On the boundedness of the solutions of the equation
x + az + fl@)w + g(x) = p(t).

J.0.C. Ezrino (Nzukka, Basthern Nigeria)

Summary. - In this paper my previous result [1] on the boundedness of solutions of (1.1.1) is
fackled by use of a suitably chosen Liapounov function. This fresh approach leads to a
more direct proof of the boundedness Theorem and makes for substamiial reduction in
each of my previous condiltions on f and g.

1. - Introduction.

1.1. -~ We shall be concerned here with the boundedness of the solutions
of the differential equation

(L.1.1) © + ax + fp + gla) = p(f)

in which a is a constant and the functions f, g and p, dependent only on
the arguments shown, are such that f(x), g'(w) and p(f) are continuous for
all a, £

It was shown in a previous paper (1} that if o> 0 and if further
Iy g0)=0, gx)/e=2% > 0(x=0), (II) there are constants & >0, 8, >0
such that ad, — 8, > 0 and such that f(x) =38, and g'(x) < &; for all x, and

t
(1) P = fp(’t d(t) satisfies
0

(1.1.2) | P()| << 4, < oo for all ¢ considered,
then every solution x(f) of (1.1.1) ultimately satisfies
(1.1.3) \@t)|<D,, |a)| <D, |ab)|<D,

where D, is a constant whose magnitude depends only on 3, &,, 3;, 4, f and
g. In a subsequent note [2] it was pointed out, following a private comunication
from Professor PACHALE, that the proof given in [1] contains an important
flaw, but that the defect can be rectified, if, for example. p were subjected
to a further condifion, namely:

(1.1.4) |pt)| <4, < oo for all { considered.
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In view of the fact that, for the special case f= constant, the resulf
(1.1.3) can be proved (see, for example, [3], [4]) subject to one condition only
on p, namely (1.1.4), one is naturally led to ask whether the use of both
condition (1.1.2) and (1.1.4), which is apparently quite basic to my methods
in [1], is in fact essential for the validity of (1.1.3) in the case when f is
not necessarily constant.

One reason why the answer to the above question has proved elusive so
far has been the difficulty in constructing a suitable Liapounov function: the
function W= Wi(x, ¢, 2) used in [1], for instance, gives only a W (see Lemma
2 of [1]) satisfying only

W<— 3% < 0, it (1) 4 y*(t) is sufficiently large,

so that the well known Yoshizawa-type technique which would require a
result of the form

(1.1.5) W<—3*<0 it o) + y*(t) + #%¢) is sufficiently large,

is inapplicable here. The main object of the present paper is to give details
of a fresh approach to the problem, involving the use of a combination of
W with some other suitably chosen function, which not only leads fo a much
more direct proof of (1.1.3) than that given in [I], but also allows for a con-
siderable reduction in each of my previous conditions on f and g.

1.2. Statement of the result. - The main result to be proved is the following
THEOREM. - Suppose that a > 0 and that
(i) glx) sgn € —> 4 oo as || —> oo

(ii) there are constants 8 > 0, 8, > 0 such that
(1.2.1) ad, — %, >0

and such that

fa)=8, and gx)<3, for |x|=E >0

(iii) p(t) salisfies one or other of (1.1.2), (1.1.4).
Then every solution x() of (1.1.1) ultimately satisfies (11.3).

The form of the hypothesis (iii) above shows, in answer to the question
raised earlier, that, subject to the given conditions on f and g any one (but
not necessarily both) of the conditions on p would be quite sufficient for the
boundedness of solutions of (1.1.1). Actually we shall see in § 8.4 that, in the
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case of the condition (1.1.4) the present method can be extended to allow for
bounded functions p(f, x, ®, «) dependent explicitly on x, x, and .

Observe that, in place of our previous condition: ¢(0)=0 and g(xr)/x =
=% >0 (x=0), we now have merely that g{x)sgnx— 4 oo as |x|—oco.
Also the bounds on f and ¢ are now assumed to hold only for sufficiently
large |« |.

