On Permutation Groups.

OLAF TAMASCHKE

Riassunto - Diese Arbeit versucht, die Theorie der Permulationsgruppen vom « kategoriellen »
Standpunkt aus zu belrachten. Hs werden in naheliegender Weise der Begriff der Per-
mutationsstrukiur und der Begriff des Homomorphismus einer Permutationsstrukiur
eingefihrt (Abschnitl 1). In der so enistehenden Kafegorie aller Permutationssirulkiuren
werden die Homomorphismen klassifiziert gemd’ ihrem Verhalien gegendiber den Wie-
landitschen G-Relationen und den Bahnen der Stabilisatoren von endlich vielen Ziffern
(Abschnitt 3). Jedem Homomorphismus wird sein Grad zugeordnet (Abschniti 4). Diese
Begriffsbildungen stehen in engem Zusammenhang mit einer Verallgemeinerung des
Normalteilerbegriffes der Gruppentheorie. Zu jeder natiirlichen Zahl n und zu jeder Un-
tergruppe H einer Gruppe G wird der Begriff der n-fach G[H-normalen Untergruppe
eingefithrt (Abschnitt 7). Fis homogene Bdume gill ein Homomorphiesatz (Theorem 8.5)
analog zum Homomorphiesatz der Gruppentheorie; er besagt unler anderem, dafB der
Kern eines wn-fachen Homomorphismus eines homogenen Roumes eine (n—1)~fach
G Gy-normale Uniergruppe von G ist (wobei Go der Stabilisator einer Ziffer o ist). Hs
gilt auch die Umkehrung dieses Satzes in dem Sinne, daf jede (n-1)-fach G|H-normale
Uniergruppe K einer Gruppe G Kern eines n-fachen Homomorphismus des durch die Ne-
benklassen Hy, ge G, definierten homogenen Rawmes auf den durch die Nebenklassen Ky,
g € G, definierten homogenen Rowm ist (Theorem 8.6). Ferner gelten ein Erster und ein
Zweiter Isomorphiesatz fiiy homogene Rdume (Theoreme 10.1 und 10.2).

Auf den Begriff der n-fuch G/H-normalen Uniergruppe grindet sich der Begriff
der n-fach G/H-subnormalen Untergruppe (Definition 11.1). Es 1dBt sich unier ande-
rem ein Jordan-Hilder- Satz fiir 1-fache G)H-Kompositionsketlen beweisen, wobei die
Kompositionsfuktoren homogene Rdume sind (Theorem 11.10).

Im letzten Abschuitt 12 wird gezeigl, dad die von den zweiseitigen Nebenklassen
G,96G,, g€ G, erzeugle Halbgruppe G/G, fir den zugehbrigen homogenen Rawm die
Bedeutung einer Art von «Endomorphismenring» besitzt,

Die Klasse [G/G,] aller zu G/G, isomorphen zweiseitigen Nebenklassen Halbgruppen
wird der Typ des homogenen Rawmes genannt (Definition 12.17). Dieser Begriff liefert
eine Klassifizierung der homogenen Edume, bei der die 2-fachen Homomorphismen eine
Rolle spielen (Theoreme 12.19, 12.20, 12.22).

The way of thinking in terms of categories and of homological algebra,
which is invading now almost every branch of mathematics, does not seem to
have gained much ground so far upon the theory of permutation groups. We
are trying in this paper to set out in that direction.

Our investigations are based on permutation structures which are triples
(Q,G,-) with Q a set, G a group, and an external algebraic composition (for
which the dot stands in the third place) which gives the acting of G on Q in
the usnal way (Definition 1.1). A homomorphism of a permutation structure
{Q,G, ) into a permntation sfrncture (Q,&,:) is a pair (¢,) where ¢ is a
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mapping of Q into Q" and ¢ is a homomorphism of ¢ into ¢ such that both map-
pings are compatible with the acting of G on  and the acting of G on Q’ (Defi-
nition 1.2). These two notions yield the category & of all permutation structures.

This obvious approach itself does not lead very far. To make it more
useful we classify the homomorphisms of the permutation structures according
to their behaviour with respect fo two permutation concepts. ,

The first of these two concepts is WIBLANDT's idea of n-nary G-relations
on Q ([7], § 10). For a positive integer n we say that a homomorphism (v,J)
satisfies (&,) if it maps every m-nary G'-relation on Q onfo an n-nary G'-re-
lation on Q'. If ¢ is an epimorphism, then (8.} trivially holds for every n.
This fact shows that the conditions (#,) are not of prime importance for our
classification.

More significant for the classification of homomorphisms are the orbits of
the stabilizers of n letters. We say that a homomorphism (g,¢) satisfies (S,)
if ¢ maps every orbit of the stabilizer in G of any w(not necessarily distinct)
letters from € onfo an orbit of the stabilizer in ' of the image letters.

There exist homomorphisms which satisfy (f,) for every positive integer
1, but do not satisfy (3.) for any integer # > 1 (Lemma 3.5). There also exist
homomorphisms which satisfy (8,) for every integer w > 1, but do not satisfy
(R,) for every positive integer n (Lemma 3.6).
~ {p,d) is called an n-fold homomorphism (n a positive integer) if (R,) and
{Su) hold, and a O-fold homomorphism is simply a homomorphism in the ori.
ginal sense. Every n-fold homomorphism is also an m-fold homomorphism
for every non-negative integer m < #. Therefore we can assign to every ho-
momorphism (p,0) as its degree the largest integer w such that (p,4) is an
n-fold but not an (n -4 1)-fold homomorphism if such an integer exists, and
oo if it does not exist (Definition 4.5). Every isomorphism has degree oo, but
the converse does not hold (Lemma 4.7).

For every non-negative integer # the class of all permutation structures
together with their n-fold homomorphisms form a subcategory §, of the cate-
gory & of all permutation structures. § coincides with &,.

In his Introduction to [7] WIELANDT has remarked that the theory of per-
mutation groups can be characterized as the theory of conjugate subgroups and
their intersections. Our approach to the theory of permutation groups proceeds
in that direction as well. For homogeneous spaces, i.e. when G acts fransiti
vely on Q, the condition (8,) is equivalent to the following generalization of
normal subgroups.

Let » be a non-negative integer, let G be a group, and let H be a sub-
group of G. A subgroup K of G is called n-fold G/H-normal if

H = K and KgHSN ... NHS) = KglKxN ... NK*Y
for all g, @, .., ®,e G. Thus a O-fold G/H-normal subgroup is simply a
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subgroup of G containing H. A 1-fold G/H-normal subgroup is a G/H-normal
subgroup in the sense of [3], Definition 1.9. To every subgrounp K of G
containing H we assign as its G/H-degree the largest non-negative infeger
n sach that K is n-fold, but not (4 1)-fold G/H-normal, if such an integer
exists, and co if it does not exist (Definition 7.6). Every normal subgroup of
G containing H has G/H-degree oc. As an illustration we look at the alternating
group A; which provides an example of a subgroup of G/H-degree 1 (7.13).

For every homomorphism (¢,9) of a homogeneous space (Q,G,.) we de-
fine the kernel Ker,(p,9) of (p,)) with respect to « e Q as the subgroup of
all those elements of G which ¢ maps into the stabilizer of ayp in G'. The
Homomorphism Theorem 8.5 shows that Ker, (9,4} of an n-fold homomorphism
(p,9) is an (»-—1)-fold G/G,-normal subgroup of G where G, denotes the
stabilizer of « in G. If, in addition, ¢ is an isomorphism of @, then the image
space (Q9,GY,+) is isomorphic to the homogeneous space {Ker, (¢,9): G, G,)
which is given by the multiplication of the cosets Ker,(p,d)g, g€ G, by the
elements of G. Conversely the Canonic Epimorphism Theorem 8.6 shows that
every (n— 1)-fold G/H-normal subgroup K of G defines an n-fold homomor-
phism (9x,ég} of the homogeneous space (H:G, G,-) defined by the cosets Hg,
g€ G, onto the homogeneous space (K:(#, G, .} defined by the cosets Kg,
g e G, where gx: Hg—> Kg and ig is the identity mapping of G.

These two theorems show that the (n — 1)~fold G/H-normal subgroups of
G are exactly the kernels of the 7-fold homomorphisms of the homogeneous

space {(H:@G, G,-). Therefore G is called %—fold G/H-simple {i a non-negative
integer) if H < G and if there exisis no n-fold G/H-normal subgroup proper-
ly between G and H. Hence G is %:oo—fold G/H-simple if and only if H
is a maximal subgroup of G. Furthermore G is called G/H-simple of degree
L if G is %-fold buf not "—1;»1-‘501& G/H-simple, if such a non-negative integer

n
n exists, and G is called G/H-simple of degree O if such an integer does not

exist, For example, if G has a normal subgroup properly between G aund H,
then G is G/H-simple of degree 0.
This notion of simplicity can be carried over to homogeneous spaces such

that a homogeneous space (Q,G, ) is %-—fold gimple (Definition 9.8} if G is
1
EE_——T_fOId G/G,~simple for aeQ (Proposition 9.9). Also (Q,G, -} is simple of
1 ,
degree 5 °F 0 if G is G/G,~simple of degree 1—;%~ or O respectively. For in-
stance (Q,G, «) is simple of (the highest possible) degree 1 if & acis as a pri-
mitive permutation group on Q.

We can prove the First Isomorphism Theorem 10.1 for homogeneous
spaces and n-fold homomorphisms. As for the Second Isomorphisms Theorem
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10.2 we prove the following result. If K is an n~fold G/H-normal subgroup,
and if L is any subgroup of G containing H, then KN L is an n-fold L/H-nor-
mal subgroup of L. But in general the homogeneous spaces (KN L:L, L,-)
and (K:KL, KL, ) will not be isomorphic, yet they are «almost» isomorphie.
The bijective mapping (K N L)ax —> Kx together with the injection of L into
KL is a homomorphism of (KN L:L, L, -) inte (K:KL, KL, +) which satisfies
(Sn+1). Because of this fact we introduce another concept.

A homomorphism (p,0) of a permutation structure (Q,G, ) into a per-
mutation structure (Q',&, -} is called an n-fold pre-isomorphism if ¢ is a
bijective mapping, if ¢ is a monomorphism, and if (8,) holds (Definition 5.1}.
Two permutation structures (Q,G, <) and (Q,@, ) are called n-fold pre-iso-
morphic if they can be joined by a finite chain of homogeneous spaces such
that for any two successive homogeneous spaces of that chain there exists an
n-fold pre-isomorphism from the predecessor to the successor, or from the
successor to the pre-deccessor (Definition 5.3). This concept gives a proper
decomposition of the class of all permutation structures into classes of n-fold
pre-isomorphic permutation structures. Thus our Second Isomorphism Theorem
really is the Second Pre-isomorphism Theorem with the homogeneous spaces
(KN L:L, L,+) and (K:KL, KL,-) as being {n+1)-fold pre-isomorphie.

