
O n  in v a r i a n t  i m m e r s i o n s .  

KoIeH~ O~iu~ (TOKIO) 

Summary. - Theory of immersions satisfying the condition that tangent spaces to an immer- 
sed s~bmanifold are invariant under the c~rvature transformation. 

§ 1. - D e f i n i t i o n s  and P r e l i m i n a r i e s .  

Let M and 3~ be differentiable manifolds with Riemannian metrics g and 
g respectively. To simplify notations, we denote them by (M, g) and (M, g), 
Let F and ]~ be the Riemannian connections associated with (M, g) and (M. g) 
respectively and let V and ~ be the eovariant differentiations with respect to 
r and F respectively. Let ~(:(M) and ~(~-11 be the Lie algebras of differentiable 
vector fields on M and M respectively. The curvature tensor fields R and 

of 1~ and F-are given by 

R(X, ¥)Z - -  V x V ~ Z  - -  V r V x Z  - -  V[x, ~]Z 

for X, Y, z e ~QM) and 

m 

for X~ Y, Z ~ ( M ) .  Then we have 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5)  

R(x, y) + R(Y, X) = 0, 

R(X, Y ) Z +  R(Y, Z ) X +  B(Z, X ) Y - - 0  (Bn~c~x's  1st identity), 

(vxR)(Y, Z) -}- (vrR)[Z, X) + (VzR)(X, Y) -" 0 (BIA~C~I'S 2nd identity), 

g(R(X, Y)Z, U)= g(R(Z, U)X, Y), 

g(R(X, Y~Z, U) + g(~(X, Y)U, Z) = 0 

for X, I7, Z, U ~ ( M )  and 

(1.1)' R(X, ~j + R() ,  X} : O, 

[1.2)' R(X, Y ) Z +  R(Y, Z)X + R(Z, X ) Y ~ O ,  
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(1.3}' 

(1.4)' 

(k5)' 

W~R)( Y, Z~ + (~R)(Z,  X) + (=ff~R)(X, ]~) = 0, 

g(R(X, Y)Z, U)= g(R(Z, U)X, Y), 

g(R(X, ]~)Z, U)+ g(R(X, ~)U, Z )=  0 

for X, I7, Z, U e ~ ( /~ ) .  

Let f"  (31, g) --> (M, g) be an isometr ic  immersion.  The second fundamenta l  

form of f :  (31, g)-->(M, g) is, by definit ion,  a mapping  H" ~(M)X~(M).-> 
--> ~C(/~) given by 

(1.6) H(X, ~) = ~ x f Y - -  fVxY,  

where f denotes  the different ia l  map  of f. 
Let  ~L(f(M)) denote the set of all vector fields normal  to )qM}. 

Pt~oPOSlTIO~ 1.t. - II(X, 7i)e~)%{f(M)) for any X, Y e  ~(M) .  

PtiOOF. - F rom the def ini t ion of Riemannian  connections,  

2g-(~xfY, fZ) = f X  . g~(fY, fZ) + f Y .  g-(fX, fZ) --  fZ . -gifX, fTO + ~[fX, fY], fZ) 

+-g-([fZ, fX], f Y ) - - ~ [ f Y ,  fZ], fX) 

-- X .  g( Y, Z) + Y.  g(X, Z} -- Z .  g(X, Y) + g([X, Y], Z) + gi[Z, X], Y) -- g([ t7, Z], X) 

"- 2g(VxY, Z) 

= ~ ( ~ y ,  fz). 

Hence  we have 

for any X, 

~ V J J Y  /v.~Y, fz)  = o 

Y, Z ~  ~C(M). This  implies  that  II(X, Y) is normal  to [(Mt. 

The  following Propos i t ion  is fundamenta l .  

PROPOSI~ION 1.2. - iThe equation of Gauss-Codazzi). 

R(fX, f2)fZ -- fR(X, Y)Z + II(X, VrZ} 

- ~I(Y, v,~z~-~t~[x,  y], z~ 

+ V~,:" II(Y, z} -- VzY" II(X, Z) 

for X, Y, Z ~ ~C(M), 

(q. E. D./. 
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PnooF. - From the equation (i.6) we have 

= f w : v ~ z +  H(x, v ,z)  + ~z~. 1I(Y, z). 

Similarly we obtain 

and 
vz~vz~/z = f w w z  + HI r,  w z )  + ~z~" i~(x, z) 

These, together with the definition of curvature  tensor fields, prove our 
assertion. (Q. E. D.). 

