
On the boundedness of the solutions of the equation 

x + + f ( x ) x  + .q(x) = v(t).  

J. O. C. EZEILO (Nzukka, Easthern :Nigeria) 

Summary.. In this paper my previous result [1] on the boundedness of solutions of (t.l.1) is 
fackled by use of a suitably chosen Liapounov function. This fresh approach leads to a 
more direct proof of the boundedness Theorem and makes for substantial reduction in 
each of my previous conditions on f and g. 

1 . -  I n t r o d u c t i o n .  

1.1. - We  shall be concerned here with the boundedness  of the solutions 
of the differential  equat ion 

(I.1.1) ~ -{- ax  q- f ( x ~  -~- g(x) --  p(t) 

in which a is a constant and the funct ions f, g and p, dependent  only on 
the arguments  shown~ are such that f(x), g'(x) and p(t) are cont inuous for 
all x, t. 

It was shown in a previous paper  [1] that if a > 0 and if fur ther  
(I) g(O)--O,  g ( a ~ ) / x ~ 8 0 ~ O ( x : ~ : O ) ,  (II) there are constants ~ 1 > 0 ,  ~ 2 > 0  
such that a ~ 1 - - 8 2 : > 0  and such that f ( $ ) ~ l  and g'(x)<~ ~ for all x, and 

t 

(III) P(t) -~ l p(~ d(z) satisfies 
~ J  

0 

(1.1.2) I P(t) l<~Ao < c~ for all t considered, 

then every solution x(t) of (1.1,1) ul t imately satisfies 

(1.I.3) ] x(t) I <--D1, Ix(t)] <--D1, Ix(t) l<--D1, 

where D1 is a constant  whose magni tude depends only on ~o, 61, ~ ,  A, f and 
g. In a subsequent  note [2] it was pointed out, following a private comunicat ion 
from Professor  PACItALE, that the proof given in [1] contains an important  
flaw, but  that the defect can be rectified, if, for example, p were subjected 
to a fur ther  condition, namely:  

(1.1.4) [p(t) l < - A ~ < ~  for all t considered. 
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In view of the fact that, for the special case f ~  constant, the result  
(1.1.3) can be proved (see, for example, [3], [4]) subject to one condition only 
on p, namely (1.1.4), one is natura l ly  led to ask whether  the use of both 
condition (1.I.2) and (t.1.4), which is apparent ly  quite basic to my methods 
in [1], is in fact essential for the validity of (1.1.3) in the case when f is 
not necessari ly constant. 

One reason why the answer to the above question has proved elusive so 
far has been the difficulty in construct ing a suitable Liapounov funct ion:  the 

funct ion W - "  W(x, y, z) used in [1], for instance, gives only a W (see Lemma 
2 of [I]) satisfying only 

~ < _ - -  8" < 0, if a~(t) -{- y~(t) is sufficiently large, 

so that the well known Yoshizawa-type technique which would require  a 

result  of the form 

(1.1.5) W<__,-$* d o  if x~'(t)+y~(t)-4-z2(t) is sufficiently large, 

is inapplicable here. The main object of the present  paper  is to give details 
of a fresh approach to the problem, involving the use of a combination of 
W with some other suitably chosen function, which not only leads to a much 
more direct  proof of (l.1.3) than that given in [1], but also allows for a con- 
siderable reduct ion in each of my previous conditions on f and g. 

1.2. S ta t emen t  of  the  result .  - The main result  to be proved is the following 

TI4EO~EM. - Suppose that a > 0 and that 

(i) g(x) sgn x --> "4- ~ as I x~l --> oz~ 

(ii) there are constants 81 > O, 83 > 0 such that 

(1.2.1) a81 - -  83 > 0 

and such that 

f(x) ~ ~1 and if(x) <~ 83 for I x I >-- ~o > 0 

(iii) pit) satisfies one or other of  (1.1.2), (1.1.4). 

Then every solution x(t) of (1.1.1) ultimately satisfies (1 1.3). 

The form of the hypothesis  (iii) above shows, in answer to the question 
raised earlier, that, subject  to the given conditions on f and g any one (but 
not necessar i ly  both) of the conditions on p would be quite sufficient for the 
boundedness of solutions of (1.1.1). Actually we shall see in § 3.4 that, in the 
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case of the condition (1.1.4) the present  method can be extended to allow for 

bounded functions p(l ,  x,  x,  [~) dependent  explicit ly on x, x~ and x. 

Observe that, in place of our previous condition: g ( 0 ) - - 0  and g(x.) /x  
8o ~ 0 (x ~ 0), we now have merely  that g(x) sgn x --> ~ cx~ as I x I "-> c~. 

Also the bounds on f and g' are now assumed to hold only for sufficiently 
large t x I. 

