States of total pure radiation in general relativity (*)

JACK LEVINE and J. D. ZUND (Raleigh N.C.)

Summary - In this paper we investigate and exhibit space-times which admit states of pure radiation in the sense of Lichnerowicz. In § 1 the notion of special total pure radiation is introduced, and in § 2 we derive the canonical line element for this type of radiation. An additional type of spacetime admitting radiation is considered in § 3. A class of singular integrable electromagnetic fields for the space-times of § 2 are constructed in § 4. The final section is concerned with the radiation condition proposed by Zakharov.

Introduction

LICHNEROWICZ, in his study of gravitational and electromagnetic radiation in general relativity, has introduced the notion of total pure radiation at a point of space-time. In this paper we investigate this notion and exhibit space -times and classes of space-times for which the LICHNEROWICZ radiation conditions are satisfied. The concept of total pure radiation will be reviewed at the end of this introduction. In § 1 we consider a special subcase of total pure radiation in a conformally flat space-time, and in § 2 we exhibit all of the canonical forms for the line element. Some of these results were announced by us in a recent note [11] in Comptes Rendus Académie des Sciences, Paris. In § 3 we consider a class of space-times, which are not conformally flat, that admit states of total pure radiation.

Classes of integrable singular electromagnetic fields for the space-times of the first two sections are constructed in § 4. In the final section the radiation condition proposed by ZAKHAROV is shown to be consistent with the LICHNEROWICZ conditions for the state of special total pure radiation considered in § 1 and § 2.

Let V_4 be a four-dimensional differentiable manifold with a RIEMANNIAN metric $g_{\alpha\beta}(x^{\lambda})$ of hyperbolic normal signature. For brevity we will call such a V_4 a space-time. LICHNEROWICZ, [6], has defined a state of total pure radiation at a point $x \in V_4$ if the RIEMANN-CHRISTOFFEL curvature tensor $R_{\alpha\beta,\lambda\mu}$ and the RICCI tensor $R_{\alpha\beta} \stackrel{\text{def}}{=} R^{\gamma}_{\alpha,\gamma\beta}$ satisfy the following three conditions for a real non-zero null vector \vec{e} :

- (1) $e^{\alpha}R_{\alpha\beta,\lambda\mu}=0,$
- (2) $e_{\alpha}R_{\beta\gamma,\lambda\mu} + e_{\beta}R_{\gamma\alpha,\lambda\mu} + e_{\gamma}R_{\alpha\beta,\lambda\mu} = 0,$
- (3) $\mathbf{R}_{\alpha\beta} = \tau \, e_{\alpha} \, e_{\beta},$

^(*) Work supported by National Science Foundation Grants GP 6876 and GP 7401.

where τ is a non-zero scalar function of the local coordinates x^{α} , (τ may be constant). The case $\tau = 0$, which will not be considered in this paper, is called pure gravitational radiation by LICHNEROWICZ [6]

Throughout this paper \vec{e} will always denote a real non-zero null vector with components e^{α} or e_{α} , and is called a fundamental vector of $R_{\alpha\beta,\lambda\mu}$. The notation of LICHNEROWICZ [5], [6], and our previous paper [11] will be employed in this paper.

1. - Special total pure radiation.

In this section we will show that the LICHNEROWICZ radiation conditions (1)-(3) are closely related to the existence of a null parallel vector field in a conformally flat V_4 . A conformally flat V_4 will be denoted by C_4 . It will be recalled that the necessary and sufficient condition that V_4 be a C_4 is that the WEYL conformal curvature tensor vanish identically, i.e.

(4)
$$C^{\alpha}_{\beta,\lambda\mu} \stackrel{\text{def}}{=} R^{\alpha}_{\beta,\lambda\mu} - \frac{1}{2} \left(\delta^{\alpha}_{\lambda} R_{\beta\mu} - \delta^{\alpha}_{\mu} R_{\beta\lambda} + g_{\beta\mu} R^{\alpha}_{\lambda} - g_{\beta\lambda} R^{\alpha}_{\mu} \right) - \frac{R}{6} \left(\delta^{\alpha}_{\mu} g_{\beta\lambda} - \delta^{\alpha}_{\lambda} g_{\beta\mu} \right) = 0,$$

where $R^{\alpha}_{\alpha} \stackrel{\text{def}}{=} R$.

THEOREM 1. – The LICHNEROWICZ radiation conditions are satisfied by any C_4 which admits a parallel null vector field.

PROOF. - Let V_4 admit the parallel null vector field \vec{e} , i.e.

$$\nabla_{\lambda} e^{\alpha} = 0.$$

It is clear that the integrability conditions of (5) yield (1). If V_4 is a C_4 then (1) can be re-written in the form, LEVINE [2],

(6)
$$e_{\lambda} T_{\beta\mu} - e_{\mu} T_{\beta\lambda} = 0,$$

where

(7)
$$T_{\alpha\beta} \stackrel{\text{def}}{=} R_{\alpha\beta} - \frac{R}{3} g_{\alpha\beta},$$

which has a consequence

(8)
$$T_{\alpha\beta} = \tau e_{\alpha} e_{\beta},$$

where we may assume τ is a non-zero scalar factor of proportionality ($\tau = 0$ gives a flat space for which (1) (3) are trivially satisfied). On forming $g^{\alpha\beta}T_{\alpha\beta}$ and using (7) and (8) we find that R=0, whence $R_{\alpha\beta} = \tau \ e_{\alpha} \ e_{\beta}$, and (3) is satisfied. It now follows from (4), (7), (8) that

(9)
$$\bigtriangledown_{\gamma} R_{\alpha\beta, \lambda\mu} = t_{\gamma} R_{\alpha\beta, \lambda\mu},$$

where

(10)
$$t_{\gamma} = \frac{1}{\tau} \partial_{\gamma} \tau, \left(\partial_{\gamma} \equiv \frac{\partial}{\partial x \tau}\right).$$

The remaining radiation condition (2) is an obvious consequence of the second BIANCHI identity. End of proof.

