
The Cauchy problem for an elliptic parabolic operator*. 

D. SATHER, and J'. SATHER 

Summary. - Necessary a n d  suf f ic ient  condi t ions  are  es tabl ished {or the existence o f  a so lu t ion  
o f  a Cauchy  probletn wh ich  is no t  wel l  posed in  the sense o f  H a d a m a r d .  

1 . -  In t roduct ion.  

If  a subsonic flow is given in some domain ~) whose boundary  contains 
a sonic line S then, under  certain assumptions,  the subsonic fIow can be 
continued in a unique way across S as a supersonic flow without discontinuities.  
The desired continuat ion is obtained by solving a CAuc~Y problem with data 
given on S. In fact, by means of a transformation,  one may consider a CAuc~¥ 
problem for an equat ion of the form 

(1.1) 3~u 3~u 3y" + K(y) ~ = O, 

where K is a monotone function such that K ( 0 ) - - 0  and yK(y)> 0 for y ~ 0. 
Here  the sonic line S corresponds to a segment of y : 0 and a solution of 
the CAUCV[Y problem is sought in some domain contained in y < 0 where the 
equat ion is of hyperbolic type. It  has been shown by BEaS [2] and others that 
this CAUCEY problem for equat ion (I.1) is well posed in the sense of HADA~ARD, 

that is, a unique solution exists which (in some suitable norm) depends  
cont inuously on the CAUC~:z data. 

It  was also pointed out in BERS [2. p. 25] that it would be of interest  to 
obtain results  concerning a problem converse to the one discussed there;  
namely, assume that a supersonic flow is given in a domain whose boundary  
contains a sonic line S and determine suitable conditions under  which the 
flow can be continued into the subsonic region. However ,  in the region where 
y > 0 equat ion (1.1) is of elliptic type and it is well known that a CAUCHY 
problem in this case, with data given on a segment of y - ' 0 ,  is not well 
posed in the sense of t~A.DAh~ARD; in particular,  the solution will not in gene. 
ral depend cont inuously on the data. 

Since there are other physical ly interest ing si tuations which also lead to 
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mathematical  problems that are not well posed in the sense of Hadamard,  
there has been in recent  years increased interest  in problems of this type 
(see e. g. [3; 4 ; 6 ; 8]). However ,  the main emphasis  in the s tudy of non well 
posed problems up to now has been on the quest ions of uniqueness  and 
cont inuous dependence,  whereas  relat ively little work has been done on the 
more difficult  quest ion of existeuce. The present  paper  represents  a contri- 
bution towards the resolution of the lat ter  question. 

In  this paper  we will consider an operator  T~ of the form 

~2U ~U 
(1.2) T~u -~ ~ -.]- y ~ - ~  , ~ > O. 

Let us note that the equation T ~ u - - 0  is of the form (1.1) for y > 0, and 
that it includes the Tmco~JI equat ion (:¢ ~ 1) as an important special case. 
We  will study the following CAuc~Y problem for the operator  T~: 

Problem C will consist  of determining a function u - - u ( x ,  y) which 
satisfies the equation T ~ u - - 0  in a domain D -  ((~c, y): 0 < y <Y0 }, and the 

3u 
prescr ibed initial conditions u(x, O) -: f(x) and ~ (x ,  0) = g(x), -- c~ < x < c~. 

It  is known that Problem C is not well posed in the sense of I-Iadamard. 
Moreover~ in a recent paper  P~Y~E and SATHEEt [7] have established a necessary 
and sufficient  condition for the existence of a periodic solution of Problem 
C in the special case when f and g are periodic functions. However ,  their 
methods, which involve the use of F O U R I E R  series, are not appropriate  for the 
case of non-per iodic  data. 

In  order to include a larger class of admissible initial data for Problem 
C we will seek a solution that only assumes the initial values in some 
generalized sense. We  will say that u is a generalized solution in 0 < y < Y0 
of Problem C if t ~) 

(1.3) T~u --  O O ~ y ~ yo, 

(1.4) 
/, 

sup | I u(x, y)12 dye ~ 
o~ y~yo--O , ]  

for every 0 satisfying 0 ~. 0 ~ yo, and, as y- - . -0 ,  

(1.5) f l u(x, y) -- f(x)l~dx ~ 0 

{l) Here,  an4 in the sequel, an  in tegra l  wi thout  l imit is  is t aken  over (--¢,% ~ )  
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and 

f ~u 
(1.6) 1  y(X, y) - g( c) t dx  O. 