1.3. - ~ote  that hypothesis (i) of the theorem implies the existence of a 
constant  ~ ~ 0  such that g ( x ) s g n  x . ~  0 for ! x t ~  , so that if we set 
h - - m a x  (~1, ~0), ~.o being the constant in hypothesis (ii) of the theorem, then 
we have, all at once, that 

(1.3.1) g(x) sgn  x ~ O, f(x) ~ 81 and g'(x) ~ 82, for [x ] ~ 5. 

Throughout  what follows D1, D~ stand for the constants defined by 

(1.3.2) D~ -- 88h --[- max I g(x ) ], Ds = ~lh -{- max I F(w)[, 

where 

x 

F(x)--/f(X)dZ. 
0 

In  fact, following the notation in [1], we shall general ly use D~S (with or 
without suffixes) for positive constants whose magnitudes depend only on 
81, ~2, h, A, f, and g. Any D which appears with an a rgument  beside it stands 
for a positive constant whose magnitude depends on 81, 85, 5, A, f, as well 
as the specific a rgument  shown; thus, as an example, D(dl) denotes a constant  
whose magni tude depends only on 81, 8~, A, A,  f, g and all. The D's are not 
necessari ly the same in each place unless they are numbered,  but the D's:  
D1, /)2, Ds, ... with suffixes at tached retain their  identities throughout.  

The small letters d, dl, d~, ... without arguments,  occuring in the text 
are positive constants which retain the same magnitudes through until  they 
are fixed later, in § 2.4 and 3.3, as D's. 

2. - T h e  e a s e  iP( t )  l ~ A o  f o r  a l l  t .  

2.1. Some useful prel iminaires .  - In  order to be able to utilize the con- 
dition: I P I ~ _ A o  it is convenient  to consider the system 

(2.1.1) x~ - -  y, y = z - -  a y  -Jr- P(t), z - -  ~ y f (~)  - -  9(~) 
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which one obtains from (I .1 .1)by set t ing y =  x, z - - ~ + a x - - P ( t ) .  It  will be 
shown that  subject  to our  condi t ions on f and g every solutions (x, y, z) of 
(2.1.1) ul t imately satisfies 

(2.1.2) ix(t) I ~ D4, ] y(t; I ~ D,,  ] z(t) l <_ D~. 

In view of the boundedness ,  a ssumed here, of P(t), the boundeclness of y and 
z in (2.1.2) also implies  that  

I a~(t) ] <_ (a + 1)D4 --}- Ao 

so that  the required  conclusion of the theorem would follow once (2.1.2) is 
established. 

In  what  follows let Ds, D6, Dr be constants  def ined by 

16D~AV2 5 D s A V 2  
(2.1.3) D5 : max ] if(x) I, D6 - -  - - ,  Dr - -  , 

[ael~a ~ r¢ 

Also, for any given constant  d ~ 0 let ~bd ~ ~d(~) be the function,  defined for 
all real  ~ by 

= re{ 
(2.1.4) *a f sin ~_ ~ ! ~ t < d  1 

Observe that  this funct ion  ~a(~) satisfies 

(2.1.5) ] +a(f) l <: l for all ~, d; 

also that  ~ba(~) is dif ferent iable  for all ~: in fact 

+5({)= gacos @ 

so tact,  in par t icu la r  

(2.1.7) 0<_+~(~)~. for all ~; and +a(~)__ 2 d V ~  I ~ l ~  " 

Our main  tool in the proof of (2.1.2) is the funct ion  V - -  V(x, y, z) defined by 

(2.1.8) V - -  W - -  U, 
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where W :  W(x, y, z) is the function of the previous paper [1]: that is 

(2.1.9) 
x 

o 0 

+ ~y-~ + z ~ + 2yg(x) + 2[F(x) - -  ~x]z, 

being a constant fixed (as is possible in view of (1.2.1) so that 

(2.1.10) ~ ) ~ > ~#a ;  

and U is the function defined by 

(2.1.ll) U --  Dsy+a(z + F(x)) + D~y+,a(x), 

the function +d(Z + F) being interpreted hare as the funct ion +d(~)(see (2.1.4)) 
with ~ = z + F(x), and h the constant appearing in (1.3.1). Observe that the 
funct ion V as defined above depends explicitly on the (so far) arbi t rary 
constant d > 0. The actual  proof of (2.1.2) will revolve around the fact 
established in §§ 2.2, 2.3 and 2.4, that, if d is sufficiently large, the function 
V so defined constitutes a Liapounov function for the system (2.l.1), satisfying 
a result  analagous to (1.1.5). 

