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Summary. - See Introduction. 

1.  - I n t r o d u c t i o n .  

In  this  p a p e r  we shal l  be i n t e r e s t e d  in the so lu t ions  x(t) of a n o n l i n e a r  
in tegra l  e q u a t i o n  of VOLTERRA-type:  

t 

x(t) = f(t) + f a(t, s)g(x(s) 
o 

8)d8. 

Our ob jec t ive  he re  is to p r e se n t  a n u m b e r  of t heo rems  c o n c e r n i n g  the 
ex i s t ence ,  u n i q u e n e s s  and c o n t i n u i t y  of so lu t ion  of (1). Ex i s t ence ,  and  uni- 
qm.ness  t heo rems  have  been  e x t e n s i v e l y  s tudied.  W e  note  in pa r t i cu l a r ,  the  
fo l lowing works  ; [2, 3, 6, 7, 8, 10, i l ,  14], as well  as the b i b l i o g r a p h y  in M.A. 
KRASl~OSEL'SKII'S book [6]. T h e  bas ic  t e c h n i q u e s  for  de r iv ing  exs i s t ence  and  
u n i q u e n e s s  c r i t e r i a  cons is t  of ce r t a in  f ixed poin ts  t heo rems  (for example ,  the 
SC~AUDER-T¥c~ONO:~F F i x e d  P o i n t  T h e o r e m  was used  by C. CORDU:SEA~U [2] 
and compar i son  theorems ,  (for e x a m p l e  J . A .  NO~EL [8] and T. SA~:o [11] . )Our 
T h e o r e m  1, is an  ex i s t ence  theo rem.  I t  is p roved  with the SCItAUDER-TYc~O- 
~OFF T h e o r e m  T h e o r e m  2 is an ex i s t ence  and u n i q u e n e s s  theorem and it is 
p roved  b y  the c o n t r a c t i o n  m a p p i n g  theo rem.  
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NAS8-11264 and Grand No. :NGR 40-002-015. The second author was supported in part by 
the National Science Foundation under Grant No. GP-3904 and the United States Army 
under Contract :No. DA-31-12~-ARO-D-265. 
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These two theorems v,e prove are very general and they include most of 
those cited above as special cases. Our results  are of interest  because  of the 
weak assumptions on the kernel  a(t, s). For example,  in Theolem 2 we only 
require  that the mapping t----~a(t, .) be continuous in terms of an appropriate  
weak*-topology. 

As is well known, equation (1) does include the ini t ia l -value problem for 
ordinary differential  equations 

(2) x(0) ----- Xo, 9c'(t) = g(x(t), t). 

So the theory of the solutions of (1) includes that of (2!. 
One quest ion which seems to have been overlooked by the researchers  in 

integral  equations is: How does the solutions x(t~ depend on the terms f(t), 
a(t, s) and g(x, t) ? For  or3in~ry differential  equations, this quest ion has been 
studied in an important  paper  [4] by E. KAMKE and this theory for ordinary 
d~fferential equations has been extended recent ly by Z. 0PIAL [9]. We  feel 
that the most significant results  in this paper  are Theorems 3 and 4 which 
say that the solutions x(t) of (1) depend cont inuously on 1he terms f, g and a. 

The cont inui ty  theorems depend on the topology we place on the terms 
f, g and a. W e  found, not surprisingly, that if one weakened the topology on 
the kernels  a(t, s) it was necessary to strengthen the topology on tke terms 

g(x, t) in order to preserve tlle continui ty results. Although the conclusions 
of Theorems 3 and 4 are essential ly the same, we found that the technique 
of proof in each ease was entirely different. 

The cont inui ty  results  proved here will play a central role in a forthco- 
ming paper  of the authors on the topological dynamics of Volterra integral 
equations.  

2. Preliminaires.  

Let ~T be an open set in R" and I an open interval in R containing 0. 
Let  {wl denote the Eucl idean norm on R ' .  

HYPOTHESIS A . -  The function f is a continuous function cn 1 with values 
in W. 

HY1,owl~ESlS Bp. - Let p satisfy 1 ~ p  <7 oz and let g(x, l) be a measu. 
table function defined on W X  I with values in R" such that 

(i) for each t, g(x, l) is continuous in x, and 

(it) for each compact set K C W and each co~npacl set J C I there is a 
measurable, real-valued fu~clion n~(t) with t g(x, t) 1 ~ re(l), for ~c ~ K and t e / a n d  

f m(tlVdt ~ c~. 