1.3, - Note that hypothesis (i) of the theorem implies the exisfence of a
coustant & >0 such that glx)sgna >0 for lx|=E,, so that if we set
A =max &, &), & being the constant in hypothesis (ii) of the theorem, then
we have, all at once, that

(1.3.1) gla)sgna > 0, flx)y =3, and g <3, for |x|=A.
Throughout what follows D,, D, stand for the constants defined by
(1.3.2) D, = 3;A + max | g(x) |, Dy = 3,A 4 max | F(x) |,

jaj=<A |al=<<A

where

Flaw) = f Oy

0

In fact, following the mnotation in [1], we shall generally use D's (with or
without suffixes) for positive constants whose magnitudes depend only on
81,82, A, 4, f, and g. Any D which appears with an arguament beside it stands
for a positive constant whose magnitude depends on 8, 3,, A, 4, f, as well
as the specific argument shown; thus, as an example, D(d,) denotes a constant
whose magnitude depends only on 8,, %,, A, 4, f, g and d,. The D's are not
necessarily the same in each place unless they are numbered, but the D's:
D,, D,, D, ... with suffixes attached retain their identities throughout.

The small letters d, d,, d., ... without arguments, occuring in the text
are positive constants which retain the same magnitudes through until they
are fixed later, in §2.4 and 3.3, as D's.

2. - The case | P({)|< 4, for all ¢,

2.1. Some useful preliminaires. - In order to be able to utilize the con-
dition: | P|=<4, it is convenient to consider the system

@2.1.1) w=y, y=z—ay+Pl), =—yf)— g
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which one obtains from (1.1.1) by setting y = :b, Z= a;-{—a&;——P(t). It will be
shown that subject to our conditions on f and g every solutions (x, y, 2) of
(2.1.1) ultimately satisfies

2.1.2) @h| <D, |y@|=Di, |20 <D

In view of the boundedness, assumed here, of P(f), the boundedness of y and
z in (2.1.2) also implies that

|6() | < (@ + DDy + 4

so that the required conclusion of the theorem would follow once (2.1.2) is
established.
In what follows let D, D;, D, be constants defined by

2 2
(2.1.3) D; = max | g(x) |, D, = 1_6D5A\/2 , D, = M ,

le[=A n L

Also, for any given constant d > 0 let g = {4(&) be the function, defined for
all real & by

{ sgn E,, f g E =d )
Observe that this function ¢4(&) satisfies

(2.1.5) [da(B)|=1 for all § d;

also that ¢4E) is differentiable for all §: in fact

2.1.6) by = = cos (o) (E|=d),  Yu@=0]%|=d
o A~ 24 2d = PRl

80 thet, in particular

@17 0B < for all & and duE) = "_—Og\gﬂ).

T T
2d 2dV2 2
Our main tool in the proof of (2.1.2) is the fanection V= V(x, y, 2) defined by

(2.1.8) V=W-T,
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where W= W(x, y, #) is the function of the previous paper [1]: that is

(2.1.9) 2W = 2a f gV + F¥(x) — 28aF(x) 4 25 f FO)

- By” + 2 + 2yg(@) + AF(w) — Sxk.
¢ being a constant fixed (as is possible in view of (1.2.1) so that
(2.1.10) 5, >3 > 8/a;
and U is the function defined by
2111 U= Deybalz + F(x)) + Deyas(e),

the function {4z - F') being interpreted hare as the function $g4) (see (2.1.4)
with £ = # + F(x), and A the constant appearing in (1.3.1). Observe that the
function V as defined above depends explicitly on the (so far) arbitrary
constant d > 0. The actual proof of (2.1.2) will revolve around the fact
established in §§2.2, 2.3 and 2.4, that, if d is sufficiently large, the function
V so defined constitutes a Liapounov function for the system (2.1.1), satisfying
a result analagous to (1.1.D).

The following consequences of (1.3.1) and (1.3.2) will be useful in the
verification of this property of V:

@.1.12) )| <8 @]+ D,
(2.1.13) Fx)sgniawe=8,|x| — Ds.

2.2. The unboundedness of V for arbitrarily large =+ »* 2. - We
prove here that

LeMmA 1. - Subject to the conditions in hypothesis (i) and (ii) of the
theorem, and for arbitrary d > 0, the function V satisfies

(2.2.1) Vie, y, 2)—> + o0 as &* + ¢ 4 #* — co.

