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Summary - I n  this paper ~ce investigate and exhibit space-times which admit states of pure 
radiation in the sense of Liehnerowicz. In ~ 1 the notion of special total pure radiation 
is introduced, and in ~ 2 eve derive the canonical line element for this type of radiation. 
An additional type of spacetime admitting radiation is considered in ~ 3. A class of 
singular integrable electromagnetic fields for the space-times of § 2 are constructed in 

4. The f inal  section is concerned with the radiation condition proposed by Zakharov. 

Introduction 

LIc~tN]~I~OW~CZ, in his s tudy of gravitat ional  and electromagnet ic  radiat ion 
in general  relativity, has in t roduced the notion of total pure radiat ion at a 
point of space-t ime.  In this paper  we investigate this notion and exhibit space 
- t imes  and classes of space- t imes  for which the L m ~ n R o w I c z  radiation con- 
ditions are satisfied. The concept of total p u r e  radiat ion will be reviewed at 
the end of this introduction.  In  § 1 we consider  a special subcase of total 
pure radiat ion in a conformally fiat space- t ime,  and in § 2 we exhibit  all of 
the canonical forms for the line element. Some of these results  were announ- 
ced by us in a recent  note I l l ]  in Comptes Rendus Academic des Sciences, 
Paris.  In  § 3 we consider a class of space-t imes,  which are not conformally 
flat, that admit states of total pure radiation. 

Classes of integrable singular  electromagnetic  fields for the space- t imes  
of the first two sections are constructed in § 4. Iu the final section the radi- 
ation condition proposed by ZAKIdAnOV is shown to be consistent  with the 
LICIt~EROWlCZ conditions for the state of special total pure  radiat ion consi- 
dered in § 1 and § 2. 

Let V4 be a four-dimensional  different iable manifold with a RIE~A~NIA~ ~ 
metric  g~(x ~) of hyperbolic normal signature.  For  brevi ty we will call such 
a V4 a space-t ime.  LIc~CEROWICZ, [6], has defined a state of total pure radia. 
tion at a point x ~ I?~ if the RIEMANI'C-C]:IRISTOFFEL curvature  tensor R~,ze 

clef D't" and the RIccI tensor R ~ , ~ , ~  satisfy the following three conditions for a 
real non-zero null vector e :  

(1} e~R~,~ -~ O, 

(2) e~R~,~+ -~ e~R~,~ ~ e~R~,~ --~ O, 

(3) R ~  = ~ e~e~, 

(*) W o r k  supported by  National  Scionce t~oundation Grants  G P  6876 and GP 7401. 
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where ": is a non-zero scalar function of the local coordinates a~, (': may be 
constant). The case ~ = 0, which will not be considered in this paper, is called 
pure gravitat ional  radiat ion by LICtINEROWICZ [6 l 

Throughout  this paper  e will always denote a real non-zero null vector  
with components  e~ or e~, and is called a fundamental  vector  of R~.),~. The 
notation of LICttNEROWICZ [5], [6], and our previous paper [11] will be employed 
in this paper. 

1 .  - Special total  pure  radiat ion.  

In  this section we will show that the LICttNEROWICZ radiation conditions 
(1)-(3) are closely related to the existence of a null parallel  vector field in a 
conformaUy flat V~. A conformally flat I}4 will be denoted by C4. It  will be 
recal led that the necessary and sufficient  condition that 174 be a C~ is that 
the WEgL conformal curvature  tensor vanish identically, i.e. 

(4) 

( ~  g~ ~ ) 0, 
R ~ _ ~),g~ 
6 

where R ~e f  R. 

TgEOREM t. - The LICKNEROWlCZ radiation conditions 
any C4 which admits a parallel  null vector field. 

are satisfied by 

PROOF. - Let  V4 admit the parallel  null vector field e, i.e. 

(5) 0. 

It is clear that the integrabil i ty conditions of (5) yield (1). If  V4 is a C~ 
then (1) can be re -wr i t ten  in the form, LEVITE [2], 

where 

(7) 

which has a consequence 

(s) 

e). T ~  - -  e~ T~). = O, 

R 
T ~  de_~_f t ~  - -  -~ g ~ ,  
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where we may assume x is a non-zero scalar factor of proportionality ( ' c = 0  
gives a flat space for which (1) (3) are trivially satisfied). On forming g~T~  
and using (7) and (8) we find that R=O, whence R ~ = ' :  e~e~, and (3) is 
satisfied. It  now follows from (4), (7), (8) that 

(9) 

where 

(Io) t~ = ~ 3~ ~, ~ ~ ~-~. 