There are two further reasons for introducing pre-isomorphy. The first is
shown in the following, the second will be mentioned later. The n-fold G/H-
normality leads to a notion of n-fold G/H-subnormal subgroups (Definition
11.1). We have various possibilities to assign factors to an n-fold G/H-sub-
normal chain G=L,=L,= .. = L, = L. They are discussed at the beginning
of Section 11. If we take the homogeneous spaces (L;: Lj—y, Liy, -) for i=1, ...,
r as its factors, and if we try to prove a Jordan-Holder Theorem for n-fold
G/ H-composition chains, then such a theorem would not hold with the iso-
morphy relation of the composition factors, but it might hold with the n-fold
pre-isomorphy relation. All that we can show in this paper is that the Theo-
rem of Jordan and Holder is true for 1-fold G/H-composition chains and
homogeneous spaces as factors (Theorem 11.10). This is a generalization of
the Theorem of Jordan and Hélder for G /H-composition chains ({4}, Theorem
3.3) where the subgroups are the same but where the factors are the double
coset semigroups Li_;/L;.

Tinally we suggest a classification of homogeneous spaces by double
coset semigroups. For any homogeneous space (Q,G,-) the class [G/G,] of
all double coset semigroups isomorphic to the double cosef semigroup G/G,,
ze (), is called the fype of (Q,G,-). For instance, all homogeneous spaces
such that G acts 2-fold transitively on O with |Q|>2 are of the same type
(Lemma 12.18). If two homogeneous spaces are of the same fype then the
orbits of the stabilizers of one fixed letter are in one-to-one correspondence,
but being of the same type implies more than this fact. We show that the
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double coset semigroup G/G, has the meaning of a sort of «endomorphism
ring» of the homogeneous space (Theorem 12.14). Every homomorphism (v,J)
of a homogeneous space (Q,@,-) into a homogeneous space (Q',&,-) which
satisfies (8,) induces a homomorphism of the «endomorphism ring» of (Q,G, )
into the «endomorphism ring» of (Q,G,-), and also a homomorphism of the
double coset semigroup G/G, into the double coset semigroup G'/G&,, (The-
orem 12.19). If v is a surjective mapping, then condition (S,) is also necessary
for inducing a homomorphism of the «endomorphism ring» {Theorem 12.20),
2-fold pre-isomorphic homogeneous spaces are of the same type (Theorem
12.22 and Corollary 12.23). This is the other motive for introducing the con-
cept of n-fold pre-isomorphy since it subdivides the classes of the homoge-
neous spaces of the same ftype.

Several concepts introduced in this paper can be extended to arbitrary
ordinal numbers instead of non-negative integers, but we do not go beyond
integers in this paper.

1. -~ The Category of Permutation Structures

In order to deal properly with permutation gronps, a permutation group
cannot be considered as a mere group, but as a mathematical structure which
consists of a set of lefters, a group, and an external algebraic composition of
that set with that group as its operator domain ({1], § 7, n° 2).

DerinitioNn 1.1. - Assume that
(1) Q is a non-empty set,
(2) G is a group (whose unit element will be denoled by 1),

(3} (@.9)—>ag is a mapping of Q> G into Q such that
(xg)h = algh) and ol = a for all e Q and all ghe G.

Then (Q,Q, ) is called a permutation structure.

The dot in the third place of (Q,@, ) stands for the external algebraic
composition. For clarity’s sake we do not omit the external composition in
the notation of a permutation structure.

For every A< and every X € G we write

AX=1{0x|0el and xeX|.
For every ge G the mapping
gna: a—»ag
is a permutation of Q, and the mapping

T g —> g«
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is a homomorphism of the group @ into the symmetric group S% ([1], § 7,
n’ 2, Proposition 1).

The permutation structure (Q,G,-) is called faithful, if ng is a monomor-
phism, that is if Ker mg= L.

(Q, Grg, +) is a permutation structure with respect to the external composition

{a,gm0) —> a{gnp) = ag.

We call (Q,Gmg, «) the canonic representation of (Q,G, -).
To make the class of all permutation structures a category it is quite
obvious how to define the morphisms ([1], § 7, n° 4).

DerrNitioN 1.2. - Let (Q,G, ) and {Q,G, -) be permutation structures.
Assume thal
(1) 9 is @ mapping of Q into
(2) ¥ is a lomomorphism of G info &,
3) (ag)o={ap){gd) for all xeQ and all ge G.

Then the pair (9,0} is called o homomorphism of the permufation siructure
(Q,G, ) into the permutation structure (Q,G',.). The permulation structure

Im {p,0): =(Qo,0, )

with the restriclion of the external composition of (Y,GF,-) to Qv X GY as its
external algebraic composition is called the image of (9,).

A homomorphism (»,0) is called an epimorphism, & monomorphism, or an
isomorphism, if ¢ and ¢ are both surjective, injective, or bijective mappings
respectively.

ProprosITioN 1.3. - The class of all permutation structures together with their

homomorphisms form a category 8.

Here the product of a homomorphism (9.9} of (Q,G, ) into (V,F, ) with
a homomorphism (¢,¢) of (Q',@, ) into (Q",G", ) is defined componentwise as

(9d) (90): = (po’,0d).

The pair (4p,i¢) of identity mappings is a homomorphism of the permu.
tation structure (Q,G,-) into ifself.

For any two permutation structures (Q,@,-) and (Q,&,:)and any o'e (¥
the pair (0,,0¢) of mappings

Oy: - and Og: G &
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which are defined by
EQ, =20 for all EeQ,

g0g = 1" (= unit element of G') for all ge @,

is a homomorphism of (Q,G, ) into ((¥,G, -). Such a homomorphism is called
a gero-homomorphism. With these remarks it is easy to work out a detailed
proof of 1.3.

We emphasize that our definitions of epimorphism and monomorphism are
naive ones. It is easy to see that our epimorphisms are epic, and our mono-
morphisms are monic in the category §. We do nof investigate the problem of
determining all those homomorphisms which are epic, respectively monic, in
the category 8.

Every homomorphism of a mathematical structure can be considered as
an approximation of that structure by a - more or less - simpler one. For
the homomorphisms of the permatation structures we are going to introduce
a measure for the degree of approximation.

2, - G-relations and Orbits of Stabilizers

In order to introduce a concept of the degree of a homomorphism we
recall briefly some basic definitions and facts from the theory of permutation
groups.

Let ((2,G, -) be a permutation structure, and let n be a positive integer.
We set

”=\(_2‘>'<_\...><Q=§(a1, wey Op) s € QY.
Then (Q"@,-) is a permutation structure with respect to componentwise
composition
({1, oy %), @) > (1, ey @n)gi=(01g, v, Cng).

DerinitioNn 2.1. - (Wigrnaxpr (7], 10.1). A subset R of Q* is called an
n~-nary G-relation on Q, if B is G-invariant, that is if

(%1, «v, an)geR for all (o, ..., a,) € R and all ge G.

Drrinirion 2.2, - ([7], p. 389). 4An n-nary G-relation R on  is called
minimal, if R== 0@, and if for every n-nary G-relation S on Q

S CR implies S= @ .

Lemma 2.3. - ([7), Proof of 10.3). An n-nary G-relation B on Q is mi-
nimal if and only if B is an orbit of G on ", that is

B={(u, .., 24) G for some (2, ..., a,)€ Q».

Annali di Matematica 31
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Lemyma 2.4. - ([7], 10.3). Bvery n-nary G-relation on ) is the set theoretical
union of minimal n-nary G-relations.

For any n elements oy, ..., o, € Q, not necessarily all distinct, we denote by
oy, ooy an = {9 G |laig=oy for all i=1, ..., n}
their stabilizer in G, which also is the stabilizer of («,, ..., a,)€Q" in G.
ProrositioN 2.5. - For any fived {o, ..., a1} €Q" T
% Gy, oy ani=> (%25 ooy ey ) G

is a mapping of the set of all orbils on Q of the stabilizer G, .. ., , of n-1
(not necessarily all distinct) letters o, .., oay_, of Q inlo the set of all mini-
wmal n-nary G-relations on .

If & operates (n-1)-fold transitively on €, then for any fixed (o, ..., ou—)

the mapping of 2.5 yields a one-to-one correspondence of the orbits oiG,,, ..., o,
to the minimal n-nary G-relations on (. For # =2 that remark was already
made in [7], 10.6.

What we try to point out by our rather trivial observation 2.5 is that the
orbits of the stabilizers of n-1 letters also have structural significance beside
the n-nary G-velations, and, in certain instances, even a [iner one than the
G-relations. In the next section we shall see that in general the G-relations
and the orbits of the stabilizers have independent meanings for the homomor-
phisms of permutation structures. But for the homomorphisms of the homoge-
neous spaces the orbits of the stabilizers have the prior importance.

3. - Homomorphisms which preserve G-relations and Homomorphisms
which preserve Orbits of Stabilizers.

Let n be a positive integer, and let (¢,¢) be a homomorphism of the per-
mutation structure (0,G, ) into the permutation structure (Q',G,-). Then
(9,4) also defines a homomorphism (¢,,)) of the permutation structure (0", G,+)
into the permutation structure (Q'",&,.) by the componentwise definition

(1) vy Cn)Pn=(000, w., an®) for all (o, ..., an) € Q"

which yields
(@, ooy @) g)on=1{(229)% -, (@ 0)9)
=((m @) (gd); w0, (2np){g$))
= ({1, vy ) Pu) (99)
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for all (o, ..., a,)€ Q" and all ge G.
Every n-nary G-relation R on ) is mapped by ¢, ¢nfo an n-nary G-re-
lation B’ on Q', namely

Bop=1i(ta, vy du)nl{t1, v, @n)E RIS R = (B¢, G,

but not necessarily onfo R'. Obviously those homomorphisms will have a spe-
cial meaning which have the following property.

(R.) For every n-nary G-relation R on Q the image Ry, is an n-nary
G'-relation on (.

Lemma 3.1. - (K,) holds if and only if
({21, oy 20} GO =110, , 2,9} (FY)=(229, .., 2 QG
for all (ay, .., a,)€Q".
This follows from Liemmas 2.3 and 2.4.
Lemma 3.2. - (R,) émplies (R.,) for every positive integer m < n.

PRrRoOF. - Assume that the homomorphism (p,0) satisfies (R,) and m < n.
Let § be a minimal m-nary G-relation on , hence §=/(2, ..., a,)@ for
some (0, ..., %, Q™. We sef

o =a, for i=m-1, ..., n
Then B=(2, ..., a,) G is an n-nary G-relation on Q, and
RBopw= (019, ., 0,9)G
is a minimal n-nary G'-relation on ' by Lemma 3.1. But then
St ="(029 ...y, )G

is a minimal m-nary G'-relation on Q', and therefore (p,0) satisfies (R..) by
Lemma 3.1.

Lemma 3.3. - Let (9,9) be a homomorphism such that ¢ is an epimorphism.
Then (R.,) holds for every positive inleger mn.

The proof follows from Lemma 3.1.

