Existence, uniqueness and continuity of solutions
of integral equations (*).

Ricaarp K. Minrer (t) and GeoreE R. SELL (8}

Summary. - See Introduction.

1. - Introduction.

In this paper we shall be interested in the solutions x(f) of a nonlinear
integral equation of VOLTERRA-iype:

2(t) = F10) + f all, siglals) s)ds.

Our objective here is to present a number of theorems concerning the
existence, uniqueness and continuity of solution of (1). Existence, and uni-
queness theorems have been extensively studied. We note in particular, the
following works; [2, 3, 6, 7, 8, 10, 11, 14], as well as the bibliography in M.A.
Kraswoser’skir’s book [6]. The basic techniques for deriving exsistence and
uniqueness criteria consist of certain fixed points theorems (for example, the
ScHAUDER-TYCHONOFF Fixed Point Theorem was used by C. CORDUNEANT {2]
and compurison theorems, (for example J. A. NougL (8] and T. Saro [11].) Our
Theorem 1, is an existence theorem. It is proved with the SonaTtDER-TYOHO-
NOFF Theorem Theorem 2 is an existence and uniqueness theorem and it is
proved by. the confraction mapping thecrem.
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These two theorems we prove are very general and they include most of
those cited above as special cases. Our results are of interest because of the
weak assumptions on the kernel aff, s). For example, in Theorem 2 we only
require that the mapping {—ua(f, -) be continuous in terms of an appropriate
weak*-topology.

As is well known, equation (1) does include the initial-value problem for
ordinary differential equations

(2 2(0) = w,, '(t) = glx(?), #).

So the theory of the solutions of (1) includes that of (21

One question which seems to have been overlooked by the researchers in
integral equations is: How does the solutions «x(f) depend on the terms f{¢),
a(t, s) and glx, ¢)? For ordinary differential equations, this question has been
studied in an important paper [4] by E. KAMKE and this theory for ordinary
differential equations has been extended recently by Z. Opr1aL [9]. We feel
that the most significant results in this paper are Theorems 3 and 4 which
say that the solutions a(f) of (1) depend continuously on the terms f, g and a.

The continuity theorems depend on the topology we place on the terms
f, g and a. We found, not surprisingly, that if one weakened the topology on
the kernels a(f, s) it was necessary fo strengthen the topology on tke terms
glz, t) in order to preserve the continuity results. Although the conclusions
of Theorems 3 and 4 are essentially the same, we found that the technique
of proof in each case was entirely different.

The continuity results proved here will play a central role in a forthco-
ming paper of the authors on the topological dynamics of Volterra integral
equations.

2. Preliminaires.

Let W be an open set in B” and I an open interval in R containing O.
Let |« | denote the Euclidean norm on R~

HyproruEgsIS A. - The function [ is a continuous function cn I with values
in W.

Hyporarsis B,. - Let p salisfy 1 <p < oo and lel glx, 1) be a measu-
rable function defined on W X I with values in E» such that

(i) for each t, glx, ) is continuous in x, and

(ii) for each compact set K C W and each compact set JC I there is a
measurable, real-valued funclion m(t} with | gle, t)| << m(t), for x € K and l € I and

fm(t)l’dt < oo,

of
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A function g(x, #) that satisfies Hypothesis B,, 1<p < oo, is said to
satisfy a Lipschifz condition if for every pair of compact sets K, J (KC
C W, J C I) there is a measureable, real-valued function k(f) with

|9le, 1) —gly, | < k) |2 —y ], (x, ye K, ted),
and [k{tjpdt < oo.
J

For each interval J we define the Banach space B,(J), 1 = p < oo, by
By(d) = Lyld, B, l=p <o),

where L,tJ, B") is the Lebesgue space of all measurable functions x defined

on J with values in R, with/|a|?df < co. We shall let B;(J) denote the
J
adjoint spaces. By a well-known result one has By {J) = B,J) if 1 < p < oo

and p~t4-qg =1,

Hyporuesis C,. - Let p salisfy 1 < p < oo and let aft, s) be a mapping
of 1< I inlo the space M* of linear operators on R” such (hat

{i) for each compact interval JC I and each t in I the mapping
S BylJ)— Rr defiend by

S: ac—»fa(t, s)x(s)dr
J

is a bounded linear mapping, and
(ii) the mapping t— a(l, -) is conlinuous in the norm topology cn By (J)".