The remaining radiat ion condition (2) is an obvious consequence of the 
second BIANc~I identity. End of proof. 

The type of total pure  radiat ion described in Theorem 1, i,e. e is an inte- 
grable parallel  null  vector field, and V4 is a C4, is called a state of special 
total pure radiation. I t  is worth noting that t9} is precisely the requi rement  
that C4 be one of a class of recur rent  space-t imes.  Recurrent  space- t imes 
will be considered in § 3. 

2. - Canonical  l ine  e l ements  for  special  total  pure radiation.  

We now consider the general  problem of the determinat ion of canonical 
line elements of C,~ (arbi t rary signature)  which admit a parallel  null v e c t o r  
field. In  the case that n-----4 and signature ~ ..., by virtue of Theorem 1, 
this will give states of total pure radiation. 

In  [2] LEVITE has shown a C,, (not of constant  curvature)  can admit  at 
most one l inear ly  independent  parallel  vector field. If  this vector field is null 
then from § 1 above, we may write 

(11) R ~  --  x e~e~, R ~ 0 ,  

where e~---~3a), is the null field, ~ is a (non-constant)  scalar and x ~ O  is a 
scalar. From (11) we may write 

(12)  t = 0, 

where ~ is a non-zero scalar. Spaces C~ (not of constant curvature)  which 
satisfy (12) have been studied in detail by L E v I ~  and KATZIN, [3], [4], and 
will be denoted by C:. The C~ consist of two types:  

Type I. : p ~ -non-ze ro  constant, 

Type ]I. : p ~= constant- 

We  now examine the canonical  forms of the line elements of these two 
types. 
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TYpE I. - I t  is shown in [3], [4] that  the l ine  e lement  for the Type I 
cases of C~* spaces can be reduced  to one of the two canon ica l  fo rms;  

Z s~(dxa) ~' Z s~(dx~t 2, 
(13) ~P~= ~ , @ ~  

Q1 -4- s Q2 -1- M 

where E denotes  the summat ion  f rom 0 to n - - 1  on the ind ica ted  index,  
~ - - - - +  l,  s ~ ~ 1. In  addi t ion  we have  

(14) 
t Q~ao_~_~ E a~x~x~, ( a ~ a ~  ~ const.) ,  

Z~a~a~r--~ O, {matr ix  [a~f~]=~=0); 

(14)' 

Q2 d,f Z 5 ~  x ~ x~, (c~  ~ (i.~ ---- const . ,  ~ o  = d ~  ~ 0), 
a,~ 

E s a d ~ 5 ~ r = O ,  ( ma t r i x  [5~] # 0 ,  for ~, ~ 2 ,  ..., n - - l ) ,  

M deaf ~o + x 1; % ~ i,  z~ ~ - -  1 (other s ' s  a rb i t r a ry  sign). 

Fo r  both canonica l  forms R ~ 0, and 

n - - 2  
(15) R ~  - -  ~ u, 

U 

where  u 2 d~_~r Q1 + s for (I)~, and  u 2 a~_~ 02 + M for ¢2. 
In  ease a Type  I Ca* space admi t s  a para l le l  nu l l  vector  field it follows 

f rom (11) and (15) tha t  u mus t  sa t i s fy  

(16) ( ~  u) ( ~  u ) - -  (~= u ) ( ~  u) = o. 

For  @i, (16) requi res  tha t  a~a~--a~, :a~  ~ O, which impl ies  a ~  must  be 
of the form a ~  ~ t o a~ a~, where  ~o # 0 (a~, xo constants}. F u r t h e m o r e  by (14) 

we mus t  have  Es~(a~) 2 ~ 0. Thus  Q ~ x o L  2 where  Ld~-~ f Ea~a~' ;  and  the 

components  e~, of the nul l  para l le l  f ie ld will have  the f rom 

a~ f dL (17) e~, ~ ~, ~. - -  L2 , ~ --~ L2 • "~o q- s to + 

I t is easy  to ver i fy  that  by a coordina te  t r ans fo rma t ion  we can reduce  L 
to the form L~d~(x°.-] - x~-l), whit  ~o----1, ~_1------1,  (a ----- eonst.). 
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For  (I)~ of 113), (16) implies that 

