States of total pure radiation in general relativity (*)

Jack Levine and J. D. Zund (Raleigh N.C.)

Abstract

Summary - In this paper we investigate and exhibit space-times which admit states of pure radiation in the sense of Lichnerowica. In $\& 1$ the notion of special total pure radiation is introduced, and in $\S 2$ we derive the canonical line element for this type of radiation. An additional type of spacetime admitting radiation is considered in \& 3 . A class of singular integrable electromagnetic fields for the space-times of $\$ 2$ are constructed in §4. The final section is concerned with the radiation condition proposed by Zakharov.

Introduction

Liohnerowicz, in his study of gravitational and electromagnetic radiation in general relativity, has introduced the notion of total pure radiation at a point of space-time. In this paper we investigate this notion and exhibit space -times and classes of space-times for which the Lichnerowioz radiation conditions are satisfied. The concept of total pure radiation will be reviewed at the end of this introduction. In $\S 1$ we consider a special subcase of total pure radiation in a conformally flat space-time, and in $\S 2$ we exhibit all of the canonical forms for the line element. Some of these results were announced by us in a recent note [11] in Comptes Rendus Académie des Sciences, Paris. In $\S 3$ we consider a class of space-times, which are not conformally flat, that admit states of total pure radiation.

Classes of integrable singular electromagnetic fields for the space-times of the first two sections are constructed in $\S 4$. In the final section the radiation condition proposed by Zakiarov is shown to be consistent with the Liohnerowicz conditions for the state of special total pure radiation considered in § 1 and $\S 2$.

Let V_{4} be a four-dimensional differentiable manifold with a Rtemannian metric $g_{\alpha \beta}\left(x^{\lambda}\right)$ of hyperbolic normal signature. For brevity we will call such a V_{4} a space-time. Lichnenowicz, [6], has defined a state of total pure radia. tion at a point $x \in V_{4}$ if the RIEMANN-CHRISTOFFEL curvature tensor $R_{\alpha \beta, \lambda \mu}$ and the Ricor tensor $R_{\alpha \beta} \stackrel{\text { def }}{=} R_{\alpha, \gamma \beta}^{Y}$ satisfy the following three conditions for a real non-zero null vector \vec{e} :

$$
\begin{gather*}
e^{\alpha} R_{x \beta, \lambda \mu}=0 \tag{1}\\
e_{\alpha} R_{\beta \gamma, 2 \mu}+e_{\beta} R_{\gamma \gamma, \lambda \mu}+e_{\gamma} R_{\alpha \beta, \lambda \mu}=0 \tag{2}\\
R_{x \beta}=\tau e_{\alpha} e_{\beta} \tag{3}
\end{gather*}
$$

(*) Work supported by National Science Foundation Grants GP 6876 and GP 7401.

Where τ is a non-zero scalar function of the local coordinates x^{α}, (τ may be constant). The case $\tau=0$, which will not be considered in this paper, is called pure gravitational radiation by Lichnerowicz [6]

Throughout this paper \vec{e} will always denote a real non-zero null vector with components e^{α} or e_{α}, and is called a fundamental vector of $R_{\alpha \beta, 2 \mu}$. The notation of Lichnerowica [5], [6], and our previous paper [11] will be employed in this paper.

1. - Special total pure radiation.

In this section we will show that the Lichnerowicz radiation conditions (1)-(3) are closely related to the existence of a null parallel vector field in a conformally flat V_{4}. A conformally flat V_{4} will be denoted by C_{4}, It will be recalled that the necessary and sufficient condition that V_{4} be a C_{4} is that the Wexc conformal curvature tensor vanish identically, i.e.

$$
\begin{align*}
O_{\beta, \lambda \mu}^{\alpha} \stackrel{\text { dof }}{=} R_{\beta, \lambda \mu}^{\alpha}- & \frac{1}{2}\left(\delta_{\lambda}^{\alpha} R_{\beta \mu}-\delta_{\mu}^{\alpha} R_{\beta \lambda}+g_{\beta \mu} R_{\lambda}^{\alpha}-g_{\beta \lambda} R_{\mu}^{\alpha}\right) \tag{4}\\
& -\frac{R}{6}\left(\delta_{\mu}^{\alpha} g_{\beta \lambda}-\delta_{\lambda}^{\alpha} g_{\beta \mu}\right)=0
\end{align*}
$$

where $R_{x}^{x} \stackrel{\text { def }}{=} R$.
Theorem 1. - The Liohnerowicz radiation conditions are satisfied by any C_{4} which admits a parallel null vector field.

Proof. - Let V_{4} admit the parallel null vector field \vec{e}, i.e.

$$
\begin{equation*}
\nabla_{\lambda} e^{\alpha}=0 \tag{5}
\end{equation*}
$$

It is clear that the integrability conditions of (5) yield (1). If V_{4} is a C_{4} then (1) can be re-written in the form, Levine [2],

$$
\begin{equation*}
e_{\lambda} T_{\beta \mu}-e_{\beta} T_{\beta \lambda}=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\alpha \beta} \stackrel{\text { def }}{=} R_{\alpha \beta}-\frac{R}{3} g_{\alpha \beta} \tag{7}
\end{equation*}
$$

which has a consequence

$$
\begin{equation*}
T_{\alpha \beta}=\tau e_{\alpha} e_{\beta} \tag{8}
\end{equation*}
$$

where we may assume τ is a non-zero scalar factor of proportionality ($\tau=0$ gives a flat space for which (1) (3) are trivially satisfied). On forming $g^{\alpha \beta} T_{\alpha \beta}$ and using (7) and (8) we find that $R=0$, whence $R_{\alpha \beta}=\tau e_{\alpha} e_{\beta}$, and (3) is satisfied. It now follows from (4), (7), (8) that

$$
\begin{equation*}
\nabla_{\gamma} R_{\alpha \beta, \lambda \mu}=t_{\gamma} R_{\alpha \beta, \lambda \mu}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{\curlyvee}=\frac{1}{\tau} \partial_{\gamma} \tau,\left(\partial_{Y} \equiv \frac{\partial}{\partial x r}\right) . \tag{10}
\end{equation*}
$$

The remaining radiation condition (2) is an obvious consequence of the second Biancirl identity. End of proof.

