) and for every point @ € M, then (M, v
is a space of conslant curvature.

_Proor or LEMMA. - The sectional curvature K(X, ¥) for the plane spanned
by X and Y is given by

RE 7)== 9(R(X, Mfi? ;Q

9lX, X)glY, ¥)—(g(X, T)

Let X, Y, Z be an orthonormal triplet. Then X, Y+ Z, Y—Z is an
orthogonal iriplet and hence we have

gBRX, Y+ 72X, Y—2Z)=0.
This implies
KX, 3)=K(X, 2.
Let U be any vector orthogonal to X. Then U can be written as
U=a¥ +bZ
for some orthonormal triplet X, ¥, Z and we have
KX, §) =KX, 7.

This implies that the sectional curvature is the same for all sections
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which contain any given vector X. Hence we have

R %) =R{T 7)=KZ )
for arbitrary X, Y, Z and U. This, together with Theorem of F. SHUR, implies
that {M, g} is a space of constant curvature. (Q. E. D.).

ProposiTioN 2.3. - Every totally geodesic submanifold is an invariant
submanifold.

ProoF. - This is clear from the equation of Gauss-Copazzr. (Q.E.D.)

ProposiTioN 2.4. — Every connecled invariant umbilic hypersurface has
constant mean curvature.

ProOF. — Let M be a connected manifold and f: (M, g)—(M, g an inva-
riant umbilic immersion. Let £ be the unit normal vector field to f{}M).

It we set H==r¢g, then o= h'n, where h is the mean curvature and
n = dim M. From Proposition 1.5 we have

(Xelg(Y, 2)— (Yelg(X, Z) =0
for X, Y, Ze (M), If we take Y = Z orthogonal to X, then

Xo = 0.

by

Since X is arbitrary and M is connected, p is a constant. Hence the
mean curvature is constant. Q. E.D.).

§ 3. - Strongly invariant immersions

PropositioN 3.1. - If f: (M, g)—a(ffl, g) is a sirongly invariant immer-
sion, then

R(fX, §fZ=0

for X, Z e (M) and Ee DU(f(M)).
PRroOF. - From the equation (1.4) and (1.7) we have

g\RIfX, 8fZ, f¥)=0
for X, Y, Ze (M) and e OU(fiM)). This implies that R(fX, £)fZ is normal
to fiM). This, together with (1.8}, implies that R(fX, §)fZ = 0. (Q.E.D.).
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ProrositioNy 3.2, - If f: (M, g) —>{M’, Z}} i8 a strongly invariant immersion,
then

R(fX, YE=0

for Xe%(M), Ye O M) and Ee DUfM).

Proor. - From (1.2} and Proposition 3.1, we have
B(fX, fYE=0
for X, Ye &(M) and Ee QUFM)). From (1.8) and (1.5 we have
g\ BIfX, BE, fY)=0
and from (1.9) and (1.5) we have
g(RIfX, ¥, E) =0

for X, Ye®(M) and &, &, £ e QUf(M). This'_implies R(fX, £ = 0. Hence
we have R(fX, Y)E =0 for Xe (M), Ye (M) and £ OUfAM). (Q E. D.)

ProposSITION 8.3. - If f:(M, g)~>(M, g) is a strongly invariant immer-
sion, then

for X e (M) and Ee DUf(M)).

Proor. - From (1.5}/ and (1.8) we have
J(BIfX, 88, 2)=0.

From (1.4) and (1.9) we have
g\RIFX, B, &) =0.

_ Hence we have Rirx, g = 0. This, thogether with Proposition 3.1, implies
RifX, §1Y =0 for Xe (M), YeS (M) and £e QUAAM)). (Q.E. D).

THEOREM 3.4. - There exists no strongly invariant immersion of a manifold
into a manifold with non-zero consiant curvature.

ProoF. - Let (M, g) be a manifold with non-zero constant curvature and

let f: (M, g)— (M, g) be a strongly invariant immersion. From (1.8) we have

9IB(X, §fX, & =0.
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This implies that the sectional curvature for the section defined by fX

and £ is zero. Since (M, g) is of constant curvature, (M, g) must be flat.
Q. E. D.).

Since a strongly invariant immersion is necessarily invariant immersion,
Theorems 2.2 and 3.4 imply

THEOREM 3.5. - If every isomelrically immersed submanifold of (M, g) is a
strongly inwvariant submanifold, then (M, g) is flat.

1t is clear that every submanifold of a fiat manifold is a sirongly invariant
submanifold.

TeEOREM 3.6. - Let (M, g) be a 'strongly invariant wmbilic hypersur/ace
of (M, g). Then the scalar curvature of (M, g)is not less than that of (M, g). In
particular, they are the same if and only if (M, g) is a fotally geodesic hyper-
surface of (M, g).

Proor. - Let £ be the unit normal field to f(M).

The Ricci tensor field S of (M, g) is a tensor field of type (0, 2) on M
defined as follows:

S(X, Y)=trace {Z— R(Z X)Y|.
If Zi, ..., Z, are orthonormal, then
SIX, Y) = :z_l R 7, X)Y, Z).
The tensor field o of type (I, 1) delined by S(X, Y)=g(co(X), Y) is
called the Ricci transformation of (M, g). The Ricci tensor field S and the

Ricci transformation o of (M, g) is defined similarly.
From the equation of Gavuss-Copazzr (Proposition 1.2) we have

S(rX, rY) — g(RE, XY, ¥
h? h? .
where & is the mean curvature of the immersion and » = dim M.
This, together with Proposition 1.4, implies

n-—1

S(X, ¥)=-——Wg(X,Y)+ SIFX, £3).