J 
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A funct ion g(x, t) that satisfies Hypothes is  By, l ~ p  ~ c~, is said to 
satisfy a Lipsehitz  condition if for every pair  of compact  sets K, J ( K C  
C W, J C I) there is a measureable ,  rea l -va lued  function k(t) with 

tg(x~, t ) - - g i y ,  t) l ~ k ( t ) l ~ c - - y l ,  (x, y e K ,  t e J ) ,  

and J k(t dt < 
J 

For  each interval J we define the Banach space :~p(J}, 1 ~ p  < cx b by 

• p(J)----- %p(J, R"), (1 < p  < 

where % / J ,  R") is the Lebesgue  space of all measurable  functions x defined 

on J with values in R~ w i t h / [ x [ P d t  < c~. W e  shall let ~ ( J }  denote the 
J 

adjoint  spaces. By a wel l -known result  one has : ~ ( J )  ---~ :~q(J) if 1 ~ p ~ c~ 
and p - ~ + q - l : l .  

HYPOthESIS Cp. - Let p satisfy 1 ~ p ~ o0 and  let a(t, s) be a mapping  
of  I N ( I  i~to the sl)ace M ~ of  l inear operators on R" such that 

inlerval J C 1  aud  each t in I the nmppi~g ti) for each comloact 
S"  ~3piJi ~ R ~ defiend by 

£ 
S :  x ~ ~ a(t, s)x(s)dr 

J 

is a bounded linear mapping,  and 

(ii) the mappiug t ~ a(t, .) is continuous in  the q~orm topology ~rt :~{J ) , .  

W e  shall say that a(t, s) satisfies Hypothes is  C~, 1 < :p  < 0% if the con. 
dition {ii) is replaced by :  

(ii*) The mapping t ~  a(t, .) is continuous in the weak*-lopology on ~ ( J ) ' .  

Hypothes is  C v and C~ needs some explanation. ]f  we consider the points 
in R '~ as column vectors and the points in M" as square matrices,  then (i) 
can be reformulated as :  for every t in /,  each row of a(t, .) is an element 

of ~ { J ) .  We then can view a(t, .) itself as an element of the direct sum 

= e . . .  • (a) 

for every compact  interval J C I. The weak*-topology, or the norm topology, 
on ~ ( J i ' ~  is induced, respectively,  by the weak*-topology, or the norm topo- 
logy, on each component. It is clear that Hypothesis  C~ implies Hypothes is  (2~ . 

AnnaI i  di  Matemat i ca  is 
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Hypothes is  Cp or C;, together with HOlders inequality,  means that we 
can find norms on R ~ and M '* so that 

(2.p) I f  a(t, s)x(s)ds ] ~ l f la(t, ds l't~. l j f  i x~(s) Iv ds l ~/p, 
J J 

if 1 < p  < c , z  and p-~ + q - ~  1; if p =  1, 

(2.1t t f a(t, s)x(s)ds ~[la(t, f !x s)Ids 
J J 

where Tfa(t, ")II~ --- ess" s u p { l a ( t  , s) l " s e J }. 
The continuity of the mapping l--~a(t, .} implies that 

to a compact  set J '  in I then the set 
if t is restricted 

ta(t, .) " teJ ' l  

is a compact  set in respectively, the norm topology, or the weak*- topology 

on ~(I )" .  This means that 

sup i f ]  a(t, s) tqdsl c z 
t ~ J "  

if 1 < p  < c~ and p - l +  q-l_~_ 1, with a similar s tatement  holding for q ~cxD. 
Also, the cont inui ty  o[ the mapping t ~ a ( t ,  .) in the norm topology is 

equivalent  to saying that 

J ' [ a ( t -kh ,  s ) - -a ( t ,  s) l q d s ~ O  as h - - - O  

J 

where q is given as above and a similar statement holds for the case q ~ .  
Continuity ~n the weak*- topoIogy means that for each x in ~p(J~ 

tf a(t÷ h, s ) -a ( t ,   )]x{s)dst- O as  h 0. 

J 

With  p sat isfying l ~ p  ~ c~ we deffi~e C ~ C(/, W) as the collection of 
of all functions f that satisfy Hypothes is  A;  ~Sp as the collection of all func- 
tions g that satisfy Hypothes is  Bp; and ~tp, or ~ ,  ~s the collection of all 
funct ions a that satisfy Hypothes is  Cp, or C~, respectively.  
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We introduce topologies on (~, ~p, :~p and ~ as fol lows:  
On C we shall use the topology of uniform convergence on compact  sets. 

This topology- is metrizable. For  a discussion of this cf. G.R.  SELL [13]. 
On Gp we define two topologie~ ~¢ and ~b- We s~y that g ~ g  in ~,, if 

for each compact  interval J C I  and each compact  set lk C iS(J, W) the gene. 
ralized sequence I g,(x{.), .)} converges in ~.~p(J, R ~) to g(x(.), .) with covergence 
uniform for x(.) e l k .  