The type of total pure radiation described in Theorem 1, i.e. e is an integrable parallel null vector field, and V_4 is a C_4 , is called a state of special total pure radiation. It is worth noting that (9) is precisely the requirement that C_4 be one of a class of recurrent space-times. Recurrent space-times will be considered in § 3.

2. - Canonical line elements for special total pure radiation.

We now consider the general problem of the determination of canonical line elements of C_n (arbitrary signature) which admit a parallel null vector field. In the case that n=4 and signature + ..., by virtue of Theorem 1, this will give states of total pure radiation.

In [2] LEVINE has shown a C_n (not of constant curvature) can admit at most one linearly independent parallel vector field. If this vector field is null then from § 1 above, we may write

(11)
$$R_{\alpha\beta} = \tau \ e_{\alpha} e_{\beta}, \ R = 0,$$

where $e_{\alpha} = \partial_{\alpha} \lambda$ is the null field, λ is a (non-constant) scalar and $\tau \neq 0$ is a scalar. From (11) we may write

(12)
$$\nabla_{\mathbf{r}}(\rho R_{\alpha\beta}) = 0,$$

where ρ is a non-zero scalar. Spaces C_n (not of constant curvature) which satisfy (12) have been studied in detail by LEVINE and KATZIN, [3], [4], and will be denoted by C_n^* . The C_n^* consist of two types:

Type I. : $\rho = \text{non-zero constant}$,

Type II. : $\rho \neq \text{constant}$.

We now examine the canonical forms of the line elements of these two types.

TYPE I. - It is shown in [3], [4] that the line element for the Type I cases of C_n^* spaces can be reduced to one of the two canonical forms;

(13)
$$\Phi_1 = \frac{\sum \varepsilon_{\alpha} (dx^{\alpha})^2}{Q_1 + \varepsilon}, \ \Phi_2 = \frac{\sum \varepsilon_{\alpha} (dx^{\alpha})^2}{Q_2 + M}$$

where Σ denotes the summation from 0 to n-1 on the indicated index, $\varepsilon_{\alpha} = \pm 1$, $\varepsilon = \pm 1$. In addition we have

(14)

$$\begin{cases}
Q_{1} \stackrel{\text{def}}{=} \sum_{\alpha,\beta} a_{\alpha\beta} x^{\alpha} x^{\beta}, \ (a_{\alpha\beta} = a_{\beta\alpha} = \text{const.}), \\
\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha\beta} a_{\alpha\gamma} = 0, \ (\text{matrix } [a_{\alpha\beta}] \neq 0); \\
Q_{2} \stackrel{\text{def}}{=} \sum_{\alpha,\beta} \hat{a}_{\alpha\beta} x^{\alpha} x^{\beta}, \ (\hat{a}_{\alpha\beta} = \hat{a}_{\alpha\beta} = \text{const.}, \ \hat{a}_{\alpha0} = \hat{a}_{\alpha1} = 0), \\
\sum_{\alpha} \varepsilon_{\alpha} \hat{a}_{\alpha\beta} \hat{a}_{\alpha\gamma} = 0, \ (\text{matrix } [\hat{a}_{\alpha\beta}] \neq 0, \ \text{for } \alpha, \ \beta = 2, \ \dots, \ n-1), \\
M \stackrel{\text{def}}{=} x^{0} + x^{1}; \ \varepsilon_{0} = 1, \ \varepsilon_{1} = -1 \ (\text{other } \varepsilon' s \ \text{arbitrary sign})
\end{cases}$$

For both canonical forms R = 0, and

(15)
$$R_{\alpha\beta} = \frac{n-2}{u} \,\partial_{\alpha\beta} \, u_{\beta}$$

where $u^2 \stackrel{\text{def}}{=} Q_1 + \varepsilon$ for Φ_1 , and $u^2 \stackrel{\text{def}}{=} Q_2 + M$ for Φ_2 .

In case a Type I C_n^* space admits a parallel null vector field it follows from (11) and (15) that u must satisfy

(16)
$$(\partial_{\alpha\beta} u) (\partial_{\rho\sigma} u) - (\partial_{\alpha\sigma} u) (\partial_{\beta\rho} u) = 0.$$

For Φ_1 , (16) requires that $a_{\alpha\beta}a_{\rho\sigma} - a_{\alpha\sigma}a_{\beta\rho} = 0$, which implies $a_{\alpha\beta}$ must be of the form $a_{\alpha\beta} = \tau_0 a_{\alpha} a_{\beta}$, where $\tau_0 \pm 0$ (a_{α}, τ_0 constants). Furthemore by (14) we must have $\sum_{\alpha} \varepsilon_{\alpha}(a_{\alpha})^2 = 0$. Thus $Q_1 = \tau_0 L^2$ where $L \stackrel{\text{def}}{=} \sum_{\alpha} a_{\alpha} x^{\alpha}$; and the components e_{α} of the null parallel field will have the from

(17)
$$e_{\alpha} = \partial_{\alpha} \lambda = \frac{a^{\alpha}}{\tau_0 L^2 + \varepsilon}, \ \lambda = \int \frac{dL}{\tau_0 L^2 + \varepsilon}$$

It is easy to verify that by a coordinate transformation we can reduce L to the form $L = \hat{a}(x^0 + x^{n-1})$, whit $\varepsilon_0 = 1$, $\varepsilon_{n-1} = -1$, (a = const.).