Assume mnow that # > 1. Every stabilizer G,,, .., ,,, of any n— 1 letters
from Q (not necessarily all distinct) is mapped by ¢ into the stabilizer of the
images o; 9, .., @, ¢ in G, namely

7
) <<
Gal,.- ,omfz‘p: G 10y weey Op—-10
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and therefore every orbit of G,,, .., 4, , is mapped énfo an orbit of G, ,, . ., 1,
that is

(a” GGL! y w5 Ot ) = {OC” (p) (Gal s eeey Op— 4) )

g (an CP) G/ax(p, veey om_1<p

but usually not onfo it. We shall look at those homomorphisms (9,4} which
have the following property.

(S4) For every element (o, ..., x,)€Q" the orbit 0,G, .. ...
of the stabilizer of {ay, ..., ¢,_,) tw G is mapped onio an orbil
of the stabilizer of (a9, ..., oap— ) in @, that is

(a” Ga“ sy En-1 )CP = (a”@)(Gal, erry Uvn-x('})) == (ozncp) Gmcp, ey An-10 0

For n=1 we set (8;) = (R,).
LeMMA 3.4. - (8,) implies (8,,) for every inleger m such that 1< <mn.

Proor. - For every (a,, .., a,)€ O™ we set

o Oy fOr t=m, .., n—1,

g @ for i=1, .., m—1,
( % for i=mn.
Then
(Om Gy, s i) @ = (@n Gory, ..\ arys )@
= (o 9) Gurg, ot wurg
= (%m ‘P)G,algo, vy AMo1 P
proves (Sm).
LemMmA 3.5. - There exists a homomorphism (p,)) such that (R.) holds for
every positive integer n, but (8,) does not hold for any inleger n> 1.

Proor. - Take any doubly transitive permutation group @ on Q' such
that |Q'| > 2. Set
Q= (@f)|2feq and aBi,
G=0,
v (@) -0,
$ = i¢ the identity mapping of @.
Then
((2B)9) ¢ = (2g,Bgle = ag = ((«.8) )9 = ((=:,B) ) (g¥)
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for all letters («,8)e O and all ge G, and therefore (¢,$) is a homomorphism
of (Q,G,-}into{Q,G,-). There exist letters (a;,a), (2,2 € Q becanse of |Q'|> 2.

Gy, 1s the stabilizer of the single letter (x,,x.)€Q in G.
Glon ) b= G4, 4, 18 the stabilizer of the letters «;,2,€Q’ in G\
G (2,) = G, 18 the stabilizer of the single letter «, €Q' in &

Therefore we obtain

((“z 30‘3)G(m ,059) )(P == ((aE 9053):?) (G(Oﬂl ,72) ¢)
== 0‘20"4” e = fag} C “2Gla1 =0 —{a!

because of the double transitivity of G’ and of |Q'| > 2. This fact violates (S,)
and hence also ($,) for every n > 1 by Lemma 3.4. But (&,) holds for every
positive integer n because of Lemma 3.3.

LeMMA 3.6. - There exists a homomorphism (¢,0) such that (8,) holds for
every inleger w> 1, but (R,) does not hold for any positive integer n.

Proor. - Let G’ be a transitive permutation group on Q', and take any
sabgroup G of @ such that G, = G < @ for ae Q. Set Q = a@ and let ¢
and ¢ be the injections of © into Q' and of G into @ respectively. Then (9,)
is a homomorphism of (Q,@, .) into (Q,&,+). For every n>1 and every
(%, ey Gu1) € Q" we have

Ga:; ey Gp— == G’auw, on1 == Glil m e m G, S G

O~ ==
since all G, are conjugate to G, in G. Therefore
(““Gdh ey Gl )CP = (an :P) (G:ﬁ, vy dg1v1¢)
== {0ty @)G’al@, ey Ap—10

which means that (§,) holds.
On the other hand

(logy veny “n)G)CP = (U, ., O‘n)G == (“1, ey “n)G’ =0 Py ey Xy CP)GI

for every (a,.., x,)€Q" and every positive integer n. Therefore (#,) does
not hold for any positive integer =.

4. - The Degree of a Homomorphism

Our investigations of the foregoing section give the background for the
following notion.
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DerixiTIioN 4.1. - Lel n be a positive inieger. A homomorphism (¢,0) of the
permutalion structure (Q,G, ) into the permutation structure (Q,G,.) is cal-
led an n-fold homomorphism f both (R,) and (8,) hold. Every homomorphism
according to Definition 1.2 is called a O-fold homomorphism.

(p,) is a 1-fold homomorphism if and only if every Gd-orbit on Qe is
also a G-orbit. Remember that (&, = (8,) by definition.

LeMMA 4.2. - Let n be a positive integer, let (p,4) be a homomorphism of
the permutation structure (Q,G, ), into the permutation structure (Q,G, -),
and (9',0") be a homomorphism of the permutalion structure (Q',&,.) into the
permutation structure (Q", G ). Then for the homomorphism (¢, P’) of (Q,G, +)
into (Q",G", +) the following hold.

(1) If (9,9) and (9,9 satisfy (Ra', then (p¢',bd") satisfies (R
@) If (p,9) and (¢,) satisfy (Su), then (99/,4Y) satisfies (Su).

(8) If (9.0) and (¥,') are n-fold homowmorphisms, then (py¢/, L) is an
n-fold homomorphism.

Proor. - L. Let (¢,9) and (go';q)') satisfy (R,). We have (p9"), = ¢, ¢, and
for all (2, .., 2,)€ Q"

(@1, ey %)@ (0 P) = (21, wry %n)F) )P
= (19, w5 % @)G )P0
= (0 9P, wr, An PP )G,
Therefore (R,) holds for (py,dd").
II. Let (9,9) and (9,d") satisfy (S,). Then for all (a;, ..., @4)€ Q"

+

(U Gy .., o1 )99 = (@n®) G 1y e, ne )P
= (2.99) Gy, @Oy wre s Any GO ¢
Therefore (8,) holds for (pg,d¢".
I1L. (3) clearly follows from (1) and (2).

From 4.2(3) and from the fact that for every non-negative integer 2 the
pair (in,ig) of identity mappings is an n-fold homomorphism of the permu-
ration structure (2,3, ) into itself, we conclude the following

ProposiTioN 4.3. - For every non-negative integer n the class of all per-
mutation structures together with their n-fold homomorphisms form a category 8,.

Note that 8§, = 8.

LeEMMA 4.4. - Every n-fold homomorphism is also an m~fold homomorphism
for all non-negative inlegers m = n.
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This statement follows from the Lemmas 3.2 and 3.4, and from 4.1. Hence
we have 8, < 8, for all non-negative integers m < . Lemma 4.4 is also the
basis for the

DewviviTion 4.5. - Let (9,4) be a homomorphism of the permulation struc-
ture (Q,@, ) into the permulalion structure (Q',G,.). We define the degree

of (9,4) as

n if there exists a non-negalive integer n such fthat (o) s

an n-fold but not an (n 4 )~fold homomorphism,

deg (c?”-!’) = . . . .
oo if (9,9) is an n-fold homomorphism for all non-negative

integers n.

Lemma 4.6. - Let (p,0) be a homomorphism of the permutation structure
(Q,G, ) inlo the permutation structure (Q',G',+) such that ¢ is an injective
mapping and § is an epimorphism. Then

(D) Gopyooey g U= G'ao, .., ano for all (a,, .., a,)€ Q" and all positive
integers n.

(2) deg (3,4) = oo

Especially, every isomorphism of a permntation structure has degree oc;
the more general Lemma 4.6 was pointed out to the author by DirTrRIcH HELMER.

Proor. I. - G, ., ub = Gs,..., any holds by Definition 1.2 for any ho-
momorphism (¢,0) without further assumptions. By the additional hypotheses
of our lemma the opposite inclusion holds as well. For if g€ G/, ..., 4,5, then
there exists a g€ G such that g’ = g since ¢ is an epimorphism, and hence

(2:9)9 = (ai9)(gd) = (9)g = wp for i=1, ..., n.
It follows that
g =ue; for i=1, ..., n,

since ¢ is injective, and hence g€ (.., 4, and g’ =g € G,, ..., ., $. Thus we
have proved (1.

II. For any positive integer # (f,) holds by 3.3, and (S,) holds by (1),
Therefore deg (9,{) = cc.

Lemma 4.7. - There exist homomorphisms of degree oo which are not iso-
morphisms.

Proor. - Let (Q',&, ) be a permautation structure such that ¢ has at
least 2 orbits on Q'. Let Q be an orbit of G on Q'. We set G= @, ¢ =injection
of Q into Q', ¥ =1ig. Then (,4) is a homomorphism of (Q,G,+) into (Q',F,+)
such that deg (4,d)==oc, but (¢,¢) is no isomorphism.
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5. - n-fold Pre-isomorphic Permutation Structures

Before we concentrate on the main subject of this paper, namely on ho-
mogeneous spaces, we introduce another concept that we shall need later for
the Second Isomorphism Theorem and for a generalization of the Theorem
of Jordan and Holder.

In the following let n always denote a positive integer, and let (Q,G,-)
and (Q',G,+) be permutation structures.

DeriniTiON D.1. - A homomorphism (p,9)of (Q,Q, ) info (Q',G, +) is called
an n-fold pre-isomorphism if ¢ is a bijective mapping, if ¥ is a monomorphi-
sm, and if (S.) holds.

LenmMa D5.2. - Let (v,9) be an n-fold pre-isomorphisn of (,G,+) info (Q,G,-)
Then for all (¢}, ..., a2 € Q"

(“;1G,oci y ey O ):P_] = (“;ﬂcP—I)Ga/l o, a,’z_l@‘l

Proor. - Definition of (8,).

DerINITION D.3. - (Q,G, Yand (Q,&F, +) are called n-fold pre-isomorphic
if there exists a finite number of permulation slructures

(Q24,Gi, ) (=1, .., m)
with the following properties.

(D (Q,G, ‘)=(«Q:1,G1’) and (nm:Gm; ')=(Q,,G', ')7

(2) For every i=1, ..., m~1 there exists an n-fold pre~isomorphism (p;,$;)
of (i,Gs, ) into (Qips,Gigs, ) oF of (Qits,Giyr, ) inlo (Q4,Gi, )

Proposition b5.4. - Let (Q,G,) and (Q',&,+) be n-fold pre-isomorphic
permulation structures. Then there exists a bijective mapping ¢: Q — Q' such
that for all (a,, ..., a,)€ Q%

(“nGa:, oy anea )P = (%n®) G'onqa, ey Oy 0t

Proor. -~ Let (¢;,9;) and (Q;,Gi, ) for i=1, ..., m be n-fold pre-iso-
morphisms and permutation structures as in Definition 5.3. Set

=1 1f (o, $s) 1 (Q:,Gi, o) => (Niga,Giga, *),s
gi=—1 if (¢i, )1 (Qiga, Giga,*) = (Qi, Giy+), P =0 9l

Our statement now follows from the definition of (8,), and from Lemma 5.2.
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LeyMa 5.5. - Every isomorphism of any permulalion structure is an n-fold
pre~isomorphism’” for every non negative inleger mn.

