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Riassunto - Diese Arbeit versucht~ die Theorie der Permutationsgruppen vom • kategoriellen 
S tandpunk t  aus zu betrachten. J~s werden in  naheliegender ~Veise der Begri f f  der Per. 
mutat ionsstruktur  und der Begrif f  des Homomorphismus ei~er Permutat io~sstruktur  
eingefi~hrt (Abschnitt 1). I n  der so entstehe~den Kategorie aIler Permutat ionsstrukturen 
werden die HomoJnorphismen klassifiziert gem~t ihrem Verhalten gegeni~ber den Wie. 
landtschen G-Relationen und den Bahnen der Stabilisatoren von endlich vielen Zif fern 
(Abschnitt 3). Jedem Homomorphismus rvird sein Grad zugeordnet (Abschnitt 4). Diese 
Begriffsbildn~gen stehen in  engem Zusamme~hang mit  ei~er Verallgemeineruug des 
Normalteilerbegriffes der Gruppentheorie. Zu jeder nati~rIichen Zahl n und zu jeder Un. 
tergruppe H einer Gruppe G wird der Begri f f  der n- fach G/H-normalen Untergruppe 
eingefi~hrt (Abschnitt 7). Fi~r homogene R(~ume gilt ein I~omomorphiesatz (Theorem 8.5) 
analog z~m Homomorphiesatz der Gruppentheorie; er besagt unter anderem~ da~ der 
Kern  eines n-fachen Homomorphismus eines homogenen Raumes ei~e ( n - - 1 ) - f a c h  
~/~a-normale  Untergr~ppe yon G ist (~vobei G~ der Stabilisator ei~er Ziffer ~ ist). Es 
gilt auch die U m k e h r ~ g  dieses Satzes in dem Sinne, da~ jede (n-1)-fach G/H-normale 
Untergruppe K einer Gruppe G Kern ei~es n-fachen Homomorphismus des durch die Ne- 
benklassen Hg~ g e G~ de/inierten homogenen Raumes au f  den durch die Nebenklassen Kg~ 
g e G~ definierten hornogenen Raum ist (Theorem 8.6). Eerner gelten ein Erster und ein 
Z~veiter Isomorphiesatz fi'~r homogene R(~ume (Theoreme 10.1 u~,d 10.2). 

A u f  den Begri f f  der n- fuch G/H-normaIen Untergruppe gri~ndet sich der Begri / f  
der n- fach G/H-subnormalen U~deqgruppe (Defi~ition 11.1). t~s l ~ t  sich ~nter aq~de. 
rein ein Jordan-H61der-Satz  fi4r 1-fache G/H-Kompositio~sketten beweisen, wobei die 
Kompositionsfaktoren homogene Rgume sind (Theorem t1.10). 

I m  letzten Abschnitt 12 ~vird gezeigt~ da~ die von den zweiseitigen Nebenklassen 
G~gG~,  g ~ G~ erzeugte Halbgruppe G/G a fi~r den zugeh6rigen homogenen Rqum die 

Bedeutung einer Art  yon (<Endomorphismenring~ besitzt. 
Die Klasse [G/Ga] aller z~ GIG a isomorphen zweiseitigen Nebenklassen Halbgruppen 

~vird der Typ des homogenen Raumes genannt (Definitio~ 12.17). Dieser t~egriff liefe~'t 
eine Klassif izierung der homogenen Raume, bei der die 2-fachen Homomo~Thismen eine 
Rolle spielen (Theoreme 12.19~ 12.20~ 12.22), 

The way of thinking in terms of categories and of homological algebra, 
which is invading now almost every branch of mathematics,  does not seem to 
have gained much ground so far upon the theory of permutat ion groups. W e  
are trying in this paper  to set out in that direction. 

Our investigations are based on p e r m u t a t i o n  s t r u c t u r e s  which are triples 
([l,G,.) with ~ a set, G a group, and an external  algebraic composition (for 
which the dot stands in the third place) which gives the acting of G on t2 in 
the usual way (Definition 1.1). A h o m o m o r p h i s m  e f a  permutat ion s t ructure  
( D , G , . )  into a permntatio~l s t ructure  (~ ' ,G' , ' )  is a pair  (%~) where  ~ is a 
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mapping of g~ into D' and + is a homomorphism of G into G' such that both map- 
pings are compatible with the acting of G on £t and the acting of G' on gt' (Defi- 
nition 1.2). These two notions yield the category ~ of all permutat ion structures.  

This obvious approach itself does not lead very far. To make it more 
useful  we classify the homomorphisms of the permutat ion s t ructures  according 
to their behaviour with respect to two permutat ion concepts. 

The first of these two concepts is WIELAZqDT'S idea of n - n a r y  G-relations 
on ~2 ([7], § 10). For a positive integer n we say that a homomorphism (%~) 
satisfies (~,~) if it maps every n - n a r y  G'-relation on £t onto an n - n a r y  G'-re- 
lation on £t'. If  ,.~ is an epimorphism, then ( ~ )  trivially holds for every n. 
This fact shows that the conditions (~,0 are not of prime importance for our 
classifieation. 

More significant for the classification of homomorphisms are the orbits of 
the stabilizers of n letters. We say that a homomorphism (%~) satisfies ($,) 
if ~o maps every orbit of the stabilizer in G of any n tnot  necessari ly distinct) 
letters from t2 onto an orbi~ of the stabilizer in G' of the image letters. 

There  exist homomorphisms which satisfy (~,~)for every positive integer 
n, but do not satisfy (8,~) for any integer  n ~  1 (Lemmu 3.5). There also exis~ 
homomorphisms which satisfy (S~) for every integer n ~ 1, but do not satisfy 
(2~) for every positive integer n (Lemma 3.6). 

(~,~) is called an n-fold homomorphism (n a positive i n t ege r ) i f  ( ~ )  and 
($~) hold, and a O-fold homomorphism is simply a homomorphism in the ori- 
ginal sense. Every n-fold  homomorphism is also an m-fold  homomorphism 
for every non-negat ive  integer m ~ n. Therefore  we can assign to every ho- 
momorphism (%~) as its degree the largest integer n such that (~,~) is an 
n-fold  but not an (n-l-1)-fold homomorphism if such an integer exists, and 

if it does not exist (Definition 4.5). Every isomorphism has degree ~ ,  but 
the converse does not hold (Lcmma 4.7). 

For  every non-negat ive  integer  n the class of all permutat ion s t ructures  
together with their  n-fold  homomorphisms form a subcategory ~ of the cate- 
gory ~ of all permutat ion structures.  ~' coincides with $o. 

In  his In t roduct ion to [7] WIELANDT has remarked that the theory of per- 
mutat ion groups can be character ized as the theory of conjugate subgroups and 
their  intersections. Our approach to the theory of permutat ion groups proceeds 
in that direction as well. For homogeneous spaces, i.e. when G acts transiti- 
vely on t2, the condition ($,~) is equivalent  to the following generalization of 
normal  subgroups. 

Let  n be a non-negat ive  integer, let G be a group, and let H be a sub. 
group of G. A subgroup K of G is called n-fold G/H-normal if 

t t  <= K and Kg (H ~ (h ... (5 Hx-) = Kg(K ~, (5 ... N K ~,~) 

for all g, x~, ..., ~e,~ G. Thus a 0-fold G/H-normal subgroup is simply a 
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subgroup of G containing H. A l - fold  G/H-normal  subgroup is a G/H-normal 
subgroup in the sense of [3], Definit ion 1.9. To every subgroup K of G 
containing H we assign as its G/H-degree the largest non-negat ive  integer 
n such that K is n-fold, but not (n-{-1)-fold G/H-normal, if such an integer 
exists, and ~ if it does not exist (Definit ion 7.6}. Every normal subgroup of 
G containing H has G/H-degree c,z. As an il lustration we look at the al ternat ing 
group A~ which provides an example of a subgroup of G/H-degree 1 (7.13). 

For  every homomorphism I%'~t of a homogeneous space (~2,G, .) we de. 
fine the kernel Ker~.(~,~) of (%,5) with respect  to :¢ s gt as the subgroup of 
all those elements of G which # maps into the stabilizer of ~ in G'. The 
Homomorphism Irheorem 8.5 shows that Ker~, (%~) of an n-fold  homomorphism 
(:~,,.~) is an ( ~ - - l ) - f o l d  G/G~-normal subgroup of G where G~ denotes the 
stabilizer of a in G. If, in addition, ~ is an isomorphism of G, then the image 
space (~2~,G~,.) is isomorphic to the homogeneous space (Ker~ (%#): G, G,.) 
which is given by the mult ipl ication of the cosets Ker~(%~)g, g e G, by the 
elements of G. Conversely the Canonic Epimorphism Theorem 8.6 shows that 
every (n - -1 ) - fo ld  G/H-normal subgroup K of G defines an n-fold  homomor. 
phism (~,iG) of the homogeneous space (H:G, G,.) defined by the cosets Hg, 
g e G, onto the homogeneous space (K:G, G, .} defined by the cosets Kg, 
g ~ G, where ~K: Hg--->Kg and is  is the identity mapping of G. 

These two theorems show that the ( n - -  1)-fold G/H-normal  subgroups of 
G are exactly the kernels  of the n- fo ld  homomorphisms of the homogeneous 

space (H:G, G, .). Therefore  G is called 1 - fo ld  G/H-simple (n a non-negat ive  

integer) if H ~ G a~ld if there exists no n-fo ld  G/H-normal subgroup proper- 
1 

ly between G and H. Hence  G is ~ - - ~ - ~ - f o l d  G/H-simple if and only if H 

is a maximal  subgroup of G. Fur thermore  G is called G/H-simple of degree 

L fold 
~ t  

if G is but not n - ~ - f o l d  G/H-simple, if such a non-negat ive  integer 

n exists, and G is called G/H-simple of degree 0 if such an integer  does not 
exist. For example, if G has a normal subgroup properly between G and H, 
then G is G/H-simple of degree 0. 

This notion of simplicity can be carr ied over to homogeneous spaces such 

a homogeneous space (t2,G, .) is n-fold simple (Definition 9.8} if G is that 

1 
i~---~ --fold G/G~-simple for ~e  gt (Proposition 9.9). Also (Q,G, .) is simple of 

degree 1 i - n or 0 if G is G/G~-simpIe of degree ~ _ ~  or 0 respectively. For in. 

stance (i2,G, ,) is simple of (the highest possible) degree 1 if G acts as a pri- 
mitive permuta$ion group on ~.  

We can prove the First  Isomorphism Theorem 10.[ for homogeneous 
spaces and n-fold  homomorphisms.  As for the Second Isomorphisms Theorem 
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102 we prove the following result .  If K is an n- fo ld  G/H-normal subgroup,  
and if L is any subgroup of G containing H, then K O  L is an n-fold  L/H-nor. 
real subgroup of L. But  in general the homogeneous spaces (KO L:L, L , . )  
and (K:KL, KL, .) will not be isomorphic, yet they are <<almost >> isomorphic. 
The bi jeet ive mapping (KNL)~c-->Kx together with the injection of L into 
KL is a homomorphism of (K N L:L, L, .) into (K:KL, KL, .) which satisfies 
(S~+~). Because  of this fact 

A homomorphism (%,~) 
mutat ion s t ructure  (~2',G', .) 

we introduce another concept. 

of a permutat ion s t ructure  (~2,G, .) into a per- 
is called an n-fold pre-isomorphism if ~ is a 

bi ject ive mapping, if ~ is a monomorphism, and if (S~) holds (Definition 5.1). 
Two permutat ion s t ructures  (~2,G, .) and (~2',G', .) are called n-fold pre-iso. 
morphic if they can be jo ined by a finite chain of homogeneous spaces such 
that for any two successive homogeneous spaces of that chain there exists an 
n-fold  pre- isomorphism from the predecessor  to the successor,  or from the 
successor  to the pre-deccessor  tDefinition 5.3). This concept gives a proper  
decomposit ion of the class of all permutat ion s t ructures  into classes of n-fold  
pre- isomorphic  permtltation structures.  Thus  our Second Isomorphism Theorem 
really is the Second Pre- i somorphism Theorem with the homogeneous spaces 
(K A L:L, L, .) and (K:KL, KL,.) as being (n-}-l)-fold pre- isomorphic .  

There are two far ther  reasons for introducing pre- isomorphy.  The first is 
shown in the following, the second will be mentioned later. The n - f o l d  G/H- 
normali ty  leads to a notion of n-fold G/H-subnormal subgroups (Definition 
11.1). W e  have various possibilities to assign factors to an n-fold G/H-sub. 
normal chain G-~- Lo :> LI >_~ ... ~ L~ ~ L. They are discussed at the beginning 
of Section 11. If  we take the homogeneous spaces (L~: L~_~, Li-~,-)  for i~1, ..., 
r as its factors, and if we try to prove a Jordan-HOlder  Theorem for n-fold 
G/H-composition chains, then such a theorem would not hold with the iso- 
morphy relation of the composit ion factors, but  it might hold with the n-fold 
pre- i somorphy relation. All that we can show in this paper  is that the Theo- 
rem of Jordan+ and HOlder is true for 1-fold G/H-compos i t ion  chains and 
homogeneous spaces as factors (Theorem 11.10). This is a genet'alization of 
the Theorem of Jordan  and HOlder for G/H-composition chains {[4], Theorem 
3.3) where the subgroups are the same but  where the factors are the double 
coset semigroups L~_JL~. 