ProOF. - We make use of the following re-arrangement of W, given in
§2.1 of [1]:

2.2.2) QW = 8(y + 5=g)* + (¢ + F' — Bur)* — 5% + 25 f FO)d

@x

+ 2a fg()\)dk — 3 g*

0
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and focus attention on the terms

W, = 25 f FOydn — &%, W, =2a f gdh — 5ig?
0 4]

arising in (2.2.2).
To obtain a lower bound for W, consider the fuaction

() = 2 fF(l)dl — 36 + 2D, | x|

4]

where D, is given in (1.3.2). By considering the cases x>0, x < 0 separately,
and then making use of the definition of (2.1.13) it can be verified that
@i(x) sgnx =0, so that since 9,(0) =0, we have that ¢,(x) =0, that is

2 f POy = b0 — 2D, @,
0

for all . From this we have that
(2.2.3) W, =808, — 8)x* — 2D, x| for all .
We turn now to the function 7W2., Here set
pa(2) = Wilw) +-.Ds

where Ds = max | Wy(x)|. Then, clearly, 9, (x)=0 for |x|=<A. If [, =4 then,

since <A
9 = 2(a — 27/ (@))g(x)
it is clear from (1.3.1), and since ¢ — 33, > 0 (in view of (2.1.10)) we have that
ofe)sgne =0 for |x|=A.

But p, (2= 1) = 0. Hence ¢,(w) =0 for || = A. Thus g¢,x) =0, that is,

Wg(-’B) = DS 3

for all
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These estimates of W, and W, combine with (2.2.2) to give that

2W=8y + 27" + (#+ F— 2a) + 38, — &)x° — 2Dy x| — Ds
= Wﬂ(my ys z)

say, for all x, g, 2.
For the term U we have, in view of (2.1.5) that

| UI<(Ds + D) |y,

(2.2.4) 2V = Wz, y, ) — 2(Ds + Do) |y |,
= Vl(w} Y, 2),

say. It remains only to show that
(2.2.5) Visoco as a* 4y 42— o0

and the required result will then follow.

Since the coefficient, 3(3, — &), of »* in W, is positive (in view of (2.1.10)
it is evident that (2.2.5) is true if |x| is bounded but y*+ 2°— co. Therefore
the general result (2.2.5) will be proved as soon as it is established that

(2.2.6) Vi—>oo as |x|—>co.

Now let | x| = D,/3;. Then, by (2.1.12), gle)| < 28,| x|, so that
1.2 1 2
By + 8=g) -+ 5 50, — B

1 —2 .
=y + 79" + 8 &8, — 23)%; ¢°
= 53(3/2 + 9%

for some sufficiently small constant &, = 343, &, 8;) > 0. Hence, when || = D,/3,,

s o . 1 . .
ViZ8y" + 9% + 530 — 3" — 2Da[@ | — Dy + Do) [y | — D,
so that, since
53y2_(D6+D7)|y‘2_‘(D6+D7>2/45SE‘*Dsa

for all y, we have that

1
V.= 550, — 8* — 2D [@ — Dy — D.
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The expression on the right-hand side here tends fo 4 oo as |&|— oo, and
thus (2.2.6) holds. This completes the verification of the Lemma.

It is important to remark here, for future use, that since V(x, y, #) is
continuous in x, ¥ and 2 the result (2.2.1) necessarily implies the existence
of a constant D,, such that

(2.2.7) V(x, y, 2) = — Dy, for all =z, y, 2
2.3. Estimates for V. - Let V() = V(x(t), (i), 2(t) where (x(f), y(t), 2(f)) is
any solution of (2.1.1). By an elementary calculation it can be verified from

2.1.8), (2.1.9) and (2.1.11) that

V = — gla) (Floe) — 5x) + U)y® + V¥ 4 V3

where
U= ad — g'(x) + Diulx), and
(2.3.1) V¥ = — Dy(z — ay)baz 4 F(x)) — D+(2 — ayizalic)
+ Deygla)ba(z + Flx),
23.2) VE = {3y + gl@) — Deba(2 + F(x)) — Didaa(w) } P(D).