For Φ_2 of (13), (16) implies that

(18)
$$\hat{a}_{\alpha\sigma} c_{\beta} c_{\rho} + \hat{a}_{\rho\beta} c_{\alpha} c_{\sigma} - \hat{a}_{\alpha\beta} c_{\rho} c_{\sigma} - \hat{a}_{\rho\sigma} c_{\alpha} c_{\beta} = 0,$$

where $c_0 = c_1 = 1$, $c_2 = ... = c_{n-1} = 0$. If we put $\alpha = \beta = 0$ in (18) we find that $\hat{a}_{\rho\sigma} = 0$, which is a contradiction to the matrix condition on $[\hat{a}_{\alpha\beta}]$ of (14)'. Hence the type Φ_2 does not admit a parallel null vector field. Hence the line element of the only Type I C_n^* which admits such a field can be given the canonical form

(13)
$$\Phi_{1} = \frac{\sum \varepsilon_{\alpha} (dx^{\alpha})^{2}}{\tau_{0} (x^{0} + x^{n-1})^{2} + \varepsilon}, \qquad \begin{pmatrix} \varepsilon_{\alpha}^{2} = 1, \ \varepsilon^{2} = 1 \\ \varepsilon_{0} = 1, \ \varepsilon_{n-1} = -1 \\ \tau_{0} \neq 0 \text{ is const.} \end{pmatrix}.$$

(the constant \hat{a} of L has been absorbed in the τ_0).

TYPE II. - Since the parallel null vector e_{α} must satisfy $\bigtriangledown_{\alpha} e_{\beta} = 0$ it follows that e_{α} satisfies KILLING'S equation for a motion in C_n^* . We choose our local coordinate system (x^{α}) in C_n^* such that

$$\Phi=\frac{\Sigma\,\varepsilon_{\alpha}(dx^{\alpha})^{2}}{u^{2}}\,,$$

with $e^{-2\sigma} \stackrel{\text{def}}{=} u^2$. From LEVINE [1] we have that the associated contravariant components e_{α} satisfy

(19)
$$\varepsilon_{\alpha} \frac{\partial e}{\partial x^{\beta}} + \varepsilon_{\beta} \frac{\partial e^{\beta}}{\partial x^{\alpha}} = 0$$
, $(\alpha \neq \beta; \text{ no summing})$,

(20)
$$\sum_{\beta} e^{\beta} \frac{\partial \sigma}{\partial x^{\beta}} + \frac{\partial e^{\beta}}{\partial x^{\alpha}} = 0, \ (\alpha \text{ not summed}).$$

From [1] we know that the e^{α} which satisfy (19) and (20) must be of the form

(21)
$$e^{\alpha} = b^{\alpha} + \mu x^{\alpha} + \sum_{\beta} b^{\alpha}_{\beta} x^{\beta} - \frac{1}{2} \varepsilon_{\alpha} a_{\alpha} U,$$

(21)'
$$\mu \stackrel{\text{def}}{=} a + \sum_{\alpha} a_{\alpha} x^{\alpha},$$

(22)
$$\varepsilon_{\alpha}b_{\beta}^{\alpha} + \varepsilon_{\beta}b_{\alpha}^{\beta} = 0$$
, (no summation),

$$U \stackrel{\mathrm{def}}{=} \sum_{\alpha} \varepsilon_{\alpha} (x^{\alpha})^2,$$

Annali di Matematica

and a, α_{α} , b^{α} , b^{α}_{β} are constants. The e^{α} of (21) satisfy (19) identically; (20) can be re-written as

(23)
$$\sum_{\alpha} e^{\alpha} \frac{\partial u}{\partial x^{\alpha}} = \mu u, \ \mu = \frac{\partial e^{0}}{\partial x^{0}} = \dots = \frac{\partial e^{n-1}}{\partial x^{n-1}}.$$

From $e_{\alpha} = \partial_{\alpha} \lambda$ we may write $e^{\alpha} = \varepsilon_{\alpha} u^2 \partial_{\alpha} \lambda$, which allows us to write

(24)
$$\theta_{\alpha} \stackrel{\text{def}}{=} \varepsilon_{\alpha} e^{\alpha} = u^{2} \partial_{\alpha} \lambda = \varepsilon_{\alpha} x^{\alpha} \mu + \sum_{\beta} b_{\alpha\beta} x^{\beta} + b_{\alpha} - \frac{1}{2} a_{\alpha} U,$$

where $b_{\alpha\beta} = -b_{\beta\alpha} \stackrel{\text{def}}{=} \epsilon_{\alpha} b_{\beta}^{\alpha}; \ b_{\alpha} \stackrel{\text{def}}{=} \epsilon_{\alpha} b^{\alpha}.$ From (24) we write

$$\partial_{\alpha}\lambda = u^{-2}\theta_{\alpha}$$

so that

(26)
$$\vartheta_{\alpha\beta}\lambda = u^{-2}(\vartheta_{\beta}\,\theta_{\alpha}) - 2u^{-3}\,\theta_{\alpha}(\vartheta_{\beta}\,u)$$