Final ly  we suggest a classif ication of homogeneous spaces by double 
coset  semigroups.  For  any homogeneous space (~2,G,.) the class [G/G~] of 
all double coset semigroups isomorphic to the doable coset semigroup G/Ga, 
o:e~), is called the type of (~2,G,.). For  instance, all homogeneous spaces 
such that G acts 2-fold transi t ively on ~ with 1~2] > 2 are of the same type 
{Lemma 12.18). If  two homogeneous spaces are of the same type then the 
orbits of the stabilizers of one fixed letter are in one- to-one  correspondence,  
but  being of the same type implies more than this fact. W e  show that the 
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double eoset semigroup G/Ga has the meaning of a sort of <<endomorphism 
ring)> of the homogeneous space (Tileorem 12.14}. Every homomorphism (%~) 
of a homogeneous space (12,G,.) into a homogeneous space (~ ' ,G ' , . )  which 
satisfies ($2) induces a homomorphism of the << endomorphism ring>> of (~2,G, .) 
into the <<endomorphism ring~ of (~',G', .), and also a homomorphism of the 
double coset semigroup G/G~ into the double eoset semigroup G'/G'~9 (The- 
orem 12.19). If ~ is a surjective mapping, then condition (82) is also necessary 
for inducing a homomorphism of the (<endomorphism ring>> tTheorem 12.20}. 
2-fold pre- isomorphic  homogeneous spaces are of the same type (Theorem 
12.22 and Corollary 12.23). This is the other motive for introducing the con- 
cept of n- fo ld  pre- i somorphy since it subdivides the classes of the homoge- 
neous spaces of the same type. 

Several  concepts introduced in this paper can be extended to arbi t rary  
ordinal numbers  instead of non-negat ive  integers, but  we do not go beyond 
integers in this paper. 

1 .  - The Category o f  P e r m u t a t i o n  S t ruc tu res  

In  order to deal properly with permutat ion groups, a permutat ion group 
cannot  be considered as a mere  group, but as a mathemat ica l  s t ructure  which 
consists of a set of letters, a group, and an external  algebraic composition of 
that set with that group as its operator domain ([1], § 7, n o 2). 

DEFINITION 1.1. - Assume that 

(1) ~2 is a non-empty  set, 

(2) G is a group (whose uni t  element will  be denoted by 1), 

(3) (g,g)---> ~g is a mapping of  ~2 X G into ~2 s~tch that 
(~g)h = s i g h ) a n d  ~1 ~ ~ for all ~ e ~2 and all g,h e G. 

Then (~2,G, .) is called a permutat ion structure.  

The dot in the third place of (~2,G, .) stands for the external  algebraic 
composition. For clarity's sake we do not omit the external  composition in 
the notation of a permutat ion structure.  

For  every 5 ~ 2  and every X ~  G we write 

hX- -~{~x]~eh  and ~ceXf .  

For every g e  G the mapping 

gno : ~--> ~g 

is a permutat ion of ~ ,  and the mapping 

n n  : g --> g n ~  
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is a homomorphism of the group G into the symmetric  group S a ([1], § 7, 
n o 2, Proposition I}. 

The permutat ion s tructure (~i,G, .) is called faithful, if z:o is a monomor- 
phism, that is if Ker u o ~  1. 

(~2, Gr:~), .) is a permutat ion s t ructure  with respect to the external  composition 

)--> ) = 

We call (~,G~o, .) the canonic representation of (~2,G, .). 
To make the class of all permutat ion structures a category it is quite 

obvious how to define the morphisms ([1], § 7, n o 4). 

DEFINI~IO~ 1.2. - Let (~LG, .) and (~2',G', .) be permutation structures. 
Assume that 

(1) ? is a mapping of ~2 into ~', 

(2) + is a homomorphism of G into G', 

(3) ( ~ g ) ? = ( ~ ) { g + )  for all ~:s~2 and all g e  G. 

Then the pair (%¢) is called a homomorphism of the permutation structure 
(~2,G,.) into the permutation structure (~Y,G', .). The permutation slructure 

Im (%¢): .) 

with the restriction of the external composition of (~',G', .) to ~p  X G~ as its 
external algebraic composition is called the image of (%~). 

A homomorphism ('~,¢) is called an epimorphism, a monomorphism, or an 
isomorphism, i f  ¢p and ~ are both sur]ecti~e, injeetive, or bijective mappings 
respectively. 

PROPOSI~IO~T 1.3. - The class of all permutation structures together with their 
homomorphisms form a category 3. 

Here  the product of a homomorphism (%¢) of (12,G, .) into (~',G', o) with 
a homomorphism ((p',~b') of (~2',G', .) into (~",G", . ) i s  defined componentwise as 

(r,¢)  = (r r',+ +'). 

The pair (i~),is) of identity mappings is a homomorphism of the permn. 
tation s t ructure  (~2,G,.) into itself. 

For any" two permutat ion structures (gt,G,.) and (~2',G',.) a n d a n y  £e12 '  
the pair (O~,,,OG,) of mappings 

Oa, : Ft --> Ff a n d  0~,  : G ---> G' 
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which are defined by 

0~, = cd for all ~ e ~2, 

gO~. - - - -  1' ( == uni t  element of G' ) for all g e G, 

is a homomorphism of {~2,G, .) into (~.G', .). Such a homomorphism is called 
a zero-homomorphism. With  these remarks  it is easy to work out a detailed 
proof of 1.3. 

We  emphasize that our definit ions of epimorphism and monomorphism are 
naive ones. It  is easy to see that our epimorphisms are epic, and our mono- 
morphisms are menlo in the category ~. We  do not investigate the problem of 
determining all those homomorphisms which are epic, respectively monic, in 
the category ~. 

Every homomorphism of a mathematical  s t ructure  can be considered as 
an approximat ion of that s t ructure  by a - more or less - simpler one. For  
the homomorphisms of the permutat ion s t ructures  we are going to introduce 
a measure  for the degree of approximation.  

2. - G-re la t ions  and Orbi ts  o f  Stabi l izers  

In order to introduce a concept  of the degree of a homomorphism we 
recall  br ief ly some basic definitions and facts from the theory of permutat ion 
groups. 

Let  (~2,G, .) be a permutat ion structure,  and let n be a positive integer. 
We  set 

Then (g 'SG,- )  is a permutat ion s t ructure  with respect  to componentwise 
composit ion 

((a,, ..., a.),g)---> (:q, ..., a , ) g : = ( ~ t g ,  ..., a,g).  

DEFINJTIO~ 2.1. - (WaELA~D~ [7], 10.1). A subset R of I'V ~ is called an 
n - n a r y  G-relation on fl, i f  R is G-invariant,  that is i f  

(al ,  ..., ~ , ) g ~ R  for all (~1, ..., a,~) ~ R and all gE  G. 

DEFI~ITIO~ 2.2. - {[7], p. 391. An  n -nary  G-relation R o~ f~ is called 
minimal, i f  R ~= 0, and i f  for every n -nary  G-relation S on f~ 

S C R implies S --~ 0 .  

LEMMA 2.3. - ([7], Proof of 10.3). An n -nary  G-relation R on ~2 is mi. 
nimal i f  and only i f  R is an orbit of G on fP,  that is 

R = (~,, ..., ~ )  G for some (~,,  ..., ~,)  e ~" .  

Annali di Matematica ~1 
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LEM~IA 2.4. - ([7J, 10.3 ). Every  n - n a r y  G-relation on ~2 is the set theoretical 

un ion  of  m i n i m a l  n - n a r y  G-relations. 

For any n elements a~, ..., ~ e ~2, not necessar i ly  all distinct, we denote by 

G~ ..... ~n : -~ t g ~ G I ~ g  ~-- ~ for all  i = 1, ..., n } 

their stabilizer in G, which also is the stabilizer of (~1, ..., a,,)e~2 n in G. 

P:ROPOSITION 2.5. - For any  f i xed  ( ~ ,  ..., ~ ,_~)e ~'-~ 

:¢, G~ ...... ~,~_,:--> (~1, ..., :¢,-1,~-) G 

is  a mapp ing  of  the set of  all  orbits on ~ of  the stabilizer G~ .... .  ~,~_, of n-1 
(not necessarily all  distinct~ letters ~ ,  ..., ~,_~ of  ~2 into the set of  all  mini .  
real n - n a r y  G-relations on ~2. 

If  G operates (n-1)-fold transit ively on ~, then for any fixed (a~, ..., ~+~_~) 
the mapping of 2.5 yields a one- to-one  correspondence of the orbits of G~ ..... ,~,_~ 

to the minimal n -na ry  G-relat ions on ~2. For  n - - 2  that remark  was already 
made in [7], 10.6, 

What we try to point out by our rather  trivial observation 2.5 is that the 
orbits of the stabilizers of n-1 let ters also have structural  significance beside 
the n - n a r y  G-relations,  and, in certain instances, even a finer one than the 
G-relations.  In the next section we shall see that in general  the G-relat ions 
and the orbits of the stabilizers have independent  meanings for the homomor- 
phisms of permutat ion structures.  But  for the homomorphisms of the homoge- 
neous spaces the orbits of the stabilizers have the prior importance. 

3 . -  Homomorphisms which preserve G-rela t ions  and~ Homomorphisms 
which preserve Orbits of Stabilizers. 

Let  n be a positive integer, and let (%+) be a homomorphism of the per- 
mutat ion s t ructure  (~2,G, .) into the permutat ion s t ructure  (~2' ,G', .) .  Then 
(¢~,~) also defines a homomorphism (~ ,~ )  of the permutat ion structure (~ ' ,  G,.) 
into the permuta t ion  s t ructure  (~2",G ', .) by the componentwise definition 

(al, . . . ,  ~,)'~, =(~1~, ..., a ,~)  for all (a,, ..., an)e 12" 

which yields 

((:q, ..., a , ) g ) ' % = ( ( a l g ) %  ..., ( a , g ) ~ )  

=( (~1  ~ ) (g+ ) ,  ..., (~ , .~) (g+)}  

= ( ( ~ ,  ..., ~ . )~ . ) (g+)  
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for all  (ax, ..., ~,,)e FV' and  all  g E G. 
Every  n - n a r y  G-re la t ion  R on Ft is mapped  by ~% into an n - n a r y  G'-re. 

la t ion R' on EV, name ly  

R % , = i ( a , ,  ..., ~,~)~,~l(a~, ..., : * ~ ) e R I ~ R ' = ( R ~ , ) G ' ,  

bat  not necessar i ly  onto R'. Obviously those homomorph i sms  will have a spe- 
cial  mean ing  which  have  the fo l lowing property.  

(~,,,) For every n - n a r y  G-relation R on ~t the image R ~ ,  is an n - n a r y  
G'-relation on iY. 

LEM]gA 3.1. - (~,)  holds i f  and only i f  

. . . ,  . . . ,  

for all (o~l, ..., ~,) ~ t2". 

This  follows f rom L e m m a s  2.3 and  2.4. 

LEM~A 3.2. - (~ , )  implies (~,,) for every positive integer m < n. 

PaooF.  - Assume tha t  the homomorph i sm (%+) sat isf ies  (~ , )  and m < n. 
Le t  S be a min ima l  m - n a r y  G-re la t ion  on ~ ,  hence  S=(o:~,  ..., a, ,)G for 
some (c¢~, . . . ,  c~,,)~ ~2"*. W e  set 

:¢~ = :¢,, for i = m +  1, . . . ,  n. 

T h e n  B = ( a ~ ,  .. . ,  a,,)G is an  n - n a r y  G-re la t ion  on gt, and  

R~% = (~l ~0, .. . ,  :¢,~)G' 

is a min ima l  n - n a r y  G ' - re la t ion  on gt' by L e m m a  3.1. Ba t  then  

is a min ima l  m - n a r y  G ' - re la t ion  on gt', and  therefore  (%~) sat isf ies  (~,,) by 
L e m m a  3.1. 

LEMMA 3.3. - Let (~,~) be a homomorphism such that + is an epimorphism. 
Then (~ , )  holds for every positive integer n. 

The proof fol lows f rom L e m m a  3.1. 
A_ssume now tha t  n > i. Every  s tabi l izer  G~ .. . . . .  ~,,_~ of any  n . - -1  le t ters  

f rom ~2(not necessa r i ly  all distinct) is mapped  by ~ into the s tabi l izer  of the 
images  :¢~ ~o, .. . ,  a~_~ ~¢ in G', name ly  

G ~, . . . .  ~_~ '~ ~ G' ~1 ~ ..... ~.-, ~, 



244 O. TAMASCHKE: On P e r m u t a t i o n  Groups 

and  therefore  every  orbit  of G,~ ..... ~,,_~ is mapped  into an orbit  of G'~,, ..... ~_,~, 
that  is 

but  usua l ly  not onto it. We shal l  look at those homomorph i sms  (%+) 
have  the fol lowing property.  