The type of total pure radiation described in Theorem $1, i, e . \vec{e}$ is an integrable parallel null vector field, and V_{4} is a C_{4}, is called a state of special total pare radiation. It is worth noting that (9) is precisely the requirement that C_{4} be one of a class of recurrent space-times. Recurrent space-times will be considered in $\S 3$.

2. - Canonical line elements for special total pure radiation.

We now consider the general problem of the determination of oanonical line elements of C_{n} (arbitrary signature) which admit a parallel null vector field. In the case that $n=4$ and signature $+\ldots$, by virtue of Theorem 1 , this will give states of total pure radiation.

In [2] Levine has shown a C_{n} (not of constant curvature) can admit at most one linearly independent parallel vector field. If this vector field is null then from $\S 1$ above, we may write

$$
\begin{equation*}
R_{\alpha \beta}=\tau e_{\alpha} e_{\beta}, R=0 \tag{11}
\end{equation*}
$$

where $e_{\alpha}=\partial_{\alpha} \lambda$ is the null field, λ is a (non-constant) scalar and $\tau \neq 0$ is a scalar. From (11) we may write

$$
\begin{equation*}
\nabla_{Y}\left(\rho R_{\alpha ; \beta}\right)=0, \tag{12}
\end{equation*}
$$

where ρ is a non-zero scalar. Spaces C_{n} (not of constant curvature) which satisfy (12) have been studied in detail by Levine and Katzin, [3], [4], and will be denoted by C_{n}^{*}. The C_{n}^{*} consist of two types:

Type I. : $\rho=$ non-zero constant,
Type II. : $\rho \neq$ constant-
We now examine the canonical forms of the line elements of these two types.

Type I. - It is shown in [3], [4] that the line element for the Type I cases of C_{n}^{*} spaces can be reduced to one of the two canonical forms;

$$
\begin{equation*}
\Phi_{1}=\frac{\sum_{\alpha_{\alpha}} \varepsilon_{\alpha}\left(d x^{\alpha}\right)^{:}}{Q_{1}+\varepsilon}, \Phi_{2}=\frac{\sum_{\alpha} \varepsilon_{\alpha}\left(d x^{\alpha /}\right)^{2}}{Q_{2}+M} \tag{13}
\end{equation*}
$$

where Σ denotes the summation from 0 to $n-1$ on the indicated index, $\varepsilon_{\alpha}= \pm 1, \varepsilon= \pm 1$. In addition we have

$$
\begin{align*}
& \left\{\begin{array}{l}
Q_{1} \stackrel{\text { dof }}{=} \sum_{\alpha, \beta} a_{\alpha \beta} x^{\alpha} x^{\beta},\left(a_{\alpha \beta}=a_{\beta x}=\text { const. }\right), \\
\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha \beta} a_{\alpha \beta}=0,\left(\text { matrix }\left[\alpha_{\alpha \beta}\right] \neq 0\right) ;
\end{array}\right. \tag{14}\\
& \left\{\begin{array}{l}
Q_{2} \stackrel{\text { def }}{=} \sum_{\alpha, \beta} \hat{a}_{\alpha \beta} x^{\alpha} x^{\beta},\left(\hat{a}_{\alpha \beta}=\hat{a}_{\alpha \beta}=\text { const., } \hat{a}_{\alpha 0}=\hat{a}_{\alpha 1}=0\right), \\
\sum_{\alpha} \varepsilon_{\alpha} \hat{a}_{\alpha \beta} \hat{a}_{\alpha \gamma}=0,\left(\text { matrix }\left[\hat{a}_{\alpha \beta}\right] \neq 0, \text { for } \alpha, \beta=2, \ldots, n-1\right), \\
\left.M \stackrel{\text { dop }}{=} x^{0}+x^{1} ; \varepsilon_{0}=1, \varepsilon_{1}=-1 \text { (other } \varepsilon^{\prime} s \text { arbitrary sign }\right) .
\end{array}\right. \tag{14}
\end{align*}
$$

For both canonical forms $R=0$, and

$$
\begin{equation*}
R_{\alpha \beta}=\frac{n-2}{u} \partial_{\alpha \beta} u \tag{15}
\end{equation*}
$$

where $u^{2} \xlongequal{\text { def }} Q_{1}+\varepsilon$ for Φ_{1}, and $u^{2} \xlongequal{\text { def }} Q_{2}+M$ for Φ^{2}.
In ease a Type I C_{n}^{*} space admits a parallel null vector field it follows from (11) and (15) that u must satisfy

$$
\begin{equation*}
\left(\partial_{\alpha \beta} u\right)\left(\partial_{\rho \sigma} u\right)-\left(\partial_{\alpha \sigma} u\right)\left(\partial_{\rho \rho} u\right)=0 \tag{16}
\end{equation*}
$$

For Φ_{1}, (16) requires that $a_{\alpha \beta} a_{\rho \sigma}-a_{\alpha \sigma} a_{\beta \beta}=0$, which implies $a_{\alpha \beta}$ must be of the form $a_{\alpha \beta}=\tau_{0} a_{\alpha} a_{\beta}$, where $\tau_{0} \neq 0\left(a_{\alpha}, \tau_{0}\right.$ constants). Furthemore by (14) we must have $\sum_{\alpha} \varepsilon_{\alpha}\left(a_{\alpha}\right)^{2}=0$. Thus $Q_{1}=\tau_{0} L^{2}$ where $L \stackrel{\text { def }}{=} \sum_{\alpha} a_{\alpha} x^{\alpha}$; and the components e_{α} of the null parallel field will have the from

$$
\begin{equation*}
e_{\alpha}=\partial_{\alpha} \lambda=\frac{a \alpha}{\tau_{0} L^{2}+\varepsilon}, \lambda=\int \frac{d L}{\tau_{0} L^{2}+\varepsilon} \tag{17}
\end{equation*}
$$

It is easy to verify that by a coordinate transformation we can reduce L to the form $L=\hat{a}\left(x^{0}+x^{n-1}\right)$, whit $\varepsilon_{0}=1, \varepsilon_{n-1}=-1,(a=$ const. $)$.