By (19) we find

(27)
$$\partial_{\alpha\beta}\lambda = -u^{-1}((\partial_{\alpha}u)(\partial_{\beta}\lambda) + (\partial_{\alpha}\lambda)(\partial_{\beta}u)), \ (\alpha \neq \beta),$$

which together with (26) implies

(28)
$$\partial_{\beta} \theta_{\alpha} = u^{-1} (\theta_{\alpha} \partial_{\beta} u - \theta_{\beta} \partial_{\alpha} u), \ (\alpha \neq \beta).$$

This last equation shows that

(29)
$$\begin{aligned} \theta_{\alpha} \partial_{\gamma} \theta_{\beta} + \theta_{\beta} \partial_{\alpha} \theta_{\gamma} + \theta_{\gamma} \partial_{\beta} \theta_{\alpha} &= 0, \\ \partial_{\beta} \theta_{\alpha} &= -\partial_{\alpha} \theta_{\beta}, \quad (\alpha, \beta, \gamma \pm). \end{aligned}$$

From (25) we define $X_{\alpha\beta}(\lambda) \stackrel{\text{def}}{=} \theta_{\beta} \partial_{\alpha} \lambda - \theta_{\alpha} \partial_{\beta} \lambda = 0$. One may directly verify that the integrability conditions $(X_{\alpha\beta}, X_{\gamma\delta})\lambda = 0$ are satisfied by use of (29).

If we now subsitute the expression θ_x given in (24) into (29) and require that the resulting equations are to be identically satisfied in the $x^{\alpha'}s$, we obtain the following conditions on the constants a, a_{α} , b_{α} , $b_{\alpha\beta}$:

$$(30) b_{\alpha} b_{\beta\gamma} + b_{\beta} b_{\gamma\alpha} + b_{\gamma} b_{\alpha\beta} = 0,$$

$$(31) b_{\alpha\rho} b_{\beta\sigma} + b_{\beta\rho} b_{\sigma\alpha} + b_{\sigma\rho} b_{\alpha\beta} = 0$$

$$(32) a b_{\alpha\beta} + a_{\alpha} b_{\beta} - a_{\beta} b_{\alpha} = 0,$$

(33)
$$a_{\alpha}b_{\beta\gamma} + a_{\beta}b_{\gamma\alpha} + a_{\gamma}b_{\alpha\beta} = 0.$$

A detailed analysis of (30)-(33) based on the consideration of the two subcases $\mu \neq \text{const.}$, and $\mu = \text{const.}$ (see (21)'), results in the following four types of solutions:

(A)
$$b_{\alpha} = a_{\alpha}b - a B_{\alpha},$$
$$b_{\alpha\beta} = a_{\alpha}B_{\beta} - a_{\beta}B_{\alpha},$$

where a, b, a_{α} , B_{α} are arbitrary constants such that $a_1 \pm 0$, $B_1 = 0$.

$$\mathbf{a}_{\alpha} = \mathbf{0}, \ b_{\alpha\beta} = \mathbf{0},$$

and a, b_{α} are arbitrary, with $a \neq 0$.

(C)
$$a = a_{\alpha} = 0, \ b_{\alpha\beta} = b_{\alpha} \widehat{B}_{\beta} - b_{\beta} \widehat{B}_{\alpha},$$

where b_{α} , \widehat{B}_{α} are arbitrary, with $b_0 \neq 0$, $\widehat{B}_0 = 0$.

(D)
$$a = a_{\alpha} = b_{\alpha} = 0, \ b_{\alpha\beta} = B_{\alpha} \widehat{B}_{\beta} - B_{\beta} \widehat{B}_{\alpha},$$

where b_{α} , \widehat{B}_{α} are arbitrary, with $B_0 = \widehat{B}_1 = 0$, $B_1 = -\widehat{B}_0 \neq 0$.

The corresponding θ_{α} for these cases are given by

(A)
$$\partial_{\alpha} = \mu(\varepsilon_{\alpha} x^{\alpha} - B_{\alpha}) + a_{\alpha} \left(b - \frac{1}{2} U + \sum_{\rho} B_{\rho} x^{\rho} \right).$$

(B)
$$\theta_{\alpha} = a \left(\varepsilon_{\alpha} x^{\alpha}\right) + b_{\alpha}$$

(C)
$$\theta_{\alpha} = b_{\alpha} + \sum_{\rho} (b_{\alpha} \, \widehat{B}_{\rho} - b_{\rho} \, \widehat{B}_{\alpha}) \, x^{\rho}.$$

(D)
$$\theta_{\alpha} = B_{\alpha} \left(\sum_{\rho} \widehat{B}_{\rho} x^{\rho} \right) - \widehat{B}_{\alpha} \left(\sum_{\rho} B_{\alpha} x^{\rho} \right).$$

The requirement that e^{α} is a null vector implies that $\sum_{\rho} \epsilon_{\alpha} \theta_{\alpha}^2 = 0$. This condition imposes the following restrictions on our cases:

(A)

$$a = -\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha} B_{\alpha}, \ \beta = -\frac{1}{2} \sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^{2},$$

$$\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha}^{2} = 0 \text{ with } a_{0} \neq 0, \ B_{0} = 0, \ \mu = \sum_{\alpha} a_{\alpha} (x_{\alpha} - \varepsilon_{\alpha} B_{\alpha})$$

$$\theta_{\alpha} = \varepsilon_{\alpha} (x^{\alpha} - \varepsilon_{\alpha} B_{\alpha}) \mu - \frac{1}{2} a_{\alpha} \Sigma \varepsilon_{\beta} (x^{\beta} - \varepsilon_{\beta} B_{\beta})^{2}.$$

(B) is excluded since we must have a=0.