We  say that g , ~ g  in ~b if for every compact  interval  J C I  and every 
compact  set K C  W the generalized seq/lenee ( g~(x(.}, .)] converges to g(x(.(, .) 
in ~p(J,  R '~) uniformly for x( - )eSk where 

~-~ ¢(J,  K} = ( ~ ~ is(J, R") ; x(t) e K for all t e J }. 

The difference between the two topologies ~ and ~b can easily be seen 
in the case W-----R ~. For  both topologies we have the defining condition 

( Ig~(x( t ) ,  t~ - -  g(x(t), t~ [p d t - -~  O, s u p  
. /  

J 

For  ~c the set lk is required to be compact  while for ~b the set ~ is required 
to be bounded. The topology ~b is metrizable, and ~¢ is a uniform topology. 

On ~p, or ~t* p, we say that a gei~eralized sequence I a,~ ~ converges to a 
limit a if for every compact  interval J C I  the sequence  (a,,(t, .)} converges 
to a(t, .~ in the norm or, respectively,  the weak*- topology  on ~ ( J ) " ,  unifor- 
mly for t e J .  

We  are interested in the existence, uniqueness  and cont inui ty  of solutions 
of x(t) of the integral equat ion 

t 
/ *  

xit) = f(t) + I a(t, s)g(x(s), 8)d8. 
t /  

0 

We say that x(t} is solut ion o[ (3.p) if it is measurable,  satifies (3./o) oil 
some interval [0, a} and is bounded on compact  sub- in te rva ls  of [0, a). Before 
giving the main results, let us make note of two lemmas. Each of these 
lemmas are easily verified. 

L E ~ I ~  1. - Le t  f e is, g ~ t.Sp a n d  a ~ ~1~ , 1 <= p < co. I f  there exists  a 
solut ion x o f  (3.p) on the in terva l  [0, a), then x is a cont inuous  funct ion .  

LEM~A 2. - Let  x (tb 0--<t--a, be a solut ion o f  (3.p) and  let ~(t), 0 ~ t <= 
be a solut ion o f  

(4p) + j a(t + ~, s + ~)glf(s), s + ~)ds, 
o 
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where 

Then 

[(tt=flt + ~) + f a(t + 
0 

~, s)g(xts), s)ds. 

( x(t), 0 <= t ~ 
x( t) 

is a solution of (3.p) on 0 < t _--< ~ + ~. 

3. - E x i s t e n c e  and u n i q u e n e s s .  

In this section we state and prove our main results on the existence and 
uniqueness  of solutions. The first theorem is an existence theorem. It  also 
contains the generalization of ~ .  KSESER'S [5] theorem to integral  equations.  
The quest ion of continuous dependence on f, g and a is t reated in the next 
section. 

THEORE:~[ 1. - Let  f e C, g ~ Op and a ~ ~p, 1 <-- p ~ co. 

(A) Then there exists an  interval  [0, ~), ~ ~ O, and  a continuous func.  
tion x : [0, ~) ~ W such that  (3.p) is sat is f ied for 0 < t ~ o:. 

(B) I f  [0, ~) denotes the m a x i m a l  interval of de f in i t ion  of  x (which means  
that the solution x~ cannot be continued to the right of ~), then either ~ is a 
boundary po in t  of  I or x(t) ~ bdy W as t ~ o:. 

(C) There is an ~ > 0 such that for each t, O < l ~ ,  the cross-section 

Bit --- { y e W:  y = x(t) where x is  some solution o f  (3.p) } 

is compact. Moreover o: can be chosen to be max~imal in the sense that a - ~  ~, 
where ~ is given by (B) for some solution x. 

PRoo)  ~. - W e  shall give an argument for the case where 1 ~ p  ~ c~. 
The proof for the case p ~  i differ  from this only in the form of some of 
the equations.  

The first part  of the theorem is an existence theorem. We shall prove 
this by applying the Sehauder -Tyehonof f  F ixed Point  Theorem to tlle operator  
T defined formally by y ~ Tw where 

t 
f *  

y(t) = fit) -~ t a(t, s)g(x(s), 8)d8. 
¢J 

g 
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We  want to show that T has a fixed point. 
Choose ~ > 0 so that [0, ~] C I. By the usual arguments  one can find an 

> 0 so that the set 

~[0,  ~ ] = I x ( . ) s ¢ ( [ O ,  ~ ] , W ) ' i f ( t ) - - x ( t ) l ~ s  for O ~ t ~ }  

is a closed convex set in the Banach space G([0, ~], R').  We shall now show 
that there is a ~', 0 ~ ~ ' <  ~, such that T maps ~[0,  ~'] into itself. 