(~s) 

where Co= c~----1, ca . . . . .  c~_~----~-0. I f  we put ~-----~=0 in (18) we find that 
cie: ----- 0, which is a contradict ion to the matr ix  condition on [6,a~] of (14)'. 
Hence  the type ¢~ does not admit a parallel  null vector field. Hence  the 
line e lement  of the only Type I C*~ which admits such a field can be given 
the canonical  form 

(13'} dPl = 
• o(X ° ÷ ~-~) :  + ~' 

(2 ) e~ ------- 1, e 2 = l  

e o = 1 ,  e ~ _ l = - - i  

% ~ 0  is const. 

(the constant 4 of L has been absorbed in the ":o). 

TYPE I I . -  Since the parallel  null  vector e~ must satisfy vJ~e~----0 it 
follows that  e~ satisfies KILr~INC,'S equation for a motion in C:. We choose 
our local coordinate system (x ~) in C: such that 

~ ( d x ~  2 

with e -2~ ao_~ u 2. From L~;I:~E [1] we have that the associated contravariant  
components e~, satisfy 

(191 
~e ~e~ 

z~ ff~ q-- ~ ~ -~- 0, (~ ~ ~ ; no summing), 

(20) Ze~ ~ ~e~ ~-~ q-c~xz-----0, (a not summed). 

From [1] we know that the e~ which satisfy (19) and (20) must be of the form 

(21) 

where 

(21)' 

1 

de f  

(22) e, b~ q- ~b~ = 0, (no summation), 

U de~ ~, ~ (x~)~, 

AnnaIi di Matematica 48 
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and  a, ct~, b a, b~ a re  constants .  The  e ~ of t21) sa t isfy  (19) iden t ica l ly ;  (20) can 
be r e - w r i t t e n  as 

~ ~e ° c ~ e~ -~ 
(23)  Z~ e~=--ax~ - =  ~ u ,  l~ = ~ , o  - -  . . . .  - -  a ~ . - ~  • 

F r o m  e~----= ~) ,  we m a y  wri te  e~=s~u~3~i ,  which al lows us to wri te  

(24) 
1 

where  b~ = - - b ~  a+_1 s~b~; b~ ~Ns~b ~. F rom ( 2 4 ) w e  wri te  

(25) 

so tha t  

(26) 

By (19) we f ind 

(27) 

~ ,  = u - :  0~, 

~?. = u -2 (2 ~ %) - -  2u -~ %(~ ~ u). 

v~x = -  u-~((v~ u) ( ~ )  + (~=~)(~ u)), (:, + ~), 

which  toge ther  with (26) impl ies  

(2s~ 

This  last  equa t ion  shows tha t  

(29) 

a~ % = - -  ~ %, (~, ~, y +) .  

F r o m  (25j we def ine  X~(k) d+~ 0 ~ k  - -  % ~) ,  = 0. One may  d i rec t ly  ver i fy  
that  the in tegrab i l i ty  condi t ions  ( X ~ ,  Xy+)k-------O are  sat isf ied by use of (29). 

I f  we now subs i tu te  the express ion  0~ given in (241 into t29} and  r equ i r e  
that  the  resu l t ing  equat ions  are  to be iden t ica l ly  sat isf ied in the x / s ,  we 
obtain the  fol lowing condi t ions  on the cons tants  a, a~, b~, b~: 

(30} be, b~r + b~ bv~ + b r b~.~ ----- O, 

(3x) b~ b~¢ + b~p b~  -l- bee b~ = 0, 

{32} a b~ + ct~ b~ - a~ b~ = 0, 

(33) as b~v + a~ br~ + a r b~  ------- O. 
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A deta i led  ana lys i s  of (30)-(33) based  on the cons ide ra t ion  of the  two sub- 
cases  l~ 4= const . ,  and  ~ = eonst.  (see (21)'), r esu l t s  in the fo l lowing four  types  
of so lu t ions  : 

(A) b~ = a2 b - -  a B~,  

b2~ = a2 B~ - a~ B2, 

where  a, b, a2, B2 are  a rb i t r a ry  cons tan t s  such  that  a l ~ 0 ,  B I - ~ 0 .  