An isometric immersion f :  (M, gt-->(M, g) is said to be minimal at x e M  
provided that for one (and hence every) orthonormal frame X1, ..., X~ at x 

we have E II(X~, X~)=0. f is said to be minimal  if it is minimal at every 

point of M. 
An isometric immersion f" (111, g) --> (M, g) is said to be umbilic at x ~ M 

if II(X, X) has the same value for every unit vector X at x. f is said to be 
umbilic if it is umbilic at every point of 5{. 

An isometric immersion f ' (M,  g)--> (M, g) is said to be totally geodesic 
if I I - - 0 .  

Let (M, g) be a hypersurface of (M, g) with an isometric immersion f. 
Let ~ be the unit  normal field to f(M). By Proposit ion 1.1 we can write 

H(X, Y) = H(X, y) • ~. 

H is a tensor field of type (0, 2) on M. We call H the second fundamental 
tensor of f. An isometric immersion f is umbilic if and only if H :  cg, 
where c is a function on M. 

R(X, Y) (resp. R(X, Y)) defines, at each point of M(resp. M}, a l inear tran- 
sformation of the tangent space to M(resp. M) at the point. We call them 
the eurcature transformations of F and ~. 

An isometric immersion f ' {M,  g)--)(M, g) is called an invariant immer. 
sion if, for any X, Y ~ ( M ) ,  the curvature  transformation R(fX, fY) leaves 
the tangent space to f(M t at each point invarian~. M is called an invariant 
submanifold of M. 

An isometric immersion f ' (M,  g)-->(M, g) is called a strongly invariant 
immersion if, for any X, Y ~ ( M ) ,  the curvature t ransformation I~(X, 7i) 
leaves the tangent  space to f(M) at each point invariant.  M is called a strongly 
invariant sub~Jmnifotd of M. 
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It  is clear that a strongly invariant  immersion is an invariant  immersion. 

PaoPosI~m~ 1.3. - An isometric immersion f :  (M, g)-->(M, g)is an inva. 
riant immersion i f  and only i f  

(1.7) g(R(fX, fY)fZ, ~.)= 0 

for X, Y, Z e ~ (M)  and ~ e ~{f(M)). 

PROl~OSImZO~ 1.4. - An isometric immersion f : (M, g) --> (M, g) is a strongly 
invariant immersion i f  and only i f  

g(R(fX, fY)fZ, ~ = O, 

glR(fX, ~)fZ, ~')= 0 

(1.7) 

(1.s) 

and 

(1.9) = 0 

for X, Y, Z e ~(M)  and ~, ~', ~"e 9~(f(M)). 

PRoPommIo~ t.5. - Let (3I, g) be a hypersurface of (31, g). Then (M, g) 
is an invariant hypers~wface i f  and only i f  

(W~/)(Y, Z) - -  (~TrH)(X, Z) = 0 

for Y, Y, Z 05(M), 

§ 2. - I n v a r i a n t  i n t m e r s i o n s .  

THEOREI~I 2.1. - Every isometric immersion of a manifold into a manifold 
with constant curvature is an invariant immersion. 

PROOF. - Let  (M, g) be a manifold with constant curvature and let 
f:(M, g)-->(M, g) be an isometric immersion. The curvature tensor field R of 
(M, g) is given by 

R(X, 7i}Z ": k { g( Y, Z)X --  g(X, Z} Y} 

for X, Y, Z + ~ ( M ) .  where k is a, constant. 
If  we set X : f X ,  Y - - f Y ,  Z :  fZ for X, ]:, Z+~(M},  then 

R(fX, f l~)fZ= k {g(Y, Z~fX--g(X,  Z}f~ }. 

This implies that R(fX, fY)fZ is tangent to f(M). (Q. E. D.). 
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Conversely we have the following 

T~EOnE~[ 2.2. - I f  every isometrically immersed submanifold of (M, g) is 
an invariant submanifold, then (M, g} is a space of constant curvature. 

PI~OOF. - Let  [:(M, g)-->(M, gl be an invariant  immersion. Then we have 

g(R(fX, fY}fX, ~)= 0 

for any vectors X, Y tangent to M and any vector  ~ normal to f(M}. 
Since (M, g) and f are arbitrary,  we may think of fX, f Y  and ~ as an 

arbi t rary  orthogonal triplet of vectors of M. _Now our assertion follows from 
the following lemma. 