The following consequences of (1.3.i) and (1.3.2) will be useful in the 
verification of this property of V: 

(2.1.12) [ g(x) ] _<. ~1 x j + D, 

(2.1.13) F(x) s g n x ~ ]  x] - -  Da. 

2.2. The unboundedness of  V for a rb i t r a r i l y  large x: + y" + z ~. - We 
prove here that 

LEI~IY[A 1. - Subject to the conditions in hypothesis (i) and (ii) of  the 
theorem, and for arbitrary d > O, the funct ion V satisfies 

(2.2.1) V(x, y, z) .-> + oo as zc" + y~ + z ~ --> co. 

PROOF. - We make use of the following r e - a r r angemen t  of ~¢V, given in 
§2.1 of [t]: 

(2.2.2) 
x, 

2 W --  ~(y + ~_1g)2 + (z + F - -  ~x) ~ - -  ~ 2  + 23 f F(),)d), 
o 

+ 2a fgO, )dk  - -  ~-~g~ 
0 
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and focus attention on the terms 

l,e 

W, 
0 0 

arising in (2.2.2). 
To obtain a lower bound for WI consider the funct ion 

X 
f a  

2 1 F(),)d~. - -  ~ -~ 2Da i x I ~?dx) 
l u t  

0 

where D~ is given in (1.3.2). By considering the cases x>~0, ~ < 0 separately, 
and then making use of the definition of (2.1.13) it can be verified that 
~(a~) sgnx  ~> 0, so that since ~ ( 0 ) - - 0 ,  we have that Vl(~c)~> 0, that is 

X 

2 t F()0d), ~ ~Ix ~ - -  2D~ '~c ], 
8 , "  

0 

for all x. From this we have that 

(2.2.3) W1 __~ ~(~ - -  ~)x ~" --  2D~ i x [ for all ~. 

We turn new to the function W~. Here  set 

"~dx) = Wdx) +.D~ 

where 9 8 - -  max I Wdx)!. Then, clearly, ~ d x ) ~ 0  for I xl ~ 5. If !xl_>_5 then, 
since I.~'<_a 

¢~ ~- 2(a - -  ~-~g'(vc))g(x) 

it is clear from (t.3.1), and since ct - ~-~G > 0 (in view Of (2.1.10)) we have that 

¢Pd ) s g n x > - - 0  for t x l ~ h "  

But ~(+---. 5 ) >  0. Hence  ~ ( x ) ~ 0  for Ix l__>-~. Thus ~2¢x)__> 0, that is, 

Wdx) ~ - -  Ds,  

for all a~ 
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These estimates of WI and W2 combine with (2.2.2) to give that 

2 W ~ ~(y + ~_lg)~ + (z + F - -  ~x) 2 + ~(~ - -  ~)x: - -  2ns  1 x I - -  Ds 

say, for all x, y, z. 
For the term U we have, in view of (2.1.5) that 

I U! _~(De d- DT) I Y I, 

(2.2.4) 2 V ~  Wo(x, y, z) - -  2(D6 -~ DT) IY !, 

V~(x, y, z), 

say. It  remains  only to show that 

(2.2.5) V~-->oo as ~ + y ~ + z ~ . . - > o o  

and the required result  will then follow. 
Since the coefficient, ~(~--8) ,  of x ' in Wo is positive (in view of (2.l.10)) 

it is evident that (2.2.5) is t rue if Ix I is bounded but y2-{-z"-->oo. Therefore  
the general  result  (2.2.5) will be proved as soon as it is established that 

(2.2.6) V~-->oo as !xl-->o~.  

5Tow let t ~ I ~ D 2 / ~ .  Then, by (2.1.12), g(x) l ~ _ 2 ~ t ~ c l ,  so that 

1 
~(Y + ~-~g)~ + ~ ~(~ - -  ~)x ~ 

__~ ~(y~ + g~) 

for some sufficiently small constant  ~8 = ~(~, ~ ,  ~2) ~ O. Hence,  when ! x l ~  D2/~2, 

1 
V~ ~ ~(y-' + g~) d- ~ ~(~i - -  ~)x~ ~ - -  2D8 I x  I - -  (D8 + DT) [ y l - -  D~, 

so that, since 

~sy ~ - -  (D~ + D~) ly  I ~ -- (D~ + D~)~/4~ = --  D~, 

for all y, we have that 

1 
Vl ~ ~ ~(~ - ~)x ~ - 2D~ ] ~c - -  Ds - -  D~. 
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The expression on the r igh t -hand  side here tends to ~ c~ as Ix l--> c~, and 
thus (2.2.6) holds. This completes the verification of the Lemma. 

It is important  to remark  here, for future  use, that since V(x, y, ~) is 
continuous in x, y and z the result  (2.2.1) necessari ly implies the existence 
of a constant  Dlo such that 

(2.2.7) V(x, y, z) ~ - - D ~ o  for all x, y, z. 