Fi rs t  we define 

B =  sup l a(t, s)lq ds 
o<_t~ft 

o 

where p - l +  q - l ~  1. By Hypothesis  Bp there is a function m such that 
Ig(x, t} i ~m(O, for x e K  and 0 ~ t ~ ~i, where 

f m~dt < ~ .  
o 

Mow choose ~', 0 < ~', --<_ ~ so that 

~r 

B mS <: e. 

o 

W e  then claim that T maps ~[0, ~'] into itself. Indeed, if x ~  ~[0,  ~'] and 
0--<t--<__~' then by (2.p) we get 

t 

o 

t t 

o o 

t 

o 

hence y e ~[0,  ~']. 
Mow we shall show that T is compact.  For  this purpose it suffices to 

show that the set of functions T(~)[O, ~']) is equi-cont inuous.  Let  t be fixed 
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with O ~  l ~_~ ~l' and  let  s > 0 be given.  T h e n  

[ Tx(t + h) - -  Tx(t)[ < 

*+h 

r~ + h ) -  r~ f + l j ~(~ + ~, ~(~t~), ~ 
t 

t 

+ ([a(t + h, s t -a l t ,  s)Ig'(x(s), s!ds 
0 I 

o 

t + h  t + h  

t t 

t t 

o o 

t + h  

t 

o o 

Now choose  $ > 0 so that  if  1 h l  < ~ then  

J f(t + h)--f!Oj <= 
~+h 

t 

o o 

Note  that  ~ depends  on t and s bu t  it is i n d e p e n d e n t  o[ the f u n e t i o n  ~v. I t  
follows t hen  that  

[ Tx(t + h) - -  Tx(l) l <= 3s 

which shows that T is compact. 
Now we shall show that T is continuous. If {x.} is a generalized sequence 

in ~t)[O, ~'] with limit x, then by the continuity of g(x, t} in x we get 

g(x.(s), s)--g(x(s), s) 
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for each s, 0 = < s  = < ~', and 

a(t, s)gtx,,(s), s ) ~  a(t, s)g(x(s), s). 

Furthermore ,  the generalized sequence {a(t, s)g(xn(s), s)} is bounded by an 
integrable function, 

Is(t, s)g(x.(s), s)] =< Is(t, sl I.~(s) 

for n suff iciently large, say n ~ _ N ,  hence by Lebesgue's Theorem 

t t 

f a(t, s)ff(x.(s), s)ds~ f ~(t, s)g(~(8), s)ds. 
0 0 

This implies that for each t, 0 __< t N y, one has 

I5) 

In order to show that T is continuous we must show that the convergence in 
t5) is uniform. However, this follows easily from the fact that Tx is continuous 
and the set I Tx,,} is equi-continuous.  

We have thus stlown that T is a compact, continuous operator, therefore 
by the Schauder-Tychonoff  Fixed Point  Theorem, cf. Cao~I~ [3; p. 131], T 
has a fixed point ~c. 

Let  us now show that the maximal  interval of definit ion [0, a) is charac. 
terized in the form described in the theorem. Proceeding by contradiction, 
assume that ~ is not a boundary point of J a n d  that x(t) remains in a compact 
set K C  W for 0 ~ < t ~ .  We wilI then show that  there is a solution xlt) of 
(1) defined on an interval [0, ~') where ~ < ~' and such that x ( t ) = x ( t ) f o r  
0 ~ t ~ a. This wilt contradict  the maximal i ly  of [0, ~). 

The first step is to show that lim x(t) exists. We shall call this limit 
t----> a 

x(~). The limit exists if for every e > 0  there is a % 0 < x < : ¢  such that 
[ x(t) --  x(u) l <= e for all t ~nd u with ~: ~ t < a, t =< u < 

By Hypothesis  By, there is a function m such that ]gtx, l) l <~ re(t) for ~c~K 
and 0 ~ t ~< o:, where 

f m~d8 ~ oc. 
o 

If  z ~ t ~ u ~ ,  then 
t 

I ~(u) - x(t) t <= i f(u) - f(tll + f {  a(t, s) - -  a(u, 
o 

s) } g(x(s), s)ds 
$ 
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t 

< i f (u )  - f ¢ ) j  

+ { f Ia(t, s , -  a{u, s)[q dsl{l.;m(s,Pds l~ 
0 0 

8)  dsl  l o +p sl  
o '~ 

Thus our assumptions clearly iml.ly that if x ~<t < u ~ a and a m X  is suf- 
f iciently small, then I x(u)--x(t)t~ ~. Thus we see that x(t) is a solution of 
(3.p) on the closed interval [0, :¢]. 