6. -~ Homogeneous Spaces

From now on we confine our investigations to those permutation struc-
tures (Q,@,+) where @G acts transitively on Q.

DerinitioN 6.1. - ([1], § 7, n° 6). 4 permutation structure (Q,G, ) is called
@ homogeneous space, if for any fired a€ Q the mapping (aug)-—>ag is a
surjective mapping of Q onlo itself, that is if

Q = aG for « €.

A permutation structure (Q,G, ) is a homogeneous space if and only if
Gng is a transitive permutation group on £.

Prorosirion 6.2. - Every homomorphic image of a homogeneous space is
a homogeneous space.

Proor. - Let (¢,4) be a homomorphism of the homogeneous space (Q,G,+)
into a permutation structure (,G',.). Then Q = aG for every a € Q. Hence
Q9 = (a9)(GY), and therefore Im(p,d)=(Q¢,G¢,+) is a homogeneous space.

Leuma 6.3. - Lef (9,4) be a homomorphism of the homogeneous space (1,G,-)
inlo the homogeneous space (Q', @, ). Then (p,) is a 1-fold homomorphism if
and only if ¢ is a surjective mapping of Q onlo Q.

Proor. - Im (g, §)=(Qyp, Gb, ) and (Q', @, ) are homogeneous spaces.
It follows that

Q9= (2p) GY) and Q' = (ayp)@ for every a€ Q.

Therefore (¢, ¢) is a 1-fold homomorphism if and only if the equality Q¢ =20’
holds.

PROPOSITION 6.4. - For every non-negative integer n the homogeneous spaces
together with their n~fold homomorphisms form a subcategory ¥, of the category 8.,.

We set # =1,. Thenf¥, =¥ n 8,.
LeMma 6.5. - Let G be a group, and let H be a subgroup of G. We set

H:G=\{Hg|ge G!.
Then (H: G, G, ) is a homogeneous space wilh respect to the external composition

(Hz,g) —> Haxg.
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It is well known that every homogeneous space (Q,G,-) is isomorphic to
the homogeneous space (G,: G, G,+) for any «a€ (1. We shall refine this sta-
tement. We shall see that the n-fold homomorphisms of the homogeneous
spaces ave linked with a special class of subgiroups which we are now going
to introduce.

7. - n-fold G/H-normal Subgzroups
Let @ be a group, H be a subgroup of &, and n a non-negative integer.
DeriNimioN 7.1. - A subgroup K of G is called n-fold G/H-normal if
() I =K,
2) KgtH= ... ny Ho)= Kg(K* y .. y KX) for all g,x,, ..., s € G.
Liemma 7.2. - Stalement 7.1(2) is equivalent to

2y KgHn B . H*)=KgK Ky ... K*o)
for all g, xy, ..., Xy € G.

Proor. — Obviously (2) implies (2. 1f, conversely, (2') holds, then
RgHx .. A H*) = Kgo, " (H N H =07 N Lo H3w50 ey
= Kge, " K K7 oy K37 )2,
= Kg(KXI 0N Kxn)
for all g, ..., x. € G.

For n=0 condition (2) can be considered as void, or the interseciion of
the empty set of subgroups can be considered as G. In either case we can
state the following.

LeMMA 7.8. - A subgroup K of G is O-fold G/H-normal if and only if
o= K.

For n==1 condition (2) reads as
(29 KgH = KgK for all ge G.
Under the assumption of H = K it follows from (2]) that
HgK < KgK = KgH for all ge G,
and, by taking inverses,

KgH = (Hg— Ky (Kg— H)™* = HgK
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and therefore

(20 HgK = KgH for all ge G,

which means that K is ¢/ H-normal in the sense of [3], Definition 1.9. Obvious-
Iy (2¢) implies (27). Thus we have shown

Leuma 7.4. - A subgroup K of G is 1-fold G/H-normal if and only if
K is G/H-normal.

LemMma 7.5. - If K is an n-fold G/ H-normal subgroup of G, then K is
m~fold G /H-norinal for every mon-negative infeger m << n.

Proor. - For every g, &, ..., € G we set Xpy,=..=2,=2,, and
we obfain
KgH* N ..N H*m)= Kg(H* N ... " H*")
= KgiK= N ... " K*n)
= Kg(K* N ... N\ K%m),

and hence K is m-fold G/H-normal if it is n-fold G/H-normal and m < n.

DrrINITION 7.6. - Let K be a subgroup of G containing H. We define the
G/H-degree of K as

( n if there exists o non-negative integer n such that K is n-fold
deggm K= but not (n -+ 1)-fold G/H-normal,

o if K is n-fold G/H-normal for all non-negative inlegers n.

Lemma 7.7. - Let N be a normal subgroup of G containing H. Then the
G/ H-degree of N is cc.

Let # be a positive integer, and let K be an n-fold G/H-normal subgroup
of G. Then by Lemma 7.4, Lemma 7.5 and [3), Section 1, the following hold.
7.8, K=HZENK?9) for all ge Q.

79, HZ=LZ= G implies KL = LK.
710. H= L= G implies that KL is 1-fold G/L-normal.

711, H= L= G implies 9g(L) = 9g (KL) (where 9 (X) denotes the nor-
malizer of X in 0.

712, Assume that H= N= L= G, and let N be a normal subgroup of G.
Then L is 1-fold G/H-normal if and only if L is normal in G.
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Our remarks show that n-fold G/H-normality can be considered as an
approximation of normality. If H is a normal subgroup of G then every
non-normal subgroup K of @ containing I has G/H-degree 0.

ExaMPLE 7.13. - Lei G= A; be the alternating group on D letters, and
let H be a b-Sylowgroup of G. Then K= 9Ug(H), the normalizer of H in G,
has G/H-degree 1.

PROOF. - We take h=(1 2 83 4 b) and set H= <h>. Then K= <h, k>
for k=(2 b) (3 4). The double coset decompositions
G=KUK(123H=KUEK1 23K

show that K is 1-fold G/H-normal. ©x=(2 3)(4 D) centralizes k, but does
not normalize H. Therefore HN H* =1, but KN K*= <k>. With g = h* we

obtain
KgHNH*=Kg-KgU Kg— = Kg(K N K*).

This inequality shows that K is not 2-fold G/H-normal, and our statement
follows.

8. — The Homomorphism Theorem

In the following let (y,4) be a homomorphism of the homogeneous space
(Q,G, ) into the permutation structure (Q',G,+).

DeriNiTioN 8.1, - For every o€ )
Ker,(9,9) = (g € G| (a9)(g¥) = ap|

is called the kernel of (p,%) with respect lo o.
LeMMA 8.2, - (1) (Ker, (9,9)) = Ker,q(9,¢) for all «€Q and all ge G.
2) {Ker,p,¥)|2€ Q} is a class of conjugate subgroups of G.
3) G, = Ker, (v,9) for every x€ Q.
(4) Ker ¢ = Ker, (9,4) for every a€Q.
(B) (Kery (o, Wb = G, for every a€ Q.

The proof is obvious.
We denote by Ker o the equivalence relation on  which is defined by

¢, that is for o, Be 0 we set
a =0 (mod Ker o) if and only if ap=_{f.

The equivalence class of @& Q modulo Kery is denoted by @, and Q=0 /Kerg
denotes the set of all equivalence classes of ) modulo Kerg.
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We denote by g—>g=gKer{ the canonic epimorphism of G onto G=G /Ker¢.
For every subgroup H of G we write H = HZXery/Kerd,

LeMma 8.3. - (%, ) —> o g = ag
is a mapping of Q< G into Q which makes
@; éy -)=(Q/Kerq>,G/Kert§), *)

a homogeneous space.

ProoF. - If a =3 and g=h for «,8€ Q and g,he G, then
(2g)p = (29) (gd) = (B9) (hh) = (B)p
and hence ag = Bh- 1.1(3) is easily checked.

Proposirion 84, -
(1) p:a—sapis a bijective mapping of Q = Q/Kery onlo Q.
(2) @:Q—eg@ is an isomorphisin of @::G/Ker'@ onio G.
3) (/q;, $) is an isomorphism of (Q, é, ) onlo Im(p, $) = (Q9p,qY, +).
Proor. - (1) and (2) are obvious. For all x€ Q and all ge@

(ag)e =(agip =(ag)p = (a¥) (gb) = (29) (gD)
holds. Therefore (g, §) is an isomorphism of (Q, é,-) onto Im(yp, ¥)=(Qg, G,.).

Tae HomomowrpHISM THEOREM 8.5. - Let n be a positive integer and as-
sume that (¢,4) is an n-fold homomorphism of the homogeneous space (9,G,)
into a permutation structure (Q',&,-). Set K,=Ker,(9,}). Then for every « € (L

(1) K, is an (n—1)-fold G/G,~normal subgroup of G.
@) K, is an (n —1)-fold G/G,~normal subgroup of G= G/Ker .
(3) Im (p,9) is isomorphic to the homogeneous space (fﬁzf}\,'@,-}.

Proor. - L. For n=1 statement (1) holds by 7.3 and 8.2(3). Therefore we
can assume that n> 1. Take any elements g,,, ..., %,—, € ¢. By 7.2 we have
to show that

K9G NG N . NG ) =KugK, N K3 N . N K3,
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We set o, =1 and

ax;=cu; for i=1, .., n—1, and a,=ag.

Take any ye K,g(K, N K N ... N K,#). There exist elements

k} kieKa and lEKaﬂ K§2 N..N Kill—l
such that
y="kgl and I =k} for i=1, .., n—1.

Therefore
(i) (W) = (o) (s by (2 ) (B p) (s ) = atip (i =1, ..., m— 1)
(@ @) ()= (22) (kD) (gh) (D) = (a9) tyh) = (ag)p
which means that e, ., 4., and, by property (S,) of (y,d),

(xy)p € (o @)G;aw, s Ol T (2 9)(Goy. ..., PP ).

Hence there exists
heG, . =G NG N. . NG
such that
(@) = (2n9) (1Y),
which implies
(a9) ()b = () (gh)b,

() (gth—r g~ 1p =agp,
glh—*g e K, ,
gte K, gh,

y=rkgle K,gh< K,gG,,, .., 5, = K9G, N GZ N ... O G

Therefore K,g(K,NK;} N .. N K" ) < K9G, NG N ... NG ). The con-
verse inclusion holds by 8.2(3), and we have proved that K, is (n-—1)-fold @/G,~
normal.

II. The canonic epimorphism g—sg=gKerd of @ onto G= G /Kerd clearly
maps K, onto an (n— 1)~fold @/@a-uormal subgroup of G
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. ¢ K,x—ax=ax is a bijective mapping of K,: G onto Q such that

(Ky2)g) e =(K,xg)e =« xg = (201 g = (K, x)e) g

for all x, g€ G. Therefore (¢, ¥3) is an isomorphism of (K,: G, G,-) onto (9, G,),
(3) now follows from Proposition 8.4(3).