L~,MMA (A. FIALKOW [1]). - I f  

g(~(x, :~)x, z) = o 

for every orthogonal triplet X, Y, Z e T;{M) and for every point x a ill, then {M, 91 
is a space of constant c,¢rvc, ture. 

PROOF O~ LE~IM~.. - The sectional curvature  K(X, Y~ for the p lane  spanned 
by X" and Y is given by 

K(X, Y) - 
g(R(X, 7~)Y, X} 

g(X, X)g(Y, Y ) -  (g(X, £))2" 

Let  X, Y, Z be an orthonormal triplet. Then X, Yq-Z ,  Y - - Z  is an 
orthogonal tr iplet  and hence we have 

This implies 

g(R(x, y + z)x, y-- ~) = o. 

K(X,  D -- K(X, z}. 

Let  U be any vector orthogonal to 2~. Then U can be wri t ten as 

U= a Y q - b Z  

for some orthonormal triplet X, Y, Z and we have 

K(X, U) = K(X, Y). 

This implies that the sectional curvature  is the same for all sections 
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which contain any given vector  X. Hence  we have 

K(X, ~:) = K( L Z) = K(Z, U) 

for arbi t rary  X, Y, Z and ~]. This, together with Theorem of F. S~UR, implies 
that (M, g) is a space of constant  curvature.  (Q. E. D.). 

PROPOSITION 2.3. - Every totally geodesic submanifold is an invariant 
submanifold. 

Prto0F. - This is clear from the equation of GAUSS-(JODAZZI. (Q.E.D.). 

P~oPom~roN 2 . 4 . -  Every connected invariant umbilic hypersurface has 
constant mean curvature. 

PROOF. - Let  M be a connected manifold and f ' ( M ,  g)-->(M, g) an inva- 
r iant  umbilic immersion. Let  ~ be the unit  normal vector field to f(M). 

I[ we set H - ~  ~g, then 9 " -h /n ,  where h is the mean curvature  and 
n = - d i m  M. From Proposi t ion 1.5 we have 

(Xg)g(Y, Z } -  (Y~)g(X, Z) = 0 

for X, Y, Z ~  ~(:(M). If  we take Y - - Z  orthogonal to X, then 

X,a : 0 .  

Since X is arbi t rary and M is connected, p is a constant. Hence  the 
mean curvature  is constant. (Q. E. D.). 

§3. - S t rongly  invar ian t  immers ions  

PROPOSITION 3.1. - I f  f :  (M, g)--->(M, g) is a strongly invariant immer- 
sion, then 

 (fx,  )fz = o 

for X, Z e ~ ( M )  and ~ e 9L(f(M)). 

PROOF. - From the equat ion (1.4)' and (1.7} we have 

g(R{fX, ~)fZ, fY) - -  0 

for X, Y, Z ~ ( M )  and ~e~9~(f(M)). This implies that fi~(fX, ~)fZ is 
to f(M}. This, together with (1.8), implies that R(fX, ~)fZ = O. 

n o r m a l  

(q. E. D.). 
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PROt'OSImIo~ 3.2. - I f  f" (M, g) --->(M, g) is a strongly invariant immersion, 
then 

R(fX, Y~  = 0 

for X ~ ~(M)~ ~ 6 ~ M i  and ~ s ~Vc(ftM ). 

P R o o F .  - From (1.2)' and  P ropos i t i on  3,1, we have  

[~(fx, fY)~ = o 

for  X, Y ~ 6 ( M )  and  ~F(~{f(M)). F r o m  (1.8) and {1.5}' we have  

.tl, fY) 0 g(R4fX, ~ ' -- 

and  from (1.9) and (1.5)' we have  

g(B(fX, ~)~', U ) =  0 

for X, Y e ~ ( M ) a n d  ~, ~', ~ " ~ { f ( M } l .  This  impl ies  R(fX, ~)~'-" O. H e n c e  
we have  RtfX, ~)~ ~-0 for X ~ I M i ,  Y ~  ~(~I~ and ~ ~ ~Fd(f(M)). (Q. E. D.). 

PRO~'OSImxON 3.3. - I f  f : (M,  g ) ~  (M, gl is a strongly invariant immer. 
sion, then 

R( fX ,  ~) = 0 

for X e ~6(M) and ~ e ~F(~(f(M)). 

PROOI~. - From (1.5)' and  (t.8} we have  

y ( R t f x ,  ~)~', f z ) =  o. 