Now by applying the previous existence proof with Lemma 2, we conclude 
that the solution w can be continued for 0 ~< t ~< a + ~, ~ > 0 ,  and this 
contradicts the maximal i ty  of [0, a). 

The proof that the cross-sect ions are compact is simple modification of 
Kneser 's  Theorem for ordinary differential  equations, cf. G. R. SELL [12, p, 373]. 
The cri t ical  thing to show is that if I xn } is a generalized sequence of solu- 
tions of (3.p) that converges uniformly on compact sets to a function x, then 
x is a solution of (3.p). This, however, is a direct application of the Lebesgue 
Dominated Convergence Theorem, which completes the proof. The fact that 
is maximal  in the sense indicated can also be proved with the same techniques, 
cf. [12; p. 382]. 

RE~ARKS 1. - AS noted in the Introduction,  the Scauder -Tychonof f  Fixed 
Point Theorem has been used before to get existence cri teria for integral  
equations. See, for example, [2, 3, 6]. The fact that the maximal  interval of 
definit ion is characterized by Statement  (B) has been proved by essentially 
the same argument  but  under  more restrict ive conditions by J. A. NO~EL [8]. 
Final ly  a special case of (C), which generalizes Kneser 's  Theorem, has been 
proved by T. SAgO [ll]. 

2. - Our argument  does break down if we replace the Hypothesis  Cp for 
a(t, s) be the weaker  Hypothesis  C$. The only place where the stronger hy- 
pothesis was used to show that the operator T is compact. We have no coun- 
ter example to show that Theorem 1 is false under  the the weaker  hypothesis 
o n  a(t ,  s). 

In order to get uniqueness of solutions, we impose a Lipschitz condition 
on g. Actually, if g satisfies a Lipschitz condition, then we can relax the 
assumption, on the kernel  a and ask that it satisfy Hypothesis  C~. 
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TIiEORES~- 2. - Let  f e C, g ~ Op and  a e ~ip ~, 1 <- p ~ c% and  assume that g 
satisfies a Lipschitz condition. Then there ex~isles one and  only one solution 
of  (3.p). Fttrthermore the max imal  interval of  def ini t ion is characlerized by (B) 
of  Theorem 1. 

The proof of this is completely s traightforward.  One proves, by the usual  
arguments ,  cf. [8], that  the operator  T is a contract ion on some set ~[0, ~"]. 
We omit the details. 

R E M A R K .  - One can replace the Lipschi tz  condit ion on g with a weaker  
s tatement .  For  example~ one could replace it with the Osgood condi t ion:  

t g(x ,  tt - -  g(y ,  t)~ <= kit) + (l  x - -  y I) 

w h e r e -  / d~-ri m_ + c~. Comparison theorems of this type are wel l -known for 
. ]  

0 

different ial  equat ions  and they have been used for integral  equation% cf. [8, 11]. 

4. - Con t inu i ty  of  solut ions .  

I n  th i s  section we invest igate  the dependence  of the solut ions x on the 
three therms f, g and a. 

THEORE~ 3. - Let I f .  }, {g. } and  t a,~ 1 be generalized sequence in C, Op and  
~tp respectively where 1 <= p ~o,~. Asswme that these sequences have limits 
f .  ~ f, g,  ~ g  (in ~ }  and a,,--~ a in tho~ respective spaces. Let I x ,  } be a 
sequence of solutions of  

t 

(5 p) x,,{t) = f~(t) -1- I a,(t, 
f ,  

8)gn(xn(8)~ s) ds, 

0 

on the m a x i m a l  intervals [0, ~,~), Then the seque~ce ( x,~ } has a uni formly  
convergent subsequence on some interval 0 < t < a, cJ ~ O. The l imit  funct ion 
x is a solution of  the l imit ing equation 

t 

(6.p) x(t) = f(t) + t a(t, s)g(x(s), s)ds. 
f .  

0 

Moreover, the subsequenee Ix, j}  of  I x,~l may  be chosen so that x,~j(t)~x,  it) 

un i formly  on compact subsets of  [0, ~), where the interval [0, ~') is the maxi .  
real interval on which the cross section Kt of (6@) are compact (see Theorem 
I(C)) and [0, ~ ) C  lim inf [0, a,). 

P R o o f .  - We will show that  for any ~ with 0 < ~ ~ a, one has :  

1. [0, ~j C [0, a,,) for n suff ic ient ly  large, say n ~ No ; 

Annali di Matematica 1 9  
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2. on the interval 0, ~] the sequence of functions {x, } is bounded 
and equicont inuous;  and 

3. if {xw. } is a convergent  subsequence of Ix ,}  with limit x(t) on 
[0, ~], then x(t) is a solution of (6.p) on [0, ~]. 