It  is of interest  to note that the existence of a solution satisfying a 
condition of the form (1.4) is often assumed when discussing quest ions of 
un iqueness  and cont inuous dependence for problems which are not well posed 
in the sense of HADA~CIARD (see e. g., [4; 6]). 

Although one may establish the existence of a solution of Problem C by 
imposing various sufficient  conditions on the CAUCH¥ data (see e. g. [11]), 
due to the inherent  o v e r -  prescr ibed nature  of Problem C the most desirable 
type of exis tence theorem would seem to be one that imposes condit ions on 
the CAUCRY data which are both necessary and sufficient  for the existence of 
a solution. In  Section 3 we establish such a theorem by formulat ing necessary 
and sufficient conditions for the existence of a generalized solution of Problem 
C for the operator  T~. In addition, even though we consider Problem C in 
this paper  for only the operator  T~ it will be clear that the method used is 
appropr ia te  for other operators  of the form (1.1) which appear  in the l i terature.  

2. - Pre l iminar ies .  

Let  us begin by present ing some definitions and results which are needed 
in the main section of the paper  (Section 3). 

We  will require  the following basic lemma which is a simple consequence 
of a theorem of PAL]~¥ and W I ] ~ E ~  [5, p. 3ft]. 

L E M M A  1 .  - Let h denote the FOURIER (PLANCHEREL)transform of h E L:. 

Then h(~)e(r-~)l~t E L '~, 0 < ~ <: y, if and only if h is equal a. e. to the restrict ion 
to the real axis of a complex valued function H = H(x + iy) such that 

(1) H is analytic for ] y] < y, and 

(2) sup ( I H ( x + i y )  l : d x < o c .  
tyI<y--~ .J 

PnOOF. - Let  us suppose first of all that h(~)e(v-~) :~IEL:, 0 ~ e ~ y. If we 
define 

(2.1) H(z) 

then the integral converges absolutely- and uniformly on compact  subsets  of 
[ Y / ~  ]" and, hence, H is analytic for l Y [ ~  T. By hypothesis  there is a ~ E L  ~ 
such that 
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(2.2) h(~)e-~ = +(~)e-(r-ol~f-~+(~)e-~l~t, 

where,  if ~ 0 ,  0 _ ~ y - - e - - y .  and, if ~ 0 ,  0 - - ~ , - -  e ~ y .  Let  y satisfy 

IYl ~ ~ - -~ ;  then 0 ~ 0 and, therefore,  h(~)e-u~ belongs to L ~ ~ LL In  parti- 
cular,  by the inversion theorem H(x) --  h(x) a. e. on y -- 0. Moreover, for each, 
y sat isfying I Yl ~ ~ -  e, it follows that  H ( - - x - ~  iy) is the Four ie r  trans- 

form of h(~)e-y~ and, by the P lanehere l  theorem (~), 

(2.3) f l H ( - -  x --~ iy) I ~ dx -- f l h(~)e-~ l ~ d~ ~ II ~ [1~ 

which impl ies  that  H satisfies also proper ty  (2). 
Conversely, let us suppose  that  h is equal  a. e. to the res t r ic t ion to the 

real axis of a funct ion  H(x~ ~ iy) which  satisfies propert ies  (1) and (2). For  
each y satisfying l Yl ~'~', let Hy denote the funct ion  def ined by Hy(x)-- 
- - H ( x - ~  iy). Then  H 0 - - h E  L ~ and, therefore,  H o - - h E L  ~. Then  one can show 
by an a rgument  due to PALE¥ and WEINER (see e. g. [9, p. 130]) that, for 
each y sat isfying ly l__~Y--~ ,  the FOYRIER transform of Hy (which is in L ~ 
by proper ty  (2)) is given a. e. by 

(2.4) ~y(~) = ~ ( ¢ ) e - ~ ,  

where  h(~)e-u~ belongs to LL In  part icular ,  

(2.5) ~(~) = ~_~(1)e v-o~ =/)_~+~(~)e-(~-~)¢. 