F r o m  (1.4)' and  (1.9) we have  

gtRt fX,  ~)~', ~"~ = O. 

H e n c e  we have RIfX, ~}~' ~ O. This,  thoge ther  with P ropos i t i on  3.l ,  impl ies  
R(fX, ~If = 0 for  X e ~ ( M ~ ,  ] ~ e ~ ( 3 I }  a~d ~ L ( f ( M ) } .  (Q. n.  D.). 

THEOREM 3.4. - There exists no strongly invariant immersion of a manifold 
into a manifold with non-zero constant curvature. 

PROO) ". - Let  (M, g) be a mani fo ld  with non-zero cons tan t  c u r v a t u r e  and 
let  f ' ( M ,  g)---> (M, g) b~ a s t rongly  inva r i an t  immers ion .  F rom (1.8) we have  

g(RifX, ~)fX, ~ = O. 

Annali di Maternatica ~o 
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This implies that the sectional curvature  for the section defined by f X  
and ~ is zero. Since (M~ g) is of constant  curvature,  (M, g} must be flat. 

(Q. E. D.). 

Since a strongly invariant  immersion is necessar i ly  invariant  immersion, 
Theorems 2.2 and 3.4 imply 

T~EOREM 3.5. - I f  every isometrically immersed submanifold of (M, g) is a 
strongly invariant submanifold, then (M, g) is flat. 

It  is clear that every submanifold of a flat manifold is a strongly invariant 
submanifold. 

T~EORE~[ 3.6. - Let (M, g) be a istrongly invariant umbilic hyper_surface 
of (M, g}. Then the scalar curvature of (M, g} is not less than that of (M, g}. In 
particular, they are the same i f  and only i f  (M, g) is a totally geodesic hyper. 
surface of (M, g). 

PROOF. - Let  ~ be the unit  normal  field to f(M). 

The Ricci tensor field S of (M, g) is a tensor field of type (0, 2~ on M 
defined as follows: 

SIX, Y) -" trace { Z-> R(Z, X} Y }. 

If Z1, ..., Zn are orthonormal,  then 

S(X, Y} = Z g(R(Z,, X}Y, Z~}. 
i = l  

The tensor field z of type (I, 1) de t iaed  by S(X, Y)--g(~(X}, Y} is 
called the Ricci transformation of (M, g). The Ricci tensor field S and the 

Ricci  t ransformation z of (M, g} is defined similarly. 
From the equation of GAVss-CODAZZI (Proposition 1.2) we have 

s(fx, fy)---g(R(~, fX!fY, ~} 
h ~ h 2 

= s(x ,  ~) - ~- g(X, Y~ + ;~ g(X, y}, 

where h is the mean curvature  of the immersion and n ~ dim M. 
This, together with Proposit ion 1.4, implies 

n - - 1  
S(X, Y ) -  

n 

2 hg(X,~} ÷ 7SifX, f$). 

Hence  we have 

r 
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where r and r are the scalar curvatures  of IM, g) and (M, g) 

On the other hand, from {1.8) we have ~(~, ~ ) :  0 and hence 

r = _---~1 h: + i:. 
n 

This implies r ~ r ,  and r~---~: if and only if h - - 0 .  

respectively.  

(Q .E .D . )  

§ 4. - Invar ian t  K~hlerian immers ions  

Let  M be an even dimensional  differentiable manifold and J an almost 
complex s t ructure  on M~ that is~ a tensor field of type (1, 1) on 21/satisfying 
j2 : ._ I, where I denotes the field of identi ty endomorphisms. 

A Riemannian metric g on 3 /  is called a E[ermitian metric if the almost 
complex s t ructure  J on 3I  is an isometry with respect  to g. 

A triplet  (M, J, g) is s:~id to be KAttLERIA~ if it satisfies 

V J  --  0, 

where V denotes the covariant differentiat ion with respect  to the Riemannian 
connection determined by g. 

Let  (M, ,7, g )and  (~I, J, g) be two K~ihlerian manifolds. An isometric 
immersion f :  (M, J, g)--> (M, J, g) is said to be Kahlerian if it satisfies 

] o f  = foJ. 

T~EOnE~ 4. I. - Every K(~hlerian submani[bld of  a Kahterian manifold 
withZconslant holomorphic curvature is an invariant submanifold. 

