
On boundary value problems for an ordinary 
linear differential system. 

~), WEXLER (Bucharest) 

Summary. - I t  is shown that some general boundary value problems for an ordinary linear 
differential system are normally  solvable. 

1.  - I n t r o d u c t i o n .  

The purpose of this paper  is to indicate a way to obtain the adjoint 
problem of some general  b.v.p, for ordinary l inear differential  systems on 
compact interval  (Section 3). We shall also discuss the relationships between 
the b.v.p, and its adjoint (Section 4). 

In  our considerations a significant part play some~concepts of distribu- 
tions theory. The adjoint equation is a different ial  equat ion in a distr ibution 
space. We discuss such differential  equations in Section 2. We use a well 
known theorem concerning i inear  equations in Banach spaces: let~ E, F be 
Banach spaces and ~2 a l inear  continuous operator E--*-F.  The following 
assertions are equivalent  (see [1] chpt. IV, § 4, or [4], ehpt. VI, § 6}: 

(i) the equation ~ 2 ~ - - y  is normally  solvable i.e. this equation has so- 
lutions if and only if y is orthogonal to any solution of the adjoint equation 
~f=0(1); 

(it) the equation ~ f = g  is normally  solvable i.e. this equation has  
solutions if and only if g is orthogonal to any solution of the equation 
1 2 x =  0; 

(iii) the range ~(g2) is closed in F. 

It follows that if ~ (~2) - -F ,  then the kernel  !V(t~)--{0}.  
General  b.v.p., where  the boundary  condition is given by a l inear  ope- 

rator, are discussed using other means by R. C o ~ I  [3]. If we want to consi- 
der the adjoint problem it is suitable this operator be continuous, what  we 

(i} We design the dual spaces by E'~ F p and the adjoint operator Y'--+ E' by t~. 
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shall suppose fur ther  on. By this, our f ramawork is less general  than of 
C o ~ I .  The adjoint problem obtained here includes the adjoint  ones found by 
other means by R. It. Co:~E [2], and A. HALA~AY and A. Mono [5]. 

We  grateful ly acknowledge Prof. A. HALA~AY, who w~s kind enough to 
discuss the whole manuscr ip t  cri t ically whit the author. 

2. - Pre l iminar ies .  

1). Let  I - - - [a ,  ~] be a compact  interval and L ~ be the space of summable 
on I complex valued functions, with usual norm 

11 ~ II, = f i ~(01 dr. 
I 

W e  denote by C~ the space of complex valued functions absolutely conti. 
nuous on I .~The  funct ions ~ e ~  are a l m o s t  every where  derivable and 
D~ e L i. We  consider in ~ the norm 

11 ~ I1o = i ~ ) I  + It D~ li,, 

where  ( i s  a f ixed point in I. The topology of C~ is independent  of the 
choice of t, for the norm [l'[la is equivalent  to the norm 

llv[l = s-p  I ~(t)l + IID~fI~. 
t G I  

~a is a Banach space. In fact, let (~k) be a Cauchy sequence in Ca. It fol- 
lows that (~k(t-)) is a convergent numerical  sequence, lira ~k(t)--) .  and (D~k) 
is a convergent  in L ~ sequence,  lim D ~ k - - + .  It  is easy to verify that 
¢p~--~ in ~a ,  where  

t 

~(tl = x + f ~(s)ds, t ~ L 

It  is wel l -known that the dual space of L ~ may be identified to the 
space L ~ of measurable  funct ions essentially bounded on I. The value of a 
funct ional  f e  L ~ on ~ ~ L 1 is given by 

< ~, f > = f 9(t)f(t)dt 
I 
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and the norm of f is 

/l I - s u p  I < % f > I - e s s  s u p  

We design by ~'~ the dual space of ~ .  It is a Banach space. We  show 
that ~'a is an intermediate  space be tween the space ~ '  of measures  on I 
and the space ~'~ of distr ibutions of order ~ 1 o n  I. 