Ter Caxvonic EriMmorpHISM THEOREM 8.6. - Lel n be a positive inleger,
let @ be a group, H a subgroup of @, and K an (n—1)-fold G/H-noermal
subgroup of G. Denote by oy the surjecltive mapping Hx — Kx of H: G onlo K : @,
and by ig the identily mapping of G. Then

(1) (vx,ig) i8 an n—fold epimorphism of the homogeneous space (H: G, G, )
onto the homogeneous space (K:@G, G,+).
(2) Kerm(9x,ic) = K.
We call (yg, ig) the canonic epimorphism or the projection of (H: @G, G, +)

onto (K:G, G,+), and we call (K:G, G,-) the faclor space of (H: G, G,-) modulo
K. We write (H:G, G,-\/(H:K, K,"): = (K:@, G,-).

ProoF. - (¢k, tg) clearly is an epimorphism of (H:@, G,-) which satisfies
(&) by Lemma 3.3. (8,) for (¢k,i¢) is equivalent to the (n —1)-fold G/H-normality
of K by Definition 7.1. This proves (1), and (2)is obvious from Definition 8.1.

9. - %—fold G/ H-simple Groups and ;li—fold Simple Homogeneous Spaces

Theorems 8.5 and 8.6 show that the (n— 1)-fold G /H-normal subgroups
of @ are exactly the kernels of the n-fold homomorphisms of the homogeneous
space (H: G, G,.). This fact permits the following definition.

DerFiNtTION 9.1. - Let n be a nown~negalive integer, let G be a group, and
let H be a proper subgroup of G. Then G is called —j—b»fold G/ H-simple if there
exists no n~fold QG/H-normal subgroup properly between G and H.

We set é:oo, and hence @ is oc-fold G/H-simple if and only if H is

a maximal subgroup of G. Also @ is 1-fold G/H-simple if and only if G is
G/H-simple in the sense of [3], Definition 1.14.

Lemma 9.2. - If G s %—fold G/ H-simple, then G is also %-fold G /H-sim-
ple for every inleger m > n.

Proor. - Lemma 7.5.
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1
DerisITION 9.3. - 4 group G is called G/H-simple of degree - if there

1 1
exisls a non-negalive integer n such that G is ﬁ-fozd but not n—_—:—i—fold G/H-sim-

ple, and it is called G/H-simple of degree 0 if it is not %wfold G/H-simple
for any non-negotive inleger n.

For instance, if G has a normal subgroup properly between @ and H, then
G is G/H-simple of degree 0 (Lemma 7.7). For G¢=4,; and H a b-Sylowgroup

of 4; Example 7.13 shows that 4, is G/H-simple of degree %

In order to introduce analogous notions for homogeneous spaces we have
to sort out a class of epimorphisms which have an essential meaning for the
notion of simplicity. For instance, the epimorphism (ig,mg) of a homogeneous
space (£,G,+) onto its canonic respresentation (Q,Gng,) (cf. Section 1) is
«almost» an isomorphism, and is therefore rather unessential for our present
considerations.

In the following let (¢, ¢) be a homomorphism of the homogeneous space
(Q,G,+) into the permuta&tion*structure (Q',G@,.) such that ¢ is a surjective
mapping. Then (Q',G',+) is a homogeneous space, and the following three
statements hold.

LeMMa 94, - For any x€ Q

Ker,(9,4)g — (29)e = (29)(g)

is a bijective mapping of Ker,(¢,0): G onto .

The proof is obvious. Now we describe, under the above assumption, all
those homomorphisms which are close to isomorphisms from the point of view
of simplicity.

PropositioN 9.5. - If, moreover, Ker, (o, 0)= G, for an «€ Q, then

(1) ¢ is o bijective mapping of Q onto .
(2) Ker ¢ = Ker ng.

ProoF. - We set K, = Ker,(¢,).

I. Since (£2,G,-) is a homogeneous space every element Se€Q can be
written as B=ag for some ge @, and

@yt ag ~-> G

is a bijective mapping of Q onto @,:G. Moreover

921 Kog > (agi9 = (a9)(gd)
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is a bijective mapping of K,: G onto Q' by Lemma 94. K, = G, now implies
that ¢ = ¢, ¢, is a bijective mapping of Q onto Q.

II. Take any element ke Ker¢. Then

(2g) k) = ((29) 9) (k)= (2g)p for all g€ @,
and therefore

k=28 for all fe O

since ¢ is a bijective mapping. It follows that kmg =14y, and hence Kerd =
= Ker =wy.

There is still the other extreme of homomorphisms we have to eliminate,
namely the zero homomorphisms (cf. Section 1).

PropositioN 9.6. - (9,0) is a zero homomorphism if and only if

Ker,(ody =@ for € Q.

The proof follows from Lemma 9.4.

DerFiniTION 9.7, - An epimorphism (9,9) of the homogeneous space (Q,G,-)
is called essential if G, < Ker (o, 0)< G for xe Q.

It is clear that Definition 9.7 is independent of « e Q.
DErINITION 9.8. - Let n be a positive integer, and let (,@,+) be a homo-

geneous space such that | Q| > 1. Then (Q,G,.) is called %—fold simple if cvery

n-fold epimorphism is unessential.
1
ProposiTion 9.9. - 4 homogeneous space (Q,G,-) is ;—fold stmple if and

1
only if G is m—fold G /G,~simple for any o e Q.

Proor. I. - Assume that (Q,G,-) is %—fold simple. Let K< G be an

(n—1)-fold @/G,-normal subgroup of @. The ecanonic epimorphism (yx ,ig)
of (G,: G, G,-) (Theorem 8.6) is unessential by our hypotheses because (G,: G, G
is isomorphic to (Q,d,:). Therefore K = Kerg(yx,is)= G, by Definition 9.7,

~fold @/@,~simple.
1

n—1

epimorphism of (Q,@,-). By the Homomorphism Theorem 8.5 K, = Ker,(¢,})

is an (n — 1)-fold @/G,-normal subgroup of @, and hence K,=@, or K,= @

and hence @ is 1
n—1

II. Assume that @ is

-fold G/G,-simple. Let (¢,4) be an n-fold
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by Definition 9.1. Therefore (¢, ¢) is unessential, and (Q, G,-) is %—fold simple.
Lemma 9.10. - If the homogeneous space (£,G,+) is %’—fold stmple, then

1
it is also %-fold simple for every infeger m > n.
Proor. - Proposition 9.9 and Lemma 9.2.
DrrinitioNn 9.11. - A lomogeneous space (Q,G,+) is called simple of de-

1, . e
gree if there exists a positive inleger n such that (Q,G,+) s hl--—fold but not %—L—

fold simple, and it is called simple of degree O if it is not %i—fold simple

for any positive integer n.

LemMya 9.12. - Let (Q,G,+) be a homogeneous space such that || > 1.
Then the following slatemenis are equivalent.

() (9,G,-) is 1-fold simple.
(2) G, s a maximal subgroup of G for every a e Q.

(8) Grg is a primitive permutation group on L.

10. — The Isomorphism Theorems

In the following, @ will always denote a group, H a subgroup of G, and
n a positive integer.

Tae Frrst IsomorprisM TreorEM 10.1. - Let K be an n-fold G/H-nor-
mal subgroup of G, and let L be a subgroup of G containing K. Then

(1) L is n-fold G/H-normal if avd only if L is n-fold G/K-normal.

(2) If L is n-fold G/H-normal, then

((H: Ga G;')/(H:Ky Ky'))/(K : L7 L,")S(H:Ga G;')/(H: L7 L}’)'
Proor. - For all g, @, ..., £, € G

Kg(H N ... N Hn) = Kg(K» N ... N K )

holds, and therefore
Lg AN ... N H*n) = LKgH* (N ... N H*»)
= LKg(K*1 M ... N K%n)
= Lg(K* N ... N K*n),
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This equation means that n-fold @/H-normality of L is equivalent to n-fold
G/ K-normality of L. (2) obviously follows from (1) and our notation of the
factor space of a homogeneous space introduced after Theorem 8.6.

TeE SeconD (PrE-)IsoMorprisM THEOREM 10.2. -~ Let K be an n-fold
G/ H-normal subgroup of G, and let L be a subgroup of G conlaining H. Then

() KN L is an n-fold L/H-normal subgroup of L.
(2) K is an n-fold KL/H-normal subgroup of KL.
(3) The pair (p, b). where ¢ is the bijective mapping

(KN Ly —> Kz

of KNL:L onlo K:KL and ¢ is the injection of L into KL, is an
(n 4+ 1)-fold pre-isomorphism of the homogeneous space

(KNL:L, Li)=(H:L, L,y JH:KNL, KNL,-)
onio the homogeneous space
(K:KL, KL,.)=(H:KL, KL,)/(H: K, K,-).
Proor. I. - Take any elements g, a,, ..., ¥, € L and any element
ye (KNLDgKNL N(KNL*N..N (KN L#s.
Then there exist elements
ke KNLand le KNLNENL*N..N (KN L
such that y = kgl. But
gle KgK N K*N..NK*)=KgH NH*N ...\ H*n)
since K is n-fold G/H-normal. Hence there exist elements
FeKand he HNH*»N ..N H*»
such that gl = K'gh. From H = L it follows that
EF=gih—*ge KN L,
and therefore

y="kkghe KN LygHNH=N .. N H*)
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Thus we have proved

(ENLDyg(KNLYN(EKENL N .. VKN LF)S (KN LyglH O H*=2 () .. (Y H¥4).
Since the converse inciusion trivially holds we obtain the equality
(KENLygHNH*N ... N H*) = (K N Lg(K NLYN(K N Ly M ... N (KNL)*™).

Therefore K N L is an n-fold L/H-normal subgroup of L by 7.2.
II. (2) is obvious since it merely means the restriction of the equation

7.1(2) to elements g, a:, ..., ®» € KL. Note that KL is a subgroap of G by 7.9.

IIL ¢: (KN Ly —> Kx is a bijective mapping of K N L:L onto K:KIL.
For every g, @1, ..., ¥n€ L

Kg(le N..N Kx") = Kg(f_[xl N..N Hxn)
S Kg(KN LN .0 (KNL™)
gKg(K"! N..nN Kxn),

Therefore equality holds instead of <, and we obfain

(KNDg(KNL»M.a.n (K M Ly »))
=Kg(KN LN .0 (KNOL#
= Kg(K* N .. N K*n)

which means property ($,4.) for (9, ). Therefore (g, }) is an (r +1)-fold pre-iso-
morphism of (KN L:L, L) onto (K: KL, KL,.) according to Definition 5.1

11. - n-fold G/H-subnormal Subgroups

For any subgroup H of a group G there are several possibilities to define
a factor strmcture of ¢ modulo H, for example:

1. The double coset semigroup G/H, that is the semigroup (with respect to
the «complex» multiplication) generated by the double cosets HgH, ge G
This factor structure has been investigated in a more general context in [2]
(3], [4], and [5}.

2. The coset semigroup, that is the semigroup (with respect to the «com-
plex» multiplication) generated by the cosets Hg, g€ G. This possibility has
been discussed by WIELANDT in [8].