(B) ~,~ = 0, b2~ -= 0, 

and a, b~ are  a rb i t ra ry ,  with  a @0.  

where  ba, B~ are  a rb i t ra ry ,  with bo 4=0, B o = O .  

(D) a = a2 = b2 = O, b2~ = B~ ~ - -  B~ B2,  

where  b~, B2 are  a rb i t ra ry ,  wi th  B o = B 1 - - ~  0, B1 = - - B o  =~0. 

The cor respond ing  02 for  these  cases  are  given by  

( '  ) (A) 0 2 = ~ ( ~ 2 ~ 2 - - B ~ ) + a 2  b - - ~  U + E B  0xe . 

(B) % = a (~= x=) + b~. 

(C) O~ ---- b2 + z (b~ B~ - -  b~ B2) x~. 

(19) % = B~ ( ~ ~ x, ~) - -  B2( "~ B~ ~ ). 

The r e q u i r e m e n t  that  e ~ is a nul l  vec to r  impl ies  that  E e 2 0 ~ - O .  

This  condi t ion  imposes  the fo l lowing res t r i c t ions  on our  cases :  

1 2 

E ~ a~ ~--- 0 wi th  ao :~ O, Bo = O, ~t = E a2 (x~, - -  '2 B~) 

1 
% ----- ,~ (x 2 --  ~ B~) ~ - -  ~ a~ ~ ,~ (x~ - -  ,~ B~) ~. 
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(B) is excluded since we must have a = 0 .  

(c) ~ 2  x~ b~=0, Y~,. 8~=0, Y.~b~N~.=0, (5o4=0, ~o=O), 

(D) 

O~ -~- (M + I)b~-- B~ K; K~Of ~b~x ~, Mao~! Z B~o~ ~. 
o~ ¢z 

E ~ B~, ~ = 0, Z~B~=0 ,~  Zs~B~B~ = 0 ,  O ~ = M B ~ - - I i B ~ ,  

/~a°-~ X B ~  ~, and Bo -----~ B i = 0 ,  Bl~-.~--- Bo =~=0. 

These results can be simplified by use of appropriate coordinate transfor- 
mations. 

For  case (A) consider the coordinate t ransformation y~=-;c a -  ~B~.  In  the 
y-coordinates  replace a~ by 2a~. Then, after changing ya to 0o ~, we find 0~--~-- 

- - - ~ c ~ - - a a  U, where ~ a ~ E a ~ .  Hence we may write 

{34) 0~=u2~),_____ ~ 2 ~  V, V d~f ~i -i U. 

This implies (3~ X) (~  V) -- (3~),) (3~V) = 0, so that we may write ), -----/7'1 ( V}, 
and by (34), 

(35) 
I t dF1 
u 2 ~ d V 

Next we make the inversion x,~---- y~ / W, where 

coordinates (after changing y~ to a~ ~) we find that 

W ~ E ~ (ya)2. In the new 

(36) 1 1 dF~ 

In Case(C) we define Y d e f K / ( M + I )  ~ so that 0 ~ - - ( M + I ) 2 a ~ Y .  
As in case (A) we may express ), in the fronl k ~-~ F2(Y), and 

(37) 
1 1 dF2 

u - ~  - -  ( : ~ I +  1) 2 a x  " 

For Case (D), put XaeeK/M, so O~=M~a~X, giving ) ,=Fa(X},  u -2--- 
-~ M -2 (dFa/dX). 

In  (CJ we may have M.~-O, but K ~ 0 .  In  (D) we have K ~ 0 ,  M ~ 0 .  
An inspection of cases (A), (C), (D} shows that (A) is a special case of (C) 

with M = 0 .  Fnr themore,  both case (C) and case (D) can be represented in 
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/ 2 "  d e f  the form u=(M-f -y )G(Z) ,  where Zae~K/(M@ y~, with y = O  or y-----l; ~ ~ b ~  ~, 

Ma~=tEB:¢~% with bo-----B~.O, bl~--~---Bo:=4=O. If M = 0  we may write 
ge 

(38) u -" G(K)-~ G(Z); 

if M # 0 ,  y ~-~ 1, a translation will change u to the form 

(39) u = M G(K/M)  = M G(ZJ. 

