The Cauchy problem for an elliptic parabolic operator®.

D. Saruer and J. SATHER

Sammary., - Necessary and sufficient conditions are established for the existence of a solution
of a Cauchy problem which is not well posed in the sense of Hadamard.

1. - Introduection.

If a subsonic flow is given in some domain ¥ whose boundary contains
a sonic line § then, under certain assumptions, the subsonic flow can be
continued in a unique way across § as a supersonic flow without discontinuities.
The desired continunation is obfained by solving a CAUCHY problem with data
given on S. In fact, by means of a transformation, one may consider a CAUCHY
problem for an equation of the form

*u Fu

(1.1 T EO 5= =0,

where K is a monotone function such that K(0)= 0 and yK(y) > 0 for y == 0.
Here the sonic line § corresponds to a segment of y = 0 and a solution of
the CAUOHY problem is sought in some domain contained in y <C 0 where the
equation is of hyperbolic type. It has been shown by BERs [2] and others that
this CAUCHY problem for equation (1.1) is well posed in the sense of HADAMARD,
that is, a unique solution exists which (in some suitable norm) depends
continuously on the CAvucHY data.

It was also pointed out in Bers [2. p. 25] that it would be of interest to
obtain results concerning a problem converse to the one discussed there;
namely, assume that a supersonic flow is given in a domain whose boundary
contains a sonic line § and determine suitable conditions under which the
flow can be continued into the subsonic region. However, in the region where
y > 0 equation (1.1) is of elliptic type and it is well known that a CaucHy
problem in this case, with data given on a segment of y =0, is not well
posed in the sense of HADAMARD; in particular, the solution will not in gene-
ral depend continuously on the data.

Since there are other physically interesting situations which also lead to
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mathematical problems that are not well posed in the sense of Hadamard,
there has been in recent years increased interest in problems of this type
(see e. g. [3; 4; 6; 8)). However, the main emphasis in the study of non well
posed problems up to now has been on the questions of uniqueness and
continuous dependence, whereas relatively little work has been doune on the
more difficult question of existeuce. The present paper represents a contri-
bution towards the resolution of the latter question.
In this paper we will consider an operator T, of the form

_ow

(1.2 Tu = W + ¥y Foe T > 0.

Let us note that the equation T,u =0 is of the form (1.1) for y >0, and
that it includes the TRIcOMI equation (x = 1) as an important special case.
We will study the following CAucHY problem for the operator T,:

Problem C will consist of determining a function u = u(x, y) which
satisfies the equation 7, =0 in a domain D={(, ): 0 <y <y,}, and the

prescribed initial conditions wu(x, 0) = fla) and g—zw, 0) = glx), — o0 <& oo,

It is known that Problem C is not well posed in the sense of Hadamard.
Moreover, in a recent paper PAYNE and SATHER [7] have established a necessary
and sufficient condition for the existence of a periodic solution of Problem
C in the special case when f and g are periodic functions. However, their
methods, which involve the use of FOURIER series, are not appropriate for the
case of non-periodic data.

In order to include a larger class of admissible initial data for Problem
C we will seek a solution that only assumes the initial values in some
generalized sense. We will say that u is a generalized solution in 0<y<y,
of Problem O if (*)

(1.3) Tu=0 0<y<y,,
(1.4 sup f lu(x, y)* de < oo
ol Y<yo—0

for every 0 satisfying 0 < 0 <y,, and, as y-—0,

(1.5) f | ue, y) — flx)*de —0

(!} Here, and in the sequel, an integral without limitis is taken over (— oo, o)
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and

ou
1.6 —{x, y) — glx)|? de— 0.
(1.6) f‘ay(“ y) — glx)|

It is of interest to note that the existence of a solution satisfying a
condition of the form (1.4) is often assumed when discussing questions of
uniqueness and continuous dependence for problems which are not well posed
in the sense of HADAMARD (see e. g., [4; 6]).