($,) For every element (~ ,  ..., a , )~£~,  the orbit a~G,,~ ..... ~,,_~ 
of  the stabilizer of  (a~, ..., o:,,_~) in  G is mapped onto an orbit 
of  the stabilizer of  (:¢~ ~, ..., a~,_~ 9) in G', that is 

which 

For n = 1 we set ~8~)---(g~). 

L E I ~ A  3.4. - ($,) implies (.5,,,) for every integer m such that 1 <  m < n. 

PROOF. - Fo r  every (a~, .. . ,  a , , ) e  ~'~ we set 

Then  

! 

O~ i 

I o:~ for i-----l, ..., m - - l ,  

~,,,-1 for i = 'm , ..., n - - l ,  

1 ~,, for i = n .  

= (~;, 9) a'~,~ ~ . . . .  T, ~ ' , , - ,  

G ~ 

proves (8,,,). 

LE~tMA 3.5. - There exists a homomorphism ('~,~) such that ($¢~) holds for 
every positive integer n, but ($,) does not hold for any  integer n > 1. 

Pf~ooF. - Take  any  doubly  t rans i t ive  p e r m u t a t i o n  group G' on £~' such  
tha t  I~'] > 2. Set  

f 2 =  / ( a , ~ ) [ ~ , ~ '  and a ~ l ,  

G---- G', 

: (~ ,~ )  ~ ~ ,  

~b ~ iG the iden t i ty  mapping  of 0. 

T h e n  

((~,~)g) ~0 = (o,g,~g)~ = ag = ((o~,~) ~)g = ((o~,~) 9) {g+ ) 
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for all let ters (%~)E~2 and all g e  G, and therefore (%~) is a homomorphism 
of (~,G,-)into(~T,G',.). There  exist letters (g~,=~), (~2,~)~ ~ because of I~2'1> 2. 

G(~,,~) is the stabilizer of the single let ter  (:%,a2)e 12 in G. 

Gla,,~) ~ ~---G'~,,~ is the stabilizer of the letters ~ % , = ~ '  in G'. 

G'I~,,~:)~-----G'~ is the stabilizer of the single let ter  :creW2' in G'. 

Therefore  we obtain 

((~2,a3)G(~, ,~) }~ --~ ( (a2 ,~)~)IGt~, ,~:  ) ~) 

because of the double transit ivity o[ G' and of ll2'l > 2. This fact violates (S~) 
and hence also ($,,) for every n :> 1 by Lemma 3.4. But ( ~ )  holds for every 
positive integer n because o[ Lemmu 3.3. 

LEMMA 3.6. - There exis ts  a h o m o m o r p h i s m  (%~) such that  ($,) holds for  
every integer n > l, but ( ~ )  does not  hold for a~y  posit ive integer n. 

PRoot~. - Let G' be a transit ive permutat ion group on ~2', and take any 
subgroup G of G' such that G'~__< G < G' for :¢e~2'. Set ~ 2 = ~ G  and let 
and ~ be the injections of $2 into ~' and of G into G' respectively. Then  (%,b) 
is a homomorphism of (~,G, .) into (~T,G',.). For  every n >  1 and every 
(:%, ..., an - l ) e  l'~ "-~ we have 

! ! 

since all G'~ i are coniugate, to G'~ in G. Therefore  

G' --~ (:¢, ~) ~v ..... ~,H~ 

which means that ($,) holds. 
On the other  hand 

( (al ,  . . . ,  a,,)G)%o ---- (a l ,  . . . ,  ~,)G ~ ( ~ ,  ..., ~n)G' = (~1~, , . . ,  an~)G' 

for every (~1,..., :¢,~)~2" and every positive integer  n. Therefore (2{.) does 
not hold for any positive integer  n. 

4. - T h e  D e g r e e  o f  a H o m o m o r p h i s m  

Our investigations of the foregoing section give the background for the 
following notion. 
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DEFINITIO~ 4.1. - Let n be a positive integer. A homomorphism (~,,~) of the 
permulalion structure (~2,G, .) into the permutation structure (~2',G', .) is cal. 
led an n-fold  homomorphism i f  both (~,,) and (S,) hold. Every homomorphism 
according to Definition 1.2 is called a 0-fold  homomorphism. 

(?,+) is a 1-fold homomorphism if and only if every G6-orbit  on ~27 is 
also a G-orbi t .  Remember  that ($~)-~-(S~) by definition. 

LEMMA 4.2. - Let n be a positive integer, let (~,~) be a homomorphism of 
the permutation structure (~,G, .), i;~to the permutation structure (~Y,G', .), 
and (~',~') be a homomorphism of the permutation slructure (12',G', .) into the 
permutation structure (~", G". ). Then for the homomorphism (~' ,  ~ ' )  of ( ~,  G, .) 
into (~2",G", .) the following hold. 

(1) I f  (%~) and @',,.~') satisfy (g~, then (~'~',~') satisfies (~ ) .  

(2) I f  (%~) and t~','~') satisfy ($,), then (~ ' , ~ ' )  satisfies (~,). 

(3) I f  (%~) and (~',~') are n-fold homomorphisms, then (~' , ,~ ' )  is an 
n-fold homomorphism. 

PROOF. - I. Let  (%~) and (~' ,~')satisfy (~,,). We have (~')~ = ~,~'.,, and 
for all (~i, ..., ~ ) e  ~ ~ 

( ( ~ ,  ..., ~ ) G ) ( ~  ~')-----(((~, ..., ~,)G)~,)~, 

= (:¢~ ~ ,  ..., ~, ~ )G . 

Therefore ( ~ )  holds for ( ~ ' , ~ ' ) .  

IL  Let  (%~) and @',~') satisfy (~) .  Then for all (a~, ..., a,~)e F~ '~ 

Therefore  ($~) holds for (~',+q/). 

I IL  (3) clearly follows from (I) and (2). 

From 4.2(3) and from the fact that for every non-negat ive  integer n the 
pair (i~,io) of identity mappings is an n-fold homomorphism of the permu.  
t.-ation s t ructure  (£t,G, .) into itself, we conclude the following 

PROPOSITION 4.3. - For every non-negative integer n the class of all per- 
mutation structures together with their n-fold homomorphisms form a category ~ .  

Note that ~o ~--- ~. 

LE~MA 4.4. - Every n-fold homomorphism is also an m-fold homomorphism 
for all non-negative integers m <~ n. 
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This  s t a t emen t  follows f rom the L e m m a s  3.2 and 3.4, and  from 4.i .  H e n c e  
we have ~ , ~  ~'n for all  n o n - n e g a t i v e  in tegers  m ~ n .  L e m m a  4.4 is also the 
basis for the 

D ] ~ o ~  4.5. - Let (%,~) be a homomorphism of the permutat ion slruc. 
lure (gt,G, . ) i n t o  the permutation structure (~2',G', .). We define the. degree  

of as 

deg ( % ~ ) =  

n i f  there exists a non-negative integer n such that (%~) is 
an n-fold but not an (n--~ 1)-fold homomorphism, 

~x~ i f  (%~) is an n- fold homomorphism for all non-negative 
integers n. 

LE~I~A 4.6. - Let (%¢) be a homomorphism of the permutation structure 
(gt,G, .) into the permutation structure (~',G', .)  such that ¢p is an injective 
mapping and ~ is an epimorphism. The~ 

(1) G~ ..... ~,~ ~ --~ G ' ~  . . . . . .  ~ for all (a~, ..., :¢,)~ gt '~ and all positive 
integers n. 

(2) deg (,%~) ~ c~. 

Especial ly ,  every  i somorphism of a pe rmuta t ion  s t ruc tu re  has degree c~; 
the more genera l  L e m m a  4.6 was poin ted  out to the au tho r  by DrE~RIC~ t:[ELMER. 

PROOF. I. - G~ .... , ~,~+ =< G'~, 9 ..... ~.,,~ holds by Def in i t ion  1.2 for  any  ho- 
momorph i sm (%+) wi thou t  fu r the r  assumpt ions .  By the addi t ional  hypotheses  
of our  l emma  the opposite inc lus ion  holds as well.  Fo r  if g'~ G'~,~ ..... :,,~, then  
there  exists  a g ~  G such tha t  g' =gq~ since q~ is an ep imorphism,  and  hence  

(alg)¢~ = (a~)(g+) --- (av~)g' = ~ for i ~ 1, . . . ,  n. 

I t  follows tha t  

alg---- a~ for i----- 1, . . . ,  n, 

s ince ¢~ is inject ive,  and hence  g e  G~I ..... ~,, and g ' =  g~ e G~I ..... ~ .  Thus  we 
have  proved (l). 

I I .  F o r  any  posit ive in teger  n(~,~) holds  by 3.3, and  (S~,) holds by (1). 
The re fo re  deg (~,~) ~ c~. 

LE~a51A 4.7. - There exist homo~norphisms of degree c~ which are not iso. 
morphisms. 

PRooF. - Let  (~2',G', .) be a p e r m u t a t i o n  s t ruc tu re  such tha t  G' has  at  
least  2 orbits  on ~2'. Le t  ~ be an orbit  of G' on ~ ' .  W e  set G ~ G', ~ ~ in jec t ion  
of ~2 into ~2', ~ ~ i6. Then (%~) is a homomorph i sm of {~2,G, -) into (~2',G', -) 
such  that  deg (~,~)-----c~, but  (%~) is no i somorphism.  
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5. - n - f o l d  P r e - i s o m o r p h i e  P e r m u t a t i o n  S t r u c t u r e s  

Before  we concen t ra te  on the ma in  subject  of this  paper ,  n a me l y  on ho- 
mogeneous  spaces,  we in t roduce  ano ther  concept  tha t  we shal l  need  la ter  for 
the Second I somorph i sm Theorem and for a genera l iza t ion  of the Theorem 
of J o r d a n  and tt(~lder. 

In  the fo l lowing let n a lways  denote  a posi t ive integer ,  and let (~2,G,-) 
and  (~' ,G' ,  .) be pe rmu ta t i on  s t ruc tures .  

DEF~T~O~ 5.1. - A homomorphism (%~) of  (~ ,G,  . ) into (~2',G', .) is called 
an  n- fo ld  p re - i somorph i sm i f  "~ is a bijective mapping,  i f  ~ is a monomorphi- 
sin, and  i f  (~,) holds. 

L E ~ A  5.2. - Let (~, ~) be an  n - fo ld  pre- i somorphism of(~2, G,. ) into (~2', G',. ). 
Then for all  ( ~ ,  ..., ~,, e 

(a',,G'~[ ,. . . . .  ,~_, )~-~ = (~,~-~)G~, ,-~ . . . . .  ~__1~  -1  

PROOF. - Def in i t ion  of (~n). 

D ~ F ~ O ~  5.3. - (gt,G, - ) a n d  (gt',G', .) are called n- fo ld  pre - i somo rphic  
i f  there exists a f in i te  number of  permuta t ion  slruelures 

(&2i,Gi, .) (i--~ 1, ..., m) 

with  the following properlies. 

(1) (~,G,  • } = ( ~2~,G~ .) and  ( ~ , ,  ,G,,, .) -~ (~2',G', .), 

(2) For every i ~  1, .,., m-1  there exists an  n - fo ld  pre- isomorphism ( ~ , ~ )  
o f  (~i,G~, .) into (~i+~,Gi+~, .) or of  (~2i+~,Gi+~, .) into (~2~,G~, .). 

Prcot, osI~m~¢ 5.4. - Let  (~2,G,.) and  (~2',G',.) be n - fo ld  pre- isomorphic  
permutat ion  struclures. Then there exists  a bijeclive mapp ing  ¢~: ~2---> ~2' such 
that  for all ( ~ ,  ..., ~ ) ~  £~" 

P n o o I ~ . -  Le t  ( ~ , ~ i ) a n d  (~2~,G,,.) for i ~ 1 ,  ..., m be n - fo ld  pre-iso- 
morph i sms  and  pe rmu ta t i on  s t ruc tu res  as in Def in i t ion  5.3. Set  

z~---- 1 if (~i, +~):(Qi,Gi, .)-->(12i+I,G~+I, ') ,  

z~ 1 if ( ~ , ~ ) : ( ~ 2 ~ + 1 ,  Gi+~,.)-->(~2~, G~,.), ~ ' ~ 1  ~ ~ .... 

Our s t a t emen t  now follows f rom the def in i t ion  of (S,), and f rom L e m m a  5.2. 



O. TAMASCHKE: On Permutation Groups 249 

LE)IMA 5.5. - Every isomorphism of any permulalion structure is an n-fold 
pre-isomorphism'~for every non negative integer n. 

6. - H o m o g e n e o u s  S p a c e s  

F r o m  now on we conf ine  our  inves t iga t ions  to those pe rmuta t ion  struc- 
tures  ( ~ , G , . )  whe]e  G acts t r ans i t ive ly  on 12. 

DEFINITION 6.1. - ([1], § 7, n o 6). A permutation structure (£~,G, . ) i s  called 
a homogeneous  space, i f  for any fixed ~ ~ 12 the mapping (~,g).-->:cg is a 
surjective mapping of  ~2 onto itself, that is i f  

= ~ G  for a e ~ .  