About the coefficient U(x) above it will be observed since ¢,\(@)==0 and since
gy <3, (x| =4) that
>0

by (2.1.10). For || <A we have from (2.1.3) that |g'(@)| < D, and from (2.1.7)
that $;s() = n/(4AV2), so that, here

Ux) = a3 — Dy + nD,/(4AV 2)
and by (2.1.7) this gives that
Ulx) = ad — D; 4 bD;/4
= ad 4 1 D
= i D5
Hence there exists a constant D,, such that U(x)= Dy, for all x; and thus

(2.3.3) V< — g@)(F — dx)— Duy® + V¥ + V5.
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We are now in a position to embark on the estimates V. Throughout
what follows (, ¥, 2) = (x(f), y(I), 2/#)) stands for an arbitrary solution of (2.1.1),
and d > O the (so far arbitrary) constant in the definition (2.1.11) of U. Our
tirst result is the following.

LeMuaA 2. - Corresponding to any d ihere exists o conslanis D,,{(d) such that
if |2+ F(x)| = Dw(d) then

(2.3.4) rV<—1

Proow. - Assume to being with that |z 4 F|=d. Then by (2.1.6) the
last ferm in (2.8.1) is zero so that

Vi = — Doz — ay¥pa(z + F) — Dofz — ag)daa(@).
This expression can be written thus

V¥ = —{Dole 4 F)slz + F) + Doz + Fdaslec) }
4+ { D(ay + F)bae + F) =+ Difay + Fidaa(a) |
=1+ 1,

say. Because |2 4 F|=d it is evident from the definition (2.1.4) that
(2.3.5) ¢+ F)bae + F) = {2+ F|.

Also, since | ()| <1 anyway,

| &+ F)aal) S |2+ F;
and hence
I, = — |2+ F|(Ds — Dy),

so that, since Dy — D, = llDaAV§/u (by (2.1.3) we have that
L<—Dylz+ F|

for some constant D,; > 0. Coming to I, we also have, since |¢z|=<1 and
| 428 |=<1, that

| L|<Duy|+|F)

for some constant D,,. Hence

V¥<—Dule+ Fl+Duy|+  F).
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For the function V; (given by (2.3.2)) the boundedness of ¢y, ¢,y and P leads
to the estimate

Vi =D+ 34,y + 4olgi.
and thus, by (2.3.3),

236 V<—Dy|2+F| - Duy — gF —8x)+ Dy |+ | F|)+ Dss
we shall now prove that
237 Duy'+gF —%x)— Dully|+ | F)>—+o0 as &'+ y > oo
Since such a result would imply the existence of a counstant, D, say, such that
Dy’ + gF —2w) — Du (|| + | F) + Dis = — Dis
for all o, y, and this in turn would imply, in view of (2.3.6) that
V<—Dyl2+ F|+ Dys;

it follows then that if (2.3.7) can be proved then V= —1 provided that |z 4+ F|=

= max [d, (D,s + 1)D7'] which is the required conclusion of the lemma.
It is quite clear that if |x| is bounded, but |gy|—> oo, then

Duy* + g(F — dx) — Difly | + | F|) — oo

Thus, to complete the proof of (2.3.7) it suffices now to verify the result for
the case |z |-> co. To handle this case set

D=5 — 57

noting that, since 33;" < 1 (by (2.1.10)) the constant D, is strictly positive.
If {2 is sufficiently large we have from (1.3.1) and (2.1.13) that g()sgn x>0
and F(x)sgnax > 0 so that then
g(F — 8x) — 2DyugF = |g|[(1 — 2D, | F'| — 3| ]|
=57 g [+ 357Dy | F|— 3 |« ]].
But, by (2.1.13),

(1 435Dy | F|— 8 || —> 400, as |a|—>o0,
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so that since |g|-> o0 as | —> oo, we have that
g(F — %) — 2D;,gF —s 00 as |x|—>occ.

The particular consequénce of this which is vital to our proof here is the
existence of a constant Dy, such that

(2.3.8) gF —%x)=2Dy; | g| | F| for |a|=D.
Indeed, since
Duyszmiyt2D
for some constant D, (2.3.8) helps to show that, if |x|= D, then
Dyny* + g(F —%x) — Dy (|y: + | F))—D

= 2D, |g|| F|— D F|—D

= Qo
say. By putting ¢, in the form

$o =Dy |g|+|F|+|F|(Dir|g|— Dw)— D

and then recalling that |g| and | F'| both tend to infinity as |x|->oc, we
see at once that

Doy +gF —2x) — Du(|y|+|yl) —D—> 400 as |x|—co

This completes the proof of (2.3.7) and the lemma now follows, as indicated
earlier.