(C)
$$\sum_{\alpha} \varepsilon \ b_{\alpha}^{2} = 0, \ \Sigma \varepsilon_{\alpha} \ \widehat{B}_{\alpha}^{2} = 0, \ \sum_{\alpha} \varepsilon_{\alpha} b_{\alpha} \ \widehat{B}_{\alpha} = 0, \ (b_{0} \neq 0, \ \widehat{B}_{0} = 0),$$

$$\theta_{\alpha} = (M+1)b_{\alpha} - \widehat{B}_{\alpha}K; \ K \stackrel{\text{def}}{=} \sum_{\alpha} b_{\alpha}x^{\alpha}, \ M \stackrel{\text{def}}{=} \sum_{\alpha} \widehat{B}_{\alpha}x^{\alpha}.$$

(D)
$$\sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^{2} = 0, \ \sum_{\alpha} \varepsilon_{\alpha} \widehat{B}_{\alpha}^{2} = 0, \ \sum_{\alpha} \varepsilon_{\alpha} B_{\alpha} \widehat{B}_{\alpha} = 0, \ \theta_{\alpha} = M B_{\alpha} - \widehat{K} \widehat{B}_{\alpha},$$
$$\widehat{K} \stackrel{\text{def}}{=} \sum_{\alpha} B_{\alpha} x^{\alpha}, \text{ and } B_{0} = B_{1} = 0, \ B_{1} = - \widehat{B}_{0} \neq 0.$$

These results can be simplified by use of appropriate coordinate transformations.

For case (A) consider the coordinate transformation $y^{\alpha} = x^{\alpha} - \varepsilon_{\alpha}B_{\alpha}$. In the y-coordinates replace a_{α} by $2a_{\alpha}$. Then, after changing y^{α} to x^{α} , we find $\theta_{\alpha} =$ $= \mu \varepsilon_{\alpha} x^{\alpha} - a_{\alpha} U$, where $\mu \stackrel{\text{def}}{=} \sum_{\alpha} a_{\alpha} x^{\alpha}$. Hence we may write

(34)
$$\theta_{\alpha} = u^{2} \partial_{\alpha} \lambda = \mu^{2} \partial_{\alpha} V, \quad V \stackrel{\text{def}}{=} \mu^{-1} U.$$

This implies $(\partial_{\alpha} \lambda)(\partial_{\beta} V) - (\partial_{\beta} \lambda)(\partial_{\alpha} V) = 0$, so that we may write $\lambda = F_1(V)$, and by (34),

(35)
$$\frac{1}{u^2} = \frac{1}{\mu^2} \frac{dF_1}{dV}.$$

Next we make the inversion $x^{\alpha} = y^{\alpha} / W$, where $W \stackrel{\text{def}}{=} \sum_{\alpha} \varepsilon_{\alpha} (y^{\alpha})^2$. In the new coordinates (after changing y^{α} to x^{α}) we find that

(36)
$$\frac{1}{u} = \frac{1}{\mu^2} \frac{dF_1}{d(\mu^{-1})}, \ (\mu = \Sigma a_\alpha x^\alpha).$$

In Case (C) we define $Y \stackrel{\text{def}}{=} K / (M+1)^2$ so that $\theta_{\alpha} = (M+1)^2 \partial_{\alpha} Y$. As in case (A) we may express λ in the from $\lambda = F_2(Y)$, and

(37)
$$\frac{1}{u^2} = \frac{1}{(M+1)^2} \frac{dF_2}{dY}.$$

For Case (D), put $X \stackrel{\text{def}}{=} K/M$, so $\theta_{\alpha} = M^2 \partial_{\alpha} X$, giving $\lambda = F_3(X)$, $u^{-2} = M^{-2} (dF_3/dX)$.

In (C) we may have M=0, but K=0. In (D) we have K=0, M=0.

An inspection of cases (A), (C), (D) shows that (A) is a special case of (C) with M = 0. Furthemore, both case (C) and case (D) can be represented in

the form $u = (M+\gamma)G(Z)$, where $Z \stackrel{\text{def}}{=} K/(M+\gamma)$, with $\gamma = 0$ or $\gamma = 1$; $K \stackrel{\text{def}}{=} \sum_{\alpha} b_{\alpha} x^{\alpha}$, $M \stackrel{\text{def}}{=} \sum_{\alpha} B_{\alpha} x^{\alpha}$, with $b_0 = B_1 = 0$, $b_1 = -B_0 \neq 0$. If M = 0 we may write

$$(38) u = G(K) = G(Z)$$

if $M \neq 0$, $\gamma = 1$, a translation will change u to the form

$$(39) u = M G(K/M) = M G(Z).$$

In both cases we must have $\sum_{\alpha} \varepsilon_{\alpha} b_{\alpha}^2 = 0$, $\sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^2 = 0$, $\sum_{\alpha} \varepsilon_{\alpha} b_{\alpha} B_{\alpha} = 0$. In the first case, (38), a coordinate transformation can reduce Z to the form $Z = \gamma(x^0 + x^{n-1})$, with $\varepsilon_0 = 1$, $\varepsilon_{n-1} = -1$. Finally, by a dilation $y^{\alpha} = \gamma x^{\alpha}$ we obtain $u = \gamma G(Z)$, $Z = x^0 + x^{n-1}$.