A permuta t ion  s t ruc tu re  (~2,G, .) is a homogeneous  space if  and only if 
G=a is a t rans i t ive  pe rmu ta t i on  group on ~2. 

PRoa~osI~IOZ~ 6.2. - Every homo~norphic image of  a honwge~eous space is 
a homogeneous space. 

PROOF. - Le t  (~,~) be a homomorph i sm of the homogeneous  space (~,G,.)  
into a pe rmu ta t i on  s t ruc tu re  (~ ' ,G' , . ) .  Then  12 ~o~G for every  a ~  12. Hence  
~ ~--- (c¢~)(G+), and  therefore  Im  ( % + ) =  (12 % G~, . )  is a homogeneous  space,  

LEM~fA 6.3. - Let (% #) be a homomorphism of  the homogeneous space (i2,G, .) 
into the homogeneous space (~',G', .). Then (% ~) is a 1-fold homomorphism i f  
and only i f  ~ is a surjective n~apping of  12 ohio 12'. 

PRoo~ ~. - I m  (~, # ) =  (t~qo, G# ,  
It  follows that  

.) and (~' ,  G', .) are homogeneous  spaces.  

~ 2 ~ ( a ~ ) ~ G , ~ )  and  12' ----- (a~)G' for every  a e O .  

There fo re  (% ~) is a 1-fold homomorph i sm if and  only  if the equa l i ty  ~2 ¢~ = 12' 
holds. 

PROPOSn'IO~ 6.4. - For every non-negative integer n the homogeneous spaces 
together with their n-fold homomorphisms form a subcategory 7£,~ of  the category ~,. 

We set ~ = 2re. T h e n ~ f ,  = ~ N ~ - .  

LEMMA 6.5. - Let G be a group, and let 1t be a subgroup of G. We set 

H: G-~ {Hglg~ Gt. 

Then (H: G, G, .) is a homogeneous space with respect to the external composition 

(Hx,g) --> Hxg. 

Annali di Matematica ~2 
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It  is well known that every homogeneous space (~2~G,.) is isomorphic to 
the homogeneous space (G~:G, G,.)  for any a e  ~ .  We  shall refine this sta- 
tement. We  shall see that the n-fold  homomorphisms of the homogeneous 
spaces are linked with a special class of subgloups  which we are n~w going 
to introduce. 

7 . -  ~,-fohl G / H - n o r m a i  Subgroups 

Let  G be a group, H be a subgroup of G, and n a non-negat ive  integer. 

DEFI~'ITION 7.1. - A subgro~rp K o f  G is called n-fold  G / H - n o r m a l  i f  

(1) H -< K, 

12) K g ( H  x~ (~ ... N Hx')  = Kg( K ~  N ... N Kx") for  all  g, xx,  ..., xn ~ G. 

LEMMA 7.2. - S ta t emen t  7.1(2) is  equ iva len t  to 

(2') K g ( t t  n I t x ' n  ... N tt~"-~ ) = K g K  N K ~  N ... N Kx" ~ 

for all g, x~, ..., x,,_~ ~ G. 

PaooF.  - Obviously (2) implies (2'). If, conversely, (2') holds, then 

Kg( H ~  N .. N H~") ~ Kgx~-~(  H N H ~ ~ N ... N H : ~  ~)x~ 

~-- Kgx~ - ~  K N  K ~'~-~ N ... N K~'~x~-~)x~ 

: K g ( K ~ N  ... N K~ ' )  

for all g,x~, .... x,~ e G. 

For n ~ 0  condition (2) can be considered as void, or lhe intersection of 
the empty set of subgroups can be considered as G. in either case we can 
state the following. 

LE~MA 7.3. - A subgroup K of  G is O- fo ld  G / H - n o r ~ a l  i f  a n d  only  i f  

H < _ K .  

For  n~-~-i condition (2 ') reads as 

(2'~) K g H  --- K g K  for al l  g e G. 

Under  the assumption of H ~ K it follows from (2~) that 

H g K  ~ K g K - ~  K g H  for all g e G, 

and, by taking inverses, 

KgH----  (Hg-~ K ) - ~  ~ (Kg-~ H )  -~ = H g K  
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and  t h e r e f o r e  

(2';) H q K  = KgH for all g e G, 

which  means  that  K is G/H-normal  in the sense  of [3], De f in i t i on  19.  Obvious- 
ly  (2~') impl i e s  (2~). T h u s  we have  shown 

LEMMA 7.4. - A subgroup K of  G is 1-fold G/H-normal  i f  and only i f  
K is G/H-normal .  

LEM}aA 7.5. - I f  K is an n - fo ld  G / H - n o r m a l  subgroup of G, then K is 
m- fo ld  G / H - n o r m a l  for every non-negative integer m < n. 

PROOF. - F o r  eve ry  g, x , ,  ..., x m e G  we set xm+~ . . . . .  x . = x , ~ ,  and  
we obta in  

Kg(H X~ N ... n H '~,~) = Kg(H,q N ... N H ~,~) 

= Kg(K~ n ... (~ K x.) 

= Kg(K x~ n ... n Kxm), 

and  hence  K is m - f o l d  G/H-normal  if it is n - f o l d  G/H-normal  and  m < n. 

DE)~INITION 7.6. - Let K be a subgroup of  G containing H. We define the 
G/H-degree  of  K as 

deg ~/H K 

n i f  there exists a non-negative integer n such that K is n - fo ld  
but not (n + 1)-fold G/H-normal ,  

oc i f  K is n - fo ld  G/ I t -norma!  for all non-negative integers n. 

LEM~A 7.7. - Let N be a ~wrmal subgroup of  G containisg  H. Then the 
G/It-degree of N is e~. 

L e t  n be a pos i t ive  in teger ,  and  le t  K be an n - f o l d  G/H-norma l  su b g ro u p  
of G. T h e n  by L e m m a  7.4, L e m m a  7.5 and  [3], Sec t ion  1, the fo l lowing hold.  

7.8. K = H(K (~ Kg) for all g s G. 

7.9. H <- L <-- G implies K L  = LK.  

7.10. H <- L <= G implies that KL is 1-fold G/L-normal .  

7.11. H <= L ~ G implies gYgs~(L)< ~ L s ( K L )  (where ~ G ( X )  denotes the ~wr- 
realizer of X in G). 

7.12. Assume that H <= N < L <= G, and let N be a normal  subgroup of G. 

Then L is 1-fold G / H - n o r m a t  i f  and only i f  L is normal  in G. 
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Our remarks  show that n- fold  G/H-normal i ty  can be considered as an 
approximation of normality. If H is a normal subgroup of G then every 
non-normal  subgroup K of G containing H has G/H-degree O. 

EXAI~PLE 7.13. - Let G = A 5  be the alternating group on 5 letters, and 
let H be a 5-Sylowgroup of  G. Then K = ~¢L~(H), the normalizer of  H in G, 
has G/H-degree 1. 

PROOF. - We take h-------(1 2 3 4 5) and set H----- < h > .  Then K ~  .<h,k> 
for k = ( 2  5) (3 4). The double coset decomposit ions 

G--- - -KUK(1 2 3 ) H - - ~ K U K ( 1  2 3 ) K  

show that K is 1-fold G/H-normal.  0e ~ (2 3) (4 5) centralizes k, but  does 
not normalize H. Therefore H O H ~--- 1, but  K C~ K ~ - -  < k > .  With  g = h ~ we 
obtain 

Kg(H O H ~) = Kg ~ Kg L) Kg-~-~ Kg(K (~ g ~). 

This inequal i ty  shows that K is not 2-fold G/H-normal,  and our statement 

follows. 

8. - The H o m o m o r p h i s m  T h e o r e m  

In the following let (~,~) be a homomorphism of the homogeneous space 
(12,G, .) into the permutat ion s t ructure  (~2',G', .). 

DEF~I~IO~r 8.1. - For every ~ e ~2 

is called the kernel  of (% 4) with respect to ~. 

LEi~II~A 8.2. - (1) (Ker~(%~))g~Ker~g(%~) for all ~ e ~  and all gE G. 

(2) { Ker~.(%~)[a ~ ~2f is a class of conjugate subgroups of G. 

(3) G~-< Ker~, (~, 4) for every ~ ~ ~2. 

(4) Ker ~-< Ker~(% 4) for every ~ e ~. 

(5) (Ker~(% ~))~b <__ G'~ for every o~ ~ ~2. 

The proof is obvious. 
We  denote by Ker ~ the equivalence relation on ~ which is defined by 

% that is for o~, ~e  ~ we set 

~ [~ (mod Ker  ~) i f  and only i f  ~ =  ~q~. 

The equivalence class of a e ~2 modulo Ker~  is denoted by-a, and ~ = ~ 2 / K e r  ~ 
denotes the set of all equivalence classes of ~ modulo Ker% 



O. TAMASCHKE: On Permutation Groups 253 

We denote by g-->g=gKer4 the canonic e p i n o r p h i s n  of G onto G-=G/Ker4.  

For every subgroup H of G we write H = H K e r 4 / K e r  4, 

LEMMA 8.3. - ~,  g) ---> ~ g = ag 

is a mapping of ~ X G into ~ which makes 

(g~, G, • )---- (~2/Ker~,G/Ker4,  • ) 

a homogeneous space. 

PROOF. - If  ~ = ~  and g = h  for ~ , ~ 9 ,  and g, h e G ,  then 

(:¢g)~ ---- (~0)(94) ~---(~:P)(h4t---- (~h)~ 

and hence 0~g = ~h- 1.1(3) is easily checked.  

PuoPosI~ioN 8.4. - 

(1) ~ :~-->~-~ is a bijective mapping of  ~ = t2 /Ker~  onto ~2~,p. 

(2) ~:g-->g~ is an isomorphism of  G = ~ G / K e r 4  onto G+. 

t3) ( ~, 4) is an isomorphism of (t2, G, .) onto I n  (% 4) = (~l~,G4, "). 

PRooF. - (1) and (2) are obvious. For  all ~ e ~  and all g EG 

(~g)~ = (~gl~0 = (~g/:~ = (*¢?) (g4) = (:q0)(g4) 

holds. Therefore  (% 4~) is an i somorphism of (~'~, G,.) onto Im(~, 4)==(~2%G4,.). 

TI~tE HOMO~ORPI-IISM THEOREM 8.5. - Let n be a positive integer and as. 
sume that (%4) is an n-fold homomorphism of the homogeneous space (~2,G,.) 
into a permutation structure ( ~2',G',.). Set K~ = Ker~(%,~). Then for every z, e t2: 

(1) K~ is an (u- -1)- fo ld  G/G~-normal subgroup of G. 

(2) Ka is an ( n - 1 ) - f o l d  G/G~-normal subgroup of  G--~ G/Ker,5. 

(3) I n  (:p,+) is isomorphic to the homogeneous space (/(~: G ,  G,.). 

PROOF. - I. For  n =  1 s ta tement  (1) holds by 7.3 ancl 8.2(3). Therefore  we 
c a n  assume that  n >  1. Take any e lements  g , x ~ ,  . . . ,  x ~ _ t e  G B y  7.2 we have 
to show that  

K~g(G~ N G~ ~ (~ N x, G~ ) =  K~g(K~ N K~ ~ N (3 K':"-~ 
" "  " ° "  Ct 1 ,  
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We set xl-----1 and 

~ x ~ '  for i - ~ l ,  ..., n - - l ,  and ~,,---~g. 

Take an Z y ~ K~g(K~ G K ~  ~" N ... n K~"-,). There exist elements 

k, k~ ~ K~ and l ~ K~ N K~ ~ n ... n K~"-' 
such that 

Therefore 

y = k g l  and l ~-~-k~ ~ for i~-~ 1, ..., n -  1. 

which means that l'~,~G'~.,~, . . ,  ~.,~ and, by property ($~) of (%¢), 

Hence there exists 

such that 

which implies 

(~y)~ = (~ ,~) (h¢) ,  

( ~ )  (g l )¢  = ( ~ ) ( g h  )¢ , 

( ~ )  ( g l h - l  g-1),~ ~ ~ , 

g lh-1  g-1 ~ K s ,  

gl e K~ gh  , 

y -~ kgl e K~gh ~ K~gG~, ..... ~,,_, -~ K~g(G~ N G~ ~ n ... N G~ ~-~ ). 

Therefore Kag(K~ N K~ ~ N ... N K~ '~-~) ~ K~g(G~ n G~: ('1 ... © G~ ~-~ ). The con- 
verse inclusion holds by 8.2(3!, and we have proved that K~ is (n--1)-fold G/G~- 
normal. 

II. The canonic epimorphism g - - > g ~ g K e r , ~  of G onto G~-- G/Ker  ,¢ clearly 

maps K~ onto an (n - -1) - fo ld  G/G~-normal  subgroup of G. 
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I I l .  ~' K..x-->~x~-~-~x is a bijeetive mapping of / ~ :  G onto ~t such that 

for all x, g e G. Therefore (s, i~) is an isomorphism of (K~: G,G,.) onto (gt, G,.). 
(3) now follows from Proposit ion 8.43). 