3. The homogeneous space (H:G, G,»)
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The third factor structure is the richest and can be considered as a
refinement of the second, just as the second can be considered as a refinement
of the first. We shall discuss their relationship to each other in the next
section. Here we want to investigate a different problem.

We consider each type of factor structure as a mathematical structure in
its own right. Each of them is, or can be (case 2), provided with its own notion
of homomorphy so that we obtain a category. Thus we have

1. The category of all double coset semigroups ([2], [3].
2. The category of all coset semigroups.

3. The category of all homogeneous spaces.

For the third category we have in fact the choice of infinitely many
notions of homomorphisms, namely for each non-negative integer n we can
take the n-fold homomorphisms as the morphisms of a category. Therefore
the last category is subdivided into the categories ¥, (Proposition 6.4).

Each of these categories gives rise to a notion of normality such that
the subgroups which are normal relative to such a category are exactly the
kernels of its homomorphisms. Each of these concepts of normality leads to
a notion of subnormality.

To every chain

G=Li=zL,=.2L =1L

of subgroups which are subnormal with respect to one of these categories we
can assign factors in different ways. We can choose one type of factor struc-
ture and take as factors the factor structure of that type for each I;_, modulo
L;. This procedure will be particularly fruitful if a Jordan-Holder Theorem
can be proved for a certain choice of subnormality and a certain choice of
factor structure.

For subnormality and factor structure both taken with respect to the ca-
tegory of double coset semigroups this has been done in [4]. We investigate
the same problem for the categories , in this section.

In the following let n be a positive integer, G a group, and H a subgroup
of G.

DeriniTION 11.1. - 4 subgroup L of G is called n-fold G/H-subnormal,
if there exists a [inile chain

G=L, =L, z..=ZL=1L

of subgroups of @ such that L; is an n-fold L;_,/H-normal subgroup of L;_,
for each i =1, ..., r. Such a chain is called an n-fold G/H-subnormal chain;
it is called an n~fold @G/H-composition chain i/ L;_, > L; and i/ there is no
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n~fold L;_,/H-normal subgroup of Li_, properly between L;_, and L; (which
o1

means that L. i8 ;—i-fold L./ Li-simple by Definition 9.1 and the First Iso-

morphism Theorem 10.1) for every i=1, ..., r.

LeMMA 11.2. - 4 subgroup L of G is 1-fold G/H-subnormal i/ and only
if it is G /H-sudnormal, in the sense of [4], Definition 1.1.

Proor. - Lemma 7.4.

LemMa 11.3. - If L is n-fold G/H-subnormal thew L is wm-fold G/H-
subnormal for every posilive integer m < n.

Proow.”- Lemma 7.5.

LemMMA 114, - If K is an n-fold G/H-subnormal subgroup of @, and L
is an n-fold K/H-subnormal subgroup of K, then L is an n-fold G/H-sub-
normal subgroup of G-

TarorEM 11.5. - If K is an n-fold G/H-subnormal subgroup of G and
H=<L=G, then KN L is an n-fold L/H-subnormal subgroup of L.

Proor. - Take an n-fold G/H-subnormal chain
=K, zK,=Z..zK,=K

from @ to K as in Definition 11.1. K,NL=G N L=L is an n-fold L/H-
normal subgroup of L. Assume that K;, N L is already proved to be n-fold
L/ H-subnormal. Since K; is an n-fold K;_,/H-normal subgroup of K; . by
assumption, ;N L=K;N{K;_, N L) is an n-fold K; , N L/H-normal sub-
group of K;—; N L by the Second Isomorphism Theorem 10.2. Therefore K; NL
in n-fold L/H-subnormal in L by 11.4, and the theorem follows.

TreorEM 11.6. - If K and L are n—fold G]H-subnormal subgroups of G,
then KN L is an n-fold G/H-subnormal subgroup of G.

Proor. - KN L is n-fold L/H-subnormal in L by Theorem 11.5, and L
is n-fold G/ H-subnormal by assumption. Our statement now follows from 11.4.

TagorEM 11.7. — Assume H=N=< K=& and let N be subnormal in G.
If K is n~fold G/H-subnormal then K is subnormal in Q. If K is subnormal
in @, then K is at least 1-fold G/H-subnormal.

ProoF. - Lemma 11.2 and [4], Theorem 1.7.

The crucial step towards a Jordan-Holder Theorem is the proof of the
relevant Four Subgroup Theorem (Zassenhaus’ Lemma). Here we have fo re-
strict ourselves to 1-fold G/H-normality. Also as the Second Isomorphism
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Theorem 10.2 does not hold for isomorphy but for pre-isomorphy only, we
have to use pre-isomorphy instead of isomorphy in the Four Subgroup Theorem.

TeE Four SuBerROUP THEOREM 11.8. - Let K,, K, L,, L be subgroups
of G conifaining H. Assume that K, is a 1-fold K/H-normal subgroup of K,
and that Ly is a 1-fold L/H-normal subgroup of L. Then

(1) (KN LoK, is a 1-fold (K N L)K,/H-normal subgroup of (K N L)K,
(2) (KoM L)Le is a 1-fold (K N L)Lo/ H-normal subgroup of (K (Y L)L,

(3) The homogeneous spaces
(KM L) Ko : (KN L)K,, (KN LK,,-)
(Ko N L)Ly : (K Y L)Ly, (KN L)Ly,

are 2-fold pre~isomorphic.

Proor. - (1) and (2) follow from Lemma 7.4 and [4], Theorem 2.1. Becau-
se of

(KN LYK, N (KN L)= (K, N\ LY (K N Ly) = (K, N L)Lo N (K N L,
(K N LYKy (K N L) = (K N L)K,, (KoM L)Lo(K N L)= (K N LjL,

and the Second Isomorphism Theorem 10.2 the homogeneous space
(KeNLy(KNLy)y:KNL, KN L,-)
is 2-fold pre-isomorphic fo each of the homogeneous spaces

(KN Ly K,: (KN LK, (KN LK,,-),
(Ko N L)Lo: (K N L)Lo, (K N L)Lo,*),

and (3) follows by Definition 5.3.
An immediate consequence of the Four Subgroup Theorem is

THE REFINEMENT THEOREM FOR 1-FOLD G/H-SUBNORMAL CHAINS 11.9. -
Let

(i) =K, =K,
(i) G=1I,=>L,

o
aae

K,=1L
Ly=1L

v v
A%

be 1-fold G/ H-subnormal chains. Set

Ki,j:Ki(Ki—1 le) (B==1, ey Ty ]:O, vy 8),
Lji=L{LiNKy) (j=1, .., 8 i=0, ..., 7).
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Then
(1) Ki,=Ki,.z2Ki,=..Z K, ,=K;
is a 1-fold K;_, /H-subnormal chain for each i=1, ..., r.
2 Li,=L,zLj,=z .2 L, =L
is a 1-fold L;_,/H-subnormal chain for each j=1, ..., s.

(8) The homogeneous spaces
(Ki,j: Ki,ja, Ki,j—1,*) and (Lj,i: Lj, i, Lj, i, +)

are 2-fold pre-isomorphic for all i=1, .., r and all j=1, ..., s.
(4) Joining the chains (1), respectively (2), logether, we obtlain refinements
of the chains (i) awrd (ii) for which
(K, j: Kiyja, K355, 0) <> (Ly, it Loy, Ly iy +)
is a one-to-one correspondence of their ¥-factors such that correspon-
ding ¥X-factors are 2-[old pre—~isomorphic.
THE THEOREM OF JORDAN AND HOLDER FOR 1-FOLD (/H-COMPOSITION
Cuaxns 11.10. - Let
G=K0>K1 > -.->K7=.L
G=Ly>L,>..>Li=1L

be 1-fold G/H-composition chains. Then
(hy r=s.

(2) There exists a permutation = of {1, ..., v} such that
(K;: Ki ,,Ki_,,-) and (Ln(i)5 Ln(i)-u Ln(i)—la')

are 2-fold pre~isomorphic for all i=1, .., r.

The proof immediately follows from the Refinement Theorem 11.9.

12. - Classification of the Homogeneous Spaces by Double Coset Nemi-
groups.

We resume our discussion begun at the beginning of Section 11, and
now ask for the relationship between homogeneous spaces, coset semigroups,
and double coset semigroups.
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Let (Q,G,-) be a permutation structure. We set
Q={A| BEAcQl

LeMMA 12,1, - O is a commutative semigroup with respect to set theorical
unions and it is closed under taking uwnions of arbitrarily many of its elements.

Let (€,&,-) also be a permutation structure. For every mapping ¢: Q — Q'
we define a mapping ¢:0— Q by
Ap=13¢p|de A} for all Ae Q.

Then

(UANe=U A;p for any A;e Q and any index set I.
iel iel

DEFINITION 12.2. - A mapping o of Q inlo Q' is called @ homomorphism if

(U Ao == U A;e for any d;e Q and any index set I.
el il

For any mappings o; of Q into (, and for any index set I we define a
mapping U g; of Q into Q' by
ieI

A(Ug):= U Ag; for all Ae Q.
i€l iel

Lemma 12.3. - Let End(Q) be the set of all homomorphisms (in the sense
of Definition 12.2) of Q info itself. Then

(1) poe End(Q) /or all o, ce End(Q).
2) U o, e End(Q) for any o;e End(Q) and any index set I.
iel
B) a (U o)) = U go; and { U gy)o = U oo
i€l igl iel il
for any o, g; € Bnd(Q) and any index set I.
For any subgroup H of the group G we set
H:G=|¢g+XcG|HX =X},

G/H={@+Y<G|HYH=1Y]|.

Annali di Matematica 34



266 O. TamascHkE: On Permutation Groups

UNTSNIN

Levmma 124, - (1) G/H is a semigroup with respect to the multiplication
(X, Y)=> XY ={wy|xceX and ye Y|.
(2) UX;eG/H for any X;€ G/H and any index set I.
iel

B) XU X)) =U XX; and (U X)) X=U XX

iel ier iel iel
for any X, X;e G/H and any index set I

In particular, this lemma holds for ¢ = G//1 with H = 1. In order to com-
pare End(Q) with G/H we introduce the following motion.

DemNiTION 12.5. - Let A and A’ be algebraic structures wilh
1. a binary algebraic composition (writlen as multiplication),
2. a composition U which is defined for any index sel.

Then a mapping o: A —> A’ is called a homomorphism of 4 into A" if
(1 (ab)w = (aw) (bo) for all abe A.

(2) (U a)w = U a;w for any a;e A and any index set I.
il i€l

Now we apply these concepts and notations to our permutation structures.

LeMMA 12.6. - Let (Q,G,) be a permulation structure. We denote by
(Q,G,-) the algebraic structure which is given by Q, (n tlhe sense of 12.1), @
(in the semse of 12.4), and the external algebraic composition
(AX)—» AX=1{8x|0eA and xe X!.
Tlen

) @QUDX=AXUTX for all 5,Te O and all X e G.

(2) MXUY)=3aXUAY for all Ae Q and all X,Ye G
3} (AX)Y = AXY)

for all Ae Q and all X,Ye @
4) Al =4

fer all Ae Q.