We shall say that a(t, s) satisfies Hypothesis Oy, 1 <p < oo, if the con-
dition (ii) is replaced by:
(ii*) The mapping t— a(t, +) is continuous in the weak*~topology on By (Jy*.

Hypothesis C, and Cy needs some explanation. If we consider the points
in B* as column vectors and the points in M" as square matrices, then (i)
can be reformulated as: for every ¢ in I, each row of a{f, +) is an element

of B, (J). We then can view a(f, -) itself as an element of the direct sum
By =B, (). 0 B, (J)

for every compact interval JC I. The weak¥~topology, or the norm topology,
on JB;(Jy is induced, respectively, by the weak®-topology, or the norm topo-
logy, on each component. It is clear that Hypothesis C, implies Hypothesis Cp .

Annali di Matematica 18
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Hypothesis C, or O, together with Hblders inequality, means that we
can find norms on R" and M" so that

g , 1p
g%jfia(i, s)[%is% -%fiw(sﬂi’ds% ,

J

(2.p) } fa(t, sjax(s)ds
J

ifl<p<ooand pt4gr=1;if p=1,

(21} alt, 8)95{8)d3 :gg aft, - oo * ] x(s} :dS
J J

where [a(l, +)]w=ess. sup{|alt, s)|:s€J}.
The continunity of the mapping ¢~ alt, -) implies that if ¢ is restricted
to a compact set J' in I then the sef

{alt, ) :teJ)

is a compact set in respectively, the norm topology, or the weak*-topology
on 38, (Z)*. This means that

?éxJPif]a(t, 5} ds%<oo

if 1 <p<ooand pt+4 ¢~'=1, with a similar statement holding for g = oo.
Also, the continuity of the mapping {—af(f, +) in the norm topology is
equivalent fo saying that

f|a(t+h, s) — a(t, s)j2ds—0 as h—0
J

where ¢ is given as above and a similar statement holds for the case ¢ = co.
Continuity 'n the weak*-topology means that for each x in IBy(J)

}fa(t—{—k, 8) — alt, <)x(s)ds|—0 as h—0.
7

With p satisfying 1 <p < oo we define C = C(I, W) as the collection of
of all functions f that satisfy Hypothesis 4; &, as the collection of all func-
tions g that satisfy Hypothesis B,; and #,, or By, as the collection of all
functions a that satisfy Hypothesis C,, or C,, respectively.
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We introduce topologies on €, &G, B, and E} as follows:

On € we shall use the topology of uniform convergence on compact sets.
This topology is metrizable. For a discussion of this ef. G. R. SeLL [13]

On (B, we define two topologies G, and Gy. We say that g, — g in G, if
for each compact interval J C I and each compact set |k C C(J, W) the gene-
ralized sequence { ga(x(+), <)} converges in Iy(J, B} to g(x(-), -) with covergence
uniform for a(-)e k.

We say that g,—g in G, if for every compact interval J C I and every
compact set K C'W the generalized sequence | g,(x(+), +)} converges to g(a(+(, )
in L/, B*) uniformly for «(-)eR where

R=CJ, K)y=[xel(J, BY; x(f)e K for all tedJ}.

The difference between the two topologies G, and T, can easily be seen
in the case W = RB" For both topologies we have the defining condition

cup [ [ gulett, f—gfolt P at—0,
z{)e R 7
For T, the set R is required to be compact while for G, the sef R is required
to be bounded. The topology Gp is metrizable, and G, is a uniform topology.
On H,, or B}, we say that a generalized sequence {a,! converges fo a
limit a if for every compact interval J C I the sequence {a,(f, )} converges
to a(f, -) in the norm or, respectively, the weak*-topology on M7 (J)*, unifor-
mly for fed.
We are interested in the existence, uniqueness and continuity of solutions
of x{f) of the integral equation

{4
(3.p) ot = i) + [ ait, sigtsts), sids

We say that x(f) is solution of (3.p) if it is measurable, satifies (3.p) on
some interval [0, «) and is bounded on compact sub-intervals of [0, a). Before
giving the main results, let us make note of two lemmas. Each of these
lemmas are easily verified.

LeMMA 1. - Let feQ, geB, and acH;, 1 S p < oco. If there exists a
solution x of (3.p) on the interval [0, a), then x is a continuous function.