Although one may establish the existence of a solution of Problem C by
imposing various sufficient conditions on the CavucHY data (see e. g. [11}]),
due to the inherent over — prescribed nature of Problem C the most desirable
type of existence theorem would seem to be one that imposes conditions on
the CAucHy data which are both necessary and sufficient for the existence of
a solution. In Section 3 we establish such a theorem by formulating necessary
and sufficient conditions for the existence of a generalized solution of Problem
C for the operator 7,. In addition, even though we consider Problem O in
this paper for only the operator T, it will be clear that the method used is
appropriate for other operators of the form (1.1) which appear in the literature.

2, - Preliminaries.

Let us begin by presenting some definitions and results which are needed
in the main section of the paper (Section 3).

We will require the following basic lemma which is a simple consequence
of a theorem of PALEy and WiIENER (5, p. 3ft].

LeMMA 1. - Let » denote the FoURIER (PLANCHEREL) transform of % € L2

-

Then Rh(E)er—E€ L2 0 < e <y, if and only if & is equal a. e. to the restriction
to the real axis of a complex valued function H = H(x 4 iy) such that

(1) H is analytic for |y| <y, and

(2) sup f | Hx + i) [P de < oo

fy|<y—e

ProoF. - Let us suppose first of all that AEet—d8 €2 0<e <y, If we
define

@.1) HE) = @k f WEWEAE (2= o + iy),

then the integral converges absolutely and uniformly on compact subsets of
'y | <y and, hence, H is analytic for |y | < y. By hypothesis there is a ¢ € 1.2
such that
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(2.2) TEe—vE = Y(E)e—r—Ei—vE={(E)e01E],

where, if £E<0, 6=y —e—y. and, if §>0, 6 =y — ¢4y Let y satisfy
ly| <y —e; then 8> 0 and, therefore, h(E)e—vt belongs to L' M L* In parti-
cular, by the inversion theorem H(x)= h(x) a. e. on y = 0. Moreover, for each,
y satisfying ly| <y —e, it follows that H{ — x 4 dy) is the Fourier trans.
form of Z(Ee~v¢ and, by the Plancherel theorem (%),

23) f H(— + iy) [ de = f | BE)est |t dE < | O

which implies that H satisfies also property (2).

Conversely, let us suppose that & is equal a. e. to the restriction to the
real axis of a function H{x -} éy) which satisfies properties (1) and (2). For
each y satisfying |y| <7y, let H, denote the function defined by Hy(x)=

= H(x + ¢y). Then H,=h€L* and, therefore, H,=h€L* Then one can show
by an argument due to PALEY and WEINER (see e. g. [9, p. 130)) that, for
each y satisfying |y|<<y — ¢, the FOURIER transform of H, (which is in L?
by property (2)) is given a. e. by

2.4 Hy(E) = h(@e,
where h(E)e—#¢ belongs to L®. In particular,

2.5) TE) = H_Be % = H_p (Het95,

Hence, if we define
H_( £<O0

(2.6) @) = _
H-—y-{—e(g) E>O

then ¢ € L* and
@.7) It —NE = ).

This completes the proof of the lemma.
Let Ry denote the Riesz kernel of order § which is defined by

(2.8) Re(w) =c|x|F, 0<B <1,

(% Throughout the paper the ncrm of an element ve L? is denoted by [v] where [v[t =
=[|v(t) 2 at.
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where

r(l—g.:ﬁ)

23(;)1/@(?2)'

In addition, let Gy denote the BESSEL kernel of order § as introduced by
ARONSzZAJN and SMITH (1, p. 414], namely,

(2.9) ¢ ==

}L—-l
2.10) Gaft) = ——— Sl K111, >0,
9e—1)2( /2] (é) =

where K, denotes the modified BesseL function of the third kind. It can be
shown that, for 0 < B <1, Ry is the principal part of Gg at the origin.