PROOF. - Let  (M, J, g) be a Kiihlerian manifold with constant  holomor- 
phic curvature.  Then the curvature  tensor field R of (M ~ g) is given by 

for X, Y, Z e ~(~(~tl), where k is a constant  and ~ is the fundamental  2-form 
of (M, J, g), that is, Fd(X, Y ) :  g(~fX, Y~. 

Let  f :  (M, J, g).--> (M, J, g) be an Kiihlerian immersion. 
If  we set X - - f X ,  Y - - f  Y, -Z-~ fZ  for X, Y, Z e~C(M), then 

~ ( f x ,  f y ) f z  = k { o ( Z  z ~ f x  - g(X, z~f~ ~ + 

+ ~Q(Y, Z ) [ J X -  O.(X, Z ) f J Y  - -  2.Q(X, ~)fJZ }, 

where .Q is the fundamenta l  2-form of {M, J, g). 
This implies that R(fX, fY ) fZ  is tangent to f(M) for X, Y, Ze~(2d} ,  that 

is, f is an invariant  immersion. (Q. E. D.). 

Annali di Matematica 50* 
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COROLLARY. - Every Kghterian submanifold of a complex projective space 
with Fubini-Study metric is an invariant submanifold. 

Conversely we have the following 

TKEORE~f 4.2. - I f  every K~hlerian submanifold of a Kdhlerian mani/old 
(M, J, g) is an invariant submanifold, then (M, J, g) is a K~hlerian manifold 
with constant holomorphie curval~,re. 

PROOF. - Let f :  (M~ J, g)--> (M, J, g) be an invariant  Kahler ian immersion. 
Then we have 

g([~(fX, JfX)fX, ~) = 0 

for any vector X tangent  to M and any vector ~ normal to f(M). 
Since (M, J, g)and f are arbitrary,  we may think of fX  and ~ as an 

arbi t rary orthogonal couple of vectors of ~1. Now our assertion follows from 
the following lemma. 

LE~I~A. -  I f  

g(R(X, JX)X, Y) = 0 

for every orthogonal couple X, Y e T;(M) and for every point x ~ .M, then (M, J~ g} 
is a Kgihlerian manifold with constant holomorphic curvature. 

PRooF OF I ~ E ~ A . -  Let X, ~, JX, J Y  be ~n orthonormal quadruplet  of 
vectors at x~31.  Then .X + Y, J X - - J Y  is an orthogonal couple and hence 
we have 

g(R(X + Y, JX  + JY)X + Y, JX -- JY) -- O. 

This implies 

(4.1) K(X, JX} = K(Y, J:g). 

Let  U, V be an arbi t rary couple of unit vectors at 7xe/~. 
If  f{ U, VII (~) is a holomorphic section, that is, J{( U, Vi i - -{{  /.7, V}I, 

then it is clear tha~ 

K(U, JU)= If( If, JVb 

If {t U~ V I} is not a holomorphie section, then we can take unit  vectors 
X e{{ U, JUIII (2) and Y~({ V, JVt}± which determine a holomorphie section 
{{ X, Y}f. Then (4.1) implies 

3u) = K(X, gx l  = K-(i = K(V, JV . 

(~) II U, VII denotes the section determined by U and V. 
(2) denotes the ordlogonal complement. 
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Hence we have proved tlmt the holomorphic sectional curvature is the 

same for all holomorphic sections at x~3-f. This, together with an analogy of 
Theorem of P. S~ua,  implies that (M, J, g) is a space of constant  holomorphic 
curvature.  (Q. E. D.). 

TttEORE~ 4.2. - There exists no strongly invariant Kahlerian immersion 
of a K~hlerian manifold with non-zero constant hofomorphic curvature. 

PROOF. - Let  (M, J, g) be a Kahler ian  manifold with non-zero constant 
holomorphic curvature.  Then the curvature  tensor field _~ of (31, J, g) is given by 

where k is a non-zero constant.  
Let  f :  (M, J, g)-->(M, J, g) be a strongly invariant  Ki~hlerian immersion. 

If  we set ~ : - - f X ,  Y ~ - ~ ,  L 7 ~ / Z  for X, Z ~ ( 3 I )  and ~egL(/IMJj , then 

R-(fX, ~IfZ - k { - -  g(X, Z~  + ~(f, /Z} fJX --.Q(X, Z}J~ - -  2~(fX, ~)fJZ }. 

_~(fX, ~)fZ is tangent to /(M) if and only if k -~  0. (Q. E. D.). 
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