LeMMA 2. - Let x (f), 0=t=a, be a solution of (3.p) and let E(f), 0=t =8
be a solution of

i
(4p) ) = Fit) + f alt + 7 s + alglEls), s+ a)ds,
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where

Flt)=fit + o) + f alt + =, siglals), s)ds.

Then
2, 0=t=a

”"“’zgat—-m, wStSot3

is a solution of (3.p) on 0 =t =a 4 B.

3. ~ Existence and nniqueness.

In this section we state and prove our main results on the existence and
uniqueness of solutions. The first theorem is an existence theorem. It also
contains the generalization of H. KNESER’S [5] theorem to integral equations.
The question of continuous dependence on f, g and a is freated in the next
section.

THEOREM 1. - Let feC, ge G, and ae B, 1 =p < oco.

(A) Then there exists an interval [0, «), o >0, and a continuous func-
tion x: [0, a) — W such that (3.p) és satisfied for O =t < a.

(B) If [0, ) denotes the maximal interval of definition of x (which means
that the solution x cannot be continued to the right of «), then either « is a
boundary point of I or x{f)j~bdy W as {—a.

(C) There is an o> O such that for each t, 0 S < a, the cross-section

Ki={ye W: y=x(l) where x is some solution of (3.p)}

is compact. Moreover o can be chosen to be mawimal in the sense thai « = a,
where a is given by (B) for some solution x.

Proor. - We shall give an argument for the case where 1 < p < oo,
The proof for the case p =1 differ from this only in the form of some of
the equations.

The first part of the theorem is an existence theorem. We shall prove
this by applying the Schander-Tychonotff Fixed Point Theorem to the operator
T defined formally by y = Tax where

t
ylt) =flt) + f ait, sjg(x(s), s)ds.
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We want to show that T has a fixed point.

Choose B > 0 so that [0, 8] C I. By the usual arguments one can find an
e >0 so that the set

D0, B = {a(-)eCO, 8], W): I fif) — ()| <<e for 0=t=<B]

is a closed convex set in the Banach space C([0, §], £”). We shall now show
that there is a B/, 0 < §' =B, such that 7 maps D[0, §] into itself.
First we define

B= sup (f]a(t, s) |9 ds);

o=t=p

where p—' - ¢g—' = 1. By Hypothesis B, there is a function m such that
[glx, t)| <<m(t), for xe K and 0=<"{=<§, where

f?n*’di < oo,

o
Now choose §,0 < §, =§ so that
Py

1
B( f mf"dt>§ e

o

We then claim that 7 maps B[0, 8] into itself. Indeed, if xe ®[0, §] and
0 =t =g then by (2.p) we get

t
ly(t) — f18) | fa s)ds
i t

f ts)|qu§ f\ (wls), s) pds 5

¢
¢

f m(s)Pds

@

HA

PPN

L
P=E e

lIA

B

H

hence ye D[0, §].
Now we shall show that T is compact. For this purpose it suffices to
show that the set of functions T(®[0, §']) is equi-continuous. Let ¢ be fixed
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with 0 << {<Cp" and let ¢ > O be given. Then

b
| Tt -+ B — Talt) | = | fit + B — 118 | +] f olt + b, sigir(s), sids
t

¢

+1 f{a{t + h, 8} —ail, 8)igix{s), s)dsf

n

élf(t+h)—f(¢)I+§flha(tJrh, sy as Il jlg cowas|fp
j (t+ h, s) —alt, s)|2ds {a {f‘grs), 8) lPds P
’ t+h .
=\|fe4hm) — ]+ B”tf m(s)Pds }p
—|—;fij alt + h, s} — a(’, 8)|1ds %;‘%fi;t(s)?’ds};?.

Now choose 3 > 0 so that if |A| =3 then

i+ 1 —fil) ==

i+h
1
B% fm(s}ﬁds p=c¢
I
4 o F ,
§ f{a(t 4k, 8) — aft, s)|9ds %E % fm's)?’ds P = e

/] ]

Note that & depends on £ and ¢ but it is independent of the function wx. It
follows then that

| Tae(t + h) — Tx(l) | = 3¢ (k] =8,

which shows that T is compact.
Now we shall show that T is continuous. It {&,} is a generalized sequence
in ®[0, B] with limit x, then by the continuity of g(x, {) in & we get

g(%n(é‘), 8) -—»g(x(s), S}
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for each s, 0=s =3, and
all, s)giwa(s), s)— alt, s)gl(s), s.