Hence,  if we define 

(2.6) 

then ~ E L  2 and 

~(~) --  
/tr_~(~) ~ < o 

~_r+~(~) ~ > o 

(2.7) ~({)e(y-0~l = +({). 

This  completes  the proof of the lemma. 
Let  R e denote the Riesz kernel  of order  ~ which is def ined by 

(2.8) R~(x) = ~ l x [~-1, 0 < } < 1, 

(2) Throughout  the paper  the n~rm of an e lement  v ~ L  ~ is denoted by  [lvIIwhere [Iv]l 2 :  

= / I  v(0 ~ at. 



D. SATHER - 1 ,  SATHER: The Cauchy problem ]or an elliptic-parabolic operator 201 

where 

(2.9) c - -  

In  addit ion,  let G~ denote the BESSEL kernel  of order  
AROI,~SZAJI,~ and SMITIt [1, p. 414], namely,  

l ~--1__ 9 (2.10) G (t) i t l '2 K,_,(ltli,  0, 

as in t roduced by 

where  K~ denotes  the modified BESS]~L funct ion  of the third kind.  I t  can be 
shown that, for 0 < ~ < 1, R~ is the pr inc ipa l  par t  of G~ at the origin. 

In  Sect ion 3 we shall  requi re  the followi~g two connect ions  be tween  the 
kernels  R~ and G~. There  are positive constants  B, and B~ such that, for 

l / t > 0  and 0 < ~  < 1 ,  

(2.11) Gfl)  ~ B,R~(t} 

and 

(2.12t 

In fact, by employing  well 
show that [1, p. 416ff] 

(2.1:3) 

and 

known  asymptot ic  expans ions  for K ,  one can 

G~ .- 1 as t--,-O, 
R~ 

t il-~12e~tlG~(t) ~ 1 as I t I ~  c~. 

Therefore,  there are constants  such that  (2.11) holds if I t I is e i ther  suff icient ly 
small  or suff icient ly large. Since G~ is also posit ive one can easily de termine  a 
constant  so that, in addition, (2.11) holds over any finite set 0<:8 ~ l t l . ~ / V < c ~ .  
In order  to establish (2.12) let us note '~that a rout ine  calculat ion involving 
only the def ini t ions  of R~ and Gs shows that  G~ - - R ~  is a bounded  funct ion  
for 0 < / t I ~ l. Moreover, G~ is a decreans ing  funct ion  of I t ] [1, p. 417] so that  

I G ~ ( t ) - - R ~ q O l ~ G ~ ( 1 ) + c  I t / ~ l ,  

which implies  (2.12}. 

AnnaIi di Matematica 26 
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Next we define certain s tandard functional  spaces (treated, for example, 
in detail in El, Chap. 2, Sec. 211 which in turn  will be used in Section 3 to 
describe the cbtsses of functions which are admissible as initial data. Let 
us denote by H~ the set consisting of (equivalence classes of} L ~ functions 
for which 

H?~is a HILBER¢ space under  the norm [ u l ~  ; the class Co~(smooth functions 
with compact support) is dense (in norm) in H~. 

For  future  reference,  we list at this point the]~OURIER transforms of the 
kernels  R~ (see e. g ,  [9, p. 182]) and G~ (see [1, p. 410]}; namely, 

(2.15) 

and 

(2.16) 

~ i ~ )  = (27:) - ~  R~(x)e- ' t~dx = (2~:)- ~ I ~ t-~ 

~(~) = (2.) ~(I + t~ I ~) 

The integral  in (2.15) exists only for 0 < ~ < 1 and, then only as an improper  
RIEMANN integral. 

3. - The Exis tence Theorem. 

In  this section we establish the main result  of the paper. 