In  both oases we must  have E 2 2 s ~ b ~ 0 ,  E e ~ B ~ = 0 ,  E s ~ b ~ B ~ 0 .  In the 
o¢ 6¢ 

first oase, (38), a coordinate t ransformation can reduce Z to the form Z =  y(xo + 
_~w.-1), with ~o~-1, s , _ ~ - - ~  i. Finally,  by a dilation y ~ - - ' f x  ~ we obtain 
u = y G(Z) ,  Z --~ x ° "4- ~c'n--l" 

Thus  for G~ of Type  Ill we have the two canonical forms 

(40) 

and 

(41) 

y, s~(dz~) ~ 

• ,[2 G2(Zj 
, Z~- - - -w°"{ -w "-1, e0~ l ,  s,~_l~-----1; 

Z ~ (dz~) z 

.~  2 G2( Z) 

with Z =  K /  M, where K =  yx 1 + b2w,2 + ... + b,_~ w "-~, 
n- -1  n - -1  

• , .  2 ~ ]  2 M ~  --]'9~2--~- B2~2 --~ -~ B,_lx  '~-1, (y~0) ,  and ~oy2+ E ~b~---0, ~U2-f - e~B~--- 
0 ; ~ 2  a ~ 2  

= 0, ~ s~ b~ B~ ~- 0. 
¢% 

For both of these Type I I  forms, (40), (41), we may easily verify that 

(42) R ~ . ~ ( n _ 2 ) G  3d2G ~)~ ~)~ 
dZ 2 ~x, ~ 3x~' 

where ~ . / ~ X a - . ~ G - 2 ~ Z / ~ x  a is a parallel  null vector field, ()~-----]G-2dZ). 

To avoid the Type I C.* spaces we must have 
. ]  

(43) G 3 d2G ~ 2  # consk 

If n ~ 4  and e o ~ l ,  s~ ~--~-~2 ~3~-----1, one can show that (I)~ is not possible 
but  03 will exist as a canonical form for Type  II  C~ space-t imes.  

By Theorem 1 we may summarize the results  of this section as follows. 
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TKEORE~ 2. - The line element of a C~ admitting a state of special total 
pure  radiat ion can be given the canonical  form 

(I)~ (/fl3°}2--(dx~}2--(dx2)2--(d~3)2 (C~ of Type I), 
= ~o(x ° + ~ )~  + s ' 

¢ 3 =  (dz°):-- (dx~)~--(&c~)2 - -  (dx))~ (C~ of Type II). 
7~ G2(xo + ~3) 

In O~, z0 is a non-zero constant, e=~+--l. In  (I)z, y is a non-zero constant, 
and G satisfies (43) with Z ~  w°-4-~3. (Note that al though q)~ is of the form 
03 the corresponding G does not satisfy (43)). 

3. - R a d i a t i o n  in o t h e r  s p a c e - t i m e s .  

In  addition to the states of radiat ion indicated in the f irs t  two sections 
there exist radiat ion solutions in V~ which need not be conformally flat. An 
example is given in the theorem to follow. 

TI-IEOREI~I 3. - The LIOHI'CEROWICZ radiat ion conditions are satisfied for a 
V4 wi th  is a non-special ,  symmetric,  recurrent  space (with proper  signature). 

P~tool~. - Denote a V~ of the type stated in Theorem 3 by K~. Then a 
K~ satisfies the following conditions [7; p. 152], 

(44) Vy R~.~.~ = 0 

(45) k~, R~,~,)~ --~ k~ Rr~,),~ + kv R ~ , ~  -~- O, 

where ks is a non-zero vector. In addition, a K~ admits a null  parallel  vector 
field % such that e ~ : p k ~  for some non-zero scalar ~ [7; p. 173]. Hence  
conditions (1) and (2) are satisfied. 

A coordinate system can be chosen locally so that the metric of K~ has 
the form [7; pp. 176, 182] 

2 

(46) ds: = ~(dx°) 2 -{- E k~  d ~  dx~ ~- 2&c ° d~ 3, 

2 

where ~ Z a~a~x~, Ik~1:4:0, lanai ~ 0 ,  and a ~ , k ~  are constants. 