Furthermore, the generalized sequence {aff, sjg(x.(s), s)} is bounded by an
integrable funetion,

Lall, slglaa(s), s)| = |alt, s)|mls)

for n sufficiently large, say n = N, hence by Lebesgue’s Theorem

t

t
f alt, sl\glxa(s), s)ds— f alt, s\glxz(s), sjds.

This implies that for each {, 0 =¢ =}, onc has
() Tyt — Ta(t) as n— oc.

In order to show that 7 is continuous we must show that the convergence in
{5) is uniform. However, this follows easily from the fact that T is continuous
and the set { Tx,} is equi-continuous.

We have thus shown that T is a compact, continuous operator, therefore
by the Schauder-Tychonoff Fixed Point Theorem, e¢f. CroNIN [3; p. 131], T
has a fixed point w,

Let us now show that the maximal interval of definition [0, «) is charac-
terized in the form described in the theorem. Proceeding by econtradiction,
assume that o is not a boundary point of J and that x(f) remains in a compaet
set KC W for 0={¢{<a. We will then show that there is a solution E(i) of
(1) defined on an interval [0, «') where « < o/ and such that () = x(f) for
0 = ¢ < a. This will contradict the maximality of [0, «).

The first step is to show that lim «ff) exists. We shall call this limit

t>a

a{z). The limit exists if for every ¢ > O there is a 1, 0 < t < a such that
|o(f) —ax(u) | =¢ for all { and u with Tt Sl <o, I Su<a

By Hypothesis By, there is a function w such that | gix, f) | =< m(f) for xe K
and 0 =¢ =< «, wheve

]

f mrds < co.

0
Ittt =t =wu<qa then

o) ~ )| =] flo) — i) |+ | [l 5)—atu, 5)) glels), s)ds]
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+If u, s)g{x(s), sids

= | flw) — 1)

%f{at 8) — alu, s [qu}% fm jpds
%flau, Pds%é’{fm{s}ms%;?.

Thus our assumptions clearly imyly that if t =¢ = u < o and a—7 is suf-
ficiently small, then |x(u)— x(f)| < e. Thus we see that x{f) is a solution of
(3.p) on the closed interval [0, «].

Now by applying the previous existence proof with Lemma 2, we conclude
that the solution & can be continued for 0 =t =a - 8, §>0, and this
contradicts the maximality of [0, a).

The proof that the cross-sections are compact is simple modification of
Kneser’s Theorem for ordinary differential equations, cf. G. R. SELL [12, p, 373].
The critical thing to show is that if {®.} is a generalized sequence of solu-
tions of (3.p) that converges uniformly on compact sets to a function «, then
« is a solution of (3.p). This, however, is a direct application of the Lebesgue
Dominated Convergence Theorem, which completes the proof. The fact that «
is maximal in the sense indicated can also be proved with the same techniques,
of. [12; p. 382).

RemarKS 1. - As noted in the Introduction, the Scauder-Tychonoff Fixed
Point Theorem has been used before to get existence criteria for integral
equations. See, for example, [2, 3, 6]. The fact that the maximal interval of
definition is characterized by Statement (B) has been proved by essentially
the same argument but under more restrictive conditions by J. A. NoHEL [8].
Finally a special case of (C), which generalizes Kneser’s Theorem, has been
proved by T. Saro [11].

H

b3
»

2. - Our argument does break down if we replace the Hypothesis Cp for
a(t, s) be the weaker Hypothesis C;. The only place where the stronger hy-
pothesis was used to show that the operator T' is compact. We have no coun-
ter example to show that Theorem 1 is false under the the weaker hypothesis
on alt, s).

In order to get uniqueness of solutions, we impose a Lipschitz condition
on g. Actually, if g satisfies a Lipschitz condition, then we can relax the

=N

assumption, on the kernel a and ask that it satisfy Hypothesis Cy.
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TuroreM 2. - Let f € €, ge Gp and ae B;, 1 = p < oo, and assume that g
satisfies a Lipschitz condition. Then there exisies one and only one solulion

of (3.p). Furthermore the maximal interval of definition is characterized by (B)
of Theorem 1.

The proof of this is completely straightforward. One proves, by the usual
arguments, cf. [8], that the operator T is a contraction on some set D[0, §"].
We omif the details.