For Φ^{2} of (13), (16) implies that

$$
\begin{equation*}
\hat{a}_{\alpha \sigma} c_{\beta} c_{\rho}+\hat{a}_{\rho \beta} c_{\alpha} c_{\sigma}-\hat{a}_{\alpha \beta} c_{\rho} c_{\sigma}-\hat{a}_{\rho \sigma} c_{\alpha} c_{\beta}=0 \tag{18}
\end{equation*}
$$

where $c_{0}=c_{1}=1, c_{2}=\ldots=c_{n-1}=0$. If we put $\alpha=\beta=0$ in (18) we find that $\hat{a}_{\rho \sigma}=0$, which is a contradiction to the matrix condition on $\left[\hat{a}_{\alpha \beta}\right]$ of (14). Hence the type Φ_{2} does not admit a parallel null vector field. Hence the line element of the only Type I C_{n}^{*} which admits such a field can be given the canonical form

$$
\Phi_{1}=\frac{\Sigma_{\varepsilon_{\alpha}}\left(d x^{\alpha}\right)^{2}}{\tau_{0}\left(x^{0}+x^{n-1}\right)^{2}+\varepsilon}, \quad\left(\begin{array}{l}
\varepsilon_{\alpha}^{2}=1, \varepsilon^{2}=1 \\
\varepsilon_{0}=1, \varepsilon_{n-1}=-1 \\
\tau_{0} \neq 0 \text { is const. }
\end{array}\right)
$$

(the constant \hat{x} of L has been absorbed in the τ_{0}).
Type II. - Since the parallel null vector e_{α} must satisfy $\nabla_{\alpha} e_{\beta}=0$ it follows that e_{α} satisfies Killing's equation for a motion in O_{n}^{*}. We choose our local coordinate system (x^{x}) in C_{n}^{*} such that

$$
\Phi=\frac{\Sigma \varepsilon_{x}\left(d x^{\alpha_{j}}\right)^{2}}{u^{2}},
$$

with $e^{-2 \sigma} \xlongequal{\text { def }} u^{2}$. From Levine [1] we have that the associated contravariant components e_{α} satisfy

$$
\begin{align*}
& \varepsilon_{\alpha} \frac{\partial e}{\partial x^{\beta}}+\varepsilon_{\beta} \frac{\partial e^{\beta}}{\partial x^{\alpha}}=0,(\alpha \neq \beta ; \text { no summing }), \tag{19}\\
& \sum_{\beta} e^{\beta} \frac{\partial \sigma}{\partial x^{\beta}}+\frac{\partial e^{\beta}}{\partial x^{\alpha}}=0,(\alpha \text { not summed }) . \tag{20}
\end{align*}
$$

From [1] we know that the e^{α} which satisfy (19) and (20) must be of the form

$$
\begin{equation*}
e^{\alpha}=b^{\alpha}+\mu x^{x}+\underset{\beta}{\Sigma} b_{\beta}^{\alpha} x^{\beta}-\frac{1}{2} \varepsilon_{\alpha} a_{\alpha} U, \tag{21}
\end{equation*}
$$

where

$$
\begin{gather*}
\mu \stackrel{\text { def }}{=} a+\sum_{\alpha}^{\Sigma} a_{\alpha} x^{\alpha}, \tag{21}\\
\varepsilon_{\alpha} b_{\beta}^{\alpha}+\varepsilon_{\beta} b_{\alpha}^{\beta}=0,(\mathrm{no} \text { summation) } \tag{22}\\
U \stackrel{\text { dof }}{=} \sum_{\alpha} \varepsilon_{\alpha}\left(x^{\alpha}\right)^{2},
\end{gather*}
$$

and a, $a_{\alpha}, b^{\alpha}, b_{\beta}^{\alpha}$ are constants. The e^{α} of (21) satisfy (19) identically; (20) can be re-written as

$$
\begin{equation*}
\sum_{\alpha} e^{\alpha} \frac{\partial u}{\partial x^{\alpha}}=\mu u, \mu=\frac{\partial e^{0}}{\partial x_{i}^{0}}=\ldots=\frac{\partial e^{n-1}}{\partial x^{n-1}} . \tag{23}
\end{equation*}
$$

From $e_{\alpha}=\partial_{\alpha} \lambda$ we may write $e^{\alpha}=\varepsilon_{\alpha} u^{2} \partial_{\alpha} \lambda$, which allows us to write

$$
\begin{equation*}
\theta_{\alpha} \stackrel{\text { def }}{=} \varepsilon_{\alpha} e^{\alpha}=u^{2} \partial_{\alpha} \lambda=\varepsilon_{\alpha} x^{\alpha} \mu+\sum_{\beta} b_{\alpha \beta} x^{\beta}+b_{\alpha}-\frac{1}{2} a_{\alpha} U, \tag{24}
\end{equation*}
$$

where $b_{\alpha \beta}=-b_{\beta \alpha} \xlongequal{\text { def }} \varepsilon_{\alpha} b_{\beta}^{\alpha} ; b_{\alpha} \xlongequal{\text { def }} \varepsilon_{\alpha} b^{\alpha}$. From (24) we write

$$
\begin{equation*}
\partial_{\alpha} \lambda=u^{-2} \theta_{\alpha}, \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\partial_{\alpha \beta} \lambda=u^{-2}\left(\partial_{\beta} \theta_{\alpha}\right)-2 u^{-3} \theta_{\alpha}\left(\hat{\partial}_{\beta} u\right) . \tag{26}
\end{equation*}
$$