In this coordinate system we have R o o ~ A a ~ k ~ a ~ ,  [8, p. 57; 7, p. 179], 
all other R~- - -0 .  In  addition, in this coordinate system, e ~ : ~  ~, so e~--~-~o 
t7, p. 176]. It  follows we may write R ~  ~ A  e~e~ (in any coordinate system), 
and hence condition (3) is satisfied (case A ~ 0  is exluded as ~his would give 
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a f la t  space). I t  is eas i ly  shown the a:~ and k ~  of metr ic  (46) can a lways  be 
chosen to give the hyperbol ic  normal  s igna ture .  

4. - S ingular  e lectromagnet ic  f ields 

For  each state of total  pure  r ad ia t ion  we can cons t ruc t  a s ingu la r  electro- 
magne t i c  f ield by r equ i r ing  that  the sou rce - f r ee  M~XW]~LL equa t ions  

(47) V~ F s~ --  0, 

be sa t is f ied in addi t ion  to the LIc]~[~ERowIcz condi t ions  (1), (3}. I t  is well  

known,  [6], tha t  /~s~ is s i n g u l a r  wi th  f u n d a m e n t a l  vector  k if and only  if 

wi th  

(50) ks k ~ --  ks m s --- 0, m ~ m~ -~ - -  1. 

To obta in  the s ta tes  of total  pure  rad ia t ion  in a C4 we iden t i fy  the fun- 

d a m e n t a l  vectors of Fs~ and Ra~.~I~ , k - - e ,  and wri te  (47), (48} in a C4 whose 
met r ic  is wr i t t en  in the genera l  form 

~ s~ dx~ dx~ 
(51) (I) = u ~ ' - - ,  

where  ~ is the MIh-KOWSKI metric,  ~oo--1, ~ = ~22 = ~ z 3 - - - -  1. This  form 
inc ludes  the canonica l  forms d iscusses  in § 2. 

In  C4, (47) s impl i f ies  to 

(52) ~P~ ~ F ~  -= O, 

and as in [11] we may  choose the e and  m to have the components  

(53) e~ = eo()¢ (~o + ~s) ,  

(54) m = "~o(~)(~ + ~ )  + ~ 2 ( ~ s ) ~ +  m3 ( ~ ) ~ ,  

where eo(k ) is a func t ion  of ).d--%f-x°-~- s~cl of class Ck(k~ 1), e-~_~_l, and too, 
m2, and ms are a rb i t r a ry  func t ions  of ~c ~ of class C k ( k ~ l )  such tha t  

1 ~55) (m2) 2 + (m3)2 - - -  
- -  a ~ 2 '  
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In  a previous paper,  [12], we have shown how to cons t ruc t  a class of 
non- in tegrab le  s ingular  e lec t romagnet ic  fields in a C~ with a metr ic  of the 
form (51). By omit t ing the requ i rement  that  the field be non- in tegrab le  (i.e. 
L e m m a  B of [12]) and ident i fying the fundamenta l  vectors of F ~  and R~,~+ the 
resul ts  of [ t 2 ]  allow us to state the following: 

TKEORE~ 4' - L e t ~  be a fundamenta l  vector of both F~,~ and / ~ , ~ .  For  
a state of total pure  radiat ion in C~ with metr ic  (51) a class of in tegrable  
s ingular  e lec t romagnet ic  fields is given by a holomorphie  funct ion  /¢'(3; k), 

d e f  3 where  5 = m  -[- ix  z. Fu r the rmore  (53) and (54) may now be wri t ten 

e= = + 

o ~ e 3 

Using  the well know expressions of E, H, the m o m e n t u m  tensor  %~, the 

energy densi ty  -W, and the P o Y ~ I R ~  vector P,  we find that  

E~ = - -  u - s  [ ( R e  F)8~ -]- (Im F)8~], 

---- ~ + ~= ~) ,  

w = le l  P= = Irl  

5, - Zakharov 's  rad ia t ion  c o n d i t i o n .  

In  a recent  paper,  [9], V. D. ZAKXC,CROV has proposed the equat ion 

(56) [] R ~ , ~  : 0, 

where [] a+~ g~V~V~,  serve as a general  cr i ter ion for the exi~tenee of gravi- 
rational radiat ion.  The  explici t  express ion (n = 4) 

(57) ~R~,~+--  V V~, R~, + V~ V~. R ~ - -  V~ V~, R ~  - -  V~ V ~ / ~ ,  

/~ R ~ + R~R~ ,~ .~ - -  ~ ~,~ 

can be easily derived by us ing  the Ricer and BIA~cxcI identi t ies.  I t  is clear 
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that (57) is a complicated conditiou on R¢.~ and Ra~,~+. i f  V+ is an EII, TSTEIlq 
space (57) simplifies considerably, and this case was originally investigated 
by Z~:rInnOZ¢, [9~, and more recent ly  by ZU~D and MAlZER, [13], who used 
the VA~ DER WAEI:tDEN spinor formalism. 