Le~ ~ be the space of functions with cont inuous first derivative on I, 
normed by 

N~(V) = sup ]¢?(t) l + snp 1D~(t)]. 
t ~ l  t ~ [  

Its dual  ~'~ is the space of dis tr ibut ions of order _~ 1 on I. Obviously 
~ C  ~ , ,  the topology of C ~ is stronger that the one induced by C~ and C ~ 
is dense in if) C~. Then the restr ict ion to C ~ of a funct ional  f e  ~'~ is in ~'~ 
and f is uniquely  determined by this restr ict ion (for ~ is dense in C~). W e  
see that the restr ict ion operator establishes an (algebraical) isomorphism bet- 
ween ~'~ and a subspace of ~'~. By identifying ~ ' ,  to this subspace,  we can 
consider C'~ C ~'~. 

In  the space ~ of continuous on I functions we consider the usual norm 

= l v ( t ) l .  

Its dual ~ '  is the space of measures  on I. Obviously, C~C ~, the topology 
of ~ is s tronger that the one induced by ~ and ~ is dense in C (since the 
space of polynomials is dense in ~). Then the restr ict ion operator  establishes 
an isomorphism between C' and a subspace of ~'a,  i.e. C ' C  C'~. In the same 
way, L ~ C  ~.  We conclude 

L ~ C e ' C e ' ~ C ~  '~. 

It  is easy to see that all inclusions are strict. 

{~) I n  fac t  the  space  C of c o n t i n u o u s  on / f u n c t i o n s  is dense  in L t. T h e n  ~ for  ~ E Ca 
the re  is % e ~ so tha t  ~ k ~  D~ in  L t. The func t i ons  

t 

(t) -- ~(~) + ] +'k(s)ds' t e I ~k 

t 
b e l o n g  to ~ t .  B y  Dcok ~ ~k we  deduce  

I t  fo l lows ~ 1 ~ ¢ 0  in  ~ a  and  ~ t  is dense  in  ~ a ,  
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2). Suppose  b ~ C,,. For  ~ e Ca we have b ~  ~ ,  and the l inear  operator  
--~ b~ is continuous.  The adjont operator  is called the mult ipl icat ion by b 

operatar  C'a--~-~'~. In other words, for f e ~ ' a  we have b f ~ ' a ,  the l inear 
operator  f - - . - b f  is continuous and the funct ional  bf  is defined by 

< % b f >  -- < b% f > ,  for ~eCc~. 

If b e  L ~, then b f e  L ~ for any f e  L °~ and the mult ipl icat ion by b is a 
l iaear  cont inuous operator  L ~ L% 

The function b~  L ~ can be considered also as a mult ipl icator  ~ ,  ~ L ~. 
Then the adjont  operator  L ~ ~ C'~ coincides with the mult ipl icat ion L ~--.- L ~ 
defined above. 

Tile differential  operator D ' ~ a ~  L ~ being linear and continuous, the 
adjoint  t D ' L ~  ~',~ posesses also these properties.  For  f ~  L ~ we have 
t D f e  C',, and tDf  is defined on C~ by 

The derivat ion presents  hese some peculiari t ies  in comparison with the deri- 
vations on an open interval. Using the integrat ion by parts for STIEr,~JES in- 
tegrals, it is easy to verify that if f is a funct ion of bounded variation, then 

(1) - -  tDf  = / ' ( ~ ) ~  -- f (~)~ + dr(8), 

where d f  is the S~IEST5ES measure  defined by f. If f is absolutely continuous 
on 1, then d r =  (Dr)dr (the product  of the summable  function D f  by the 
Lebesgue  measure  dt) and 

If  f(~¢) = f(~) --  0, then - - t D f - -  d f  (respectively - -  t D f - -  Df). On can say that 
- - tD is the derivat ion operator  L ~  ~'a .  

If  b ~ C a  and f e L  ~, then 

(2} tD(bf) = - -  (Db)f + b( tDf) .  

In fact, we have for ~ e ~  

< % tD(bf) > = < D~,, b f >  ~ < b(D~), f >  = < D(b~) --(Db)~,  f ~  --  

- ,< D(b~), f :> --  < (Db)% f >  --  < b~, t n f  > - -  < ~, (Db)f > = 

--  < ~, b(tDf) > + < % -- (Db)f > --  < ~, - -  (Db)f + b(tDf) 7>. 