In Section 3 we shall require the following two connections between the
kernels Rp; and Gg. There are positive constants B, and B, such that, for
[t|>0and 0< B <1,

2.11) Gslt) < B, Rylt)
and
(2.12) | Ga(t) — Relt) | < B,.

In fact, by employing well known asymptotic expansions for K., one can
show that [1, p. 416ff]

. G
(2.13) Rg——»l ast— 0,
and
2.14) 2612 (g) £ ~Beti Gg(t) — 1 as | {]— oo.

Therefore, there are constants such that (2.11) holds if | #| is either sufficiently
small or sufficiently large. Since Gy is also positive one can easily determine a
constant so that, in addition, (2.11) holds over any finite set 0<8 < |#|<<N<oo.
In order to establish (2.12) let us note jthat a routine calculation involving
only the definitions of Rp and Gg shows that Gy — B is a bounded funetion
for 0 < || =< 1. Moreover, Gg is a decreansing function of | £|[1, p. 417] so that

| Golt) — Rel) | < Goll) + ¢ |¢]=1,

which implies (2.12).
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Next we define certain standard functional spaces (treated, for example,
in detail in [1, Chap. 2, Sec. 2]} which in turn will be used in Section 3 fo
describe the classes of functions which are admissible as initial data. Let
us denote by Hg the set consisting of (equivalence classes of) L* functions
for which

1u|é=f<1+16128;1mwdg<w.

Hpis a HILBERT space under the norm |u|g; the class C5(smooth functions
with compact support} is dense {in norm) in Hj.

For futare reference, we list at this point the FOURIER transforms of the
kernels E; (see e. g, [9, p. 182]) and Gy (see [1, p. 410}); namely,

(2.15) Byff) = (27;)”'% f Rgx)e—&dx = (213}—%{ E-E
and

~ 1 B
(2.16) Ge(]) = (2m) ML 4-]EP) *

The integral in (2.15) exists only for 0 < § < 1 and, then only as an improper
RIEMANN integral.

3. - The Existence Theorem.

In this section we establish the main result of the paper.

By use of the method of separation of variables, particular solutions of
the equation

Fu ou
(8'1) ay—z'{"y ama—'oa y>0;

of the form wv(y) w(x) are easily determined; namely, set w(x) = e¥* and let
v be a solution of the equation

IV ey =0, y >0 and £ 0,

(3.2) i

It is easily seen that solutions of (3.2) are functions of the single variable

; in fact, v(y) = u(|£|Py) (E==0) satisfies (3.2) if and

£ =1|E|Fy where @:;%?,
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only if u = u({) satisfies

dw .
g@ — u = 0.
2
If we set = P and p = B €| 4, the substitions V== y—29(y) and ¢ = py'?

transform (3.2) into Bessels’ equation. We choose the real linearly independent
solutions:

(3.3) MIEIPy) = cplB € Iy‘fﬁ;ﬁ/"-‘lfgtﬁ &1y,
(3.4) o |E1%) = dp(B| €| ?/‘/B}B/zl}%(@ | €1y + M1 E | By),
where
=)
(3.6) dy = 23/251—31’@).

Here I, and K, denote the modified BessgL functions of the first and third
kind (see e. g., [10, p. 96 and p. 77ff.]).
The following properties of X and p are required in the sequel.

(1) By using the well known formulas [10, p. 79]

3.7) 22K = K,

3.8 L oL =T

(9.9) aéiz (8) | = & L, (),

we obtain

(3.9) M EPy) = — cef12 P K, _ppl2),
(8.10) w(|E|By) = defP—a" P2 T, _ (2) + M(1E Py),

where 2 = B |£| y'® and the prime denotes differentiation with respect to | § | #y.
Therefore M{0) = — 1, p'(0) =1 and

1—3
(31“ P )\{0) = WO) = (g) et
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(2) M|EPy)—0 and p_(|E|Py)—oc as |§[Fy— oo [10, p. 202fL.].