2.3. Es t imates  for 1/. - Let  V(t)== V(x(t), y(t), z(t)) where (x(t), .y(t5 z(t)) is 
any solution of (2.1.1). By an e lementary  calculat ion it can be verified from 
(2.1.8), (2.1.9) and (2.1.11) that 

where 

" 2 -  - -  g(x) (F(x) - -  8x) + U(x)y ~ + V,* + V* 

U = a8 - -  g'(x) + DT~'~a(x), and 

(2.3.1) V* = --  D6(z -- ay)~d(Z d- F(x)) - -  D~(z - -  ay)~.a(x) 
t /  

+ D~yg(x),~d,z + F(x~), 

(2.3.2) V* = { 8y -[- g(x) -- D6~(2 -{- F(x)) - -  DT'~2a(x) } P(t). 

About the coefficient U(x) above it will be observed since #~a(x) 0 and since 

g'(x) ~ 82 (I x t ~ 5) that 

> 0  

by (2.1.10). For ]~c] ~ h  we have from (2.1.3) that tg'(x)l ~--D~ and from (2.1.7) 

' x T:/(4AV~, that, here that ~2a( ) ~  so 

U(x) ~ a8 - -  D~ + r~D~/(4A¥ 2) 

and by (2.1.7) this gives that 

U(x) ~ a8 ~ D5 -~- 5 D J 4  

1 
= a~ + 7~ D~. 

Hence  there exists a constant Dn such that U ( x ) ~ D n  for all ~; and thus 

(2.3.3) ? ~ - -  g(x) (F --  ~x) - -  D,ly 2 -{- V* -~ V*. 



J. O. C. EZEILO: On the boundedness o / t h e  solutions, etc. 289 

We are now in a posit~on to embark on the estimates 17. Throughout  
what follows (w, y, z) - -  (x(t), y(t), z(t)) stands for an arbi t rary  solution of (2.1.1), 
and d ~ 0 the (so far  arbitrary) constant  in the definition (2.1.11) of U. Our 
first result  is the following. 

LE~tMA 2. - Corresponding to a~y  d lhere exis ts  a constanls  D~2(d) such that  
i f  ] z + F(x) I ~_ Dx2(d) then 

(2.3.4) I ? ~ -  i 

Pnoo~. - Assume to being with that I z q - F  I ~ d .  Then by (2.1.6) the 
last term in (2.3.1) is zero so that 

V* = --  D~(z - -  ay)'~a(z + F ) -  DT(z --  ay)¢2a(x). 

This expression can be writ ten thus 

V* - -  - -  { P6(z q- F)•a(Z + F)  q- PT(z q- F)+2a(x) } 

+ { D6(ay q- F)+d(Z if- F)  + D,(ay + F)+2a(x) } 

= - h +  h ,  

say. Beeause [z q-/r]  ~ d it is evident from the definit ion (2.1.4) that 

(2.3.5) (z -C F)+d(Z + F )  - -  I z + F I" 

Also, since ! ~a(x) t ~- 1 anyway, 

I (z + p')+~alx) I < ] z + F I; 
and hence 

/1 ~ - -  [ z --}- F[(D6 - -  n~), 

so that, since D ~ -  D7 = 11DsAV2/u (by (2.1.3) we have that 

z ~ < - - - D . I  ~ + F! 

for some constant D a ~  0. Coming to I~, we also have, since ]~dl___l and 
I ~2a t ~- 1, that 

t/~]<--n~,(I Y I-t-IFI) 

for some constant D~4. Hence  

V*~_ --  Dx31z ..{- F! + DI,(tY I-{- IFI). 
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For the function 17" (given by (2.3.2)) the boundedness of +~, +2a and P leads 
to the estimate 

and thus, by (2.3.3), 

V* ~ D I ~ + ~ A o ] y  I + A o l g i .  

( ? ' ~ - -  DI~ I z -l- F I .... D,~y ~ - -  g (F  - -  ~x) + DI~ (1Yl + 1 F I) -}- D15 (2.3.6) 

we shall now prove that 

(,.3.7) D,ly 2 -{- g (F ~x) - -  D14 (l Y [ + ] F I) "--> -{- ~x~ as x 2 + y~ --> ~ .  

Since such a result  would imply the existence of a constant, Dlo say, such that 

Dlly ~ + g(F - -  ~x) - -  D~4 ([ y i + I F [) --}- DI~ ~ - -  DI6 

for all x, y, and this in turn would imply, in view of (2.3.6) that 

9~--n,~iz+Fi +D,o; 

it follows then that if (2.3.7) can be proved then V ~ - - I  provided that [ z + F l . ~  

max [d, (D,6-{-1)D~ -1] which is the required conclusion of the lemma. 
It is quite clear that if Ix] is bounded, but l y t -+c ,% then 

P~,y ~ -Jr g(F - -  ~x) - -  D14(I Y I + '~ F 1) --> c,o. 