TEE CA~O~IC EPIMORPttIS~][ TKEORE~ 86. - Let n be a positive integer, 
let G be a group, H a subgrottp of G, and K an (n--1)-fold G/II-normal 
subgroup of G. Denote by ~K the surjective mapping Hx --> Kx  of H : G onto K : G, 
and by iG the identity mapping of G. Then 

(1) (¢~ic,io) is an n-fold epimorphism of the homogeneous space (H: G, G, .) 
onto the homogeneous space (K: G, G,.). 

(2) KerH (~K fiG) = K. 

We call (~K, i6) the canonic epimorphism or the projection of (H: G, G, .) 
onto (K:G, G,.), and we call (K:G, G,.) the faclor space of (H: G, G,.~ modulo 
K. H% write (H:G, G,.I / (H:K, K,.): : ( K : G ,  G,.). 

PROOF. - (~:g, iG) clearly is an epimorphism of (H: G, G,.) which satisfies 
(N,) by Lemma 3.3. (S,) for (~,~K, ie) is equivalent  to the (n--1)-fold G/H-normality 
of K by Definit ion 7.1. This proves (1), and (2)is obvious from Definit ion 8.1. 

1 1 
9. - =-fold G/H-simple Groups and : - f o l d  Simple Homogeneous Spaces 

n n 

Theorems 8.5 and 8.6 show that the ( n - - l ! - f o l d  G/H-normal subgroups 
of G are exact ly the kernels  of the n-fold  homomorphisms of the homogeneous 
space (H: G, G, .). This fac~ permits the following definition. 

DEF~SrITIO~ 9.1. - Let n be a non-negalive integer, let G be a group, and 

let H be a proper subqroup of G. Then G is called 1-fold  G/H-simple i f  there 
n 

exists no n-fold G/H-normal subgroup properly between G and H. 

1 
We s e t ( ~  ec, and hence G is oc-fold G/H-simple if and only if H is 

a maximal  subgroup of G. Also G is 1-fold G/H-simple if and only if G is 
G/H-simple in the sense of [3], Definit ion 1.14. 

LElUMA 9.2. - I f  G is 1-fold G/H-sin~ple, then G is also I---fold G/H-sim. 

ple for every integer m > n. 

PROOF. - Lemma 7.5. 
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1 
DEFINITION 9.3. - A group G is called G/H-s imple  of degree n i f  there 

exists a non-negative integer n such that G is -1-fold but not n - ~ - f o l d  G/H-s im.  
n 

ple, and it is called G/H-s imple  of degree 0 i f  it is not 1- fold  G/H-simple 
n 

for any non-negative integer n. 

For instance, if G has a normal subgroup properly between G and H, then 
G is G/H-s imple  of degree 0 (Lemma 7.7). For  G = A s  and H a 5-Sylowgroap 

1 
of A~ Example 7.13 shows that A~ is G/H-simple  of degree ~. 

In  order to introduce analogous notions for homogeneous spaces we have 
to sort out a class of epimorphisms which have an essential meaning for the 
notion of simplicity. For instance, the epimorphism (io,r:o) of a homogeneous 
space (~2,G,.) onto its canonic respresentat ion (12,Gu~,.) (cf. Section 1) is 
<< almost >> an isomorphism, and is therefore ra ther  unessential  for our present  
considerations. 

In  the following let (% 4) be a homomorphism of the homogeneous space 
(~2,G,.) into the permutat ion ~structure (~2',G',-) such that ~ is a surjective 
mapping. Then (~2',G',.) is a homogeneous space, and the following three 
s tatements  hold. 

LEI~II~A 9 4. - For any :¢ e ~2 

Ker~(?,~)g ---> (~g)~0 = (acp)(g~) 

is a bijective mapping of Ker~(%~):G onto ~2'. 

The proof is obvious. Now we describe, under  the above assumption, all 
those homomorphisms which are close to isomorphisms from the point of view 
of simplicity. 

PROPOSlTIO~ 9.5. - If ,  moreover, Ker~(%~).-~ G~ for an :¢ ~ ~2, then 

(1) ¢¢ is a bijective mapping of ~ onto ~2'. 

(2) Ker ~ ~ Ker ~:a. 

PROOF. - We set K s - ~  Ker~(%+). 

I. Since (~2,G~-) is a homogeneous space every element  ~1~2 can be 
wri t ten as ~ = ~ g  for some g e  G, and 

~1 : ~g -'> Gag 

is a bi jective mapping of 12 onto Go: G. Moreover 
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is a bijeetive mapping of K~:G onto ~2' by Lemma 9.4. K~ 
that ~-~0~¢~ is a bijective mapping of ~2 onto ~'. 

II. Take any element k e Ker~.  Then 

---- G~ now implies 

and therefore 

((ag) k)q~ = ((:¢g) ~0) (kq~) = (~g):p for all g e G, 

~ k =  ~ for all ~e  12 

since ¢~ is a bijeetive mapping. It follows that kT:a-~ia, and hence Ker~  -< 
Ker u~j. 

There  is still the other ext reme of homomorphisms we have to eliminate,  
namely  the zero homomorphisms (cf. Section 1). 

PaoPos~TmN 9.6. - (%+) is a zero homomorphism i f  and only i f  

Ker~(%,.~) --~ G for c~ e f L  

The proof follows from Lemma 9.4. 

DEFINITION 9.7. - An epimorphism (%tp) of the homogeneous space (~2,G,.) 
is called essentinl i f  G~ < Ker~(%~)< G for ~ e ~2. 

It  is clear that Definit ion 9.7 is independent  of a e IL 

DEF~NITIO~ 9.8. - Let n be a positive integer, and let (fi,G,.) be a homo. 

geneous space such fhal I ~2 I > I. Then (12,G, .) is called 1-fold  simple i f  cvery 
n 

n-fold epimorphism is unessential. 

- A homogeneous space (ILG,.) is 1-fold simple i f  and PROPOSITION 9.9. 

1 
only i f  G is n-~_~-fold G/O~-simple for any ~ e ~2. 

PROOF. I . -  Assume that (~,G,-) is 1-fold simple. Let  K <  G be an 

(n- -1) - fo ld  G/G~-normal subgroup of G. The canonic epimorphism (¢~K,iG) 
of (G~ :G, G,. ) (Theorem 8.6) is unessential  by our hypotheses because (G~ :G, G,.) 
is isomorphic to (~2,G,.). Therefore K=KerH(~K,  iG)=G~ by Definition 9.7, 

1 
and hence G is n - ~ - f o l d  G/G~,-simple. 

1 
II. Assume that G is 1-fold G/Ga-simple. Let (%~) be an n-fo ld  

n -  
epimorphism of (~,G,.). By the Homomorphism Theorem 8.5 Ks-'= Ker~(%,~) 
is an ( n - - 1 ) - f o l d  G/G~-normal subgroup of G, and hence K~----G~ or K~-----G 
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by Definition 9.1. Therefore  (% ~) is unessential ,  and (~, G,.) is 1 - fo ld  simple. 
n 

LEMMA 9 . 1 0 . -  I f  the homogeneous space (~,G,.) is t - f o l d  simple, then 

it is also 1--fold simple for every integer m > n. 

PROOF. - Proposit ion 9.9 and Lemma 9.2. 

DEgI~ITIo~ 9.11. - A homogeneous space (~2,G,.) is called simple of de- 

1 i f  there exists apositive integer n such that (~2, G,.) is  - fold but not n - -1  g r e e n  ~ -  

fold simple, and it is cedled simple of degree 0 i f  it is not l - - fo ld  simple 
. 4  

n 

for any positive integer n. 

LE~MA 9 . 1 2 . -  Let (~2,G,.) be a homogeneous space such that [~21 > 1. 
Then the following statements are equivalent. 

(1) (~2,G,.) is 1-fold simple. 

(2) G~ is a maximal  subgroup of  G for every ~ e ~2. 

(3) Gza is a primitive permutation group on 12. 

10. - The Isomorphism Theorems 

In  the following, G will always denote a group, H a subgroup of G, and 
n a positive integer. 

THE FIRST ISOmORPhiSM T~EOREM 10.1. - Let K be an n-fold G/H-nor.  
real subgroup of G, and let L be a subgroup of G containing K. Then 

(1) L ~ is n-fold G/H-normal  i f  a~,.d only i f  L is n- fo ld  G/K-normal .  

(2) I f  L is n- fold  G/H-normal,  then 

((H:G, G , . ) / I H : K ,  K , . ) ) / ( K : L ,  L , . ) = ( H : G ,  G, . ) / (H:L ,  L,.) .  

P~ooF. - For all g, ~ ,  ..., x~e  G 

Kg(H .~ n ... n H',*) -= Kg(K'1 n ... n K ~-) 

holds, and therefore 

Lg H x, n ... n H~)  ------ LKg(H ~, n ... n H ~,~) 

.= L K g ( K  ~, n ... n K ; , )  

= Lg(K ~ N ... N K ~ ) .  
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This equation means that n-fold Gil l -normal i ty  of L is equivalent  to n-fold  
G/K-normal i ty  of L. (2) obviously follows from (1) and our notation of the 
factor space of a homogeneous space introduced after Theorem 8.6. 

THE SECOND (PRE-)ISOMORPHISM THEOREM 10.2. - Let K be an n- fold  
G/I t -normal  subgroup of G, and let L be a subgroup of G containing If. Then 

(1) K n L is an n- fold L / H - n o r m a l  subgroup of L. 

(2) K is art n- fo ld  K L / i i - n o r m a l  subgroup of  KL.  

(3) The pair  (% ,~). where ~ is the biieclive ~napping 

(K N L)x, .-> K x  

of  K A L : L onto K : K L  and ~ is the injection of L into KL, is an 
(n + 1)-fold pre-isomorphism of the homogeneous space 

( K N L : L ,  L , . ) = ( I - I : L ,  L, ) / ( H : K N L ,  K N L , . )  

onto the homogeneous space 

(K : KL,  KL, . )  = (H : KL,  KL , . ) / (H  : K, K,.).  

PROOF. L - Take any elements g, x2, ..., x,, e L and any element 

y e (K  n L )g ( (KN L) N (K n L) ~ n . .  N (K n L)~,~). 

Then there exist elements 

k ~ K N L  and l e ( K n  L) N ( K N L )  ~ N . . . N ( K N L ) ~ , ~  

such that y = k g l .  But 

gl e Kg(K N K ~ N ... n K ~,~) = Kg(H N H x~ N ... n H ~ )  

since K is n-fold  G/ii-normal .  Hence there exist elements 

k ' e K  and h e H n H  ~ n . . . n H ~ -  

such that g l =  k'gh. From H ~ L it follows that 

k' ~ g lh- l  g -1 e K N L, 

and therefore 

y = kk'gh e (K N L)g(i i  N H ~ n ... n H~,). 
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Thus we have proved 

(KN L)g(( K n L) n (KN L) x~ N ... N (K N L)~,~)~(K N L)g(H N / / ~  N .. N H~~). 

Since the converse inclusion trivially holds we obtain the equali ty 

(K N L) g(H n H ~ n ... n //~,) ~ (K N L)g((K n L) n (K N L) ~: n ... N (KN L)x"). 

Therefore  K N  L is an n-fold L / / / - n o r m a l  subgroup of L by 7.2. 

IL (2) is obvious since it merely means the restr ict ion of the equation 
7.1(2) to elements g, x~, ..., x,, e KL.  l~ote that K L  is a subgroup of G by 7.9. 

III .  ¢?: (K n L)x-->K~ is a bijective mapping of /~ n L : L  onto K :  KL.  

For every g, x~, ..., xn e L 

Kg(K ~ N ... N K ~,~) = Kg(tI ~ n ... N //~,~) 

~ K g ( ( K  n L) ~ N ... N ( K  N L) ~,,) 

s K g ( K  ~ q ... n K~,).  

Therefore  equali ty holds instead of ~ ,  and we obtain 

((K G L) g((K n L) ~ N ... n (K  n i)~,,)} 

= Kg~(K N L) ~ n ... n (K n 

Kg(K ~' n ... n K ~,~) 

which means property (8,+~)for (% ~). Therefore  (% ,~) is an (n-{- 1)-fold pre-iso- 
morphism of ( K N  L:L,  L, .)  onto (K: KL, KL, .)  according to Definition 5.1. 

11. - n - fo ld  G/ / / - subnormal  Subgroups 

For any subgroup H of a group G:there are several  possibilities to define 
a factor s t ructure  of G modulo //, for example: 

1. The double coset semigroup G/// ,  that is the semigroup (with respect to 
the <<eomplex~ multiplication) generated by the double cosets ItgH, g e G 
This factor s t ructure  has been investigated in a more general  context in [2]i 

[3], [4], and [5]. 

2. The coset semigroup, that is the semigroup (with respect to the <(com- 
plex)) multiplication) generated by the cosets Hg, g E G. This possibility has 
been discussed by WIELA~DT in [8]. 

3. The homogeneous space (H: G, G,.). 
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The third factor s t ructure  is the richest and can be considered as a 
refinement of the second, jus t  as the second can be considered as a ref inement  
of the first. We shall discuss their relat ionship to each other in the next  
section. Here  we want to investigate a different  problem. 