Thus for C_n^* of Type II we have the two canonical forms

(40)
$$\Phi_{3} = \frac{\sum \varepsilon_{\alpha} (dx^{\alpha})^{2}}{\gamma^{2} G^{2}(Z)}, \ Z = x^{0} + x^{n-1}, \ \varepsilon_{0} = 1, \ \varepsilon_{n-1} = -1;$$

(41)
$$\Phi_4 = \frac{\sum \varepsilon_{\alpha} (dx^{\alpha})^2}{M^2 G^2(Z)},$$

with Z = K/M, where $K = \gamma x^1 + b_2 x^2 + \dots + b_{n-1} x^{n-1}$, $M = -\gamma x^2 + B_2 x^2 + \dots + B_{n-1} x^{n-1}$, $(\gamma \neq 0)$, and $\varepsilon_0 \gamma^2 + \sum_{\alpha=2}^{n-1} \varepsilon_\alpha b_\alpha^2 = 0$, $\varepsilon_1 \gamma^2 + \sum_{\alpha=2}^{n-1} \varepsilon_\alpha B_\alpha^2 = 0$, = 0, $\sum_{\alpha} \varepsilon_\alpha b_\alpha B_\alpha = 0$.

For both of these Type II forms, (40), (41), we may easily verify that

(42)
$$R_{\alpha\beta} = (n-2)G^3 \frac{d^2 G}{dZ^2} \frac{\partial \lambda}{\partial x^{\alpha}} \frac{\partial \lambda}{\partial x^{\beta}},$$

where $\partial \lambda / \partial x^{\alpha} = G^{-2} \partial Z / \partial x^{\alpha}$ is a parallel null vector field, $(\lambda = \int G^{-2} dZ)$. To avoid the Type I C_n^* spaces we must have

(43)
$$G^3 \frac{d^2 G}{dZ^2} \neq \text{const.}$$

If n = 4 and $\varepsilon_0 = 1$, $\varepsilon_1 = \varepsilon_2 \ \varepsilon_3 = -1$, one can show that Φ_4 is not possible but Φ_3 will exist as a canonical form for Type II C_n^* space-times.

By Theorem 1 we may summarize the results of this section as follows.

THEOREM 2. – The line element of a C_4^* admitting a state of special total pure radiation can be given the canonical form

$$\begin{split} \Phi_1 &= \frac{(dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2}{\tau_0 (x^0 + x^3)^2 + \varepsilon}, \ (C_4^* \text{ of Type I}), \\ \Phi_3 &= \frac{(dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2}{\gamma^2 \ G^2 (x^0 + x^3)}, \ (C_4^* \text{ of Type II}). \end{split}$$

In Φ_1 , τ_0 is a non-zero constant, $\varepsilon = \pm 1$. In Φ_3 , γ is a non-zero constant, and G satisfies (43) with $Z = x^0 + x^3$. (Note that although Φ_1 is of the form Φ_3 the corresponding G does not satisfy (43)).

3. - Radiation in other space-times.

In addition to the states of radiation indicated in the first two sections there exist radiation solutions in V_4 which need not be conformally flat. An example is given in the theorem to follow.

THEOREM 3. – The LICHNEROWICZ radiation conditions are satisfied for a V_4 wich is a non-special, symmetric, recurrent space (with proper signature).

PROOF. - Denote a V_4 of the type stated in Theorem 3 by K_4^* . Then a K_4^* satisfies the following conditions [7; p. 152],

(44)
$$\nabla_{\gamma} R_{\alpha\beta,\lambda\mu} = 0$$

(45)
$$k_{\alpha} R_{\beta\gamma,\lambda\mu} + k_{\beta} R_{\gamma\alpha,\lambda\mu} + k_{\gamma} R_{\alpha\beta,\lambda\mu} = 0,$$

where k_{α} is a non-zero vector. In addition, a K_4^* admits a null parallel vector field e_{α} such that $e_{\alpha} = \varphi k_{\alpha}$ for some non-zero scalar φ [7; p. 173]. Hence conditions (1) and (2) are satisfied.

A coordinate system can be chosen locally so that the metric of K_4^* has the form [7; pp. 176, 182]

(46)
$$ds^2 = \psi(dx^0)^2 + \sum_{\alpha,\beta=1}^2 k_{\alpha\beta} dx^{\alpha} dx^{\beta} + 2dx^0 dx^3,$$

where $\psi = \sum_{\alpha,\beta=1}^{2} a_{\alpha\beta} x^{\alpha} x^{\beta}$, $|k_{\alpha\beta}| \neq 0$, $|a_{\alpha\beta}| \neq 0$, and $a_{\alpha\beta}, k_{\alpha\beta}$ are constants.

In this coordinate system we have $R_{00} = A \stackrel{\text{def}}{=} k^{\alpha\beta} a_{\alpha\beta}$, [8, p. 57; 7, p. 179], all other $R_{\alpha\beta} = 0$. In addition, in this coordinate system, $e^{\alpha} = \delta^{\alpha}$, so $e_{\alpha} = \delta_{\alpha 0}$ [7, p. 176]. It follows we may write $R_{\alpha\beta} = A e_{\alpha} e_{\beta}$ (in any coordinate system), and hence condition (3) is satisfied (case A=0 is excluded as this would give a flat space). It is easily shown the $a_{\alpha\beta}$ and $k_{\alpha\beta}$ of metric (46) can always be chosen to give the hyperbolic normal signature.