Again we shall prove this for the case 1 < p < ¢x). The proof for the 
case p = 1 is similar. 

Let  ~, 0--< ~ < o:~ be given where a is given by the hypothesis. Then the 
cross section 

Kt-~ I Y ~ W; y ~- w(t) for~some solution x o[ 16.p) } 

is a compact subset of W for 0 ~  t--<~. It  is easily shown that 

u {K,; o_< t <  

is a compact subset of W, cf. e.g. [12, p. 378]. Let  K be a compact set in 
W that contains _K in its interior. By hypothesis Bp there is a funct ion 
m e ~v[0, ~] such that 

I g(~, t) L <= m(O. (x e K, 0 <- t <= ~ 

The convergence g,~ ~ g  in ~c implies that s. ~ 0 where 

sup ( ]g,,(x, s) - -  g(x, s) [vds. 
reEK,] 

0 

Fur the rmore  if 0_-  < ~_-- < ~, then 

0 0 0 

o 

For ~ i n  the interval [0, ~] set 

(7, M(z, n) = ~. + t ;m(s )p4s  t~. 
0 

Similarly we can find a common bound for the sequence {a,,}, that is 

{f llJ (8) B -~- sup sup l a,(t, s) l qds 
[ o_.<t_<~ 

0 

< ~  
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where  p - ~ + q - ~ =  1. l~ote tha t  the bound  B in (8} also holds  for  the l imi t ing  

f u n c t i o n  att, s). 
By the cho ice  of the set K, the re  is an s > 0  such  tha t  if x(t} is any  

so lu t ion  of (6.p), 0_--<t < ~, and l Y - x ( t ~ l <  ~ t hen  y ~ K .  F i x  ~ so tha t  
0 < $ < e / 2  and f ix  the i n d e x  N~ so that  if n-->N~ then  2 B e , < $  and  

t f . ( O  - f(t) l < ~. ( 0 < t < ~ , =  = n > / V . ) =  

l~ow choose  z so tha t  0 < z--< ~ and 

0 

I f  this  equa l i t y  c anno t  be sa t i s f ied  for  0 = a < ,  ~, then  choose cJ-~-~. 
We will  now show tha t  on the  i n t e r v a l  [0, ~] one has  x , ( t ) ~ K  for  all  

n ~ -hrs. L e t  xtt) be any  so lu t ion  of (6.p) de f ined  on [0, ~]. we shal l  show tha t  

I x ,  it) - x(t) l <- e fo r  0 < t <= a and  n > N~. F o r  t ~ 0 we have  

I x . 0 ) -  x(o)', = I f . 0 )  - fto) l < ~ < ~. 

Suppose  I x,(t) ~ x(t) f = < ~ for  0 = < t < ~ = < ~. T h e n  

O 

+ ] f a[~, s)g(x(s), s)ds . 
0 

Apply ing  (2.ph (7) and  (8) we see t h a  

<= ~ + 2BM(a, n) < ~. 

H e n c e  the m a x i m a l  in t e rva l  [0, ~1 for  which  x , ( t } e I~  if 0--<_ t ~ ~ mus t  

inc lude  [0, ~]. 
W e  shal l  now show tha t  on the in te rva l  [0, ~], the s e q u e n c e  of f u n c t i o n s  

{ x.,, n = > NI } is e q u i c o n t i n u o u s .  I f  0 = < t ~ __ t + h  = < z, t hen  

I~.(t  + h) - x.(t~ / <___ I f . ( t  + h) - -  f . (01 
t 

+ i f (a . ( t  + h, s ) -  a.(t. 8)}gn(xn(8), 8)d8 
o 



148 R.K.  MILLER - G. R. SELL: Existence, uniqueness and continuity, etc. 

÷ f a,~(t Jr- h, s)g,(x,(s), s)ds , 
t 

t-]-h 

<= f.(t q- h) - -  f.(t) [ 4- B m(s)vds Fo 
t 

o 

Si~me f , - - f  uniformly on [0, z], the sequence {f~} is equicontinuous.  
Since am(t, . ) ~ a ( t ,  .) uniformly in te[O, z], it follows that the sequence {a,} 
is equieont inuous as functions of t with values in ~q[O, z] n. Since B is a 
f ixed constant and Miz, n) is bounded in n, for n > ~ N , ,  we see that 
{x,~; n >= N1} is equieontinuous on [0, z]. 