Thus, to complete the proof of (2.3.7) it suffices now to verify the result  for 
the case Ix I--> ~ .  To handle this case set 

noting that, since ~ - ~ <  1 (by (2.1.t0)) the constant Dx7 is strictly positive. 
If /wj is sufficiently large we have from (1.3.1) and (2.1.13)that g ( x ) s g n x ~ 0  
and F ( x ) s g n  x ) 0  so that then 

g ( F - -  ~'~) -- 2D~TgF= t g j [ ( l  - -  2D~)I F i -- ~{x]] 

-- ~ - '  I g [[(1 q- ~-1917) [ F I - -  51 ]w ]]. 

But, by (2.l.13), 



J. o .  c. EZEILO: On the boundedness o] the solutions, etc. 291 

so that since I g l - - - >  c ~  a s  I x'---->c,% we have that 

g(F  - -  ~x) - -  2D~TgF----> oc as t x t ""> oc. 

The par t icular  consequence of this which is vital to our proof here is the 
existence of a constant  D~8 such that 

(2.3.8) g ( F - - ~ ' x ) ~ 2 D ~ 7 ] g l i F l  for l x [ ~ D ~ s "  

Indeed, since 

for some constant D, (2.3.8) helps to show that, if I xl':~>D~s, then 

D~y 2 --~ g(F - -  ~x) - -  D~ (] y ! -t-" [ F ]) - -  D 

~ 2D~7]g] I FI  - -  D~4:F] - -  D 

say. By putt ing qoo in the form 

~o- -D~7]g l  . I F i  ~ - ] F ] ( D ~ ] g ] - - D ~ 4 ) - -  D 

and then recall ing that I g] and I F  ! both tend to infinity as I x [ - ->ec ,  we 
see at once that 

D ~ , y ~ q - g ( F - - ~ x ) - - D ~ 4 ( [ y ] - [ - l y [ ) - - D - - > - { - o c  as I~vl---->oc. 

This completes the proof Of (2.3.7) and the lemma now follows, as indicated 
earl ier .  

Observe that all our results so far have been proved valid without res- 
tr iction on d. Our next result  is the only one whose validity will depend 
explici ty on  d being sufficiently large. 

L]~MMA 3. - Let  [z ~- t f(x) l G dl .  Then there e~ist constants  D19, D2o(dl) 
such that  i f  d ~ D19 then 

(2.3.9) ~ - -  1 provided that x 2 -t- Y~ ~ D'~o(d~). 

PROOF.  - We start again with (2.3.3), but this time, since [ z - l -F (x ) [  is 
not being assumed grea te r  than d~ the last term in V* is not zero as in 
Lemma 2. However, by (2.1.4), 

(z + F)~d(z + F) ~ 0 
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so that by splitting the term ( z - - a y )  in V* (see (2.3.1)) in the form 

z - -  ay --- z -[- F ~ (ay z~. F)  

and then using the various properties o[ ~ ,  we have here (with the same 
D~ as before) that 

V¢ <_.D~ I z --}- F I -}- D,~ (I Y [ -}- I F ]) n u D~ ] yg I ~'d~ z -~ F) 

~D~ 
~_ D~d, .-]- D~(I y [ .-]- ] F I) + - ~  [ Yg l 

here in the last step we have ,used  the conditions" ] z +  F I ~  d~. l~d' :~)l~ 
1 1 

~ 2 7 : d - "  The previous estimate V* is valid here, so that 

=D6 
(2.3.10) ~V<_ - -  g(F - -  ~x) - -  P~y  2 -}- 2d-  I yg [ -[- D,~ (] y ] -{- I F I -I- DTd~. 

1 
Since l Y g I ~ ( Y  ~g2)  it is clear from (2.3.8) that, if I x I ~ D ~ s ,  

~:D6 

where 

] uD6d_l ) y~, 

~- V2-{-  V* + D~TIg ! [FI  

1 
V * - ~ ] g [  D ~ T i F I ~ 4 r c D 6 d - i I g D ,  

1 
Observe now that if d is f ixed so large that 7:Dod- l~  ~DII then 

t 
V* ~ 2 D~y ~. 