REMARK. - One can replace the Lipschitz condition on g with a weaker
statement. For example, one could replace it with the Osgood condition:

lgle, ty—gly, ©) S kDY ([e—yl)
o
where fﬁ%: + co. Comparison theorems of this type are well-known for

differential equations and they have been used for integral equations, cf. [8, 11].

4. - Continuity of solutions.

‘In this section we investigate the dependence of the solutions « on the
three therms f, g and a.

TaroREM 3. - Let { fu), {gu] and { @, be generalized sequence in €, G, and
H, respeclively where 1 = p <oo. Assume that these sequences have limils
fa—"1 Gu—g (in Gc) and a,— a in the respective spaces. Let [a,} be a
sequence of solutions of

t
5 p) all) = full) + f Gty S)galeals), 8)d5,

on the wmaximal intervals [0, a,), Then the sequence {x,| has a uniformly
convergent subsequence on some interval 0 =1 = g, ¢ > 0. The limit funclion
x is a solution of the limiting equation

t
(6.p) wll) = fit) + f aft, s)gle(s), 5)ds.

Moreorer, the subsequence {w,,j} of {an] may be chosen so that wy (f)—wit)

uniformly on compact subsets of [0, E), where lhe interval [0, o} is the maxi-
mal interval on which the cross seclion K, of (6.p) are compact (see Theorem
1OC)) and [0, o) C lim inf [0, a,).

PROOF. - We will show that for any B with 0 < B < a, one has:
1. {0, B < [0, «,) for n sufficiently large, say n = N,;

Annali di Matematica 19
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2. on the interval 0, p] the sequence of functions {a,] is bounded
and equicontinuous; and

3. if {w,;} is a convergent subsequence of {x,} with limit x({) on
[0, B8], then x{f) is a solution of (6.p) on [0, B].

Again we shall prove this for the case 1 << p < co. The proof for the
case p =1 is similar.

Let B, 0= B <, be given where o is given by the hypothesis. Then the
cross section

Ki={ye W; y=ux(t) for_some solution « of (6.p)}
is a compact subset of W for 0 = ¢ = B. It is easily shown that
K=U|[K;0=t= B}

is a compact subset of W, cf. e.g. [12, p. 378]. Let K be a compact set in
W that contains K in its interior. By hypothesis B, there is a funection
m € L0, B] such that

| g, ] = mi) weK, 0= t=B)

The convergence g,—g in G, implies thut ¢, — 0 where

g
- supf}gn(%« s) — gle, s)|rds.
€K
o

Furthermore if 0 = o = §, then

[<d [+ 2

g flgn(os, s) [pds %é ; f | gule, 8) — glo, s) |Pds ;’o—{—% fm(s)f’dsi%

[ [ ]
¢

€n +{ fm(s)l’ds %[1_0

(]

IIA

For o in the interval [0, §] set

() M{(s, n) =c¢, + g f m(s)Pds }%

]
Similarly we can find a common bound for the sequence {a,}, that is
B

(8) B = sup { sup { f{a,,(t, s) | qu}f;] < oo

osI=P
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where p—!4-¢g—' = 1. Note that the bound B in (8) also holds for the limiting
function af(f, s).

By the choice of the set K, there is an ¢ >0 such that if () is any
solution of (6.p), 0=¢=<8, and |y —a(/)|= ¢ then ye K. Fix & so that
0 < 3 < ¢/2 and fix the index N, so that if »= N, then 2Be, < & and

[ Fall) — A | <@ 0O=t=8 nz=N,)
Now choose ¢ so that 0 <o = § and

g

2B { f m(sjpds i%» =¢ — 23,

0

If this equality cannot be satistied for 0 = o =,§, then choose o=§.

We will now show that on the interval [0, o] one has wx.(fje K for all
n = N,. Let «(f) be any solution of (6.p) defined on [0, o]. we shall show that
| oull) — xft)| = & for 0=<t=<cand n= N,;. For {=0 we have

2a(0) — 2(0) | = | 72(0) — )| < B <.

Suppose |@u(l) —x(t)| = ¢ for 0 = { <§ = 0. Then

£
| alE) — w(E) | = 1fu(5)—~f<an+1 j anlE, S)gulals), S)ds |

2
+} f alE, slglxl(s), s)ds

Applying (2.p), (7) and (8) we see tha.
| | n(E) — 2 |

< 5+ 2BM(, n)
= 34 2BM(s, n) <.