,Now choose any convergent  subsequence of { a~, }. To simplify the notation 
we shall write {x,~ } for this subsequence. Then there is a funct ion x such 
that m , ( t ) ~  re(t) uniformly on [0, z]. Since 

= { m ,  x , ,  x2, ~8, . . .},  

is a compact set in C([0, z], WI and g , , ~ g  in go it follows that 

g.(x.(.), . ) -~g (x ( . ) ,  .) 

in ~Lp([0, ~], R'~). Also we have 

a.( t, • Ig~(x.(. ), • ) ~ a t t ,  . )g(x(. ), • ) 

in ~1([0, ~], R") for 0 _-- < t _-- < ~. Thus 

t t 

f a,,(t, 8)gn(xn(8), s)ds-- f a(t, s)g(~(s), s)ds. 
o o 

It  follows that x(t) satisfies (6.p) on [0, ~]. 
We now want to show that the interval [0, ¢~] can be extended to [0, ~]. 

This extension can be performed in a finite number  of repeti t ion of the above 
argument.  That  is, consider the translation of (6.p) given by 

(9.p) 

t 

x(,) = ÷ f a(t -4- a, s -k ~)g(X(s), s + ~)ds 
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where  f ( t )  = fit -q- ~) + j  a(t q- ~, s)g(x(s), s)ds, Equation (5.p) is s imi la r ly  tran- 
0 

slated. By the above a r g u m e n t  one can  f ind a -c > 0 such that  a subsequence  
of the solut ions  {X.(t)} converge to a solut ion XIO of (9.p) on [0, z]. By  
L e m m a  2, we see tha t  

x(t) ----- t x(t) o -< t - 
( X ( t - - z )  O <  t <= ~-I- ~ 

is a solut ion of (6.p) on [0, ~-~-~], and it is the l imi t  of a subsequence  of 
{ x.(t~ } on 0 -< t -< ~ + ~ .  

This  process  can now be repeated.  In order  to show that  one can ex tend  
to [0, ~] in a f ini te  n u m b e r  of steps, it is necessary  to keep t rack  of the 
size of each  step. This  is governed by the func t ion  M(z, n) def ined  above.  
T h a t  is, the n u m b e r  z can be chosen so tha t  0 ~ z ~ ~ -  a and  

or if this last  equal i ty  cannot  be sat isf ied then  set ~ - - - ~ - - ~ .  Since the 

integralfm(s)Pds is f ini te ,  it is c lear  tha t  one can ex tend  [0, ~] to [0, ~] in a 
0 

f ini te  n u m b e r  of steps. This  completes  the proof of Theorem 3. 
In  the last  theorem we a s sumed  that  the kerne l s  {a~(t, s) t and  the 

l imi t ing  kerne l  alt , s) sa t i s fy  Hypo thes i s  @ and tha t  a ~ a  in the norm 
topology, un i fo rmly  for t on compact  sets J C I .  One can ask whe the r  the 
weake r  convergence  would  suffice.  The  answer  is yes if one s t r eng thens  the 
convergence  on {g,  }- Nore  precise ly  we prove the fol lowing r e s u l t s :  

TtIEORE~ 4. - Let { f,, }, { g,  } and { a,  } be generalized sequences in 
~., (Sp and ~ respectively where 1 ~ p <~z .  Assume that the sequences have 
limits f,,---~[; g~--. g (in ~b) and a ~ a  (in ~ )  with /; g and a in the 
respective spaces. Assume further that g~ and g satisfy Lipschitz conditions. 
Let x ,  be the solutions of  

t 

(5.p) xnit) = f, qt) ~- f a,,(t, s)g (x,(s), s)ds, 
0 

on the maximal  intervals [0, ~,~). There the seque~~ce I x ,  } converges uniformly 
on compact subsets of [0, ~) to a function x(l). The function x(t) is the unique 
solution of  the limiting equation 

t 

x(t) -~ f(t) -4- I a(t, s)g(x(s), s) 
f .  

(6.p) ds 
. ]  

0 

defined on the ma~cimal interval [0, :¢). Moreover, ~ <= l im inf  ~,. 
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PROOF. - For  any  9, 0 ~ ~ < a, we shal l  show that  an >_-- ~ for n suf f ic ien t ly  
large (say n > N0} and that  x , ( t ) ~  x(t) un i fo rmly  on [0, ~]. This  will prove 
the theorem.  

F ix  any  ~e [0 ,  :¢). Le t  K be a compac t  subset  of W that  conta ins  the 
curve  x ( / ) :0  < t < ~ in its inter ior .  Le t  m e ~ p ( [ 0 ,  ~], R") with 

t g(x, til <- m(ti. ( x e K ,  O<--t<- ~) 

Since the kerne l s  a,(t, .) converge to a(t, .) in the weak*- topo logy  on 
~q[0, ~]", they  are bounded  in the no rm topology. F u r t h e r m o r e  since the 
convergence  is un i fo rm for t on compact  sets, the n u m b e r  B def ined  by 

B--sopl I fio ( , s) qdsl I 
n o_<t=<?, 

0 

is finite.  Le t  M(z, n), e, ~, /V, and a be def ined as in 
proof of Theorem ~. 