For the term V: ,  it is useful  to note from (2.1.12) and (2.1.13) that if t xI  is 
su[ficiently large 

D17 F l - - l ~ D f l - I l g [  

1 r~D6d_l~) 1 x I - -  ~ r:D6Dfl- - -  D17Da 

1 
so that if now d is fixed so that ~ u D o ~ f l - l <  D~81 then 

1 rcD~d_ltg 1) > 0 IgL (DI~IFt-  
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provided that i x~l is sufficiently large, say I w t -~- D2~. 
The above calculations show that if 

! 
(2.3.11) d ~ 2I uD6 max ( ~ D ~ - ~  1, ~1) 

then 

1 
(2.3.12) ~ d ~ _ - - D ~ 7 1 g I [ F I - - 2 D ~ y  + D I 4 ( I y [ + I F [ ) + D T d ~  

provided that I x ] ~ D 2 ~ .  By using arguments  similar to those emploscd in 
the last part  of the proof of the preceding lemma if can be shown that 

1 2 
- - D ~ I g l I F t - - ~ D ~ y  - { -D~( t y t - { - IF l ) - ->- - c , z  as Ix:--->cx~. 

Thus, subject to (2.3.11)we have that there is a constant D2~(d~) such that 

(2.3.13) 12~.--  i if I x(l) l ~  D~(d~). 

It  remains  now to tackle the case ix(t)I~D22(d~), assuming d fixed by (2.3.ll). 
We have here, from (2.3.10) and this boundedness of Ix(l) I that 

V ~-- --  Dl~y 2 +~D(dl) ] y t -[- D(dl). 

As the right handside tends to - - c ~  as [yl--->c~ it follows here that there 
is a constant D~a(d~) then 

(2.3.14) l ; ' ~  - -  1 proved that I Y(I) I ~ D~(d~). 

The two estimates (2.3.13) and (2.3.14) combine to show that if (2.3.11) holds 
then 

?~_~--1  provided that oc 2 f f - y ~ D ~ 2 + D ~ .  

and the lemma is therefore established 

2.4. A combinat ion of  Lemmas 2 and 3. - Consider now the function V 
(see (2.1.8)) but with d fixed by d = D~o is tim constant  in Lemma 3. Define 
two new constants D24, D25 by 

Da, = D~2(D~9), D2~ = D~o(D2,), 

where Dl~(d) and D2o(d~) are the constants defined, for given d and dl, i n  
Lemmas  2 and 3 respectively. We shall now prove that 
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LEMMA 4 . -  I f  (X, y: Z) is any  solut ion of (2.1.i) then subject to our condi- 
t ions on /'.1 g a n d  P, 

(2.4.11) 17_~ - -  1 i f  x ~ q- y2 + (z + F(x))  ~ ~ D~4 -{- D~5. 

PROOF. - Assume that 

(2.4.2) ~ + y~ + (z + F(x))~-_~_ D~4 + D~. 

If  I z + F f ~ D 2 4  then 1 ~ - - 1  by Lemma 2. Otherwise, that is if I z+FI<D24,  

then by (2.4.2)we must  have that x"-~ y2~D~5 .  But in the lat ter  case Lemma 
3 gives that V ~ - - 1 ,  and this proves the lemma. 

2.5. Completion of  the  proof  of  the theorem for the  ease P bounded. - Let  
(x, y, z) ae any solution of (2.1.1), and let V(t)=-- V(x, y, z) where V is the 
par t icular  V discussed in § 2.4 (that is with d = D19). Since 

X ~ + y" q- (z --~ F(x)) 2 --> o z  as ,x 2 _{_ y2 _~_ z~ __>~ 

the resul t  of Lemma 4 obviously implies the existence of a constant  D~ 
such that 

(2.5.1) l ~ _ _ - - I  if x 2 - { - y 2 + z " - ~ D ~ ,  

analogous to (1.1.5). 
The remainder  of the proof of (2.1.2) can now be obtained by the standard 

Yoshizawa type technique using (2.2.1), (2.2.7) and (2.5.1) as required.  The 
main arguments  are exactly as in § 3 of [3], and further  details will therefore 
be omitted here. 

3. - T h e  c a s e : [ p ( t )  t ~ A 1  < c~ f o r  a l l  t c o n s i d e r e d .  

3.1. - This time it is convenient  to work with the system 

(3.1.1) x : y, y : z - -  ay, z : - -  y f (x )  - - g ( ~ )  + p(t) 

obtained from (1.1.1) ay setting y = x, z = ~ + a~. To prove the theorem it 
will suffice to show that any solution (~c, y, z) of (3.1.1) satisfies 

(3.1.2) [ x(t) ] < D, ] y(t) I ~ D, i z(t) 1 ~ D 

for all suff icient ly large t. 
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(3.1.4) 

where 

(3.t.5) 

Our main tool for the proof of (3.1.2) is the function V---- V(x, y, z) defined by 

(3.1.3) V --  W - -  U 

where W is the same as before (see (2.1.9)) but  U is now given by 

U = D:y~bd(Z "d- F(vc) - -  ~x,) 3 V DTy~.,a(a3), 

D: ---- D6 d- A1. 