By use of the method of separation of variables, par t icular  solutions of 
the equation 

~:u ~2u 
(3.1) ~y~ + Y~5-=~vx = 0, y > 0, 

of the form v(y) w(x) are easily de te rmined ;  namely, set w(x}- -e  ~* and let 
v be a solution of the equation 

d~v 
(3.2) - - - - ~ y ~ v : O ,  y > 0  and ~@0.  dy ~ 

It  is easily seen that solutions of (3.2) are functions of the single variable 
2 

= If J~Y where ~ _  ~ + 2; in fact, v(y) = u(l~I~y) ( ~ 0 )  satisfies (3.2) if and 
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only if u = u[~t sat isf ies  

d~ ~t 
- - ~ .  = O. 

2 
If  we set ~ -- ~ "k-~ and 9 : ~ t~li, the subst i t ions  V - -  y-*'~ v(y) and t -" py'/~ 

t cans form (3.2t into Bessels '  equat ion.  We choose the  real  l inear ly  i n d e p e n d e n t  
solut ions : 

(3.3) 

(3.4) 

where  

t 3 . 5 )  

~11{ I@) = d~(~I~IY'/~)~/~I~t~I~IY ~:~) -t- X( 1 ~ I ~y), 

(3.6) d~ = 2z/z~l-,SF(~). 

H e r e  I,, and  K~ denote  the modif ied BESSEL func t ions  of the f irst  and th i rd  
k ind (see e. g., [10, p. 96 and p. 77ff.]). 

The  fol lowing proper t i es  of ). and  ~ a re  r e q u i r e d  in the sequel .  

(1) By us ing  the well  known  fo rmulas  [10, p. 79] 

(3.7) 
d 

d~ { ~ K ~ ( z )  } = - z"K~_~(z),  

(3.8) 

we obtain 

d 

(3.9) 

(3.  ~ 0 )  
2 

where  z - -  ~ 1 ~ tYI]~ ~tad the pr ime  denotes  d i f f e ren t i a t ion  with respect  to t ~ I ~Y. 
The re fo re  ),'(0) - -  - -  1, ~t'(0) - -  1 and 

~) 
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(2))'(I ~ 1°Y) --"- 0 and ~t:( 1 ~ 10 y) ~ cx~ as l ~ 10 Y--* ~ [10, p. 202ff.]. 

(3) Since ~ and ~t are also solutions of (3.2) they cannot have an in- 
flection point for y > 0 and, hence, ;~ is a decreasing positive function of 
y, and 1~ and l~' are both increasing positive functions of y, y ~ O. 

(4) Let  y satisfy O ~ y ~ y ~ y ~ .  I~ follows from the asymptotic 
expansions for large z of K~(z) and I~(z) [10, p. 202ff.] that there are  positive 
constants M~, depending on y~ and y~ but not on ~, such that for y~ < y K Y2 

(3.12) )'~ I ~ ] Oy) ~ M,e-l~oy ~/0, - -  ~ < ~ < ~ ,  

(3.13) M21 ~ I 2 e l~-t~, ~/0 ~ F(I ~ ] Oy) ~ Mae ~1~10, l ~ I ~ N, 

(3.14) F'( [ ~ [ ~Y) ~ M~ I ~ I -Ve ,~[0~,/0, _ c~ < ~ < ~ .  

Let  us define for ~ ~> 0 

(3.15) % (x) -" ~-~G~(ex), 
2 ~-~+2' 

where G 0 is the BESSEL kernel  given by (2.10). For the par t icular  choice of 
2 

-- :¢ q- 2(0 < ~ ~ I), let us denote the R[ESZ kernel  by q~ instead of R~. The 

usefulness of the kernels % will be seen to stem from the fact that % and 

% simultaneously approximate T and ~. The basic relations between ¢p and 
% are exhibited in the following two inequali t ies:  there are constants B~ and 
B2, which are independent  of ~, such that 

(3.16) %(x) ~ B~(x.) 

and 

(3.17} 1%(0¢) - -  ~(x) t~<_ B2,  ~-~. 

Since ¢p is homogeneous of degree ~ -  1 the inequali t ies (3. 16) and (3.17} 
follow immediately from (2.11) ano (2.12), and the identi ty ~ ( x ) - - ~ ( x ) - -  
- -  ~ - 0 [ G ~ I ~ ) - -  ~(~)]. 