Hence the maximal interval [0, E] for which «,(fjeK if 0 = ¢ <L must
include [0, g].

We shall now show that on the interval [0, o], the sequence of functions
{oy, n = N, } is equicontinuous. If 0=2t<t4h =0, then

|@ult 4+ B) — walt) | 2 [ Fulf + ) — [al)) |

t {an(t + B, 8) — aalt, )} gul®a(s), s)ds
+] J o
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+h
4 ] f ault -+ b, s)gulxa(s), s)ds

13

]

i+h
S| fult + B) — full) | + Bi f m(s)eds 5

t
G

+% fla%(t + R, 8) — ault, 8)|2ds %;’ Mo, n).

0

Siuce f, — / uniformly on [0, o], the sequence [/} is equicontinuous.
Since @n(t, +) — aft, «) uniformly in ¢€[0, o], it follows that the sequence { a, |
is equicontinuous as fanctions of ¢ with values in B0, o]*. Since B is a
fixed constant and M(s, n) is bounded in =, for n=0N,, we see that
{#n; m = N.} is equicontinuous on [0, o].

Now choose any convergent subsequence of { ®,}. To simplify the notation
we shall write {x,} for this subsequence. Then there is a function « such
that a,(f) — «(f) uniformly on [0, ¢]. Since

R={w x, ©, %3, ... },
is a compact set in ([0, o], W) and g, ¢ in G, it follows that
gnfon(+), <) — glal-), )
in AL,({0, o], B"). Also we have
ault, <)gul@a(+), ) —alt, -lglx(-), -)
in L0, o}, B") for 0 £ ¢ = o. Thus

¢

f On(t, S)gu(a(s), slds — f alt, s)g(x(s), s)ds.

It follows that x(f) satisfies (6.p) on [0, o).

We now want to show that the interval [0, ] can be extended to [0, §],
This extension ean be performed in a finite number of repetition of the above
argument. That is, consider the translation of (6.p) given by

£
(9.p) X(t) =71 + f alt 4 9, s + a)g(X(s). s + a)ds



R. K. MILLER - G. R, SELL: Existence, uniqueness and continuity, etc. 149

where 7 (f) = /it + o) +f6a(t -+ o, slg(x(s), sjds. Equation {5.p) i{s similarly tran-

0
slated. By the above argument one can find a © > 0 such that a subsequence
of the solutions { X,(f)} converge to a solution Xi#) of (9.p) on [0, t]. By
Lemma 2, we see that
<t <
wlt) = (1) 0st=o
X{t—a O0=t=0c-t1

is a solution of (6.p) on [0, ¢ 4=}, and it is the limit of a subsequence of
fxeafllon 0=t =0+

This process can now be repeated. In order to show that one can extend
to [0, §] in a finite number of steps, it is necessary to keep track of the
size of each step. This is governed by the fanction M(s, n) defined above.
That is, the number © can be chosen so that 0 <t =3 — ¢ and

o+ .
2B { f m(siPds %5 =g — 29,

or if this last equality cannot be satisfied then set T==3 — o. Since the
g

integra,lfm{s)i’ds is finite, it is clear that one can exfend [0, o] to [0, 8] in a

finite n&mber of steps. This completes the proof of Theorem 3.

In the last theorem we assumed that the kernels {a,(f, s)} and the
limiting kernel a(f, s) satisfy Hypothesis C, and that a,— a in the norm
topology, uniformly for { on compact sets JCI. One can ask whether the
weaker convergence would suffice. The answer is yes if one strengthens the
convergence on {g,}. More precisely we prove the following results:

TaeorEM 4. - Let {[.}, {g.} and [a,} be generalized sequences in
C, B, and B respectively where 1 = p <oo. Assume that the sequences have
limits [~ [, go— g (in ) and a,— a (in B;) with [, g and a in the
respective spaces. Assune further that g, and g satisfy Lipschitz conditions.
Let %, be the solulions of

4
(5.p) wall) = £+ [ ault, slg ), olds,

on the maximal intervals [0, a,). Then the sequence {wx, | converges wuniformly
on compact subsels of [0, «) to a function (). The [function x(l) is the unique
solution of the limiling equation

4
(6.p) x(l) = fit) + f alt, siglals), s

defined on the maximal interval [0, a). Moreover, « = lim inf a,.