By (19) we find

$$
\begin{equation*}
\partial_{\alpha \beta} \lambda=-u^{-1}\left(\left(\partial_{\alpha} u\right)\left(\partial_{\beta} \lambda\right)+\left(\partial_{\alpha} \lambda\right)\left(\partial_{\beta} u\right)\right),(\alpha \neq \beta), \tag{27}
\end{equation*}
$$

which together with (26) implies

$$
\begin{equation*}
\partial_{\beta} \theta_{\alpha}=u^{-1}\left(\theta_{\alpha} \partial_{\beta} u-\theta_{\beta} \partial_{\alpha} u\right),(\alpha \neq \beta) \tag{28}
\end{equation*}
$$

This last equation shows that

$$
\begin{align*}
& \theta_{\alpha} \partial_{\gamma} \theta_{\beta}+\theta_{\beta} \partial_{\alpha} \theta_{\gamma}+\theta_{\gamma} \partial_{\beta} \theta_{\alpha}=0, \tag{29}\\
& \partial_{\beta} \theta_{\alpha}=-\vec{z}_{\alpha} \theta_{\beta}, \quad(\alpha, \beta, \gamma \neq) .
\end{align*}
$$

From (25) we define $X_{\alpha \beta}(\lambda) \stackrel{\text { def }}{=} \theta_{\beta} \partial_{\alpha} \lambda-\theta_{\alpha} \partial_{\beta} \lambda=0$. One may directly verify that the integrability conditions ($\left.X_{\alpha \beta}, X_{\mathrm{r}}\right) \lambda=0$ are satisfied by use of (29).

If we now subsitute the expression θ_{x} given in (24) into (29) and require that the resulting equations are to be identically satisfied in the $x^{\alpha^{\prime}} s$, we obtain the following conditions on the constants a, $a_{\alpha}, b_{\alpha}, b_{\alpha \beta}$:

$$
\begin{gather*}
b_{\alpha} b_{\beta \gamma}+b_{\beta} b_{\gamma \alpha}+b_{\gamma} b_{\alpha \beta}=0, \tag{30}\\
b_{\alpha \beta} b_{\beta \sigma}+b_{\beta \beta} b_{\sigma \alpha}+b_{\sigma \beta} b_{\alpha \beta}=0, \tag{31}\\
a b_{\alpha \beta}+a_{\alpha} b_{\beta}-a_{\beta} b_{\alpha}=0, \tag{32}\\
a_{\alpha} b_{\beta \gamma}+a_{\beta} b_{\gamma \alpha}+a_{\gamma} b_{\alpha \beta}=0 . \tag{33}
\end{gather*}
$$

A detailed analysis of (30)-(33) based on the consideration of the two subcases $\mu \neq$ const., and $\mu=$ const. (see (21)'), results in the following four types of solutions:
(A)

$$
\begin{gathered}
b_{\alpha}=a_{\alpha} b-a B_{\alpha} \\
b_{\alpha 3}=a_{\alpha} B_{\beta}-a_{\beta} B_{\alpha}
\end{gathered}
$$

where $a, b, \alpha_{\alpha}, B_{\alpha}$ are arbitrary constants such that $a_{1} \neq 0, B_{1}=0$.

$$
\begin{equation*}
b_{s}=0, b_{\alpha \beta}=0 \tag{B}
\end{equation*}
$$

and a, b_{x} are arbitrary, with $a \neq 0$.

$$
\begin{equation*}
a=a_{\alpha}=0, b_{\alpha \beta}=b_{\alpha} \widehat{B}_{\beta}-b_{\beta} \widehat{B}_{\alpha} \tag{C}
\end{equation*}
$$

where $b_{\alpha}, \widehat{B}_{\alpha}$ are arbitrary, with $b_{0} \neq 0, \widehat{B}_{0}=0$.

$$
\begin{equation*}
a=a_{\alpha}=b_{\alpha}=0, b_{\alpha \beta}=B_{\alpha} \widehat{B}_{\beta}-B_{\beta} \widehat{B}_{\alpha} \tag{D}
\end{equation*}
$$

where $b_{\alpha}, \widehat{B}_{z}$ are arbitrary, with $B_{0}=\widehat{B}_{1}=0, B_{1}=-\widehat{B}_{0} \neq 0$.
The corresponding θ_{α} for these cases are given by

$$
\begin{gather*}
\partial_{\alpha}=\mu\left(\varepsilon_{\alpha} x^{\alpha}-B_{\alpha}\right)+a_{\alpha}\left(b-\frac{1}{2} U+\sum_{\rho} B_{\rho} x\right) \tag{A}\\
\theta_{\alpha}=a\left(\varepsilon_{\alpha} x^{\alpha}\right)+b_{\alpha}
\end{gather*}
$$

$$
\begin{equation*}
\theta_{\alpha}=b_{\alpha}+{\underset{\rho}{\rho}}_{\Sigma}\left(b_{\alpha} \widehat{B}_{\rho}-b_{\rho} \widehat{B}_{\alpha}\right) x p \tag{C}
\end{equation*}
$$

(D)

$$
\theta_{\alpha}=B_{\alpha}\left(\Sigma \widehat{B}_{\rho} x^{\rho}\right)-\widehat{B}_{\alpha}\left({\underset{\rho}{\alpha}}_{\Sigma} B_{\alpha} x^{\rho}\right)
$$

The requirement that e^{α} is a null vector implies that $\Sigma \varepsilon_{\alpha} \theta_{\alpha}^{2}=0$.
This condition imposes the following restrictions on our cases:

$$
\begin{equation*}
a=-\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha} B_{\alpha}, \beta=-\frac{1}{2} \sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^{2} \tag{A}
\end{equation*}
$$

$$
\begin{aligned}
\Sigma_{\alpha} \varepsilon_{\alpha} a_{\alpha}^{2} & =0 \text { with } \alpha_{0} \neq 0, B_{0}=0, \mu=\Sigma a_{\alpha}\left(x_{\alpha}-\varepsilon_{\alpha} B_{\alpha}\right) \\
\theta_{\alpha} & =\varepsilon_{\alpha}\left(x^{\alpha}-\varepsilon_{\alpha} B_{\alpha}\right) \mu-\frac{1}{2} a_{\alpha} \Sigma \varepsilon_{\beta}\left(x^{\beta}-\varepsilon_{\beta} B_{\beta}\right)^{2}
\end{aligned}
$$