I t  is well known that if ~ 6  L 1 and g E L  2 then the convolution 

f 
~p ,g(a~)-- J ~2(x, -- y)g(y)dy 

is defined a. e., belongs to L 2, and has the Four ie r  t ransform 

(3.18} (~ .g ) -  "- (27:)1/2~;g. 
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Although the RIESZ kernel  ~ is only locally integrable we now show that if 
g is suitably restr icted then (3.18) holds even when ~ is replaced by ? (~). 

L]~MMA 2. - If g e £ ( 3 L  ~ then either ¢~,geL ~ or ¢~gel7 implies that 

PROOF. - It is sufficient  to consider the case when g is non-negat ive.  
Let  us first show that ~ge  L ~ implies ¢~,ge52. Since ~ L  ~ it follows from (2.16) 
and (3.15) that 

(3.19~ (%,g)~(~) = (2~:)~]~ ~)g(~) _ (~ + ~)~/~ 

and, hence, by the Plancherel  theorem 

2 [ tg(~)t~ d7 

Moreover, since g e £ ,  an immediate  consequence of (3.17~ is that 

(3.21) lim %,g(x) = ~,g(w). 

It follows from (3.20) and Natou's lemma that 

(3.22) l ?*g ]~ dx ~ l im II ?~*g 112 ~ 2r¢ t] Tg ~ 
~ 0  

which implies ¢~,geL ~. 
On the other hand, let us suppose that ~ , g e L  2. Then t3.16) implies 

(3.23) %*g ~ Bl?*g 

and, thus, (3.21) and an applicat ion of Lebesgue 's  theorem yield 

(3.24~ lim II%*g - -  ¢~*gll-- O. 
e ~ O  

Therefore,  ~%*gIl~  Const., and an applicat ion of Fatou ' s  lemma to 
implies 

13.25t 27: I gl < 

(3.20) 

(3) See also [12]. Let ~ denote the class of measurable functions h such that f(1-i- 
+-I~l)~-llh(~)ld~ If heO~llL ~ then R~*h is defined a.e. and is locally square integrable. 
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Combining (3.22) and (3.25) we see that without loss o[ general i ty one may 

assume for the remainder  of the proof that both ?~geL 2 and ?geL 2. 
Let us now establish the desired extension of (3.18). It follows from (2.15) 

and (3.19) that % ~ ¢p and 

e ~ 0  

Therefore,  by Lebesgue ' s  theorem, !j % g - - ? g l l ~ 0  as ~---~0, But, by the 
PLANCHEREL theorem, I i%,g-~,gl l~O implies I I ( % , g ) ~ - - ( ? , g ) ~ - [ [ ~ O  

and, hence ( % , g ) ~  converges in L ~ to both (~ ,  g)~ and (2r:)~/~g. This com- 
pletes the proof of Lemma 2. 

We turn next  to the definition of the functional  spaces of CAUCgY data. 
The admissible initial values ( f i  of a solution are assumed to be L 2 funct ions 
while the admissible initial values (g) of its normal derivative are more 
restrictive.  

Let  us denote by V the subset  of L ~ consisting of (equivalence classes of} 

funct ions g for which t ~ I - S g  ~ belongs to L 2 and then introduce a norm I g iv 
on V by setting 

Ig = IIgll + lt l i  l- g-ll. 

The function I :  V ~ H ~  obtained by setting 

is an isometry : 

Ig = v i f  and only i f  g = l ~ J~v, v e H~ 

= [I vii + {lli I vll 

In addition, if veH~ then ]~ l~vet7 whereby there is a (unique) g e L  2 with 

= I~i r~v: Thus I is an isometry of V onto H~. In part icular,  V is a Hi lber t  
space;  moreover,  V may be regarded as a subspace of L 2 since {gIv----0 if 
and only if [I g [t --  0. 

REMARK l . -  If  g e ~ A  V then ? , g e L  ~ and (?,g)---(2r:)I/2?g. This result  is 

an immediate consequence of Lemma 2 since both g and ?g are in L 2 when 
g~V. 



D. SATHER- J. SATHER: The Cauchy problem ]or an elliptic-parabolic operator 207 

1 
REMARK 2, - If g > 2 then 0 < ~ < ~  and ~ N  L ~ C ~  V. In fact, if 

1 L~ L~ ( "t dx 0 < ~ < ~ a n d  ge~, (~  t h e n g i s a n  funct ion bounded by l]gtI~--2 g(x) l 
and 

We have the following existence theorem for Problem C. 