DerFINiTION 12.7. - Let (Q,G,+) and (Q.G,.) be permulation structures.
A pair (o) of mappings

6:0—Q and 1: GG

is called @ homomorphism of (Q,G,) into (,G,+) if
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(1) ¢ is a homomorphism of Q into Q' (in the sense of Definition 12.2),
(2) © és a homomorphism of G into G (in the sense of Definition 12.5),
(3) (AX)o = (Ac) (Xt) for all Ae Q and all X e G.

Lemuma 12 8. - Let (o, 4) be @ homomorplism of the permutation structure
(Q, G,+) into the permutation structure (Q,G',-). Then (¢, &) is a homomorphism
Of (ﬁ,@,-) into (S—Y-,é’;’}-

Our intention is o link each homogeneous space with an isomorphy class
of double coset semigroups. For this reason we introduce a concept of endomor-
phism. This concept will show fo be more importani for the structure (Q, G,.)
than the analogous concept for the permutation structare (Q, G,.) itsell. Yet,

to be complete, we discuss briefly its meaning for the homogeneous spaces
first.

Derinition 12.9. -~ A4 homomorphism (¢, of o permulation structure
(Q,G,+) info itself is called an endomorphism of (Q,G,-) if ¢ ==ig (the iden.
tity mapping of G). We demote by &,G,) the set of all mappings 9 :0 —Q
such that (9,ig) is an endomorphism of (,G,+).

6(,G,+) is the set of all mappings ¢: Q —Q such that (xg)p=(x¢)g holds
for all «e QO and all ge G. 6(0,G,-) is a semigroup with respect to the com-
position of mappings; ég is its unit element.

TrEOREM 12.10. - Let (0,G,.) be a homogeneous space and o€ . Then
Nazgge Glg—l Gocgé Ga}
is a subsemigroup of the group G for which the following hold.

(1) For every ¢ € &Q,@,-) there exists an element g € N, such that
prax-—>agle (e &)

(2) For every ge N, the mapping
Pgioax—>agte (xe ()

is an element of &Q,d,).

(3) The mapping
19—

is an epimorphism of the semigroup N, onto the semigroup 6(Q,G,.)
such that
Ker & = G-
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Every v e 6(Q,G, ) is a surjective mapping which acts fixed point freely
on O if ¢ = ip.

Proor. 1. - For every g € 6(Q,(,-) there exists a ge & such that ap=ag,
The mapping ¢ is uniquely determined by g because of

(oxe)p == (o) = (ag— ') = af{g—'x) for all x e G.

For every g, € G, we have
ag™r g, = (a9)g, = (0g,)p = oy = ag—*

and hence g g, ge G, which means ge N,.

II. Take any ge N,. If ax=oay for x,ye G, then x =g,y for some
9. € (1, and therefore

agte =og Tt g, Y = Mg 9. 99T Y = ag Y.
It follows that
Pyt ax —> ogTie

is a well defined mapping, and if is easy to see that ¢, e 6(Q,6G,.).
II1. Pgn = 9, on for all g,he N,

shows that & is a homomorphism of N, into &,@,+). ¥ is an epimorphism
because of (1). g,=14q if and only if ge ,. The rest of the statements is
easily proved.

CoroLLARY 12.11. - If (Q,@G,+) is a lomogeneous space such that ) is
a finite set, then N, =9Ua(G,) is the normalizer of G, in G, therefore it is a group,
and &Q,G,-) is isomorphic to the group 9e(G,)/ G,, and hence is a group itself.

Theorem 12.10. shows that there will be many homogeneous spaces where
the endomorphism semigroup &(Q,G,-) reduces to the identity mapping éq>
for instance if G, is not normal in @, and if there does not exist any subse’
migroup of G properly between G and G, (i. e. Gmp is a strongly primitive
permutation group on Q in the sense of [7], Definition 8.5 and 8.6b). But the

endomorphism structure of (Q,G,+), as we shall see, still has some significance
oven in cases where 6(Q,G,+) = {igl.

DeriNiTiON 12.12. - Let (£,(,:) be a permutation structure. A lhomomor-
phism (o, t) of (ﬁ,:G_,-) into itself (in the sense of Definition 12.,7) is called an
endomorphism of (Q.G,-) if 1=1ig (the identity mapping of G). We denote by
6(Q,G,-) the set of all mappings o: Q—> Q such that (s, iz) is an endomor-
phism of Q,G,).
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8Q,G,-) is the set of all mappings o:0 — Q such that (U 3;)6=UA;0
_ i€l _ iel
for any A;e Q) and any index set I, and (A X)o = (Ao)X for all A < Q and all
XeG.

Proposition 12.13. - Let (Q,G,-) be a permutation structure. Set & =
89Q,G,) and &=8%,G,-). Then
(1) ate & for every o, teé.

(2) Ur;e b for any t e & and every index set I.
iel

(8) t(Uty=U1t; and (Ut =Uts for any 1,z e 8 and any index sel I.
ier iel iel iel

4) pe & for all geé.

This remark shows that 6(Q,@,-) is an algebraic structure of the same
type as G/H (Lemma 12.4), and now we come to the object of this section.

TurEorEM 12.14. - Let (Q,G,-) be a homogeneous space and «e Q. Then
8(Q,G,-) is isomorphic to G /G, (in the sense of Definilion 12.5.

ProOF. - For every A e ) there exists an X e G such that
A=oaX,
since (Q,(,) is a homogeneous space. Clearly

Xa= G, X

is the largest element of the set | Ye G[A =aY} with respect to the set
theoretical inclusion, that is X; = {ge G|ag e Al. Note that

Xse G,: G.

For every te é(ﬁ,G—,-) we set

4, =X, .
From
2 d. .G, =(1)G,=(al@,)t = a1t =ad.

and the maximality property of X,. it follows that

A4.G, =G, A4, = 4.
and therefore

A, € G/G;.
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t is uniquely determined by A4, since

At = (aXyt = (at) Xy = «d. X, for all Ae Q.
Therefore

wit—> A7 =g |ged.}

is an injective mapping of 6(Q, G,+) into G/G,. w is surjective as well, for
it we take any Be G/G,, then B—'e G/G, and

T:d = a B X,
is an element of @v(ﬁ,?},-) such that 4. = B~ and 1o = B. Furthermore
2l =90t = (ad,)t = (at)d, =ad 4, for all o1 e 5(5,6?,-).

It follows that 4. A, < A,.. Becanse of G,4.4,= 4.4, the product 4.4, is
the largest of the subsets Y of G such that ad,.,=0aY, and hence we have

Aar:ATAm
A;-;IZA;-LAT—"I.
Also
ad =aUt; )= Uar; = Uad, =a U4,
_LEJIT»' iel iel igl ier '

for any ;e 6,0,G,-) and any index set I. By the same reasoning as before
we obtain
A7 = U4

Ut g1 ™

iel

We have proved that w is an isomorphism of 6(Q.G,+) onto G/G, according
to Definition 12.5.

G/ G, is already completely determined by the double coset semigroup
G/G,. Since the category of all double coset semigroups contains the category
of all groups, it seems more elegant to deal with double coset semigroups
in the following. We recall the definition of the morphisms of the category
of all double coset semigroups ([3], Definition 2.1).

Let G and @ be groups, let H be a subgroup of &, and let H be a sub.
group of G. Then a mapping 7: G/H—» G'/H is called a homomorphism of
the double coset semigroup G/H into the double coset semigroup G'/H' if

(1) (XY = (Xn)(Yy) for all X,Ye G/H.
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(2) For every HgH, ge G, there exists a HgH', g e G, such that
(HgHm = HgH and (Hg—H)y = H'g'—H'.
(3) Xmy = U (HgH)m for all Xe G/H.
HgHE X

Every homomorphism v of G/H into G'/H’ can be uniquely extended to
a homomorphism 7 of G/H into G'/H' in the sense of Definition 12.5 by defining
Xn = U (HgHy, for all Xe G/H
HgHS X

(cf. [3], Proposition 2.2). But such a homomorphism % has, apart from the
properties of Definition 12.b, the further property that if maps every double
coset HgH onto a double coset H'¢g'H', and Hg—H onto H'g—H'. In the follo.

wing we call a mapping {: G/H — G /H a homomorphism if and only if, in
addition to 12.b, this condition is satisfied as well, that is if and only if there

exists a homomorphism % of G/H into G'/H such that { = ». In particular, two
double coset semigroups G/H and (¥/H' are isomorphic if and only if G/H aud

G'/H' are isomorphic in the sense just defined.
Now we apply our rematks to the endomorphisms of homogeneons spaces,

Let (Q,(,+) be a homogeneous space. By Theorem 12.14 6(Q,G.+) and G/ Gy
are isomorphic in the sense of Definition 12.5. The proof of Theorem 12.14

shows that for every double coset G,g@, there exists a te 6(5,(—};-) such that
o = G,g1q,
and that this holds if and only if
at = alf,gG, = (ag)G,.

Let (Q',G,+) be a homogeneous space and assume that there exists a
homomeorphism % of G/G, into G'/G', for «' e . If we denote by o' the iso-

morphism of &Q',&,-) onto @'/ G, which is given by Theorem 12.14, then
for every G,gG,, ge G, there exist o, v e 6(Q),G',-) and ¢ € & such that

o' = (GG, =GrgF,,
To' = (Ga«gGaW] = G!a’g'G'a"

This, again by the proof of Theorem 12.14, holds if and only if
u!ol . alGla’g/GIa/ — (algl)Gla,'
OC,’C, e at(}ia’gf_l G’a/ — (Gﬂ’ g,—l}G’a’-



272 O. Tamascuke: On Permutation Groups

The orbits (ag)(f, and (ag~)(, and also the orbits (¢'g"\G', and (o', are
paired orbits of G, and of (', respectively (WIELANDT [6], p. 45, Definition,
and [7], 10.9).

‘We recall briefly the concept of paired orbits. By Proposition 2.5 for
n = 2 (that is [7], 10.6) we hive, for fixed a €, the following one-to-one
correspondence between double cosets, orbits of stabilizers, and binary G-re-
lations.