(B) is excluded since we must have $a=0$.
(C)

$$
\begin{gathered}
\sum_{\alpha}^{\Sigma} b_{\alpha}^{2}=0, \Sigma \varepsilon_{\alpha} \widehat{B}_{\alpha}^{2}=0, \Sigma_{\alpha} \varepsilon_{\alpha} b_{\alpha} \widehat{B}_{\alpha}=0,\left(b_{0} \neq 0, \widehat{B}_{0}=0\right), \\
\theta_{\alpha}=(M+1) b_{\alpha}-\widehat{B}_{\alpha} K ; K \xlongequal{\text { dof }} \sum_{\alpha} b_{\alpha} x^{\alpha}, M \xlongequal{\text { def }} \sum_{\alpha} \widehat{B}_{\alpha} x^{\alpha} . \\
\sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^{2}=0, \sum_{\alpha} \varepsilon_{\alpha} \widehat{B}_{\alpha}^{\alpha}=0, \sum_{\alpha} \varepsilon_{\alpha} B_{\alpha} \widehat{B}_{\alpha}=0, \theta_{\alpha}=M B_{\alpha}-\widehat{K} \widehat{B}_{\alpha}, \\
\widehat{K}^{\text {def }} \sum_{\alpha} B_{\alpha} x^{\alpha}, \text { and } B_{0}=B_{1}=0, B_{1}=-\widehat{B}_{0} \neq 0 .
\end{gathered}
$$

These results can be simplified by use of appropriate coordinate transformations.

For case (A) consider the coordinate transformation $y^{\alpha}=x^{\alpha}-\varepsilon_{\alpha} B_{\alpha}$. In the y-coordinates replace a_{α} by $2 a_{\alpha}$. Then, after changing y^{α} to x^{α}, we find $\theta_{\alpha}=$ $=\mu \varepsilon_{\alpha} x^{\alpha}-a_{\alpha} U$, where $\mu \stackrel{\text { dof }}{=} \sum_{\alpha} a_{\alpha} x^{\alpha}$. Hence we may write

$$
\begin{equation*}
\theta_{\alpha}=u^{2} \partial_{\alpha} \lambda=\mu^{2} \partial_{\alpha} V, V \xlongequal{\text { dof }} \mu^{-1} U \tag{34}
\end{equation*}
$$

This implies $\left(\partial_{\alpha} \lambda\right)\left(\partial_{\beta} V\right)-\left(\partial_{\beta} \lambda\right)\left(\partial_{\alpha} V\right)=0$, so that we may write $\lambda=F_{1}(V)$, and by (34),

$$
\begin{equation*}
\frac{1}{u^{2}}=\frac{1}{\mu^{2}} \frac{d F_{1}}{d V} . \tag{35}
\end{equation*}
$$

Next we make the inversion $x^{\alpha}=y^{\alpha} / W$, where $W \xlongequal{\text { def }} \sum_{\alpha} \varepsilon_{\alpha}\left(y^{\alpha}\right)^{2}$. In the new coordinates (after changing y^{α} to x^{α}) we find that

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{\mu^{2}} \frac{u F_{1}}{d\left(\mu^{-1}\right)},\left(\mu=\Sigma a_{\alpha} x^{x}\right) . \tag{36}
\end{equation*}
$$

In Case (C) we define $Y \xlongequal{\text { def }} K /(M+1)^{2}$ so that $\theta_{\alpha}=(M+1)^{2} \partial_{\alpha} Y$.
As in case (A) we may express λ in the from $\lambda=F_{2}(Y)$, and

$$
\begin{equation*}
\frac{1}{u^{2}}=\frac{1}{(M+1)^{2}} \frac{d F_{2}}{d Y} \tag{37}
\end{equation*}
$$

For Case (D), put $X \xlongequal{\text { def }} K / M$, so $\theta_{\alpha}=M^{2} \partial_{\alpha} X$, giving $\lambda=F_{3}(X), u^{-2}=$ $=M^{-2}\left(d F_{3} / d X\right)$.

In (C) we may have $M=0$, but $K \neq 0$. In (D) we have $K \neq 0, M \neq 0$.
An inspection of cases (A), (C), (D) shows that (A) is a special case of (C) with $M=0$. Furthemore, both case (C) and case (D) can be represented in
the form $u=(M+\gamma) G(Z)$, where $Z \stackrel{\text { dep }}{=} K /(M+\gamma)$, with $\gamma=0$ or $\gamma=1 ; K \stackrel{\text { def }}{=} \Sigma b_{\alpha} x^{x}$, $M \xlongequal{\text { def }} \Sigma B_{\alpha} x^{\alpha}$, with $b_{0}=B_{1}=0, b_{1}=-B_{0} \neq 0$. If $M=0$ we may write

$$
\begin{equation*}
u=G(R)=G(Z) \tag{38}
\end{equation*}
$$

if $M \neq 0, \gamma=1$, a translation will change u to the form

$$
\begin{equation*}
u=M G(K / M)=M G(Z) \tag{39}
\end{equation*}
$$

In both cases we must have $\sum_{\alpha} \varepsilon_{\alpha} b_{\alpha}^{2}=0, \sum_{\alpha} \varepsilon_{\alpha} B_{\alpha}^{2}=0, \sum_{\alpha} \varepsilon_{\alpha} b_{\alpha} B_{\alpha}=0$. In the first case, (38), a coordinate transformation can reduce Z to the form $Z=\gamma\left(x^{0}+\right.$ $+x^{n-1}$), with $\varepsilon_{0}=1, \varepsilon_{n-1}=-1$. Finally, by a dilation $y^{x}=\gamma x^{x}$ we obtain $u=\gamma G(Z), Z=x^{0}+x^{n-1}$.