(8) Since A and p are also solutions of (3.2 they cannot have an in-
flection point for y > 0 and, hence, X is a decreasing positive function of
y, and p and p' are both increasing positive functions of y, y > 0.

(4) Let y satisfy O <y, <<y<y, It follows from the asymptotic

expansions for large z of K,(2) and I,(2) [10, p. 202{L] that there are positive
constants M,, depending on y, and gy, but nof on &, such that for y, <y <.

(3.12) M|E) By) << My 880 — oo < B < oo,

(3.18) M,|E lﬁz;le EBNE (| E] By) == Mye 58 1 E| = N,

(3.14) WUIE o) < ML [E] T o 830, — o0 < £ <o,
Let us define for ¢ > 0

(3.15) o) = 52Glem), =

where Gy is the BessBL kernel given by (2.10). For the particular choice of
B = “—_;2_—2(0 < B < 1), let us denote the Riesz kernel by ¢ instead of E;. The
usefulness of the kernels g, will be seen to stem from the faet that ¢, and
¢. simnltaneously approximate ¢ and ¢. The basic relations between ¢ and
¢, are exhibited in the following two inequalities: there are constants B, and

B,, which are independent of ¢, such that

(3.16) 9:(®) << Big()
and
(3.17) | 9efo0) — () | << Boe' .

Since ¢ is homogeneous of degree 8 — 1 the inequalities (3. 16) and (3.17)
follow immediately from (2.11) ano (2.12), and the identity o¢.(x) — o(x) =
= e~ Gylew) — (ea)]

It is well known that if ¢ € L* and ge L* then the convolufion

vegia) = [ 4 — gty
is defined a. e., belongs to L? and has the Fourier transform

(8.18) (beg)™ = (2n)2dg.
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Although the RiEsz kernel ¢ is only locally integrable we now show that if
g is suitably restricted then (3.18) holds even when ¢ is replaced by ¢ (?).

Lsmma 2. - If geQ N L* then either pxge L* or gge L* implies that
(pxg) = (2m)'*0g.
Proor. - It is sufficient to consider the case when g is non-negative.

Let us first show that pge L implies pxge /% Since p.e L* it follows from (2.16)
and (3.15) that

(3-19) (exg) (E) = @m0y, Qi) = QiﬁT}z‘}m
and, hence, by the Plancherel theorem
(3.20) loxg P, = f {%d@

Moreover, since ge £, an immediate consequence of (3.17) is fthat
(3.21) lim ¢ +glx) = org(x).

g -0
It follows from (3.20) and Fatouw’s lemma that

(8.22) | prgl? do < lim |p.xg |* < 2n | 9g |

g=—>9

which implies ¢xgel?
On the other hand, let us suppose that gxgeL?® Then (3.16) implies

(3.23) ¢xg << Bip*g
and, thus, (8.21) and an application of Lebesgue’s theorem yield
(3.24) lim |p.xg — 9*g|=0.
[ ]
Therefore, |¢.xg| < Const,, and an application of Fatou’s lemma to (3.20)
implies

(3.25) znf |9g|® dE < oo.

(3) Bee also [12]. Liet £ denote the class of measurable functions h such that /(14
+E))e ~LR(E)|d5<leo. 1f heQ N L? then Rgxh is defined a.e. and is locally square integrable.
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Combining (3.22) and (3.25) we see that without loss of generality one may

agsume for the remainder of the proof that both pxgel® and wgel’.
Let us now establish the desired extension of (3.18). It follows from (2.15)

and (8.19) that ¢, < ¢ and

(3.26) lim (p.+g) (8} = (2m)/2p(ElgiE).

g~ 0

y

Therefore, by Lebesgue’s theorem, |¢.g —Acpb[i—»() as ¢— 0. Bat, by the
PLANCHEREL theorem, [p.xg — ¢*g|-—0 implies [{p.xg) —(pxg) [—0
and, hence (¢, *g)~ converges in L? to both (p+g)~ and (2rjl2pg. This com-
pletes the proof of Lemma 2.