We  consider each type of factor s t ructure as a mathematical  s t ructure in 
its own right. Each of them is, or can be (case 2), provided with its own notion 
of homomorphy so that we obt~tin a category. Thus  we have 

I. The category of all double coset semigroups ([2], [31t. 

2. The category of all coset semigroups.  

3. The category of all homogeneous spaces. 

For  the third category we have in fact the choice of infinitely many 
notions of homomorphisms, namely for each non-negat ive  integer n we can 
take the n- fo ld  homomorphisms as the morphisms of a category. Therefore  
the last category is subdivided into the categories ~ ,  (Proposit ion 6.4). 

Each of these categories gives rise to a notion of normali ty such that 
the subgroups which are normal relat ive to such a category are exactly the 
kernels  of its homomorphisms. Each of ~hese concepts of normali ty leads to 
a notion of subnormali ty.  

To every chain 

G ~  Lo >= L1 >-- ... ~ L~ ~ L 

of subgroups which are subnormal with respect  to one of these cat%oories we 
can assign factors in different ways. We  can choose one type of factor struc- 
ture and take as factors the factor s t ructure  of that type for each L~-I modulo 
Li. This procedure  witl be par t icular ly  fruitful  if a Jordan-Ht i lder  Theorem 
can be proved for a certain choice of subnormal i ty  and a certain choice of 
factor s tructure.  

For  subnormal i ty  and factor s t ructure  both taken with respect  to the ca- 
tegory of double coset semigroups this has been done  in [4]. W e  investigate 
the same problem for the categories ~ ,  in this section. 

In  the following let n be a positive integer, G a group, and H a subgroup 
of G. 

DEFINITION 11.1. - A subgroup L of G is called n-fold  G/H-subnormal,  
i f  there exists a finite chain 

G =  Lo_~:> L~ => ... => L,.-~ L 

of  subgroups of G such that Li is an n-fold Li_l/i i-nor+nal subgroup of Li-1 
for each i ----- 1, ..., r. Such a chain is called an n-fo ld  G/i i -subnormal  chain; 
it  is called an n-fo ld  G/H-compos i t ion  chain i f  Li_~ :> L~ and i f  there is no 
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n-fold L~_~/H-normal subgroup of Li_~ properly between L~_I and L~ (which 
1 

means that L~_I is ~-fbld L i_J  L~-simple by De/Tuition 9.1 and the First Iso. 

morphism Theorem 10.1) for every i ~  1, ..., r. 

Ln~[~[A 11.2. - A subgroup L of G is 1-fold G/H-subnormal i f  and only 
if  it is G/H-subnormal, in the sense of [4], Definition 1.1. 

PROOIh - Lemma 7.4. 

LEM~A 11 .3 . -  I f  L is n-fold G/H-subnormal then L is m-fold G/H- 
subnormal for every positive integer m < n. 

PROOF.:- Lemma 7.5. 

LEM~IA 11.4. - I f  K is an n-fold G/H-subnormal subgroup of G, and L 
is an n-fold K/H-subnormal subgroup of K, then L is an n-fold G/H-sub. 
normal subgroup of G. 

TI=[EORE~I 11.5. - I f  K is an n-fold G/H-subnormal subgroup of G and 
H <= L <- G, then K n L is an n-fold L/H-subnormal subgroup of L. 

PRoof.  - Take an n-fold G/H-subnormal chain 

G : Ko  > K1 > > K ~ =  K 

from G to K as in Definition 11.1. K o N L - ~ G N L = L  is an n-fold L / H -  
normal subgroup of L. Assume that Ki-1 N L is already proved to be n-fold 
L/H-subnormal. Since K~ is an n-fold K~_l/H-normal subgroup of Ki_l by 
assumption, Ki n L ~--- K i n  (Ki-1 n L) is an n-fold K,._I n L/H-normal sub- 
group of K~_~ N L by the Second Isomorphism Theorem 10.2. Therefore K~ A L  
in n-fold L/H-subnormal in L by 11.4, and the theorem follows. 

TKEORE:q 11.6, - I f  K and L are n-fold G/H-subnormal subgroups of G, 
then K N  L is an n-fold G/H-subnormal subgroup of G. 

PROOF. - K G  L is n-fold  L/H-subnormal in L by Theorem 11.5, and L 
is n-fold G/H-subnormal by assumption. Our statement now follows from 11.4. 

TItEORE~ 11.7. - :4ssume H <-- N ~ K < G and let N be subnormal in G. 
I f  K is n-fold G/H-subnormal then K is subnormal in G. I f  K is subnormal 
in G, then K is at least 1-fold G~ H-subnormal. 

PROOF. - Lemma 11.2 and [4], Theorem 1.7. 

The crucial step towards a Jordan-Hi~Ider Theorem is the proof of the 
relevant Four  Subgroup Theorem (Zassenhaus' Lemma). Here we have to re- 
strict oltrselves to 1-fold G/H-normality. Also as the Second Isomorphism 
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Theorem 10.2 does not hold for isomorphy but for pre- isomorphy only, we 
have to use pre- i somorphy instead of isomorphy in the Four  Subgroup Theorem. 

THE FOUR SUBGROUP TtIEORE~:[ 11.8. - Let Ko, K, Lo, L be subgroups 
of G containing H. Assume tl~at Ko is a 1-fold K/H-normal  subgroup of K, 
and that Lo is a 1-fold L/H-normal  subgroup of' L. 1hen 

(1) (K n Lo)K o is a 1-fold (K n L)Ko/H-~ormal subgroup of ( K N  L)Ko 

(2) (Ko n L)Lo is a 1-fold (K n L)Lo/H-normal subgroup of ( K N  L)Lo 

(3) The homogeneous spaces 

((K n Lo)Ko : (K n L)Ko, (K n L)Ko,.) 

((Ko n L)Lo : (K N L)Lo, (K n L)Lo,. ) 

are 2-fold pre-ison~orphic. 

PRooF. - (1) and (2) follow from Lemma 7.4 and [4], Theorem 2.1. Becau- 
se of 

(K N Lo) K° N (K N L) ---- (Ko N L) (K n Lo) = (Ko N L)Lo N (K N L ~, 

(K n Lo)Ko(K N L) ---= ( K N  L)Ko, (Ko n L)Lo(K N L) ~ (K N L)Lo 

and the Second Isomorphism Theorem 10.2 the homogeneous space 

((Ko N L) (K n L0): K N L, K n L,.) 

is 2-fold pre- isomorphic  to each of the homogeneous spaces 

( , K N  Lo) Ko : (K N L)Ko, (K n L)Ko,.), 

((Ko n L)Lo : ( K A  L)Lo, ( K N  L)Lo,.), 

and (3) follows by Definit ion 5.3. 

An immediate  consequence of the Four  Subgroup Theorem is 

THE REFINEME:NT THEOREM FOR 1-FOLD G/H-suB~oRMAL CI~AINS l l . 9 . -  
Let 

(i) G ---- K0 >- K, =>... = > K ~ = L  

(ii) G ---- Lo _-- > L~ _--> ... _=> L~ -----L 

be 1-fold G/ It-subnorn~al chains. Set 

K~,j~K~(Ki_~ NLi) ( i ~ l ,  ..., r ;  ] : 0 ,  ..., s), 

Li,~ =L~(Li_~ N K~) <j = 1, ..., s; i--=O, ..., r). 
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Then 

(1) Ki-1 = K~,o => K~,I => ... => I5,~ = K~ 

is a 1-fold K~_~/H-s~tbnormal chain for each i----1, ..., r. 

12) Lj_I -~- Lj, o >= Lj, 1 >= ... >= L~, ~ = L~ 

is a 1-fold Lj_ l /H-subnormal  chain for each j =  1, ..., s. 

(3) The homogeneous spaces 

(K~,j :K~,j_I, K~,j_~,.) and (Lj,~:L~,~_~,Li,i_~ , .) 

are 2-fold pre-iso~norphic for all i ~-- 1, ..., r and all j - ~  1, ..., 8. 

(4) Joining the chains (1), respectively (2), together, we obtain refinements 
o f  the chains (i) aud (it) /'or which 

(K~,]:K~,~_~, K~,-f::{, .) .e- ~ (Lj,~:Li,~_~,Lj, i_~ , .) 

is a one-to-one correspondence of  their ~-factors such that correspon- 
ding ~-faetors are 2-/old pre-isomorphic. 

TItE TItEOREM OF J'ORDAI~ AND ~:~(~LDER :FOR 1-FOLD G/H-coMPOSITIOY, 
C~AI~S 11.10. - Let 

G---- Ko > K~ > ... > K , =  L 

G =  Lo > LI :> ... > L ~ =  L 

be 1-fold G/H-composition chains. Then 

(1) r ~ 8. 

(2) There eaists a permutation 7: of  t 1, ..., r} such that 

(K~: Ki_~, K~_~,.) and (L~(0: L~(0_~, L~ii)_~,.) 

are 2-fold pre-isomorphic for all i----1, ..., r. 

The  proof  immed ia t e ly  fol lows f rom the R e f i n e m e n t  Theorem 11.9. 

12. - Classification of  the Homogeneous Spaces by Double Coset ~emi- 
groups. 

W e  r e s u m e  our  d i scuss ion  begun  at the beg inn ing  of Sec t ion  11, and 
now ask  for  the  r e l a t ionsh ip  be tween  homogeneous  spaces,  coset  semigroups ,  
and doub le  coset  semigroups .  
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Let (~2,G,.) be a permutat ion structure.  We set 

LEM~:~ 12.1. - ~ is a commutative semigroup n:ith respect to set theorical 
unions and it is closed under taking union, s of arbitrarily many of its elements. 

Let  (~T,G',-) also be a permutat ion structure.  For  every mapping ¢~: ~2 ----> ~2' 

we define a mapping q~: ~2--> ~'  by 

A ~ - - - - / ~ l ~ e  A I for all h e ~. 

Then 

(U  5i)q~ = U ~ for any hi e ~  and any index set L 

DEI~INITION 12.2. -- A mapping a of ~ into ~' is called a homomorphism i f  

(U A ~ ) ~  U Ai~ /or any 5 ~  ~ and any index set I. 
TGI i~I 

For any mappings zi of ~ into ~-]', and for any index set I we define a 

mapping U ~ of f~ into ~ '  by 

A ( U ~ ) : =  U h z i  for all A e f i .  
i 6 I  i61 

LEMMA 12.3. - Let End(~)  be the set of  all homomorphisms ( in  the sense 

of Definition 12.2) of ~ into itself. Then 

(1) ~ae  End(a)  /'or all ~, ~ ~ End(~). 

(2) U ~ e  End(~) for any ~i e End(~) and any inde~ set L 
i ~ I  

(3) q(U ~i)--~ U ~ and ( U ~i)~-~ U ~ 
~ e I  ~ e x  ~ e I  ~ z  

for any ~, ~i e End(~)  and any index set L 

For any subgroup H of the group G we set 

H : G =  I ¢) :$: X ~ G [ H X - - - - - X } ,  

G / H =  t ¢6 ~ Y ~ G I H Y H =  Yt.  

It appears that G/H has an analogous s t ructure  as End(~).  
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LEM~A 12.4. - (1) G/H is a semigroup with respect to tl~e multiplication 

( X , Y ) - - > X Y = { x y [ x a X  and y e  YI. 

(2) U X~ e G/H for any X~ ~, G/H and any index set L 
i~I 

(3) X ( U  X~) = U XX~ and (U X~)X= U X,X 
~e~ ~ e x  ~e~ ~ e l  

for a~y X,X~ e G/H and any index set I. 

In  par t i cu la r ,  this l emma  holds for  G---- G/1 with H = 1. In order  to com- 

pa re  End(~2) with G / H  we in t roduce  the fo l lowing notion.  

DEFI~I~IO~¢ 12.5. - Let A and A' be algebraic structures with 

1. a binary algebraic composition (written as multiplication), 

2. a composition U which is defi~ed for any index set. 

Then a mapping (o : A--> A' is called a h o m o m o r p h i s m  of A into A' i f  

(1~ (ab)o)= (ato)(bo)) for all a,b e A. 

(2) ( U a~)o) = U a~(o for any a ie  A and any index set I. 

~'ow we app ly  these  concep t s  and no ta t ions  to our  p e r m u t a t i o n  s t ruc tures .  

LEMMA 12.6. - Let (fLG,.) be a permutation structure. We de~wte by 

(~,G,.) the algebraic structure which is given by ~2, (in the sense of  12.1), 
(in the sense of  12.4), and the external algebraic composition 

(A,X)~AX-~-{~xlBeA and x e X ! .  

Then 

(1) (5 U £ ) X =  fiX U FX 

(2) A ( X U Y ) = A X U A Y  

~3) ( A X ) Y =  A(XY) 

(4) h l  = A  

DEFINITION 12.7. - 
A pair (or, z) of  mappings 

for all z~, F e ~2 and all X ~ G. 

for all h ~ ~ and all X , Y ~  G. 

for all h 6 ~ and all X, Y e 

for all 5 e ~. 

Let (~],G,.) and (f~',G',.) be permutation structures. 

~ : ~ - - > ~ '  and z : G - - > ~  

is called a h o m o m o r p h i s m  of (~2,G,.) into (~2',G',.) i f  
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(i) ~ is a homomorphism of  ~ into ~' (in the sense of Definition 12.2), 

(2) x is a homomorphism of d into G' (in the sense of Definition 12.5), 

(3) (5X)~ ~---(A~)(X~) for all A ~ ~ and all X e G. 