GagGa <> (OCQ)Ga <> (“7“9)(;

For any binary relation B on Q we denote by

B=1{(8, V)|, B) e Bt
its converse relation. But
((“)dg}G)* - (“7“9_1)(;

and therefore we have the analogous correspondence
(Goug Gyt = Gog— G, <> (ag™) Gy <—> (2,097 G = ((¢,29) G)*

which gives the orbit (xg=*)G, as the reflexion of the orbit (¢g)G, by « ([61,
p. 44), and (2g)G, and (ag—)G, are called paired. We write ((2g)G,)* = (2g™")Go

For this reason we introduce the following involutionary antiautomorphism
T—1t* of (Z(ﬁ,G:‘). For every £ €6(Q,G,+) there exists one and only one
€ 6(0,G,+) such that for the isomorphism o of Theorem 12.14

H = (tw)"?
holds. If is clear that

i — 1 (Ut)* = Ur®, (o1)* = 1%¢* for all o,1,7;€ g(ﬁ,’é,-).
iel iel

Let us return to the homomorphism v:G/G,—> G'/G». The mapping

e = oy~ is a homomorphism of 6(0,G,-) into &Q',@,-) in the sense of

Definition 12.5 with the additional property that for € &(0,G,-)

at =BG, for some BE€Q
imnplies
o(1e) = B'G', and o/(t¥e) = (§'G',)* for some F'€ Q"

This property, which relates the orbits of stabilizers, is an essential part of
permutation structure. Therefore it is essential to define an own notion of
homomorphy for the endomorphism structures of homogeneous spaces such
that it corresponds with the homomorphy of double coset semigroups mentio-
ned above (3], Definition 2.1).
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G,+) and (QY,G,+) be Lomogeneous spaces.
5’,@’:-) is called o homomorphism éf

DerFiNiTioN 12.15. - Lef (Q,
A wmapping ¢ of 6/9.G,») into &
(1) & satisfies 12,5 (1) and (2),

(2) There exist letters o €0 and « €Y such that for € 6|0, G,

ot = B, for some 3E€Q
implies
a'(te) =BGy and a'(the) = (' G ) for some B EQ.
As a consequence of our discussion we can state the following.

ProrositioNn 12.16. - Let (Q,G,.) and (Q,G',+) be homogeneous spuaces.
For any «€Q and any o' € Q' we denole by v, and ', the related isomorphisms
of Theorem 12.14. Then

(1} or every homomorphism ¢ : @(—Q LG, ) é(})’,@’, <} {in (he sense of
Definition 12.1b) the mapping v : X — Xov, e o',y is a homomorphism of
the double coset semigroup G/G, inio the double coset semigroup G'/G ...

(2) For every homomorphism v:G/G,— G/ G, the mapping ¢ = v o'’y
is o homomorphism of 6(Q,G,+) into 6(Q,&, ).

(3) 6(0,G, ) and 6(Q',GF,.) are isomcrphic if and only if G/G, and
G' /G, are isomorphic.

Now we have arrived at that point where we can classify the homogene-
ous spaces by double coset semigroups.

Derixition 12.17. - Let (Q,G, <) be a homiogeneous space and o« € ). The
class |G/ G,] of all double coset semigroups isomorghic to G/G, is called ihe
type of (Q,G, ).

Since all stabilizers of a single lefter are conjugate in G, the type of a
homogeneous space ({,@, ) is independent of « € Q. In order to get an idea
of this classification we look at the following example. We take any group
G which has a non-normal subgroup H such that

G = HU HgH, g€ G-H.

Then the double coset semigroup T,= G/H has three elements H, HgH, G
and the multiplication table

Anngli di Matematica 35
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H |HgH| @
H | B Hgp! @
HgH|\|HgH| G | G
¢le | 6| 6|

LemMa 12.18. - Lel (Q,G, -) be a homogeneous space such that |Q|> 2.
Then G acts 2-fold transitively on Q if and only if (Q,G, ) is of type [T.).

Does a homomorphism (p,) of a homogeneous space (Q,d,:) into a
homogeneous space (Q,&,-) always induce a homomorphism & of 60,4, +)
into 6(Q,@, ), and, equivalently, a homomorphism v of the double coset se-
migroup G/@, into the double coset semigroup @/¢,,? What does «induce>
mean in this context ? The homomorphy of (¢,0) implies

((eg)Gojo = (a9) (g} (G, ) and G4 ¢ = Gy

Therefore if ':Eé(?],é, .) has the property
ot = (ag)G, for some g€ @G
then certainly we have to define te as the uniquely determined element

v € 6(Q),&,+) such that
() =(ap){gh)G o

holds. Equivalently we have to define

(Gocha)YI = G'a@(Q‘P)G'a@,
and therefore
X1 = G (X) @, for all X€G/G,.

With that definition X—X» is a mapping of G/G, into G'/G',, such
that the conditions (2) and (3) of a double coset semigroup homomorphism
are satisfied (p. 271). The only question now is whether

(XY)q = (Xn) (Yn) for all X,Y € G/G,

holds as well in which case Xy € ¢’/ ,, holds for every X € G/G,, and con-
dition (1) of a donble coset semigroup homomorphism is satisfied too. We start
with a sufficient condition, which is «almost» necessary as we shall soon see.

TaroREM 12.19. - Let (9,4) be a homomorphism of the homogeneous space
(Q,G, +) into the homogeneous space ((,G', «) which satisfies (8.), and 2 €Q.
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Then the mapping
N X = o (X)) o

is @ homomorphism of the double cosel semigroup G/G, inio the double coset
semigroup G'/G .
Proor. - (8,) implies
(29) (99) (Go §) = ((29) God = ((#9)9) G oy = (29} (9P} G'sp for all g€ G.
This is equivalent to
Gap (g9)(God) = Foaolgh)F o for all g€ 6,
and therefore for all X,Y € G/@, we obtain
(XY = @ XV Gy = G g (X) (Gub) (YO g

=G o (XY ) (o (YD) )
=(Xn)(X7).

We have proved that % is a homomorphism of G/G; into G'/G .

THEOREM 12.20. - Let (9,4) be a 1-fold homomorphism of the homogeneous
space (Q,G, «) into the homogeneous space (U, G, «) (i.e. ¢ is a surjective mapping
(Lemma 6.3)), and « € Q. Then the mapping

N X = G (XIG,,

i8 o homomorphism of the double coset semigroup G/G, into the double cosel
semigroup G /G, if and only if (¢,9) satisfies (8,).

PROOF. - Assume that 7 is a homomorphism of the double coset semigroup
G/@, into the double coset semigroup '/G',,, and set K=Ker,{p,J). Note
that K € G/G, because of G, = K (8.2(3)).

Kn = @ (K)o = Gy

is the unit element of G'/@,, by 8.2(5). Therefore K = Ker n where the kernel
of v is defined as the union of those G,gG,, g€ G, which are mapped by » onto
the unit element of G'/G,, ([3], Definition 2.6). Conversely g€ Kery implies

G’mp (gcp)er = (GagG'a)Yl = G,a;:

and hence g€ K. Therefore
K =Ker,(¢,9) =Kery.
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But Kery is a G/G,-normal subgroup of G ([3], Theorem 2.7), hence K is a
I-fold @/G,-normal subgroup of G (Lemma 7.4). Then (yx,ig) is a 2-fold
epimorphism of (@,: @, G, ) onto (K: G, G, ) (Theorem 8.6).

Qgiag—> Gag

is a bijective mapping of Q onto G,: @& and (9.,46) is an isomorphism of
(Q,G, -) onto (G,:G,G, -). Also

90t Kg — (ag)p = (a3} (gd)

is an injective mapping of K: @ into ', and (p,,¢} is a homomorphism of
(K:G, G,-) into (O, G ).
We take any g€ and any

Y € G o (gh)Gas -
Since ¢ is surjective there exists & € G such that
(29) (A) = (xh)g = (2g)y’
and hence
Gos (h) =G oy
Buat then
(G G = G,a@{h‘-mglo@ = G'm{g{p}glacy = (G,gG,)1

By [3], Theorem 2.7 this implies
KhK = KgK.
There exist k, k'€ K such that & = kgk' and hence

¥ G oy =G o (k) igh) () S G ulgd) (KD)
which shows that
G o0 (GP)F 00 & F oo (9) (K D).

The converse inclusion is trivial because of K¢ = &,, (8.2(3)), and therefore

(KgK)po = (Kg)po (Kb) = {ap) (¢} K) = (29) G e (9D) (KD)
== (29)F 54 (gU)F oy = (29) (9P)F oo
= (Kv,) (9¢)Gk,, for all g€G.

It follows that (po,d) satisfies (8,) since all stabilizers of one letter are
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conjugate in @ because (K:G, G,-) is a homogeneous space. Our homomor-
phism

(?74”) = (:PCG )éG) (CPK ;iG) (“PD 7('1)}
is the product of 3 homomorphisms each of which satisfies (,). Therefore (¢,9)

satisfies (S,) (4.2(2)) and, taking Theorem 12.19 into account, our theorem is
proved.

CoROLLARY 12.21, ~ For fixed o€ Q) the poir of mappings
(.G, ) > G/G, and (9,9) -7

is & functor of the category ¥, into the category of all double cosef semigroups.
For different choices of « we get naturally equivalent funclors.

If we apply Corollary 12.21 to the Theorem of Jordan and Holder for
1-fold G/H-composition chains 11.10, then we obtain the Theorem of Jordan
and Holder for G/H-composition chains [4], 3.3, with the double coset semi-
groups L; ,/L; as factors, '

Finally we ask for those homomorphisms of a homogeneous space which
induce isomorphisms of the double coset semigroups.

THEOREM 12.23. - Let (9,9) be o 2-fold pre-isomorphism of the homoge-
neous space (2,4, ) into the homogeneous space (UG, ) and a €. Then
N X = G XD)G 50
18 an isomorphism of the double coset semigroup G/G, onto the double coset
semigroup @ /G ..

Proor. - Because of theorem 12.19 all what we need to show is that 3
is a bijective mapping. ¢ is a bijective mapping by Definition 5.1. Therefore
for every g'€(@ fhere exists a g€ 6 such that

()19 ) = (aglp = (ap)g’,
and hence
(GG = Gia(p(gl‘pJG/a{D = G’a@g,G’a«p-

This proves that v is surjective.
If (Q.g9G.)m = (GG, )y then, using (8,),

GFoupl g uy = Footh )G 45 = G L, (M PG L))
There exist '€ @ ,, and y € G, such that

gh=x(hd) (yh).
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This implies '€ G). Therefore there exists x € ¢ such that ' = a$. Furthermore
() = (a9) () = axp

means that x©€@, because ¢ is bijective. Since ¥ is a monomorphism by
Definition 5.1, we have

g=ahy€G,hG,,

and hence G,gG, = G,hG,. Therefore v is an isomorphism.

CororLaRY 12.23. - 2-fold pre-isomorphic homogeneous spaces are of the
same type. '

So far our investigations have dealt with the relationship beiween homeo-
geneous spaces and double coset semigroups. The coset semigroups did not
appear explicitly. For every homogeneous space ((,G,:) and « € the pair
(84 ,g) with

g, i0g—>G,g

is an isomorphism of (Q,G, -) onto the homogeneous space (G,: G, G, +). Therefore
we can take QO =@,:G without loss of generality. But then G, :6G is a semi
group with respect to the complex multiplication, and its subsemigroup which
is generated by the cosets @,g, g€@, is the coset semigroup of G modulo G,

If H is a subgroup of the group G, and H' is a subgroup of the group G"
then a mapping & of the coset semigroup of ¢ modulo H into the coset semi-
group of ' modulo H’ is called a homowmorphism it

(1) (XY)¥ = (X9) (YD),
(2) For every Hg, g € G, there exists a H'g, g’ €&, such that

(Hg)y = H'g' and {Hg™)3 =Hg —,

(3) X8 =U (Hg)d.
HgS X
It is now clear how one may proceed with these concepts, but we leave
any further discussion.
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