(3) W e  design by ~T the measure of Dirae concentrated in the point ¢~ 6 I :  the rune. 
t ional ~ is defined by < % ~ , > - ~ -  q~(7)~ for ¢p ~ Ca. 
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3). We shall indicate a way which allows to extend the previous con- 
struct ions to vector  distr ibutions with values  in the complex n-dimensional  
euclidean space C'. The elements of C '~ will be writ ten as row-vectors ,  the 
norm of 

c ~ ( c l ~  ..., C~) 

beeing Icl--- maxIcjl. Let us denote by ~ ( C  '~) the product  of n spaces equal 
to ~a .  Wi th  the norm 

~,(C,~) is a Banach space. I ts  dual C',dC,,) can be identif ied to the space of 
co lumn-vectors  

f = col(f, ,  ..., f,), fj e 

the value of the functional  f on a function q0e~a(C') being 

< %  f > =  <¢ej ,  / i > .  
i 

C',(C '~} is (algebraically) isomorphic to the product  of n spaces equal to C'~. 
It is easy to see that the norm of f e ~ ' ~ ( C  ") is 

lJfJt',, = m a x  llf l]'o. 

In  the same way, one can introduce the spaces L~(C"), C(C'~), ~I(C n) and 
their dual spaces. It is easy to extend the propert ies  ment ioned in the pre- 
vious paragraphs  to these spaces. 

A l inear operator  A:C,~(C'~)--+ LI(C ~) can be represented by a n X n  
matrix A-- (Ajk) ,  where Aik are linear operators @a--~ L' and 

A~ "-{  Y, d#cpi , ..., ~ Ai),?1 ) 
t 1 

for T ~ ~(C')).  

The operator  A is cont inuous if and only if Aik are continuous.  Analo- 
gously an operator  B : L ~ ( C  ") ~ ~'a(C") can be represented by a n X n  matrix 

B --  (Bi~), 

B f  : col ( E B~kfk, ..., E Bn~fk) for f ~ L~(C"). 
k k 

If A - - ( A i k  ) is a, cont inuous l inear operator ~,dC")~LI(C") ,  then the 
adjoint  operator  ~A:L~(C')-- ,-C',dC ") is represented by  the matr ix  ~A--(~Aik). 
The mult ipl icators  C~,(C ' )~L ' (C '*) are n X n matr ices  of summable  functions. 

Similar  remarks  are valid for operator  LI(C~)~LI(C"), C~(Cn)~Ca(C '*) 
and so on. 
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4). Let  us consider the equation 

(3) Du -{- uA "- O, (u --- row-vector),  

where A is a n X n  matrix whose elements are summable functions i.e. A is 
a mult ipl icator  C~(C'*)-+LI(C'9. The solutions of (3)sha l l  be understood as 
Carath4odory solutions. Let  us denote by U(t), t e l ,  the fundamenta l  matr ix 
of solutions, U ( a ) - - E ,  where E is the unit matrix. Let  6)~ be the Cauchy-  
operator C n ~ ( C + ~ ) ,  (~uo)(t)--uoU(t), t e I .  The solutions of (3 )a re  ~euo, 
~o E C ~. 

We look now for the solutions in L~(C ") of the equation 

(4) tDy + Ay  -- g, 

where geC'a(C'~). Let  us denote by ~1 the operator  C, (C , )~LI (C ' ) ,  ~ - -  
: D ? + ~ A .  Then (3) can be writ ten as ~ l u ~ 0 ,  and (4) can be wri t ten as 
t~ ,y  _= g. The range ~ ( ~ ) :  LI(C~). By the theorem of Section 1 it follows 
that (4) has solutions if and only if g is orthogonal to any solution of (3), 
i.e. <e'A~uo, g > - - 0  for uo~C' .  At the same time if this condition holds, 
then (4) has a unique solution. 