LEM~A 12 8. - Let (% ,~) be a homomorphism of the permutation structure 

(~, G,.) into the permutation structure (~2',G',.). Then (% ~) is a homomorphism 

of (~2,G,.) into ({~',G',-). 

Our intention is to link each homogeneous space with an isomorphy class 
of double coset semigroups. For this reason we introduce a concept of endomor- 
phism. This concept will show to be more important  for the s t ructure  (~2~ G,.) 
than the analogous concept for the permutat ion s t ructure  (~2, G,.) itself. Yet, 
to be complete, we discuss briefly its meaning for the homogeneous spaces 
first. 

DEFINITION 12.9. - A homomorphism (~,~) of a permutation structure 
(~,O,.) into itself is called an endomorphism of (~2,G,.) i f  +-~-iG (the iden. 
tity mapping of G). We denote by #(~2,G,.) the set of all mappings c?:~2--~2 
such that (¢?,iG) is an endomorphism of (~,G,.). 

~(~,G,.) is the set of all mappings ? :  ~---)~2 such that (ag)?~(~?)g holds 
for all c~ ~ ~2 and all g ~ G. #(~2,G,.) is a semigroup with respect to the com- 
position of mappings; io is its unit  element.  

TEEOREM 12.10. - Let (~2,G,.) be a homogeneous space and o: e ~. Then 

N ~ - ~ l g e G l g - ~ G ~ g < =  G~! 

is a subsemigroup of  the group G for which the following hold. 

(1) For every ~ e 6(~2,G,.) there exists an element g e N~ such that 

¢~ : ~x .-+ :¢g-~ x (x ~ G). 

(2) For every g e N~ the mapping 

% : am---) a g - l x  (x ~ G) 

is an elemeJ~t of g(~2,G,.). 

(3) The mapping 

is an epimorphism of the semigroup N~ onto the semigroup $(~2,G,.) 
such that 

Ker ~ ~ Go. 
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Every ~ e $(~2,G, .) is a surjective mapping which acts f ixed point freely 
on ~2 i f  ¢~ ~ ia, 

PnooF. I. - For  every ~ e g(~2,G,.) there exists a g e G such that  ~ = ~g-~. 
The mapping ~ is uniquely determined by g because of 

(~x)~ = (~'~)x = (~g-~)x : ~(g-~ x) for all x e G. 

t~or every g~ e G~ we have 

~g-~ g~ = (~)g~ -~ (~g~)~ ---- ~ ~ ag-~ 

and hence g-~ g~ g e G~ which means g e h~ .  

II.  Take any g ~  N~. If ~ x ~ y  for ~c,y¢ G, then x ~ g ~ y  for some 
g~ ~ G~, and therefore 

~g-1 x = ~g-~ g~ y = ~(g-1 g~ g)g-~ y .~ ag-~ y. 
It  follows that 

is a well defined mapping, and it is easy to see that % + $I~2,G,.). 

I I l .  ¢@h ~ ~g ~h for all g,h e N~ 

shows that ~ is a homomorphism of N~ into ~(F~,G,.). 3, is an epimorphism 
because of (1). ~ g ~ i a  if and only if g e G~. The rest of the statements is 
easily proved. 

COROLLARY 12.11.-  I f  (g~,G,') is a homogeneous space such that ~)~ is 
a finite set, then N~ -~ ~V~a(G~) is the normalizer of G~ in G, therefore it is a group, 
and 5(~,G, .) is isomorphic to the group ~LG(G~,)/ G~,, and hence is a group itself. 

Theorem 12.10. shows that there will be many homogeneous spaces where 
the endomorphism semigroup ,~(~2,G,.) reduces to the identi ty mapping ia~ 
for instance if G~ is not normal in G, and if there does not exist any subse" 
migroup of G properly between G and G~ (i. e. G~:~ is a strongly primitive 
permutat ion group on ~2 in the sense of [7], Definit ion 8.5 and 8.6b). But th e 

endomorphism structure of (~2,G,.), as we shall see, still has some significance 
even in cases where $(12, G,-) -~- I in ' .  

DE~IN~TIO~ 12.12. - Let (~2,G,.) be a permutation structure. A homomor- 

ph ism (~, z) of (~,:G,.) into itself (in the sense of Definition 12.7) is called an 

endomorphism of (~.G,.)  i f  ": ~ i~ (the identity mapping of G). We denote by 

~(~2,G,.) the set of all mappings o: ~--> ~ such that (% i~) is an endomor- 

phism of (~2, G,.). 
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$ (~ ,d , . )  is the set of all mappings ~ : ~ - - > ~  such that (U & ) ~ = U A I ~  

for any A+ e ~ and any index set 1, and (SX)~ = (ho)X for all ~ =- ~ and all 
X e G .  

PROPOSITION 12.13. - Let  ( [L G , . )  be a p e r m u t a t i o n  structure.  Set ~ "-- 

g(~2,G,,) a n d  ~--$(f~,G,.) .  Then 

(1) ~ for every ~, z e - &  

(2) U :i e 5 for a n y  ~.i e ~ a n d  every indeoc set L 
iE1 

(3) '~(U~:+)= U'v'q a n d  (Uq) ' :  = U':/~ for a n y  ~,~+~ ~ a n d  a n y  i~dex  set I. 

(4) p e 5  for al l  ~ e &  

This remark shows that $(~ ,G, . )  is an algebraic s t ructure  of the same 

type as G / H  (Lemma 12.4), and now we come to the object of this section. 

T ~ s o ~ E ~  12.14. - Let  (~2,G,.) be a homogeneous space a n d  ~ e ~. Then  

$(~2,G,.) is i somorphic  to G/G~ (in the sense of Def in i t ion  12.5). 

PROOF. - For every A e ~  there exists an X e  G s u c h  that 

5 - - - -~X,  

since (gLG,') is a homogeneous space. Clearly 

XA = G ~ X  

is the largest element of the set i Y e  G I ~ = ~ Y I  with respect  to the set 
theoretical  inclusion, that is X ~ - - { g ~  G l a g ~  A f . Note that 

Xa e G~ : G. 

For  every z e $(~,G,-) we set 

From 

~ A~ G~ - -  (o:~)G~ - -  (~G~)~ - -  ~ - -  o~A~ 

and the maximal i ty  property of X ~  it follows that 

and therefore 
A~ G~ = G~ A~ = A~ 

As 
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"c is uniquely determined by A, since 

Therefore 

A.: = (c~X~?z = (o~'~)Xa = o~A; Xa for all 5 ~ f~, 

¢~ : ~ --> A~ -~ = {g-~ I g e A, } 

is an iniective mapping of g(f~, G,.) into G/G~. o) is surjeetive as well, for 

if we take any B • G/G~, then B-~e  G/G~ and 

is an element of $(~2.G,.) such that A~ = B -~ and ' : ' , ) =  B. Fur thermore  

~A~ -- ~ -- (~A~)~ = (a~)A~= ~A,A~ for all z,'~ e ~tf~,G,.). 

It follows that A~A~c=Ao,. Because of G~A~A~--A~A~ the product A~A~ is 
the largest of the subsets Y of G such that a A ~ - - g Y ,  and hence we have 

Also 

A~ = A~ A~, 

AV~ = A j  ~ AT'. 

for any x~e ~i~,(~,.) and any index set 1. By the same reasoning as before 
we obtain 

A -~ -- U A - h  
U'r'i i e I  Ti 

We have proved that ~o is an isomorphism of ~(f~,G,.) onto GIGs, according 
to Definition 12.5. 

G/G~ is already completely determined by the double eoset semigroup 
G/G~. Since the category of all double eoset semigroups contains the category 
of all groups, it seems more elegant to deal with double coset semigroups 
in the following. We recall the definition of the morphisms of the category 
of all double coset semigroups ([3], Definition 2.1). 

Let G a n d  G' be groups, let H be a subgroup of G, and let H' be a s u b .  
group of G'. Then a mapping ~:  G/H--> G'/H' is called a homomorphism of 
the double coset semigroup G/H lute the double coset semigroup G'/H' if 

(I) (XY)~ -- (X~) (Y~i) for all X, Y e  O/H. 
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H'CH' g' (2) For every HgH, g e O~ there exists a g , e G', such that  

(HgH)~ : H'g'H' and ( I tg - 'H)~  = z~rr, g,-~-,~ . 

(3) X ~ =  U (HgH)~ for all X e G/H.  
HgH~_X 

Every  homomorphism ~q of G / H  into G'/H' can be uniquely  extended to 

a homomorphism ~ of G/H into G'/H'  in the sense of Definition 12.5 by defining 

X~ = U (HgH)~ for all  X e G/H 
Hgg ~ X 

(cf. [3], Proposi t ion 2.2). But  such a homomorphism ~ has, apart  from the 
proper t ies  of Definit ion 12.5, the further  property that it maps every double 

H ' ' H '  coset  HgH onto a double coset g , and Hg-~H onto H'g'-~H '. In the follo. 

wing we call a mapping ~ : G / H - - 4  G"/HZa homomorphism if and only if, in 
addition to 12.5, this condition is satisfied as well, that is if and only if there 

exists a homomorphism ~ of G / H i n t o  G'/H' such that ~ -- ~. In part icular,  two 

double coset semigroups G / H  and G'/H' are isomorphic if and only if G / H  and 

G'/H' are isomorphic in the sense jus t  defined. 
Now we apply our remarks  to the endomorphisms of homogeneous s p a c e s  

(FI, G..) and G / d ~  Let (t2,G,.) be a homogeneous space. By Theorem 12.14 ~ 
ave isomorphic in the sense of Definition 12.5. The proof of Theorem 12.14 

shows that for every double coset G~gG~ there exists a ~e  8(~,G,.)  such that 

and that this holds if and only if 

:¢'c -= ~G~gG~ --  (ag)G~. 

Let (12',G',.) be a homogeneous space and assume that there exists a 
homomorphism ~ of G/G~ into G'/G'~, for £ e  12'. If  we denote by (,)' the iso- 

morphism of $(gt',(; ' ,.) onto G'/G'~, which is given by Theorem 12.14, then 

for every G~gG~, g e G, there exist a', ~' E $(I2',G',.) and g' e G' such that 

~'(o ' = ( G~ g-1 G~)~ --  G'~, g,-1 G'~,, 

~'(o' - -  ( G~gG~)~ - -  ' ' ' G~,gG~,.  

This, again by the proof of Theorem 12.t4, holds if and only if 

t ! t j t I ! o~%' - -  ~ G ~.g G ~, = (~g )G ~,. 

t t r _ _  1 t 0:%' = o~ G ~,g G ~, = (o:' g'-l)G'~,. 
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The orbits (~g)G~ and (ctg-~)G~ and also the orbits (£g')G'~, and (£g'-~)G'~, are 
paired orbits of G~, and of G'~. respectively (W]~/ ,~D~ [6], p. 45, Definition, 
and [7], 10.9). 

We recall  briefly the concept of paired orbits. By Proposition 2.5 for 
n m 2 (that is [7], 10.6) we h~.ve, for fixed ccE~q, the following one- to-one  
correspondence between double cosets, orbits of stabilizers, and binary G-re- 
lations. 

G~gG~ < - - >  (~g)G~ < - - >  (~,~g)G 

For any binary relation R on ~2 we denote by 

its converse relation. But 
R*~= t(~, Y)I(~, t3) e Rf 

(( a,ag)G)* "- (~,ag-~)G 

and therefore we have the analogous correspondence 

(G~g G~) -~ -= G~g -~ G~ ~ - ->  (ag-~)G~ ~ ~ (a,ag-~)G --  ((a,ag)G)* 

which gives the orbit (ag-~)G~ as the reflexion of lhe orbit (ag)G~ by a ([6], 
p. 44), and (ag)G~ and (ag-~)G~ are called paired. We write ((ag)G~)*--(ag-~)G~. 

For this reason we introduce the following involut ionary ant iautomorphism 

-~--->:* of ~(5,G..).  For every z E $ ( ~ , G , . ) t h e r e  exists one and only one 

x*E$(~-'~,G,.) such that for the isomorphism to of Theorem 12.14 

holds. It  is clear that 

~*~o - -  (~to)-~ 

~** -- z, (U~)* --  Uz**, (or)* : "c%* for all ~,~,~ E 8(t2,G,.). 
~ I  ~GI 

Let us re turn  to the homomorphism ~:G/G~.--> G'/G'~,. The mapping 

= ¢ov-~to '-~ is a homomorphism of $ t ~ , G , ' ) i n t o  $(~',G',-) in the sense of 

Definit ion 12.5 with the additional property that for z E5(~2,G,.) 

~ --= ~ G~ for some ~ EFt 

implies 
£(x~) --  ~'G'~, and a'(~*¢) --~ (~'G'~,)* for some ~'E ~2'. 