Observe that all our results so far have been proved valid without res-
triction on d. Our next result is the only one whose validity will depend
explicity on d being sufficiently large.

Lrmma 3. - Let |2+ F(x)| < d,. Then there exist constants Diy, Dy(d,)
such that if d = D,g then

2.3.9) V<—1 provided that x* + y* = D2(d,).
PRrooF. - We start again with (2.3.3), but this time, since |z 4 F(x)| is
not being assumed greater than d, the last term in V7 is not zero as in

Lemma 2. However, by (2.1.4),

@+ F)palz + F) =0
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so that by splitting the term (# — ay) in V¥ (see (2.3.1)) in the form
zg—ay =24+ F—(ay + F)

and then using the various properties of ¢y, we have here (with the same
D,, as before) that

Vi<D:|e+ F|+Du(ly|+|F)+ Do|vg| baz + F)

SD7d1+D14(lUl+lFD+%%[ygl

i here in the last step we havejused the conditions: |2+ F|<d,. |50 | =<

= ;nd—l. The previous estimate V¥ is valid here, so thaf

. D
(2-3-10) Vs — g — o) — Duy* + 1‘2&_ [ vg [ + Dy, (‘ yl + F‘ + Drd,.
Since |yg| < %(yz + g% it is clear from (2.3.8) that, if |x| = Dy,

=D Dy .
g(Fmaoo)JrDuw——z—jlyg}zzDNnglFl+Duy2——@f(y'+g‘)
= V&4 VI4DulgllF|

where

i ‘ | { .
VE = (Du-inpsd—l)yz, Vi=|g| (Dm F|— 4 mDud™ g )

D11 then

DO =

Observe now that if d is fixed so large that leftDGd“lg

i
V= QDuyz-

For the term VJ, it is useful to note from (2.1.12) and (2.1.13) that if o | is
sufficiently large
1
D, F|— anDed’“l gl

= (1},51 — inpﬁd—laz\} || — inmmﬁl — Dy,

so that if now d is fixed so that —1-71:DG'52d—1 < D3, then

4

%g}(Dy,IFt——zinDed“llgl)>O
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provided that |« | is sufficiently large, say |« |== Dy.
The above calculations show that if

i il a1
(2.3.11) d > letDs max (3,073, 35
then
. 1
(2.3.12) V=—Dyulg|| F|~— QDn@/z + Dy |+ | F|)+ Did,

provided that |x|=D,,. By using arguments similar to those employed in
the last part of the proof of the preceding lemma if can be shown that

1 .
—Dylg|| Bl — 5 Dut + Dully| + | F) > — oo as |o/ - oo

Thas, subject to (2.3.11) we have that there is a constant Dy(d,) such that
(2.3.18) Vs—1 it |a(t)| = Duldy)

It remains now to tackle the case | x(f)| << D,y(d,), assuming d fixed by (2.3.11).
We have here, from (2.3.10) and this boundedness of | x(f)| that

V< — Doy’ +.D(d) | y | + D(dy).

As the right handside tends to — oo as |y|—> oo it follows here that there
is a constant Dy(d,) then

(2.3.14) V<—1 proved that |y(f)|= Dydy).

The two estimates (2.3.13) and (2.3.14) combine to show that if (2.3.11) holds
then

V<-—1 provided that «* 4 y* =D}, + Dj;

and the lemma is therefore established

2.4. A combination of Lemmas 2 and 3. — Consider now the fonection V
(see (2.1.8)) but with d fixed by d = D, is the constant in Lemma 3. Define
two new constants D,,, D, by

Doy == D;y(Dss), Dy = Dzo(Dm);

where D, (d) and Dg(d;) are the constants defined, for given d and d,, in
Lemmas 2 and 3 respectively. We shall now prove that
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LeMMA 4. - If (x, y. 2) is any solution of (2.1.1) then subject to our condi-
tions on f, g and P,

(2.4.11) V< —1 if «*+ o+ 2+ F@) =D + D%.
Proow. - Assume that
(24.2) ' 4 y* 4+ (2 4 Fla)y' = Dz + D3s.

It |z + F'| = D,, then V=—1 by Lemma 2. Otherwise, that is if [#-F|< Dy,
then by (2.4.2) we must have that ®* +y'=D;,. But in the latter case Lemma
3 gives that V< — 1, and this proves the lemma.