We turn next to the definition of the functional spaces of CAavcmY data.
The admissible initial values (f) of a solation are assumed to be L* functions
while the admissible initial values (g) of its normal derivative are more
restrictive,

Let us denote by V the subset of L* consisting of (equivalence classes of)

functions g for which |£|~Pg~ belongs to L* and then introduce a norm |g |v
on V by setting

lglr=1lgl+11E1~*9]"
The function I: V- H; obtained by setting
Ig = v if and only if g=|E|Pv, ve H,
is an isometry :
vli= [ 181 o

=]v| +[[Efo]
=NE[*gF + gl =19

In addition, if veH, then | [Pve L2 whereby there is a (unique) geL® with

g = |E|Pv. Thus I is an isometry of V onto Hp. In particular, V is a Hilbert
space; moreover, V may be regarded as a subspace of L* since |g|y =0 if
and only if |g|=0.

REMARK 1. - 1f geSNV then gxgeL’ and (pxg) =(2n)23g. This result is
an immediate consequence of Lemma 2 since both g and ¢g are in L? when
geV.
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REMABK 2. - If o>2 then 0<{3<’ and ENL°CCn V. In fact, it

2
0<3B / = and ge L’ then g is an L? function bounded by lg _j lglx)
and

ffﬁl_*@i"diéﬁgﬂf 1%i“25d€+f | g PdE < oo,

E1=1 I£[>1
We have the following existence theorem for Problem C.

THEOREM. - Suppose that fe L* and ge £ V. Let u be given by

(327) ule, y) = (27 f[a(gmgwe ) biEN( | E [Py)lendE,
where

(f+ (2m)/2h09g).

wl,_

ﬂ (F — (2r)27g)  and

II

Then u is a generalized solution of Problem C in 0 <y < (zy if and only
if the function ?

(3.28) hio) = fl@) + Japrgi)

is equal a. e. to the restriction to the real axis of a complex valued function
H{x + iy} such that

(1) H is analytie for |y| <y and

(2) sup f | Hxe 4 éy) |* da < oo for every & satisfying 0 <3 <.
iyl<y—39

It is convenient to carry out the proof in several stages.

Part 1 - The condition that the particular combination of the data given
by (3.28) has an analytic extension can be replaced by a second necessary
and sufficient condition concerning the FouURIER transform of (3.28). Since
prge L? by Remark 1, it is clear that e L®. Lemma 1 asserts that . has an
analytic extension H satisfying properties (1} and (2) in the statement of the
theorem if and only if h(£)et—) belongs to L* for every e satistying 0 < e < 7.
Moreover, an immediate consequence of Remark 1 is that h=f-+ (2n)1/21.;:y}j,
and hence, by the definition of b, h = 2. Thus k has an analytic extension
H satisfying properties (1) and (2) if and only if b(gletr—9% belongs to L* for
every e satisfying O < ¢ < y. Therefore, in order to complete the proof, it is



208 D.SATHER - |. SATHER: The Cauchy problem for an elliptic-parabolic operator

B
sufficient to show that u is a generalized solution in0<y<<%) if and

only if bE)etr—9& belongs to L? for every e satisfying 0 << e <y,

PART 2. - Let us suppose that # is a generalized solution of Problem C

B
in <y < (g) . Then, by definition, the integral in (3.27) converges for 0 < y <
<(Z) and all x. Moreover, the function u, given by wu,(x) = u(x, y) belongs

B

to L? so that ?:l;, is in Z* and is given pointwise, for almost all £ (see e. g.
[9,p. 84]), by

A
—_ ]
(3.29) uy(E) = (27) lim (( i %
~A

) u,(x)e—Eedz.