The only difference the between this and the previous U (2.1.1I) lies in 
the coefficient of y, which, in the previous case, was D6q~a(z-4-F) while now 
we have D* 9 ~ d ( Z - ' l " F - - ~ x ) .  However  since ]~d[<_l  and I~b2~l ~ l  the same 
arguments  as were used for Lemma 1 will also give here that the present  V 
satisfies 

(3.1.6) V(x,  y, z)-..-> d- c<~ as x~d-y~-4-z~-->c~. 

3.2. - To complete the proof of the theorem it suffices now, in view of 
(3.1.6) and in view of the remarks in § 2.5, to show that if (x, y, z) is any 

d 
solution of (3.1.1) then 1 7 : ~ t  V(x ,  y,  z) satisfies a result  analogous to (2.5.1). 

An elementary calculat ion from (3.1.1), and from our present  definition 
of V, will show that 

(3.2.1) ~ - -  g ( F  - -  $x) - -  U(x)y  2 d- V 2  d- V : ,  

where U(x) is the same as before (§ 2.3) and therefore satisfies 

(3.2.2) U ( x ) ~ D l l  > 0 for all x,  

and 

(3 2.3) V :  -~ - -  D*( z  - -  ay)'~d(Z + F -  ~X) - DT(z - -  ay)~2a(x) 

+ 8D*~'a(z -}- F -  ax)y  ~ -~ D * y g ~ ( z  + F -  ax), 

(3.2.4) V* = I (z F -  ~x) - -  D* y~'d(Z d- F - -  ~X,) } p(t). 

Our start ing point, for the estimate of ~7 is the result  

(3.2.5) -~" ~ -- g ( F -  ~x) - -  D1~9 2 --}- F*  + V :  
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obtained from (3.2.1) and (3.2.2). The procedure is exactly the same as before 
except that now we consider the cases 

E z - t - F - - B x  t large, ! z - j - F - - ~ x  I small 

as against the cases 

tz-{-F 1 large, I z - t - F J  small 

which were dealt with in § 2.3. 
Our first result, analagous to Lemma 2, is that 

LEMMA 2'. - Corresponding to any  d there exists a constant D~7(d) such 

that i f  [y - f  F - -  ~x] ~ D2~(d), then 

(3.2.6) 17 ~_ - -  1 

PRoof .  - Assume to begin with that l z -I- . F - -  Bx I ~  d. Then, by (2.1.6), 
~ ( z - f - F -  ~x)-~ 0, so that, from (3.2.3) and (3.2.4), 

v :  = + F -  

Since ]p] ~,A~, it is clear that 

To estimate the V2 (given above) use the r e -a r r angemen t  

V* - -  --  D* (z + F -  ~X)~d(Z -f- F -  ~X) Zr- D* (ay -Jr F -  ~X)~d(Z Jr- F -  ~x) 

- -  DT(Z + F -  ~x)~A(x) - f  nT(ay -{- F -  ~x)~2a(x,). 

Since !~g(~)--t~J (if I ~ 1 ~  d) and l~(~)/~_ 1 for all ~, d it is clear from the 
r e - a r r angemen t  that 

V* % - -  (I)2 - -  DT) I z --{- F - -  ~x l -'~ D2s (j y I + J F - -  ~x l" 

for some constant  D~s. Thus 

V* -t- 11" ~__.- (D* - -  D7 - -  A~)jz -f- F - -  Bx] + D2s (t Y l -1- I F - -  Bx l). 

But, by (3.1.5) and (2.1.3) 

D* - -  Dr - -  A1 ~ 0 
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and so, by (3.2.1), 

(3.2.7) ~ r ~ , _  D2~ t z -b F - -  ~x I - -  Dl~y ~" --  (F  - -  ~x)g q- D28 (t Y I q- I F -- ~x I), 

for some constant D2D ~ 0. 
The result  (3.2.7) is analogous to the result  (2.3.6) arising in the course 

of Lemma 2 and the arguments  given there can be adapted readily to our 
present  case to show that 

]7<_-- 1 if t z + F - -  ~ x l ~ D ( d  ). 

Next we have, analagous to Lemma 3, 

LEMMA 3'. - Let  I z-{- F - -  8x I <- d~. Then  there exis t  cons tants  D~9, Dso(d2) 
such that i f  d ~ D~9, then 

(3.2.8) 17 _< - -  1 prov ided  that ~ q- y~ ~ D~o(d2). 