2.5. Completion of the proof of the theorem for the case P bounded. - Let
(x, y, #) ae any solution of (2.1.1), and let V{f) = V(x, y, #) where V is the
particular V discussed in § 2.4 (that is with d = D). Since

@+ '+ e+ F@) —>oo as #' +y" 42 —>oo

the result of Lemma 4 obviously implies the existence of a constant Dy
such that

(2.5.1) V<—1 if «®+ y*+ 2 =D},

analogous to (1.1.5).

The remainder of the proof of (2.1.2) can now be obtained by the standard
Yoshizawa type techunique using (2.2.1), (2.2.7) and (2.5.1) as required. The
main arguments are exactly as in § 3 of [3], and further details will therefore
be omitted here.

3. - The case: |p(f)| <4, < oo for all { eonsidered.
3.1. - This time it is convenient to work with the system
(3.1.1) x=y, y=e—ay &=—yf@)— g +pl

obtained from (1.1.1) ay setting y = &, r=2x -+ ax. To prove the theorem it
will suffice to show that any solution (x, vy, 2) of (3.1.1) satisfies

(3.1.2) lat)| <D, |yt <D, |ab|=<D

for all sufficiently large #,
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Our main tool for the proof of (8.1.2) is the function V= V{x, y, #) defined by
(3.1.3) V=W-—-U

where W is the same as before (see (2.1.9)) but U is now given by

(8.1.4) U= D¢ydalz + F(x) — ?2) 4 Dyy.a(®),
where
(3.1.5) Df = Dy 4 4,.

The only difference the between this and the previous U (2.1.1I) lies in
the coefficient of y, which, in the previous case, was D42 - F') while now
we have DS gz + F — dx). However since |$g/<1 and |{s;|=1 the same
arguments as were used for Lemma 1 will also give here that the present V
satisfies

(3.1.6) Vie, y, 2)—> o0 as a4y +2°—> oo

3.2. - To complete the proof of the theorem it suffices now, in view of
(3.1.6) and in view of the remarks in §2.5, to show that if (x, y, 2) is any
solution of (8.1.1) then V= d% Vix, y, 2) satisfies a result analogous to (2.5.1).

An elementary calculation from (3.1.1), and from our present definition
of V, will show that
(3.2.1) V= —gF — ta)— Ulely® + V& + V3,

where U(x) is the same as before (§ 2.3) and therefore satisfies

(3.2.2) Uw)=D,;, >0 for all «,
and
(3 2.8) Ve = — D¢ (2 — ay)ba® + F — 3xc) — Dilz — ay)dzale)

+ 3D (e + F — dwy* + Diygbae + F — ),
(3.2.4) Vi ={( + F— b0) — D} ylile + F — 2a)} plt).
Our starting point for the estimate of V is the result

(3.2.5) V= — g(F —d2) — Duy® + VI + V&
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obtained from (8.2.1) and (3.2.2). The procedure is exactly the same as before
except that now we consider the cases

lz -+ I — 3x| large, {zg+ F—3x| small
as against the cases
|2 + F| large, |z 4 F| small

which were dealt with in §2.3.
Our first result, analagous to Lemma 2, is that

Lemma 2. - Corresponding fo any d there exists a constant Dy(d) such
that if |y + F — 8x| = Dy{d), then

(3.2.6) vV<s—1

PRrROOF. -~ Assume to begin with that |# + F — 8x | = d. Then, by (2.1.6),
Pae + F — 2x) = 0, so that, from (3.2.3) and (3.2.4),

V# = — D¥(e — ay)baiz + F — &) — Dils — ay)yas(®)
Vi =+ F— sx)p(h).
Since |p| =< 4,, it is clear that
| Vs |< A4, |24 F—23|
To estimate the V3 (given above) use the re-arrangement
Vi = — D¢z + F — Syl + F — 8x) + D¢ (ay + F — Ba)ba(e + F — %)
— Dife 4 F — 80)doa(@) + Do(ay + F — Sw)Pos(a).

Since EPgE) = |£] (if |E|=4d) and |[$g®)| =<1 for all §, 4 it is clear from the
re-arrangement that

Vi<—(Df —D)|e+ F—bx|+Du(y|+|F—2xl
for some constant D,;. Thus
Vi VP<—(DF —Di— 4|2+ F—dx, + Du(y |+ | F— ).