Ins t ead  of showing  the equ icon t inu i ty  o f  I x, , l  
d i rec t ly  to es t imate  l x . ( t ) -  x(t) ]. Define  R.(t  t by 

R~(t) --- I f,,(t) - -  f¢) l + f 
0 

t 

+ f {a~ft, 
0 

and let s~ = sup [ R,lt) ; 0 = < t = < 
on {f,,}, ( a . }  and  / g . }  and the 
has  e,, ~ 0. 

the f irst  part  of the 

on [0, z] we proceed 

t 

t 8 I a.{t, s) I I g~(x.() ,  s) - -  g{x.(s}; s) i ds 

s) - a(t, s) } g(x(s), s)ds l 

z }. Because  of the convergence  assumpt ions  
fact  that  x,,(t) e K for 0 = < t = < a, n = > NI one 

Since g sat isf ies  a Lipschi tz  condi t ion,  there  is a func t ion  k{t)e~p{[O, 9], R.} 
such tha t  

tg(x, t t - -g (y ,  t) l < k(t~l x - y ! "  (x, y e K ,  0<= t<- ~) 

~7 t 

Choose z', 0 < z' __< a, so tha t  Ko = I [k(tFdt 111p < 1/B.  
o 

By a s t ra igh t  forward  compu ta t ion  we get 

t 

L x.(t) - x(O 1 <= R.lt) + f I a.(t, s) I I g(x~(s), s) - -  g(x(s), s) I ds 
0 

t 

=< ~n + J k(s) l a.(t, s) j I z.(s) --  x(s)/as. 
0 
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By using HOlder's inequal i ty and restr ict ing t to 0 ~ t  ~ ~' it is easily shown 
that 

I x, ,{t}  - -  x( t )  I ~ ~1 - -  B K o )  _1 ~,, .-~ O. 

This shows that x , { t } ~ x ( t )  u_iformly for 0 ~ t ~ o'. One can extend 
[0, d] to [0, ~] by the same reasoning process used in the proof of Theorem 
3, which completes the proof of Theorem 4. 

REMAI~KS: 1. - The assumption that the limit function g(x, t) satisfies 
a Lipschitz condition can be weakened. One could use an Osgood condition 
or a comparison theorem used by J. NOBEL [8] or T. SAbre [11]. However, it 
does not appear that  in Ti~eorem 5 one can drop this type of analyt ical  
criterion, which implies uniqueness,  and assume directly that the solutions 
are unique. 

2. - It should be noted that E. KA~IKE'S Theorem [4] on the continuity 
of solutions of ordinary differential  equations, as well as Z. 0PIAL'S genera- 
lization [9] are included as special cases of Theorem 4. In these papers the 
kernel  aIt, s) reduces to the identi ty matrix. KAMKE assumed that  the 
functions g,,(x, t) and g(:~, t) were continuous and that g,,----*g uniformly on 
compact sets. this convergence implies g .  --.-g in ~ for every (Sp, 1 _= p ~ cxv. 
0pial  assume l that the functions g,, and g satisfied Hypothesis  B1 and g,, ~ , -g  
in ~b for p~---1. 

3. - Many variations of our theorems are possible. One variation is of 
par t icular  interest since many applications fit into this form. For this we 
set p ~--- ~ and q -~- 1. Here we assume g to be continuous in (t, ~c) and g,, --,- g 
means uniform convergence on compact sets. Suppose now that a satisfies 
the following condit ions:  

(i) for each compact interval J C I and each l ~ I the map S : G(J, W) --.- 1l '~ 
defined by 

S .  

is a bounded l inear functional,  

(ii) the mapping t ~ a ( t ,  
~ , (Jb and 

x ~ f a(t, s)x(s)ds 
d 

• ) is continuous in the norm topology on 

(iii) for any compact set J C / ,  

tq-h 

limh_~o f l a(t, s) I 
t 

uniformly for t ~ J. 

d s ~  0 
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U n d e r  t he se  c o n d i t i o n s  on g a n d  a, t he  o b v i o u s  v a r i a t i o n s  of T h e o r e m s  

1 t h r o u g h  4 a r e  t rue .  W e  o m i t  a f o r m a l  s t a t e m e n t .  

4. - C o n t i n u i t y  r e s u l t s  of  the  type  g i v e n  by  T h e o r e m  4 h a v e  b e e n  o b t a i n e d  

b y  L e v i n  a n d  :Nobel [15] in  a spec ia l ,  s c a l a r  e x a m p l e .  
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