4. - Singular electromagnetic fields

For each state of total pure radiation we can construct a singular electromagnetic field by requiring that the source-free MAXWELL equations

(47)
$$\nabla_{\alpha} F^{\alpha\beta} = 0,$$

(48)
$$\partial_{\alpha} F_{\beta\gamma} + \partial_{\beta} F_{\gamma\alpha} + \partial_{\gamma} F_{\alpha\beta} = 0,$$

be satisfied in addition to the LICHNEROWICZ conditions (1), (3). It is well known, [6], that $F_{\alpha\beta}$ is singular with fundamental vector \vec{k} if and only if

(49)
$$F_{\alpha\beta} = k_{\alpha} m_{\beta} - m_{\alpha} k_{\beta}$$

with

$$(50) k_{\alpha}k^{\alpha} = k_{\alpha}m^{\alpha} = 0, \ m^{\alpha}m_{\alpha} = -1.$$

To obtain the states of total pure radiation in a C_4 we identify the fundamental vectors of $F_{\alpha\beta}$ and $R_{\alpha\beta,\lambda\mu}$, $\vec{k} = \vec{e}$, and write (47), (48) in a C_4 whose metric is written in the general form

(51)
$$\Phi = \frac{\eta_{\alpha\beta} \, dx^{\alpha} \, dx^{\beta}}{u^2},$$

where $\eta_{\alpha\beta}$ is the MINKOWSKI metric, $\eta_{00} = 1$, $\eta_{11} = \eta_{22} = \eta_{33} = -1$. This form includes the canonical forms discusses in § 2.

In C_4 , (47) simplifies to

(52)
$$\eta^{\rho\sigma} \partial_{\rho} F_{\alpha\beta} = 0,$$

and as in [11] we may choose the \vec{e} and \vec{m} to have the components

(53)
$$e_{\alpha} = e_{0}(\lambda) \left(\delta_{\alpha}^{0} + \varepsilon \delta_{\alpha}^{1} \right),$$

(54)
$$m_{\beta} = m_0(x^{\alpha}) \left(\delta^0_{\beta} + \varepsilon \delta^1_{\beta}\right) + m_2(x^{\alpha}) \delta^2_{\beta} + m_3(x^{\alpha}) \delta^3_{\beta},$$

where $e_0(\lambda)$ is a function of $\lambda \stackrel{\text{def}}{=} x^0 + \varepsilon x^1$ of class $C^k(k \ge 1)$, $\varepsilon = \pm 1$, and m_0 , m_2 , and m_3 are arbitrary functions of x^{α} of class $C^k(k \ge 1)$ such that

(55)
$$(m_2)^2 + (m_3)^2 = \frac{1}{u^2},$$

In a previous paper, [12], we have shown how to construct a class of non-integrable singular electromagnetic fields in a C_4 with a metric of the form (51). By omitting the requirement that the field be non-integrable (i.e. Lemma B of [12]) and identifying the fundamental vectors of $F_{\alpha\beta}$ and $R_{\alpha\beta,\lambda\mu}$ the results of [12] allow us to state the following:

THEOREM 4. – Let \vec{e} be a fundamental vector of both $F_{\alpha\beta}$ and $R_{\alpha\beta,\lambda\mu}$. For a state of total pure radiation in C_4 with metric (51) a class of integrable singular electromagnetic fields is given by a holomorphic function $F(\mathfrak{Z};\lambda)$, where $\mathfrak{Z} \stackrel{\text{def}}{=} x^3 + ix^2$. Furthermore (53) and (54) may now be written

$$e_{\alpha} = \varepsilon u |F| (\delta^{0} + \varepsilon \delta^{1}),$$
$$m_{\beta} = m_{0}(x^{\alpha}) (\delta^{0}_{\beta} + \varepsilon \delta^{1}_{\beta}) + \frac{\varepsilon}{u|F|} [(Re \ F) \delta^{2}_{\beta} + (Im \ F) \delta^{3}_{\beta}]$$

Using the well know expressions of \vec{E} , \vec{H} , the momentum tensor $\tau_{\alpha\beta}$, the energy density W, and the POYNTING vector \vec{P} , we find that

$$\begin{split} E^{\alpha} &= -u^{-5} [(Re \ F) \delta_2^{\alpha} + (Im \ F) \delta^{\alpha}], \\ H^{\alpha} &= u^{-5} [Im \ F) \delta_2^{\alpha} - (Re \ F) \delta_3^{\alpha}], \\ \tau_{\alpha\beta} &= u^2 |F|^2 (\delta_{\alpha}^0 \delta_{\beta}^0 + \delta_{\alpha}^1 \delta_{\beta}^1 + \varepsilon \delta_{\alpha}^0 \delta_{\beta}^1), \\ W &= u^4 |F|^2, \ P_{\alpha} &= \varepsilon u \ |F|^2 \delta_{\alpha}^1. \end{split}$$

5. - Zakharov's radiation condition.

In a recent paper, [9], V. D. ZAKHAROV has proposed the equation

$$(56) \qquad \Box R_{\alpha\beta,\lambda\mu} = 0,$$

where $\Box \stackrel{\text{def}}{=} g^{\rho\sigma} \bigtriangledown_{\rho} \bigtriangledown_{\sigma}$, serve as a general criterion for the existence of gravitational radiation. The explicit expression (n = 4)