Thus for C_{n}^{*} of Type II we have the two canonical forms

$$
\Phi_{3}=\frac{\sum \varepsilon_{\alpha}\left(d x^{\alpha}\right)^{2}}{\gamma^{2} G^{2}(Z)}, Z=x^{0}+x^{n-1}, \varepsilon_{0}=1, \varepsilon_{n-1}=-1
$$

and

$$
\begin{equation*}
\Phi_{4}=\frac{\sum_{\alpha} \varepsilon_{\alpha}\left(d x^{2}\right)^{2}}{M^{2} G^{2}(Z)} \tag{41}
\end{equation*}
$$

with $Z=K / M$, where $K=\gamma x^{1}+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}$,
$M=-\gamma x^{2}+B_{2} x^{2}+\ldots+B_{n-1} x^{n-1},(\gamma \neq 0)$, and $\varepsilon_{0} \gamma^{2}+\sum_{\alpha=2}^{n-1} \varepsilon_{\alpha} b_{\alpha}^{2}=0, \varepsilon_{1} \gamma^{2}+\sum_{\alpha=2}^{n-1} \varepsilon_{\alpha} B_{\alpha}^{2}=$ $=0, \sum_{\alpha} \varepsilon_{\alpha} b_{\alpha} B_{\alpha}=0$.

For both of these Type II forms, (40), (41), we may easily verify that

$$
\begin{equation*}
R_{\alpha \beta}=(n-2) G^{3} \frac{d^{2} G}{d Z^{2}} \frac{\partial \lambda}{\partial x^{\alpha}} \frac{\partial \lambda}{\partial x^{p}}, \tag{42}
\end{equation*}
$$

where $\partial \lambda / \partial x^{\alpha}=G^{-2} \partial Z / \partial x^{\alpha}$ is a parallel null vector field, $\left(\lambda=\int G^{-2} d Z\right)$.
To avoid the Type I C_{n}^{*} spaces we must have

$$
\begin{equation*}
G^{3} \frac{d^{2} G}{d Z^{2}} \neq \text { const } \tag{43}
\end{equation*}
$$

If $n=4$ and $\varepsilon_{0}=1, \varepsilon_{1}=\varepsilon_{2} \varepsilon_{3}=-1$, one can show that Φ_{4} is not possible but Φ_{3} will exist as a canonical form for Type II O_{n}^{*} space-times.

By Theorem 1 we may summarize the results of this section as follows.

Theorem 2. - The line element of a C_{4}^{*} admitting a state of special total pure radiation can be given the canonical form

$$
\begin{gathered}
\Phi_{1}=\frac{\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}}{\tau_{0}\left(x^{0}+x^{3}\right)^{2}+\varepsilon},\left(O_{4}^{*}\right. \text { of Type I), } \\
\Phi_{3}=\frac{\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}}{\gamma^{2} G^{2}\left(x^{0}+x^{3}\right)},\left(C_{4}^{*}\right. \text { of Type II). }
\end{gathered}
$$

In Φ_{1}, τ_{0} is a non-zero constant, $\varepsilon= \pm 1$. In Φ_{3}, γ is a non-zero constant, and G satisfies (43) with $Z=x^{0}+x^{3}$. (Note that although Φ_{1} is of the form Φ_{3} the corresponding G does not satisfy (43)).

3. - Radiation in other space-times.

In addition to the states of radiation indicated in the first two sections there exist radiation solutions in V_{4} which need not be conformally flat. An example is given in the theorem to follow.

Theorem 3. - The Lichnerowicz radiation conditions are satisfied for a V_{4} wich is a non-special, symmetric, recurrent space (with proper signature).

Proof. - Denote a V_{4} of the type stated in Theorem 3 by K_{4}^{*}. Then a K_{4}^{*} satisfies the following conditions [7; p. 152],

$$
\begin{gather*}
\nabla_{\gamma} R_{\alpha \beta, 2 \mu}=0 \tag{44}\\
k_{\alpha} R_{\beta \gamma, 2 \mu}+k_{\beta} R_{\gamma \gamma, k_{\mu}}+k_{\gamma} R_{x \beta, \lambda \mu}=0, \tag{45}
\end{gather*}
$$

where k_{α} is a non-zero vector. In addition, a K_{4}^{*} admits a null parallel vector field e_{α} such that $e_{\alpha}=\varphi k_{\alpha}$ for some non-zero scalar φ [7; p. 173]. Hence conditions (1) and (2) are satisfied.

A coordinate system can be chosen locally so that the metric of K_{4}^{*} has the form [7; pp. 176, 182]

$$
\begin{equation*}
d s^{2}=\psi\left(d x^{0}\right)^{2}+\sum_{\alpha . \beta=1}^{2} k_{\alpha \beta} d x^{\alpha} d x^{\beta}+2 d x^{0} d x^{3} \tag{46}
\end{equation*}
$$

where $\psi=\sum_{\alpha, \beta=1}^{2} a_{\alpha \beta} x^{\alpha} x^{\beta},\left|k_{\alpha \beta}\right| \neq 0,\left|a_{\alpha \beta}\right| \neq 0$, and $a_{\alpha \beta}, k_{\alpha \beta}$ are constants.
In this coordinate system we have $R_{00}=A \xlongequal{\text { def }} k^{\star \beta} a_{\alpha \beta}$, [8, p. 57; 7, p. 179], all other $R_{\alpha \beta}=0$. In addition, in this coordinate system, $e^{\alpha}=\delta^{\alpha}$, so $e_{\alpha}=\delta_{\alpha 0}$ 17, p. 176]. It follows we may write $R_{\alpha \beta}=A e_{\alpha} e_{\beta}$ (in any coordinate system), and hence condition (3) is satisfied (case $A=0$ is exluded as this would give
a flat space). It is easily shown the $\alpha_{\alpha \beta}$ and $k_{\alpha \beta}$ of metric (46) can always be chosen to give the hyperbolic nomal signature.