We show here that ZAK~nnO¥'S condition (56) is always satisfied for a 
state of special total pure radiat ion (see § 1). 

Consider then a C~ admitt ing a parallel  null vector field e~. Then (9) is 
satisfied, where we may [assume tv==~0 (tr-~-0 shows (56) satisfied trivially). 
Also, we have R~--ze~e~,  and B---0. Hence  the welt known condition in a C4, 

1 

reduces to V v R ~ =  V~R~ r. This implies 

(58) ~ '~ = ~ e~, 

where 9 is a scalar factor. 
From (95 (10) we derive 

(59) 

By (58), gr (~.cz)(@~:)=0 (since e~ is null). Since V r V ~ x - -  ~ U~-~, we find 
by use of (58), that 3 ~ =  ~e~ for some scalar factor ~. Hence gY~(VvV~z)-- 
~t(gv~ere~)--O , and thus the right side of (59) is zero. 

This gives us 

Tt IEOREM 5. - For a state of special total pure radiation ZAKICA~OV'S con. 
dition is always satisfied. 

In general  it is not to be expected that a state of total pure radiation, 
in the sense of LIctt~E~OWICZ, will satisfy {56). 

BIBLIOGRAPHY 

[1] J-. LEV1NE, Groups of motions in con/brmally flat spaces, I . ,  Bull.  Amer .  Soc. Math.  
42(1.937), pp. 418422. 

[2] - -  - - ,  Fields of p~rallel vectors in con formally flat[spaces, D u k e  Math. gonr.  17 (1950) 
pp. I5-20.  

[3] J-. LEVINE and G. H. ]~ATZI:N, Conformally flat spaces admitting special quadratic first 
iutegrats, L {Symmetr ic  spaces), Tensor  (to appear).  

[4] - -  - - ,  and  - - - - ,  Conformally flat spaces admitting special quadratic first integrals, I I ,  
(Recur ren t  spaces). Tensor,  (to appear).  

Annali di Matematica 49 



386 JACK LEVINE - J. D. ZUND: States o/total pure radiation in general relativity 

[5] A. IJfCgXEROWrCZ, Thdorie relativistes de la gravitation et de l'electromagndtisme~ MRS. 
son et Cie, Par i s  (1955). 

[6] - -  --,  Ondes et radiations electromag~tdbiques et gravitationneltes en relativite gdndrale~ 
Ann. di Mat. P u r r  ed Appl. 50 (1960), pp. 1-95. 

[7] ~7~. S. RUSE, A. G, WALKED, T. J. WILLZvIORE~ Harmonic spaces, Edizione Cremonese, 
Roma (1961). 

[8] A. G. WALKER~ 0n Ruse's spaces of recurrent curvature, Proe. of the London Math. 
Soe. Set.  2~ 52 (1950), pp. 364~.  

[9] ¥ .  D. ZAKHAICOV, A physicalcharacteristic of Einsteinian spaces of the second degenerate 
type in the Petrov classification, Dokt. Akad. ~ a u k  S S R  161 (1965), pp. 563-595 (tran- 
s lat ion:  Soy. Phys.  Dok. 10 (1965)~ pp. 242-243). 

[10] ,1. Zu~I), Sur ta radiation gravitationnelle, C, R. Acad. ScJ. l%ris. 262 Sgr. A (1966) 
p. 1081. 

[11] J. I). ZU~D and J.  LEVlNE~ Sur la radiation g~ avitationnelle~ C. R Aead. Sc i  Par i s  
26'~, Sgr. A (1967), pp. 1029-1032. 

[12] - -  ~ and - -  --,  A class of nonintegrable si**gular electromagnetic fields, I1 Nuovo Ci- 
mente, Ser. X, 51 A (1967), pp. 687-695. 

[13] ft. D. ZU~ID and W.  1% 5~AI~ER~ Jr., A spinor approach to some problems in Lorentzian 

geometry, Rend. del Circ. Mat. Di Palermo (lo appear}. 