In addition, since a and b belong to 7. and A, p are continnous, ak 4 bp is
locally integrable and, obviously, u, is locally integrable. Thus it follows,
by a theorem on the uniqueness of FOURIER integrals (see e. g. [9, p. 164]),
that for almost all &

(8.30) a2 | E Py) + b(E)d | € [Py)
= (2n)—1/2A]—i_IPOO ( — l%l)uy(w)e“ié-”dw.

Upon comparing (3.29) and (3.30) we see that for almost all §
(3.31) uy, = a + bp.

y—¢e/2
g

3
Let ¢ satisfy 0 < ¢ <y and set y =< ) It follows from (3.13) that

p—1 ¢

W(E By = Myl | E] 7 e)elraEl = Met—atl

holds for safficiently large |£]. Hence, since pn{]| £ |Py) = A, there is a number
M, depending on y but not on §, such that

(3.32) obe= el < Mu(|€ PPy).
Combipning (3.12), (3.31) and (3.32) we obtain

(3:33) bl evE = Mluy |+ M| a]), y = (L:si?)ﬁ
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Thus, belr—Yé e L* for every e satisfying 0 <e <.

Parr 3. - Conversely, let us suppose that betr—é e L* for every e saf-
v B
I

isfying 0 < e <y. Let y satisfy 0 <y <(§) and set e :} (y — By'Y?). Then

2
¥t —e—Byf=e>0 and it follows from (3.12) and (3.13) that there are
positive constants M, and M such that

(3.34) la| k< M, |a|easyf
and
(3 35) [B) =< M|b|etr—N&g—ciét,

B
Hence (aA -+ bple L' L? so that for each y satisfying 0 <y < (%) the integral
in (3.27) converges for all ®. We will show that if u is defined by (3.27) then

g
u is a generalized solution of Probl m C in o0 <y <Q—;) .
Liet us note first of all that

(3.36) u = (ak +bp) ,

where a(f) = a{ — &) and b(f) = b( — E). Moreover, since (@) + bpjeL* it follows
from (3.36) that

(3.37) uy = ak 4 by,
and, hence, by the PLANCHEREL theorem
(3.38) luy | ={ oA 4 bp|.

—&5e .
If & satisfies 0 < & < vy then, for all y satistying O <y <(ZF§) =y,

(8.39) | BEN | € 12y) | << | BE) (| € [BY) << DL | B(E) | etr—P0E1,

where M is independent of y. From (3.38) and (3.39) we obtain

(3.40) sup [uy| <ol @ | + M]bet—"81] < oo,

o<<y<y

Therefore, u satisfies condition (1.4).

e
Let K be a compact subset of the strip 0 < y<(%> and let o> 0 be

Annali di Matematica 27
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8 —
such that K is contained in the strip S(,:(E) gygpf 2

g B
(3.12) and (3.18) as above we obtain estimates like {3.34) and (3.35) (with ¢

replaced by p) which are valid for y in S,. It follows that aX 4 by is bounded
uniformly with respect to y in S, by an integrable function and, therefore,
the integral in (3.27) converges uniformly on K. Hence, by a standard argu-
ment employing a theorem of Harnack, # is a solution of T, =0 in 0<
B
<o<3f
Thus, in order to complete the proof, it remains only to show that u

assumes the boundary values in the sense of {1.5) and (1.6). For this purpose
we introduce the function

B
) . Upon using

(3.41) A = PEt),

where v > 0and K, denotes the modified BrssgL function of the third kind.
Let us note that, see (3.3) and (3.9),

(3.42) AgulB 1E\9) = M E[P0),
(3.43) Aot [ElyR) = - E 00 gy
Moreover, 2

(8.44) lim A,() = 2.

and (see e. g., [10, p. 172))

1
2P<V+§) ° cos

(3.45} Av{?} = (TC}]/Z (1 - n?pte .