THEOREM. - Suppose that f z  L ~ and g ~ £ (5 V. Let u be given by 

t3.27) 

where  

v 

l t[: .... (2u)~,~)%vf/) and b --  ( f +  (2~)~/~)~g). 
a = 2)~--~ '° 

(7--~ ~ if and Then u is a generalized solution of Problem C in 0 < y < \~] 
if the function 

only 

(3.28) h(m) = [(x) + ),o~*g(x) 

is equal  a. e. to the restr ict ion to the real axis of a complex valued funct ion 
H(x + iy) such that 

(1) H is analytic for l Y l <  Y and 

(2) sup f l H f m + i y )  i ~ d m < o c f o r  every ~ satisfying 0 < ~ <  y. 
J 

It is convenient  to carry  out the proof in several stages. 

PART 1 - The condition that the par t icular  combination of the data given 
by (3.28) has an analytic extension can be replaced by a second necessary 
and sufficient  condition concerning the FOURIER transform of ~3.28). Since 
~ , g e  L 2 by Remark  l, it is clear that hE LL Lemma 1 asserts that h has an 
analytic extension H satisfying propert ies  (1) and t2} in the s tatement  of the 

theorem if ~nd only if ]~)e(Y-0:~i belongs to L ~ for every ~ satisfying 0 < ~ < y. 

Moreover, all immediate  consequence of Remark  1 is that h = f'--{-(27:)~I2)~0"~J, 

and hence, by the definit ion of b, h'----2~,ob. Thus  h has an analytic extension 
H satisfying propert ies  (1) and (2) if and only if b({tei'¢-,)I~l belongs to L ~ for 
every ~ sat isfying 0 < s < y. Therefore,  in order to complete the proof, it is 
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sufficient to show that u is a generalized solution in O < y < if and 
only if b(~)e(Y-~)l~ I belongs to L 2 for every ~ satisfying 0 ~ s < 7. 

P ~  2. - Let us suppose that u is a generalized solution of Problem C 

in 0 < y  <(~)~. Then, bydef ini t ion,  the in tegra l in (3 .27)  c o n v e r g e s f o r 0 < y <  

(,)° < ~ and all x. Moreover, the function uy given by uy{x)= u(x, y} belongs 

to L 2 so that Uy is in L ~ and is given pointwise, for almost all ~ (see e. g. 
[9,p. 84]), by 

A 

--A 

In  addition, since a and b belong to L ~ and ~, ~ are continuous, a), + bl~ is 
locally integrable and, obviously, u U is locally integrable. Thus it follows, 
by a theorem on the uniqueness  o[ FOURIER integrals (see e. g. [9, p. 164]), 
that for almost all 

(330) 

A 

- -A 

Upon comparing (3.29) and (3.30) we see that for almost all 

{3.31) uy = a), + b~. 

0 < s < ~ '  and set y=I~=~f./~'--~/% It  follows from (3.13} that Let  s satisfy 

~(I ~I~Y)~M~(I ~]~ -t~ e 2 )e(~-~)l~l ~ M2e(Y-~)l ~l 

holds for sufficiently large [ ~ ]. Hence, since ~(1 ~ I~Y) ~) .o,  there is a number  
M, depending on y but not on ~, such that 

(3.32) e(~-~)~. I ~ MI~( ] ~ J~Y). 

Combining (3.12h (3.31) and (3.32) we obtain 

I3.33, i b l e~_~,t~l ~ M(t uy { .4_ M~ l a l ) ' y = (y ~ s / 2 f  
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Thus,  be(~-O~t e L ~ for every ~ sat isfying 0 < e < 7. 

P ~  3 . -  Conversely, let us suppose that  be('~-~)/~l ~ L ~ for every ~ sat- 
iT 

isfying 0 < ~  < 7" Let  y satisfy 0 < y < [ ~ )  

7 - - ~ - - ~ Y ~ / ~ =  ~ > 0  and it follows from 
positive constants  2¢I~ and M such that  

1 
and set e - - ~  (7 - -  ~Y~/~). Then  

(3.12) and (3.13) that  there are 

t a I ~ ~ M~la  t e-I~j~y~/~ 

and 

(3 35) I b I ~ ~ M I b 1 e/r-°l~te-~l¢~. 