4. - Singular electromagnetic fields

For each state of total pure radiation we can construct a singular electromagnetic field by requiring that the source-free Maxwell equations

$$
\begin{gather*}
\nabla_{\alpha} F^{\alpha \beta}=0 \tag{47}\\
\partial_{\alpha} F_{\beta \gamma}^{\prime}+\partial_{\beta} F_{Y \alpha}+\partial_{Y} F_{\alpha \beta}=0 \tag{48}
\end{gather*}
$$

be satisfied in addition to the Lichnerowioz conditions (1), (3). It is well known, [6], that $F_{\alpha \beta}$ is singular with fundamental vector \vec{k} if and only if

$$
\begin{equation*}
F_{\alpha \beta}=k_{\alpha} m_{\beta}-m_{\alpha} k_{\beta} \tag{49}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{\alpha} k^{x}=k_{\alpha} m^{\alpha}=0, m^{\alpha} m_{\alpha}=-1 \tag{50}
\end{equation*}
$$

To obtain the states of total pure radiation in a C_{4} we identify the fun. damental vectors of $F_{\alpha \beta}$ and $R_{\alpha \beta, \lambda_{\mu},}, \vec{k}=\vec{e}$, and write (47), (48) in a C_{4} whose metric is written in the general form

$$
\begin{equation*}
\Phi=\frac{\eta_{a \beta} d x^{x} d x^{\beta}}{u^{2}} \tag{51}
\end{equation*}
$$

where $\eta_{\alpha \beta}$ is the Minkowski metric, $\eta_{00}=1, \eta_{11}=\eta_{22}=\eta_{33}=-1$. This form includes the canonical forms discusses in § 2.

In C_{4}, (47) simplifies to

$$
\begin{equation*}
\eta^{\rho \sigma} \hat{\partial}_{\rho} F_{a \beta}=0 \tag{52}
\end{equation*}
$$

and as in [11] we may choose the \vec{e} and \vec{m} to have the components

$$
\begin{equation*}
e_{\alpha}=e_{0}(\lambda)\left(\delta_{\alpha}^{0}+\varepsilon \delta_{\alpha}^{1}\right) \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
m_{\beta}=m_{0}\left(x^{x}\right)\left(\delta_{\beta}^{0}+\varepsilon \delta_{\beta}^{1}\right)+m_{2}\left(x^{\alpha}\right) \delta_{\beta}^{2}+m_{3}\left(x^{x}\right) \delta_{\beta}^{3} \tag{54}
\end{equation*}
$$

where $e_{0}(\lambda)$ is a function of $\lambda \stackrel{\text { def }}{=} x^{0}+\varepsilon x^{1}$ of class $C^{k}(k \geq 1), \varepsilon= \pm 1$, and m_{0}, \boldsymbol{m}_{2}, and \boldsymbol{m}_{3} are arbitrary functions of x^{x} of class $C^{k}(k \geq 1)$ such that

$$
\begin{equation*}
\left(m_{2}\right)^{2}+\left(m_{3}\right)^{2}=\frac{1}{u^{2}} \tag{55}
\end{equation*}
$$

In a previous paper, [12], we have shown how to construct a class of non-integrable singular electromagnetic fields in a C_{4} with a metric of the form (51). By omitting the requirement that the field be non-integrable (i.e. Lemma B of [12]) and identifying the fundamental vectors of $F_{\alpha \beta}$ and $R_{\alpha \beta, \lambda_{\mu}}$ the results of [12] allow as to state the following:

Theorem 4. - Let \vec{e} be a fundamental vector of both $F_{a \beta}$ and $R_{\alpha \beta, \lambda_{\mu}}$. For a state of total pure radiation in C_{4} with metric (51) a class of integrable singular electromagnetic fields is given by a holomorphic function $F(J ; \lambda)$, where $\mathfrak{J} \stackrel{\text { def }}{=} x^{3}+i x^{2}$. Furthermore (53) and (54) may now be written

$$
\begin{gathered}
e_{\alpha}=\varepsilon u|F|\left(\delta^{0}+\varepsilon \delta^{1}\right) \\
m_{\beta}=m_{0}\left(x^{\alpha}\right)\left(\delta_{\beta}^{0}+\varepsilon \delta_{\beta}^{1}\right)+\frac{\varepsilon}{u|F|}\left[(\text { Re F }) \delta_{\beta}^{2}+(\text { Im F }) \delta_{\beta}^{3}\right] .
\end{gathered}
$$

Using the well know expressions of \vec{E}, \vec{H}, the momentum tensor $\tau_{\alpha \beta}$, the energy density W, and the Poynting vector \vec{P}, we find that

$$
\begin{aligned}
& E^{\alpha}=-u^{-5}\left[(\text { Re } F) \delta_{2}^{\alpha}+(\operatorname{Im} F) \delta^{\alpha}\right], \\
& \left.H^{\alpha}=u^{-5}\left[\begin{array}{ll}
I m & F
\end{array}\right) \delta_{2}^{\alpha}-(\operatorname{Re} \quad F) \delta_{3}^{\alpha}\right], \\
& \tau_{\alpha \beta}=u^{2}|F|^{2}\left(\delta_{\alpha}^{0} \delta_{\beta}^{0}+\delta_{\delta_{\alpha}}^{1} \delta_{\beta}^{1}+\varepsilon \delta_{\alpha}^{0} \delta_{\beta}^{1}\right), \\
& W=u^{4}|F|^{2}, P_{\alpha}=\varepsilon u|F|^{2} \delta_{\alpha}^{1} .
\end{aligned}
$$

5. - Zakharov's radiation condition.