By inversion we obtain

(3.46) (205 [ A58 pRieeds = 2 ) TP,
where

1
f(” +3) (B e
FETY) (B9 + @

(8.47) Pylx) = v>0, y>0
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Let us note that the FOURIER inversion theorem also implies
(3.48) f Pya)dw = 20— 1.

With these preliminary calculations if is not difficult to show that the family
P,(y > 0) is an approximate identity in L? and, for reference, we state formally
the result as

LeMMA 3. - The family Py(y > 0) defined by (3.47) is an approximate
identity in L? that is, for every we L

lim || Pyxv — o] = 0.
Y0

Let us recall that @ = zil(fw (2m)5g). Since 23/2—11‘(g> cg = Ao it follows
1]
from Lemma 2 and the PARSEVAL theorem that

(349) f alE)(| € [Pyjefeeds = cs f alE)AgalB | | yPjeisnde

s |1
= @mphpy | (F — 2uetg)| )
Consequently, by Lemma 3, as y—0
{3.50) (Qn)—ié’z}l areEedt — % (f — Agoxg) in LA
1

Since belr—)él e L? by hypothosis, it follows that b(E)|E? :ﬁ{f(i)}iiﬁ—{—
(4]

-} ?Log(i) belongs to L. Thus ¢ < L? implies that there is a ¢eL” such that U =
= f§)| §|? belongs to L* and

8:51) alf) | £ = 5= (1) — A
Another application of the PARSEVAL theorem yields
852 [ aieient iz pyesea:

= o f ali) | EPA gl | E| g B)eited

N (gn)l/zP;”"B/z* [,2,%; (q) - 7\09)] (96)-
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Therefore, by Lemma 3, as y — 0
(3.53) (2m)1i f af) [EPX( |EPyletede % (g —4) in I
8

Next we define, for convenience, the functions

{3.54) Ay(x) = (zn)~1/zf ()l | £ [By)eitods,
and
(3.55) B,(x) = (2m)—12 f BE) 1§ w(IE] yeiteds.

Then in order to establish (1.5) aud (1.6) it is sufficient to show that, as y — 0,

1 .
(3.56) 4, — Q(f+ doo*g) in L*
and
(3.57) By = o (hog 4+ ) in L4
2%

since these limits and (3.50) and (3.53) imply that, as y — O,

1 1
(358) w— 5 (f — Ag"g) + 5 + Mot*g) =F in I?
and
. ° 1 1 N
(3.69) sy~ — ) F gy gt =g in LY

— B
It follows from (3.13) that, for O <y <<y = (ﬁ) ,

_ Te
zt“'

_T
(3.60) 1BE) | 1§ 1Py) <[ BE) | p(1E o) < M bE) ez e o

Ie by
Yt . -
and, hence, be* = € L’ implies that bpeL'ry I* for 0 << y < y. Therefore

(4.61) Ad,=0bp, 0<y<ny,

and by the PLANCHEREL theorem

(3.62) |4y — A =4, — 4| = f [bp — Agb [PdE.
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An application of Lebesque’s theorem then yields

(3.63) lim | 4, — 4, = 0.
Yo O
Since
(3.64) Afx) = (Zn)—1/2flob(§)e zd;
and Az :%(?-{—(27:)‘/27\0@5) belongs to L', we have by inversion

(3.65) o= 5 (f + 159

which together with (3.63) implies (3.56). A similar argument employing (3.14)
and the function ¢ defined by (3.51) yields (3.57). This completes the proof
of the theorem.

Let us remark that in Part 2 of the above proof we showed that
belr—iEie[?, 0 < ¢ <y, and it follows that |%|Ff = 2),|E|Bb — A,g also belongs
to L® Thus, a second necessary condition that Problem C has a generalized
solution (3.27) is that f must belong to Hjp.

In conclusion we wish to emphasize that the above theorem gives neces-
sary and sufficient conditions for the existence of a generalized solution of
Problem C in a prescribed strip instead of some indeterminate neighborhood
of the initial line.
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