(57)
$$\Box R_{\alpha\beta,\lambda\mu} = \bigtriangledown \ \bigtriangledown_{\mu} R_{\beta\lambda} + \bigtriangledown_{\beta} \bigtriangledown_{\lambda} R_{\alpha\mu} - \bigtriangledown_{\alpha} \bigtriangledown_{\lambda} R_{\alpha\mu} - \bigtriangledown_{\beta} \bigtriangledown_{\mu} R_{\alpha\lambda}$$
$$+ R_{\alpha\sigma} R^{\sigma}_{\beta,\lambda\mu} - R_{\beta\sigma} R^{\sigma}_{\alpha,\lambda\mu}$$
$$- 2(R^{\rho}_{\alpha,\sigma\mu} R^{\sigma}_{\lambda,\rho\beta} - R^{\rho}_{\alpha,\sigma\lambda} R^{\sigma}_{\mu,\rho\beta}) - R^{\sigma}_{\rho,\alpha\beta} R^{\rho}_{\sigma,\lambda\mu} ,$$

can be easily derived by using the RICOI and BIANCHI identities. It is clear

that (57) is a complicated condition on $R_{\alpha\beta}$ and $R_{\alpha\beta,\lambda\mu}$. If V_4 is an EINSTEIN space (57) simplifies considerably, and this case was originally investigated by ZAKHARON, [9], and more recently by ZUND and MAHER, [13], who used the VAN DER WAERDEN spinor formalism.

We show here that ZAKHAROV'S condition (56) is always satisfied for a state of special total pure radiation (see § 1).

Consider then a C_4 admitting a parallel null vector field e_{α} . Then (9) is satisfied, where we may assume $t_{\gamma} \neq 0$ ($t_{\gamma} = 0$ shows (56) satisfied trivially). Also, we have $R_{\alpha\beta} = \tau e_{\alpha} e_{\beta}$, and R=0. Hence the well known condition in a C_4 ,

$$R_{\alpha\beta\gamma} \stackrel{\text{def}}{=} \nabla_{\gamma} {}^{\beta} R_{\alpha\beta} - \nabla_{\beta} R_{\alpha\gamma} + \frac{1}{6} \left(g_{\alpha\gamma} \, \partial_{\beta} R - g_{\alpha\beta} \, \partial_{\gamma} R \right) = 0,$$

reduces to $\nabla_{\gamma} R_{\alpha\beta} = \nabla_{\beta} R_{\alpha\gamma}$. This implies

$$\partial_{\alpha} \tau = \rho \, e_{\alpha} \,,$$

where ρ is a scalar factor.

From (9), (10) we derive

(59)
$$\square R_{\alpha\beta,\lambda\mu} = g^{\gamma\delta} [\tau^{-1} \bigtriangledown_{\gamma} \bigtriangledown_{\delta} \tau - \tau^{-2} (\partial_{\gamma} \tau) (\partial_{\delta} \tau)] R_{\alpha\beta,\lambda\mu}.$$

By (58), $g^{\gamma}(\delta_{\gamma}\tau)(\partial_{\delta}\tau) = 0$ (since e_{α} is null). Since $\nabla_{\gamma} \nabla_{\delta}\tau = \nabla_{\delta} \nabla_{\gamma}\tau$, we find by use of (58), that $\partial_{\alpha}\rho = \mu e_{\alpha}$ for some scalar factor μ . Hence $g^{\gamma\delta}(\nabla_{\gamma} \nabla_{\delta}\tau) = \mu(g^{\gamma\delta}e_{\gamma}e_{\delta}) = 0$, and thus the right side of (59) is zero.

This gives us

THEOREM 5. - For a state of special total pure radiation ZAKHAROV'S condition is always satisfied.

In general it is not to be expected that a state of total pure radiation, in the sense of LICHNEROWICZ, will satisfy (56).

BIBLIOGRAPHY

- J. LEVINE, Groups of motions in conformally flat spaces, I., Bull. Amer. Soc. Math. 42(1937), pp. 418-422.
- [2] —, Fields of parallel vectors in conformally flat_spaces, Duke Math. Jonr. 17 (1950) pp. 15-20.
- [3] J. LEVINE and G. H. KATZIN. Conformally flat spaces admitting special quadratic first integrals, I. (Symmetric spaces), Tensor (to appear).
- [4] --, and --, Conformally flat spaces admitting special quadratic first integrals, II. (Recurrent spaces). Tensor, (to appear).

- [5] A. LICHNEROWICZ, Théorie relativistes de la gravitation et de l'electromagnétisme, Masson et Cie, Paris (1955).
- [6] —, Ondes et radiations electromagnétiques et gravitationnelles en relativite générale, Ann. di Mat. Pura ed Appl. 50 (1960), pp. 1-95.
- [7] H. S. RUSE, A. G. WALKER, T. J. WILLMORE, *Harmonic spaces*, Edizione Cremonese, Roma (1961).
- [8] A. G. WALKER, On Ruse's spaces of recurrent curvature, Proc. of the London Math. Soc. Ser. 2, 52 (1950), pp. 36-44.
- [9] V. D. ZAKHAROV, A physicalcharacteristic of Einsteinian spaces of the second degenerate type in the Petrov classification, Dokl. Akad. Nauk SSR 161 (1965), pp. 563-595 (translation: Sov. Phys. Dok. 10 (1965), pp. 242-243).
- [10] J. ZUND, Sur la radiation gravitationnelle, C. R. Acad. Sci. Paris. 262 Sér. A (1966) p. 1081.
- [11] J. D. ZUND and J. LEVINE, Sur la radiation gravitationnelle, C. R. Acad. Sci. Paris 264, Ser. A (1967), pp. 1029-1032.
- [12] -, and -, A class of nonintegrable singular electromagnetic fields, Il Nuovo Cimente, Ser. X, 51 A (1967), pp. 687-695.
- [13] J. D. ZUND and W. F. MAHER, Jr., A spinor approach to some problems in Lorentzian geometry, Rend. del Circ. Mat. Di Palermo (to appear).