But, by (3.1.5) and (2.1.3)
Df —D,—A4,>0
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and so, by (3.2.1),
(3.2.7) V<— Dy {2+ F—8x|—Duyy* — (F—8x)g + D (|y |+ | F — 8 ),

for some constant D, > 0.

The result (3.2.7) is analogous to the result (2.3.6) arising in the course
of Lemma 2 and the arguments given there can be adapted readily to our
present case to show that

V<—1 it |2+ F— 5x|= D).

Next we have, analagous to Lemma 3,

LeMuMa 8. - Let |24+ F—38x| < d,. Then there exist constants Dy, D(d,)
such that if d == Dy, then

(3.2.8) V< —1 provided that w* 4 y* = D(ds).

Proor. - We start once again from (3.2.5). We take V¥ (see (3.2.3)) in
the form

Ve = — D&+ F — dx)ba(e + F — 3x) 4 D& (ay + F — Sx)balz + F — 8x)
— Doz + F — 3x)bos(x) -+ Diloy + F — Sx)baalee)
+ 3DEYie + F — 2w) + Diyghife + F — ba).

From this, by making use of the following:

e F—ta|Sdy, |0 = bmd | 4a)] <1,

we see that
1 . .
Vi < éﬂd‘lﬂé‘('yz F+lyg )+ Dyl | F— dx|)+ Did)

Ag for the function V& it is clear that

¥ 1 1 M

V(i < éﬂd_ DGAI,‘:I/ I + A1d2

Hence, by (3.2.5),
(3.2.9) VS —(F—8x)g — Duy* + D(ly |+ | F— 3|

1
+ 5 7d7" +yg | + |y )+ Dlda).
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By using the arguments immediately following (2.3.10) it can be shown that
if d is sufficiently large, say d = D,,, then

-~ 2 1 2 H
(F —8)g + Duy* — 5 7d (" + [yg )
1 2
ZD17¥QHF{+ QDuy
provided that |« | is large enough, say | |== Dy,. Thus, if
|£] =Dy and d=Dy
then
: 1
23.10) V= Dulg||F|—3Duy" + D(y|+ | F —2x)) + Dda)

Assume now that d=> D;;. Then, as in Lemma 3, it can be shown from
(3.2.10) that

V<-—1 provided that |x|= Dy(dy),

Note that the coefficient

1
- Du + Q 'n'd'“l

of ¥y~ on the right hand side of (3.2,9) is strictly negative so long as d is
large enough, say d=D,,. Thus if || < Dy(d,) as it stands || = Ds(d.) then,
so long as d == D,,, the expression on the right hand side of (3.2.9) can be
majorized by an expression of the form

— Dy* + (ly | + 1)D(dy)

and as this is strictly negative if |y| is sufficiently large, say for |y|= D(d.).
the resalt (3.2.8) can be obtained from (3.2.9) in exactly the same way as in
Lemma 3.

3.3. Completion of the proof of the theorem. — Let us now set d= Dy
in (3.1.4), and let Dy, Dy be defined by

Dy;. = D27(U29)7 Dy = Dso(Das)

where the Dy(d), Ds(d,) are the constants defined, for given d, d;, by Lemmas
2, 8 respectively
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It is easy to see now, just as in § 2.4, that the results of Lemmas 2" and
3" imply that

(3.3.1) V<—1 it x4+ y*+(+ F— 5x?= D + D.
Since
2 4y (g F—8x) —oo as & +y’ + 2" — oo
the result (3.3.1) in turn implies the existence of a constant Dy, such that
V< —1 if @ +y*+2=D%.

This proves the result (2.5.1), for our function V defined by (3.1.3), and the
result (3.1.2) now follows.
This completes our verification of the theorem.

3.4. A further generalization. -~ It will have been observed from a review
of the main steps in §§3.1, 3.2 and 3.3, that our arguments would have

worked equally for a function p = p(¢, x, x, x) dependent explicitly on ¢, «, x
and a, so long as p(f, x, y, 2) is uniformly bounded. Thus the boundedness
result (1.1.3) holds also for the equation

© + ax + f@w + ge) = p(, =, @, )

subject to our usual condition on a, f and g. if there is a constant 4, < cc
such that

|pC, ®, y. 2)|< 4,

uniformly in ¢, 2, y and 2.
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