This property, which relates the orbits of stabilizers, is an essential part  of 
permutat ion structure.  Therefore  it is essential to define an own notion of 
homomorphy for the endomorphism st ructures  of homogeneous spaces such 
that it corresponds with the homomorphy of double coset semigroups mentio- 
ned above ([3], Definit ion 2,1). 
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DEFI2~ITION 12.15. - Let (f~,G,.) and (I2',G',.) be homogeneous spaces. 

A mapping e of  $(t2,G,.) into $(~2',G',.) is called a homomorphism i f  

(1) e satisfies 12.5 (1) and (2), 

(2) There exist letters ~ Eft and ~'E~' such tlmt for ~:E $'t~LG,') 

a~ -" ~G~ for some ~ E t2 

implies 

£(ze) -" ~' G'~, and a'(z* e) --  q~' G'~,)* for some ~' E ~2'. 

As a consequence of our discussion we can state the following. 

PROPOSITION 12.16. - Let (~2, G,.) and (~2',G',.) be homogeneous spaces. 
For any ~ E ~2 and any ~' E ~2' we denote by cos and (o's, the related isomorphisms 
of  Theorem 12.14. Then 

{1) For every homomo~Thism e : ~ t~ ,G  , .)--> ~[t2',G',.) ( in the sense of  

Definition 12.15) the mapping ~q : X--> Xto-f~ (o'~, is a homomorphism of 
the double coset semigroup G / G~ into the double coset sem(qroup G'/ G'~,. 

- -  t -  (2) Eor every ho~nomorphi~m ~ : G/ G~---> G'/ G'~, the ~napping E----- t%aqo) ~, 

is a homomorphism of  $(12,G,.) into #(fY, G', .). 

[3) $(~,G,.)  and ~(I2',G', .) are isomcrphic i f  and only i f  G/G~ and 
G' / G'~, are isomorphic. 

5Tow we have arrived at that point where we can classify the homogene- 
ous spaces by double coset semigroups.  

DEFINI~rlO~ 12.17. - Let (ft, G, .) be a ho~J~ogeneous space and cz Ef t .  The 
class [G/Go:] of all double coset sen~igroups isonlorl~hic to G/G~ is called the 
type of ( f~, G, .). 

Since all stabilizers of a single let ter  are conjugate in G, the type of a 
homogeneous space (t2,G, .) is independent  of a Eft .  In order to get an idea 
of this classification we look at the following example.  We  take any group 
G which has a non-normal  subgroup H such that 

G ~- H U HgH, g E G-H. 

Then the double coset semigroup T2--- G / H  has three elements H, HgH, G 
and the mult ipl icat ion table 

AnnaU di Matematica 35 



274 O. TAMASCHKE: On Permutation Groups 

H HgII G 

~g~  Itg~ G e 

L ~ M A  12.18. - Let (~2,G, .) be a homogeneous space such that ]~21 > 2. 
Then G acts 2-fold transitively on ~ i f  and only i f  (~2,G, .) is of type IT2]. 

Does a homomorphism I~,~?J of a homogeneous space ( ~ , G , . ) i n t o  a 

homogeneous space (~2',G', .) always induce a homomorphism ~ of ~(~2,G,.) 
into 5(~)',G, .), and, equivalently,  a homomorphism ~ of the double eoset se. 
migroup G/G~ into the double coset semigroup G'/G'~v? What  does (~induce>) 
mean in this context ? The homomorphy of (%~) implies 

((ag)G~)~ -- (~¢~)(g~)(G~ ,~) and G~ (p -<_ G'~ .  

Therefore if zE$(~2,G, .) has the property 

~: --  t~g)G~ for some g E G 

then certainly we have 
~t ~ - - t  r ~(~2 ,G ,.) such that 

to define ~ as the uniquely 

e t  (~.~)~' = ( ~ )  ~g~) ~ 

determined element 

holds. Equivalent ly  we have to define 

and therefore 

Vt i ~ e  ~ (G~gG~)~ ~ ~g~)  ~9, 

X~ "- G'~9(X~)G'~ 9 for all X ~  G/G~. 

With that definition X-->X~ is a mapping of G/G~ into G'/G'~ such 
that the conditions (2 )and  (3) of a double coset semigroup homomorphism 
are satisfied (p. 271). The only question now is whether 

( X Y ) ~ - - ( X ~ )  (Y~) for all X, Y E G/G~ 

holds as well in which ease X~ E G'/G'~ holds for every X E  G/G~, and con. 
dition (1)of a double coset semigroup homomorphism is satisfied too. We start  
with a sufficient condition, which is <<almost ~> necessary as we shall soon see. 

THEOREM 12.19. - Let (~,~) be a homomorphism of the homogeneous space 
{~2,G, .) into the homogeneous space (~',G', .) which satisfies ($~), and :¢E~2. 



O. TAMASCHKE: Ol1 Permutation Groups 275 

Then the mapping 

: X--> G'~(X,~)G'~ 

is a homomorphism of the double eoset semigroup G/ G~ into the double coset 
semigroup G' / G'~ . 

PRooF. - (S~) implies 

la'~)(g~)(G~)--((:¢g) e~)'~----((~g)~)G'~ -- (~)(g~)e'~ for all g E G. 

This is equivalent  to 

G'~(g'~)(G~ ~- G'~9(g~)G'~ ~ for all gE G, 

and therefore for all X,Y  E G/G: we obtain 

=(x~)(Y~). 

We have proved that ~ is a homomorphism of G/Ga into G'/G'~+. 

THEORE~I i2.20. - Let (%+) be a 1-fold homomorphism of the homogeneous 
space (~2,G, .i into the homogeneous space (~2'~G', .) (i.e. ~ is a surjective mapping 
(Lemma 6.3)), and ~ E ~2. Then the mapping 

is a homomorphism of the double eoset semigroup G/Ga into the double coset 
semigroup G'/G'~v i f  and only i f  (%~) satisfies ($~). 

PRooF. - Assume that ~ is a homomorphism of the double coset semigroup 
G/G~ into the double coset semigroup G'/G'~9, and set K--Ker~(%~) .  Note 
that K E G/G~ because of G~--< K (8.2(3)). 

K~ -- G'~(K~.)G'~ : G'~ 

is the unit  element of G'/G'~9 by 8.2(5). Therefore  K -  < Ker  ~ where the kerne l  
of ~ is defined as the union of those G~gG~, gE G, which are mapped by ~ onto 
the unit  e lement  of G'/G'~v ~[3], Definition 2.6). Conversely g E Ker~  implies 

G'~9(g~)G'~ 9 --(G~gG~)~-" G'~, 

and hence g E K .  Therefore 

K : Ker~ (%~/) ----- Ker 4" 
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Bat  Ker~  is a G/G~-normal subgcoup of G ([3], Theorem 2.7t, hence K is a 
1-fold G/G~-normal subgroup of G (Lemma 7.4). Then (~K,i~) is a 2-fold 
ep imorphism of (G~: G, G, .} onto (K: G~ G, .) (Theorem 8.6). 

~:~g--->G~g 

is a bijective mapp ing  of ~2 onto Ga:G, and (?~,i~) is an isomorphism of 
(~2,G, .) onto (G::G,G, .). Also 

% : Kg ---> (¢g)+ = {:¢+)(g+) 

is an inject ive mapp ing  of K :  G into Y~', and l~o,+) is a 
(K: G, (7, .) into tYY, G' .). 

We take any gEIG and any 

y' ~ (~'~+ tg~ )G'~  • 

Since ~ is sur ject ive there exists h ~ G such that 

homomorph ism of 

and hence 

:But then 

( ~ )  (h+) = (: ,h~ = (~)y '  

I r , G !  

By [3], Theorem 2.7 this implies  

K h K  : KgK.  

There  exist  k, k'E K such that h- -kgk '  and hence 

y' E G%y' = GT+(k~)tg+)(k'~) ~ G%ig~)(g~) 

which shows that 

The converse inclusion is trivial  because of K~ ~ G'~+ (8.2(5)}, and therefore 

_ _  G r 
- -  (K~o)(g~) K+0 for all g E G. 

I t  follows that (~o,+) satisfies ($.z) since all stabilizers of one let ter  are 
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conjugate  in G because (K: G, G, .) is a homogeneous space. Our homomor- 
phism 

(+,+) = ( ~  , i~)(~, i~t  (~o,+) 

is the product of 3 homomorphisms each of which satisfies {$~). Therefore (%+) 
satisfies ($2) (4.212)) and, taking Theorem 12.19 into account, our theorem is 
proved. 

COROLLARY 12.21. - For fix~ed o:~ ~2 the pair  of  mappings 

(a ,G ,  .).--> G/G~ a n d  t'~,~)--> ~ 

is a funclor of  the category ~.~ into the category of all double coset semigroups. 
For different choices of a we get naturally equivalent funclors. 

If we apply Corollary 12.21 to the Theorem of Jordan and H61der for 
1-fold G/H-e~mposition chains 11.10, then we obtain the Theorem of Jordan 
and HiSlder for G/H-composit ion chains [4], 3.3, with the double coset semi- 
groups L~_~/L~ as factors. 

Final ly  we ask for those homomorphisms of a homogeneous space which 
induce isomorphisms of the double coset semigroups.  

TKEOI~E~ 12.22. - Let (%~) be a 2-fold pre-isomorphism of the homoge. 
neons space (~2,G, .) into the homogeneous space (~2',G', . ) a n d  :¢E~2. Then 

: X--> G'~(X~)G'~ 9 

is an isomorphism of the double coset semigroup G/G~ onto the double eoset 
semigroup G' /G'~.  

PROOF. - Because  of theorem 12.19 all what we need to show is that 
is a bi ject ive mapping. ~ is a bi jective mapping by Definition 5.1. Therefore 
for every g'EG' there exists a gEG such that 

(~¢P) (g ~t -" (agi~ - -  (~'~lg' , 
and hence 

(G~gG~)~ ~ G'~(g'.~)G'~,~ -~ G'~g'G'~. 

This proves that ~ is surjective.  
If  IG~gG~)~--(GJ~G~t~ then, using ($~, 

G':~(g'~tG'~ ~ -" G'~ 9 (h O)G ~.~ -- G ~ (h'~} {G~'~). 

There exist  x'E G'~ and y C G~ such that 
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This implies ~c'E G0. Therefore there exists xE G such that w' --  w'~. Fur thermore  

(~)~ = ( ~ ) ( x ~  = ~ 

means that xEG~ because ~ is bijective. Since 
Definit ion 5.1, we have 

g = xhy  E G~h G~, 

is a monomorphism by 

and hence G~gG~--G~hG~. There[ore ~ is an isomorphism. 

COROLLARY 1223. - 2-fold pre-isomo~Thic homogerteous spaces are of  the 
same type. 

So far our investigations have dealt with the relationship between homo. 
geneous spaces and double coset semigroups. The eoset semigroups did not 
appear explicitly. For every homogeneous space (~2,G,.) and a E~] the pair 
(~, i~)  with 

~ : ~g--> Gag 

is an isomorphism of (~2,G, .) onto the homogeneous space (G~: G, G, .). Therefore 

we can take ~2=G~:G without loss of generality. But then G~:G is a semi" 
group with respect to the complex multiplication, and its subsemigroup ~hich 
is generated by the cosets G~g, gEG, is the coset semigroup o[ G modulo G~. 

If  H is a subgroup of the group G, and H' is a subgroup of the group G', 
then a mapping ~ of the coset semigroup of G modulo H into the coset semi- 
group of G' modulo H t is called a homomorphism if 

(1) (XY)~  - -  (Xfft(Y~), 

(2) For every Hg, g E G, there exists a H'g', g'E G', such that 

(Itg)O" It' g' a~d (Itg-~)O ' - -  It' '-~ - -  g 

(3) X ~  = 0 (Hg)~. 
Et~=x 

It is now clear how one may proceed with these concepts, but we leave 

any fur ther  discussion. 

REFERENCES 

[1] l~-. BOURBAKI, Eldments de Mathdmatique, Alg~bre~ Chapitre 1, Structures alg~briques. 
1958. I-Iermann, Paris. 

[2] O. TA~ASC~KE~ An extensio~ of group theory. [stituto ~azionale di Alta Matematiea. 
Symposia Mathematica 1, 5-13(t968). 



0 .  TAMASCHKE: On Permutation Groups 279 

[3] - -  - - ,  A n  ex tens ion  o f  group theory  to S - semigroups ,  Math. Z. 104, 74-90 (1968). 

[4] - -  - - ,  A genera l i za t ion  o f  s u b n o r m a l  subgroups,  Archly der Math. 19, 337-347(1968). 

[5] - -  - - ,  A genera l i za t i on  o f  co~ jugacy  in  groups~ Rendiconti del Seminario Matemaiico 
dell 'Universith di Padova 40, 408 ~27(t968). 

[6] ~ .  W]ELANDT~ F i n i t e  p e r m u t a t i o n  groups,  Hew York-London:  Academic Press 1964. 

[ 7 ] - - - ,  Unendl iche P e r m u t a t i o n s g r u p p e n ,  Vovlesungen an der Universil~t Tiibingen~ 
Wintersemestcr 1959-60. Ausgearbeitet yon A. Mader. 

[8] - -  - - ,  Fac tor s  o f  9roups~ Istituto 57azionale di Alta Matematica. Symposia Mathematica 1. 
To appear. 