Hence we have

n-—1
=

n2 47 — S, ),
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where » and r are the scalar curvatures of (M, g) and (M, g) respectively.
On the other hand, from (L.8) we have S(, E) = 0 and hence
" —

R 12 e
§ = " e

This implies # =#, and # =1 if and only if h =0. (Q.E.D)

§4. - invariant Kéhlerian immersions

Liet M be an even dimensional differentiable manifold and J an almost
complex structure on M, that is, a tensor field of type (1, 1) on M satisfying
J? = — I, where I denotes the field of identity endomorphisms.

4 Riemannian metric g on M is ealled a Hermitian metric if the almost
complex structure J on M is an isometry with respect to g.

A triplet (M, J, g) is snid to be KAHLERIAN if it satisfies

v =0,

where 7 denofes the covariant differentiation with respect to the Riemannian
connection defermined by g.

Let (M, J, g) and (M, J, g) be two Kihlerian manifolds. An isometric
immersion f: (M, J, g) — (M, J, g} is said to be Kiahlerian if it satisties

Jof = fod.

TueorEM 4.1. ~ Hvery Kdhlerian submanifold of a Kdhlerian manifold
with_constant holomorphic curvature is an invariant submanifold.

Proor. - Let (3, J, g) be a Kihlerian manifold with constant holomor-
phic curvature. Then the curvature tensor field R of (M J, g) is given by

R, V)Z=k{gY, 2X—gX, DY +QT, ZJX—QF 2JY — 29X, )77

for X, Y, Ze 9(M), where k is a constant and Q is the fundamental 2-form

of (M, J, g), that is, QX, ¥)=g(JX, 7).
Let 1 (M, J, g)—;»(l»l.[, J, g) be an Kiahlerian immersion.
If we set X=/X, Y=/FY, Z={[Z for X, ¥, Ze (M), then

R(fX, [Y)fZ =k{g(Y, Z)fX — g(X, Z)1Y +
+ Y, Z)HIX — X, Z)fTY — 2Q(X, Y)JIZ),

where Q is the fundamental 2-form of (M, J, g).

This implies that R(fX, fY){Z is tangent to f(M) tor X, Y, Ze (M), that
is, f is an invariant immersion, (Q.E.D.).
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COROLLARY. - Hvery Kihlerian submanifold of o complex projective space
with Fubini-Study wmetric is an invariant submanifold.
Conversely we have the following

TeEOREM 4.2. - If every Kdhlerian submanifold of a Kdhlerian manifold

(M, J, g) is an invariant submanifold, then (M, J, g) is a Kdhlerian manifold
with constant holomorphic curvalvre.

Proor., - Let f:(M, J, g)-e(ﬂ, J, g) be an invariant Kahlerian immersion.
Then we have

gIR(fX, JFX)X, §)=0

for any vector X tangent to M and any vector £ normal to f{M).

Since (M, J, g) and [ are arbitrary, we may think of /X and § as an
arbitrary orthogonal couple of vectors of M. Now our assertion follows from
the following lemma.

LemMa. - If
gRX, JX)X, ¥Y)=0
for every orthogonal couple X, Y & To(M) and for every point x € M, then (M, J, g)
is a Kdhlerian manifold with constant holomorphic curvature.

PROOF OF LEMMA. - Let X, ¥, JX, JY be an orthonormal quadruplet of
vectors at x€ M. Then X + Y, JX — JY is an orthogonal couple and hence
we have

gBRX+ 7Y, IX+ IV X+ 7Y, JX
This implies
(4.1) K(X, JX)= K(Y, JY).
L b I?: an arbitrary couple of unit vectors at we M. ~
£

e
{ U, Vil () is a holomorphic section, that is, o {| U, Vii={U, Vi,
then it is clear that

— JY)=0.

SIS

K(U, JU) = KV, JV).

o IE U, 1_7}} is not a holomorphic section, then we can take unit vectors
Xel{U JU} () and Ye({ V, JV}}i which determine a holomorphic section
{{ X, Y}}. Then (4.1) implies

K(U, JU) = KX, JX)= K(Y, JY)=K(V, J

L

(!} 11 U, V1! denotes the section determined by T and V.
{*) denotes the orihogonal complement.
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Hence we have proved that the holomorphic sectional curvature is the

same for all holomorphic sections at_i:e l@' This, together with an analogy of
Theorem of F. SHUR, implies that (M, J, g} is a space of constant holomorphic
curvature. (Q . E.D.).

TaroreM 4.2. - There exists no strongly invariant Kdhlerian immersion
of a Kdhlerian manifold with non-zero constant holomorphic curvature.

Proor. - Let (1\7, J, 57) be a Kihlerian manifold yjith non-zero constang
holomorphic curvature. Then the curvature tensor field B of (M, J, g) is given by

RX, YWZ =1 {g(Y, 21X — (X, Z)T + Q¥, Z)JX — QX, 2)7Y — 29X, V)JZ),

where % is a non-zero constant.
Let /1 (M, J, g):> (M, ET’ g) be a strongly invariant Kihlerian immersion.

If we set X =/X, Y =¢&, Z=/Z for X, Ze %(M) and £ e O/(M)), then
R(fX, &/Z =k | —g(X, 2+ QE, /2/TX —QX, Z2)J¢ — 29(fX, §)fIZ ).

R(/X, §)/Z is tangent to /(M) if and only if k= 0. (Q.E.D.).
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