150  R. K. MiLLeR - G. R. SBELL: Existence, uniqueness and continuity, etc.

large (say n = Ny} and that a,(f) — x(f) uniformly on [0, 8]. This will prove
the theorem.

Proor. - For any §, 0 < B < «, we shall show that «, = § for » sufficiently

Fix any fe[0, «). Let K be a compact subset of W that contains the
curve x(f):0 = ¢ = 3 in its interior. Let m e L,([0, §], B*) with

lgle, )| = m(d). (xeK, 0=1t=§)

Since the kernels a.(f, -) converge to a(f, <) in the weak*-topology on
B0, B8]*, they are bounded in the norm topology. Furthermore since the
convergence is uniform for { on compact sets, the number B defined by

B

ggﬁ% Jlan{t, s) {stgég

]

B ==sup

k3

is finite. Let Mo, n), ¢, 5, N, and ¢ be defined as in the first part of the
proof of Theorem 2.

Instead of showing the equicontinuity .of {x,] on [0, o] we proceed
directly to estimate |x,(f) — x(¢) . Define E,({} by

t
Bull)=|1ult) — 11} | + f | ault, 8) || gnlaals), s} — glaals); 8)|ds

t
- 1 f{a"(t, s) — a(t, s) ) glx(s), s)ds |

and let e, =sup { R.(f); 0 = { = a}. Because of the convergence assumptions
on {/n}, {as} and {g,} and the fact that a,(t)je K for 0 =f{ =, = N, one
has ¢, — 0.
Since g satisfies a Lipschitz condition, there is a function k(fjeL,([0, B], E.)
such that
|glae, ) —gly, )| =k(f)jx—y!. (v, yeK 0=1=§)

Choose o, 0 < o' <o, so that K, =| [k(f)di|*» < 1/B.
o

By a straight forward computation we get

| wa(t) — 2(l) | = Balt) + f | anlt, 8) || g@als), s) — glals), s)|ds
: g

<en + j k(s) | aulty 5)| | @n(s) — @(s) | ds.

0
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By using Holder’s inequality and restricting £ to O <<{=C o’ it is easily shown
that
| aalt)— x() | << (1 — BK,) "¢, — 0.

This shows that a,(f) — «(f) u_iformly for 0= {= o. One can extend
[0, ¢] to [0, B] by the same reasoning process used in the proof of Theorem
3, which completes the proof of Theorem 4.

REMARKS: 1. - The assumption that the limit fanction g(x, §) satisfies
a Lipschitz condition can be weakened. One could use an Osgood condition
or a comparison theorem unsed by J. Nomgwn [8] or T. Saro [11]. However, it
does not appear that in Theorem b one can drop this type of analytical
criterion, which implies uniqueness, and assume directly that the solutions
are unique.

2. - It should be noted that E. KauMke’'s Theorem [4] on the confinuity
of solations of ordinary differential equations, as well as Z. OPIAL’S genera-
lization [9] are included as special cases of Theorem 4. In these papers the
kernel alf, s} rednces to fthe identity matrix. KaMKE assumed that the
functions g.(x, f) and g(x, ) were continuous and that g, — g uniformly on
compact sets. this convergence implies g, — g in G, for every G,, 1 = p < oo
Opial assamel that the funections g, and g satisfied Hypothesis B, and Gn—g
in G, for p=1.

3. - Many variations of our theorems are possible. One variation is of
particular interest since many applications fit into this form. For this we
set p=oc and ¢ = 1. Here we assume g to be continuous in ({, «) and g, ~~ g
means uniform convergence on compact sets. Suppose now that a satisfies
the following conditions:

(i) for each compact interval J C I and each e Ithe map S: C(J, W) -— R»

defined by
S: x —»fa(t, s)x(s)ds
J

is a bounded linear functional,

(ii) the mapping ¢{— aff, ) is continuous in the norm topology on
IB.(J), and
(iii) for any compact set J C I,
i4+-h
lim f]a(t, 8)|ds=0
h->0

uniformly for feJ.
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Under these conditions on g and @, the obvious variations of Theorems
1 through 4 are true. We omit a formal statement.

4. - Continuity results of the type given by Theorem 4 have been obtained
by Levic and Nohel [15] in a special, scalar example.
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