In a recent paper, [9], V. D. ZAKHAROV has proposed the equation

$$
\begin{equation*}
\square R_{\alpha \beta, \lambda \mu}=0 \tag{56}
\end{equation*}
$$

where $\square \stackrel{\text { def }}{=} g^{\rho c} \nabla_{\rho} \nabla_{\sigma}$, serve as a general criterion for the existence of gravitational radiation. The explicit expression $(n=4)$

$$
\begin{align*}
\square R_{\alpha \beta, \lambda \mu} & =\nabla \nabla_{\mu} R_{\beta \lambda}+\nabla_{\beta} \nabla_{\lambda} R_{\alpha \mu}-\nabla_{\alpha} \nabla_{\lambda} R_{\alpha \mu}-\nabla_{\beta} \nabla_{\mu} R_{\alpha \lambda \lambda} \tag{57}\\
& +R_{\alpha \sigma} R_{\beta, \lambda_{\mu}}^{\sigma}-R_{\beta \sigma} R_{\alpha, \lambda \mu}^{\sigma} \\
& -2\left(R_{\alpha, \sigma \mu}^{\rho} R_{\lambda, \beta \beta}^{\sigma}-R_{\alpha, \sigma \lambda}^{\rho} R_{\mu,, \beta}^{\sigma}\right)-R_{\rho, \alpha \beta}^{\sigma} R_{\sigma, 2 \mu}^{\rho}
\end{align*}
$$

can be easily derived by using the Ricor and Branchi identities. It is clear
that (57) is a complicated conditiou on $R_{\alpha \beta \beta}$ and $R_{\alpha \rho, \lambda_{\mu}}$. If V_{4} is an Einstein space (57) simplifies considerably, and this case was originally investigated by Zakharon, [9, and more recently by Zund and Maher, [13], who used the Van Der Waerden spinor formalism.

We show here that Zarbarov's condition (56) is always satisfied for a state of special total pure radiation (see § 1).

Consider then a C_{4} admitting a parallel null vector field e_{α}. Then (9) is satisfied, where we may assume $t_{\gamma} \neq 0 \quad\left(t_{\gamma}=0\right.$ shows (56) satisfied trivially). Also, we have $R_{\alpha \beta}=\tau e_{\alpha} e_{\beta}$, and $R=0$. Hence the well known condition in a C_{4},

$$
R_{\alpha \beta \gamma} \stackrel{\text { def }}{=} \nabla_{\gamma} R_{\alpha \beta}-\nabla_{\beta} R_{\alpha \gamma}+\frac{1}{6}\left(g_{\alpha \gamma} \partial_{\beta} R-g_{\alpha \beta} \partial_{\gamma} R\right)=0,
$$

reduces to $\nabla_{\gamma} R_{\alpha \beta}=\nabla_{\beta} R_{\alpha \gamma}$. This implies

$$
\begin{equation*}
\partial_{\alpha} \tau=\rho e_{\alpha}, \tag{58}
\end{equation*}
$$

where ρ is a scalar factor.
From (9), (10) we derive

$$
\begin{equation*}
R_{\alpha \beta, \lambda \mu}=g r \delta\left[\tau^{-1} \nabla_{r} \nabla_{\delta} \tau-\tau^{-2}\left(\partial_{r} \tau\right)\left(\partial_{\delta} \tau\right)\right] R_{\alpha \beta, \lambda_{\mu}} . \tag{59}
\end{equation*}
$$

By (58). $g^{\gamma}\left(\delta_{\gamma} \tau\right)\left(\partial_{\delta} \tau\right)=0$ (since e_{α} is null). Since $\nabla_{\gamma} \nabla_{\delta} \tau=\nabla_{\delta} \nabla_{\gamma} \tau$, we find by use of (58), that $\partial_{\alpha \rho}=\mu e_{\alpha}$ for some scalar factor μ. Hence $g^{\gamma \delta}\left(\nabla_{\gamma} \nabla_{\delta} \tau\right)=$ $\mu\left(g^{\delta} e_{r} e_{\delta}\right)=0$, and thus the right side of (59) is zero.

This gives us
Theorem 5. - For a state of special total pure radiation Zakharov's condition is always satisfied.

In general it is not to be expected that a state of total pure radiation, in the sense of Lichnerowioz, will satisfy (56).

BIBLIOGRAPHY

[1] J. Levine, Groups of motions in conformally flat spaces, I., Bull. Amer. Soc. Math. 42(1937), pp. 418-422.
[2] — -, Fields of parallel vectors in conformally flat،spaces, Duke Math. Jonr. 17 (1950) pp. I5-20.
[3] J. Levine and G. H. Katzin, Conformally flat spaces admitting special quadratic first iutegrals, I. (Symmetric spaces), Tensor (to appear).
[4] ——, and - -, Conformally flat spaces admiting special quadratic first integrals, $I I_{*}$ (Recurrent spaces), Tensor, (to appear).
[5] A. Lichnerowicz, Théorie relativistes de la gravitation et de l'electromagnétisme, Masson et Cie, Paris (1955).
[6] - -, Ondes et radiations electromagnétiques et gravitationnelles en relativite générale, Ann. di Mat. Pura ed Appl. 50 (1960), pp. 1-90.
[7] H. S. Rush, A. G. Walker, T. J. Willmore, Harmonic spaces, Edizione Cremonese, Roma (1961).
[8] A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. of the London Math. Soc. Ser. 2, 52 (1950), pp. 36-44.
[9] V. D. Zakharov, A physicalcharacteristic of Einsteinian spaces of the second degenerate type in the Petrov classification, Dokl. Akad. Nauk SSR 161 (1965), pp. 563-595 (translation: Sov. Phys. Dok. 10 (1965), pp. 242-243).
[10] J. Zund, Sur la radiation gravitationnelle, C. R. Acad. Sci. Paris. 262 Sér. A (1966) p. 1081.
[11] J. D. Zund and J. Levine, Sur la radiation gıavitationnelle, C. R. Acad. Scí. Paris 264, Sér. A (1967), pp. 1029-1032.
[12] - -, and - A class of nonintegrable singular electromagnetic fields, Il Nuovo Cimente, Ser. X, 51 A (1967), pp. 687-695.
[13] J. D. Zund and W. F. Maher, J_{r}, , A spinor approach to some problems in Lorentzian geometry, Rend. del Circ. Mat. Di Palermo (to appear).