PROOF. - We start once again from (3.2.5). We take Vs* (see (3.2.3)) in 
the form 

V* ~-- - -  D* (z -J- F -  ~x)d?a(z -~ F -- ~x) q- D* (ay q- F -- ~X)~d(Z q-- F -- ~X) 

- -  DT(z -a u f f  --  8x)~2a(x) -{- DT(ay q- F -  8x)~2a(w) 

-b 8D6* YS~b~(z q- F -  8x) -{- n *  yg+'a(z -4- F -  8x). 

From this, by making use of the following: 

1 
I z q- F - -  ~x I <- de, I +'a(~)l ~ 2 r~a- ,  I +a(!)] <--' 1, 

we see that 

1 
V* ~ ~ v:.d-ID2(y ~ --}- l Yg l) -}- D (I Y I "1- i F -  ~x D:-I- D(dz). 

<-- - -  (F  - -  ~x)g - -  D~ly 2 4;- D (I Y i q- 1 F - -  ~x 1 

1 
q" ~ ~d- l (Y  2 -{- I Ygl zc" l y ]) + D(d2). 

As for the function V2 it is clear that 

1 
V:  ~ ~ ~d- ID~ A1 I Y I q- Aid2 

Hence,  by (3.2.5), 

(3.2.9) 
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By us ing the a rguments  immedia te ly  following (2.3.10) it can be shown that  
if d is suff icient ly large, say d ~ D 3 ~ ,  then 

- 1 2 (F - -  ~x)g --~ D~y ~" - -  ~ ~:d- (y + i Yg D 

1D 2 

provided that  Ix I is large enough,  say I~c]~_D~2. Thus,  if 

t x t ~ D a 2  and d ~ . D ~ l  

then 

1 
(2.3.10) V ' ~ _ - D l ~ l g t l F I - - 2 9 1 1 9 2 + P ( l y t + i F - - ~ x l ) - { - D ( d 2 ) .  

Assume now that  dL~ D3~. Then,  as in Lemma  3, it can be shown from 
(3.2.10) that  

~ - - 1  

Note that  the coefficient  

provided that  I xl__~D~8(d~), 

1 
- -  D l l  -}- ~ ~zd - 1  

of y: on the right hand side of (3.2.9) is str ict ly negative so tong as d is 
large enough,  say d ~ D a , .  Thus  if Ixi~_D~(d~) as it stands IxI~Dss(d2) then, 
so long as d ~  D3,, the expression on the r ight  hand side of (3.2.9) can be 
majorized by an expression of the form 

- -  DY 2 -F- (l Y I -~ ])D(d2) 

and as this is str ict ly negative if ]Yl is suff icient ly large, say for l y l~D(d2) ,  
the resul t  (3.2.8) can be obtained from (3.2.9) in exactly the same way as in 
L e m m a  3. 

3.3. Complet ion of  the  p roof  of  the  theorem.  - Let  us now set d : D29 
in (3.1.4), and let Dss, D36 be defined by 

Dss.-- D27(U29), D36 --  Dao(D~5) 

where the D2~(d), Dso(d2) are the constants  defined, for given d, d~, by Lemmas  
2', 3' respect ively 
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I t  is easy to see now, j u s t  as in § 2.4, tha t  the resul t s  of L e m m a s  2' and 
3' imply  that  

(3.3.1) ~ - ~ - - 1  if x - { - y 2 + ( z - { - F - - ~ x )  z ~ D ~ 5 + D ~ .  

Since  

x 2 -[- y~ + (z -~- F - -  ~x) 2 --> cx~ as x: ~- y: -~- z 2 --> c~, 

the resu l t  (3.3.1) in tu rn  impl ies  the ex is tence  of a cons tan t  Ds~ such tha t  

_ ~ - -  1 if ~c ~-{-y~--~z 2__~D~. 

This  proves the resul t  (2.5.1), for our  func t ion  V def ined  by (3.L3), and  the 
resul t  (3.1.2) now follows. 

This  completes  our  ver i f ica t ion  of the theorem.  

3.4. A f a r t h e r  genera l i za t ion .  - I t  will  have been observed f rom a review 
of the ma in  steps in §§3.1,  3.2 and 3.3, tha t  our  a r g u m e n t s  would  have  

worked equa l ly  for a func t ion  p = p(t, x, x, x) dependen t  expl ic i t ly  on t, x, a~ 

and  x, so long as p(t, x, y, z) is un i fo rmly  bounded.  Thus  the boundedness  
resul t  (1.1.3) holds also for the equa t ion  

+ a~ + f(x)~ + g(x) = p(t, x, x, 5) 

subject  to our  usua l  condi t ion on a, f and g. if there  is a cons tan t  AI ~ 
such tha t  

I p(t, x, y. z) l ~- A1 

un i fo rmly  in t, x, y and z. 
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