Hence  (a), 4- bI~)EL~(qL ~ so that  for each y sat isfying 0 < y < the integral  

in (3.27} converges  for all x. We will show that  if u is def ined by (3.27)then 

u is a general ized solution of Probh m C in 0<Y<'--(~)~.  
Let  us note first of all that  

(3.36) u = + 

where  ~ )  -- a( - -  ~) and b(~) -- b( - -  ~t. Moreover, since (a)~ + b~)eL 2 it follows 
from (3.36) that  

(3.37) uy = aZ + b~t, 

and, hence,  by the PLAIffCHEREL theorem 

(3.38) II uu I1 --  tl a)~ + b~ li. 

If ~ satisfies 0 < ~ < 7 then, for all y sat isfying 0 < y < "- 7, 

(3.39) I b(~)~( [ ~ [~Y) 1 ~ ]  b(~)[~(l ~ t~7) ~ M 1 b(~-) l e(v-~l~r, 

where  M is independen t  of y. F r o m  (3.38) and (3.39) we obtain 

(3.no) sup l! u.~11[ ~ ~o I[ a I[ + M 11 be(v-~'l~t [I < ~ .  
o<y<~ 

Therefore ,  u satisfies condit ion (1.4). /.~\~ 
Let  K be a compact  subset  of the str ip 0 < y < l ~ )  and let ~ > 0  be 
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such that  K is conta ined in the str ip Se: ~ y ~ f  Y--- -~  . Upon us ing 

(3.12) and (3.13)as above we obtain est imates like t3.34) and ~3.35) (with e 
replaced by ~) which are valid for y in S~. I t  follows that  a), + bl~ is bounded 
un i formly  with respect  to y in Se by an integrable  funct ion and. therefore,  
the integral  in (3.27) converges uni formly on K. Hence,  by a s tandard  argu- 
ment  employing  a theorem of Harnack ,  u is a solut ion of T ~ u - - 0  in 0 < 

Thus,  in order  to complete  the proof, it remains  only to show that u 
assumes the boundary  values  in the sense of (1.51 and (1.61. For  this purpose  
we in t roduce  the funct ion  

(3.4U Ad/) --  t~K~(t), 

where v > 0 and K,~ denotes the modified BESSEL funct ion of the th i rd  kind. 
Let  us note that, see (3.3) and (3.9), 

(3.42) 

(3.43) 

Moreover, 

1 X(I ~ l~y), A~,(~ I~ t y '~) = 

(3.44) lira A~(t) -- 2~-,r(v). 
t ~ o  

and (see e. g., [I0, p. 172]) 

(3.45) 

1 
2vr v + 9 ) F  cos tu  

By invers ion we obtain 

(3.46) 

where 

i f  1 

(3.47) v > 0, y > 0. 
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Le t  us  note  tha t  the FOURIER inve r s ion  t h e o r e m  also impl i e s  

f A(o) _ (3.48) P~(x) dx - -  2v_, l'(v) - -  1. 

W i t h  these  p r e l i m i n a r y  ca l cu l a t i ons  it is not  d i f f i cu l t  to show that  the  fami ly  
P~(y > 0) is an a p p r o x i m a t e  i den t i t y  in L ~, and, for re fe rence ,  we s ta te  fo rma l ly  
the resu l t  as 

LEMMA 3. - T h e  fami ly  P~(y > 0) de f ined  by (3 .47) i s  an a p p r o x i m a t e  
i den t i t y  in  L ~, tha t  is, for every  v e L ~, 

l im  ]] P~,v --  vii - -  0. 
y ~ 0  

Let  us  recal l  tha t  a = 2~(f'--(2rc)l/2~g). S ince  2~/2-1r % = ),o it fol lows 

f rom L e m m a  2 and  the I:)ARSEVAL t h e o r e m  tha t  

(3.49) f a(~)k( ] ~ ]'ytd'¢'d~ -- v~ f a(~)A~/d~ i ~ 1Y'/~)e'~d~ 

- I -I ] - - ,  , v L2 (x). 