Suppose now that g is a measure,  i.e. g e ~'(C"). By a well known theorem 
of F. RIESZ there exists a function X ' I - - . - C "  with bounded variation on /, 
oontinuous at the right on [a, ~) so that g is the S~IEL, TJES measure  dX. We  
also suppose that g is orthogonal to any solution of (3) i.e. 

(5) / U(t)dX(t) ~- O. 
(% 

Let  us make the subst i tut ion y - -  U-lz. By (2) and by DU - ~ - -  A U  -1 we 
obtain for z the equivalent  to (4) equat ion 

(6) tDz = Ug, 

whose unique solution is 

(7) z(s) = - - /U( t )dX( t ) ,  
O~ 

s e I .  

In fact  it is easy to see that this function has bounded variation on I 
and is continuous at the right on [a, ~). The STI]~L~JES measure  dz defined 
by z is 

d z - - - -  U d X - - - -  Ug. 
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By (1) and (5) it follows that the function (7) is the unique solution in 
L~:(C ") of (6). W e  see so, that if g --  dY. verif ies (5), then the unique solution 
in L~(C ~) of (4) is 

S 
/ a  

U-~(s) U(I)dX(t), s ~ I. y(s) 
*J 

0;  

5). Let  h be a Banach space, A' its dual and < l ,  ) ,>  the value of a 
functional ), e h' on t e  h. Let  us consider  a cont inuous linear operator  ~2:  
C ~ ( C ' ) ~  A and its adjoint t ~ .  h ' ~  ~',(C'). Obviously for k e h ' ,  the super- 
position ) , o ~  coincides with t~2),. 

The elements of the p ioduct  C ~ ( C , ) X A  will be denoted (~, l) where 
e C,(C'), 1 e A. With  the norm 

[1(~, t ) t [ -  m a x ( I ~ l / - ,  t]btt) 

' - is also a Banach space, this product  is a Banach space. I ts  dual ~ , ( C  ) x A '  
the value of a functional  

, f e C ° ( C ) ,  ) , ~ A ' ,  

on (~, l) e C~(C"I >< A beeing 

<(~,  

W e  shall also consider  the product  L~(C")X A and its dual L'~(C")?,< A'. 

3. - Boundary  value problems. 

W e  consider now the following b.v.p : given ~ e LI(C ") and 1 e A, determine 
~c~ Ca(C ~) such that 

(8) ~ l x  = % ~ x  = l. 

Let  us consider the operator  a$ : Ca(C")---~LI(C~)X A, ~tp = (g31+, g32~). 
Then the b.v.p, can be wri t ten 

(8') ~a¢ = (~, I). 

The domain of the l inear operator  ~2v--" ~3U is C". Then the range 
~R(~=u) is a f ini te-dimensional  subspace of A and ~2u can be represented by 
a n X m matrix, where m - - d i m  ag(~=u). 7Note that m _< n. 

For  q~ e LI(C ~) we define the function J~, 

t / I *  

(J+)(t) -- I qb(s)U-l(s)U(t)ds' t e I. 
al  

Annali di Matematica 17 



130 D. WEXLER: On boundary value problems ]or an ordinary, etc. 

(10) 

It is easy to see that J,~eC(C'*) and that the l inear operator J : L I ( C " ) ~  
C~(C") is continuous. 

The solutions of the equation ~ l x - - ~  are 

x : e'2£xo + J~, xo ~ C ~. 

Such a function x verifies ~ 2 ~ -  1 if and only if xo verifies 

(9) ~ u x  o = 1 - -  ~2J~. 

Thus the b.v.p. (8) has solntions if and only if (9) has solutions. 
We show that the range ~(~)  is closed in LI(C ~) X A. In fact, the operator 

V : LI(C '*) X A --,- A, V(% l) = 1 - -  ~. f l% 

is l inear and continuous. The equation (9) has soluti(ms if and only if 

V@, l) e ~(~J2~O i.e. (% l) e V-'e~(,~,u). 

This yields g{(~) = V - ' ~ . ~ u ) .  The space ~ ( ~ u )  is closed in A for it is 
f inite-dimellsionai.  (4) Then V-J~(~6~u) in closed in L ~ ( C ' ) X A ,  for V is con- 
tinuous. 