Consequen t ly ,  by L e m m a  3, as y - -~  0 

(3.50) (2r:) -112 c'~.e~Xdi ~ ( f - -  ko~*g) in  L ~. 

1 
Since  be(~-~)i~c e L ~ by hypo thes i s ,  it fe l lows  tha t  b(~)t f l ~ =- ~o{f(~)t  ~ I~+ 

-~-~og(~) be longs  to T h u s  ~, e imp l i e s  tha t  the re  is a ~ e L  ~ such  tha t  ~(;,) 
- - f ( i ) l~ t~  be longs  to L ~ and  

(3.5I) a(~) 1~ I: ~ = ~ ( ~ 1 ) -  ).ogt;)l. 

A n o t h e r  app l i ca t i on  of the PARSEV2~L theo rem yie lds  

(3.52) f a(,~)i ~ 1~9,,( [ ~ ley)d~rdi 

= --C ~-~ fal~)l~ I~A~_~/~(~ l~]y~/~)ei~-~d~ 
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There fo re ,  by L e m m a  3, as y ~ 0 

f (3.53) (27:)-:1~ a(f) I:  l X'( I: I Y) e'  df ~ ()'og - -  ~) 

Nex t  we def ine ,  for  conven ience ,  the func t ions  

J 
(3.54) 

and  

(3.55) 

i l l  j~2o 

f 
Bu(x) = (2r:)-:/*J b(~)l ~ [ I~'( t~ l Y) d~xd:,. 

T h e n  in o rde r  to es tab l i sh  (i.5) aud  (1.6) it  is su f f i c i en t  to show that,  as y ~ 0, 

1 
(3.56) Ay ~ 2(f-+- ~o~p*g) in L ~ 

a n d  

1 
(3.57) Bu ~ ~ (),og -t- ~b) in  L ~, 

s ince  these  l imi t s  and  (3.50) and  (3.53) imp ly  that ,  as y ~ 0, 

(3.58) u ~ ~ (f - -  ),o~*g) + (f  + ).o~,*g) = f 

and  

~u 1 1 
(3.59) ~y 2),0 (),og - -  ~) + 2~o ~ ()`0g -t- ~) = g 

I t  fo l lows :from (3.13) that ,  for 0 ~ y  ~ ' ( - -  

(3.60) 

in L ~ 

in L 2. 

I b(~)l 1~( [ ~I~Y) <--I b(:)l lx(l : I~y) <-- M Ib(~)l e~ e ~ 

and,  hence ,  be ~:~z ~ L 2 imp l i e s  tha t  bi~eL:(5 L 2 for 0 <= y ~ y .  T h e r e f o r e  

(4.61) A ~ = b ~ t ,  0 ~ y ~ _ y ,  

and  by the  PLANCHEREL t h eo rem 

(3.62) 
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An appl icat ion of Lebesque 's  theorem then yields 

(3.63) 

Since 

(3.64) 

lim [] Ay - -  Ao II - -  O. 
y ~ 0  

Ao(~C) = (27:) -~/2 f kob(~)e ~d~ 

1 
and ) , o h - - 2 ( f ' +  (2T:)'/~),o~g) belongs to L ~, we have by invers ion 

1 
(3.65) Ao - -  ~ (f + ~0~*g) 

which together  with (3.63) implies  (3.56). A similar  a rgument  employing  (3.14) 
and the funct ion  ~ def ined by (3.51) yields (3.57). This  completes  the proof  
of the theorem. 

Let  us r e m a r k  that  in Par t  2 of the above proof we showed that  

be(~-~)t~leL ~, 0 < ~ < "5 and it follows that  ] i l~f-- 2),01 f I ~b - -  ~og also belongs 
to L 2. Thus,  a second necessary condit ion that  Prob lem C has a general ized 
solut ion (3.27) is that  f mus t  belong to H~. 

In conclusion we wish to emphasize that  the above theorem gives neces.  
sary and suff ic ient  condit ions for the exis tence o[ a generalized solut ion of 
Prob lem C in a prescr ibed strip instead of some inde te rmina te  neighborhood 
of the init ial  line. 
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