I t  folllows by the theorem mentioned in Section 1 that the b.v.p. (8) is 
normal ly  solvable. In other words, if we denote by t~  the adjoint operator 
L°°(C '~) X A' ~ ~'a(C"), then the b.v.p. (8) has solutions (in C,(C')) if and only if 

<(% 

X A') of the adjoint equation 

= 0 .  

4. - The ad jo in t  problem. 

We find an explicit form for (10). F o r ( ~ ) ~ L ~ ( C ' ~ ) N ( A  ' and 
\ - - !  

we have 

= < ¢, '2.,,f + t , ~ x  > .  

(Q We note that here some difficulties arise if we wish to discuss b.v.p for differen- 
tial equations in a Banach space, for then ~,(~2U) is not finite-dimensional. 
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This yields 

B y ~ f =  *Dr+ Af it follows that (10) can be wri t ten as 

(10') tDy + Ay + t~2k = 0 

and the adjoint problem is:  determine the solutions (Y}. ye[,~(C~), ) , cA '  of 
(10'). Remember  that ~ - - - - X o ~ 2 .  

We recognize that for fixed )~eh '  the equation (i0') is of type studied 
in Section 1. Hence  it has a solution if and only if < e'~Uo, t~ ) ,  > : 0 for 
u0 e C n, i.e. 

(11) <~2vUo, ~ > - ' 0 ,  for uo~C ~. 

In other words, Off) has a solution if and only if k belong to the ortho- 
gonal complement  ~(~zv) ° (in h') of ~ ( ~ ] ) .  At the same time, if this condi- 
tion holds, it follows by the assertion mentioned in Section 1 that (for fixed 

e ~(~,~)o) the solution y is uniquely determined. / a  J \  

Retur ing  the adjoint  problem we deduce that its solution are (~), where to 
)~ E ~J-~(~3~u) ° and y is the corresponding solution of (10'). 

\ ~ - /  

Since dim ~,(~3~v)< 0% there is a closed in h subspace A~ such that A 
can be represented as a topological sum 

(see [1] chpt. II, § 3). Then h' can be represented by the topological sum 

(12) A' - -  ~(~=~)o + A °. 

The orthogonal complement  A ° of A1 is the space of funct ionals  which 

are cont inuous and linear on A, vanishing on h i .  W e  see that h ° is isomo" 
rphic to the space of fanct ionals  which are cont inuous and linear on ~(~2v). 
Then 

dim A1 ° : dim ~($32v) --  m. 

(13) 

By (12) we deduce 

dim ~(~2v) ° --  dim A' - -  dim ~(~2u). 

We  have established above that ~ ( ~ v )  ° is isomorphic to , the  space of 

solutions of the adjoint  problem ~ ( Y ) =  0. Then the kernel  ~ ( ~ )  satisfies 

dim ~ ( t ~ )  --  dim ~3(~u) ° 
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and, by (13) 

(14) dim ~5(t~3) = dim A' - -  dim ~ ( ~ v ) .  

Thus  the space ~T'C(t3B) of sol,tions of the adjoint problem is finite-dimen. 
sional i f  and only i f  dim h < c~. 

We note that the space ~YL(~3) of solutions of the homogeneous b.v.p, is 
always f ini te-dimensional .  It is the space of solutions @.~u, of (3)whose initial 
condition uo verifies ~32vuo--0. For  the Cauehy operator  ~ is an isomorphism, 
we have 

dim ~ ( ~ )  = dim ~'~(~2v). 

Since the domain of ~3~u is C '~, we have 

(i5) dim ~7.~(~v ) q- dim ~ ( ~ u )  = n 

and then by (14) 

(16) dim ~.~(tg3) = dim A' ~- dim ~5(~)  - -  n. 

It  follows that dim ~ ( ~ )  --  dim ~..(~), if and only if dim A = n. 
The b.v.p. (8) has solutions for any (-~, l)eLz(C '~)X A, if and only if 

!~'5(t~3) = (0  }. By (14) this eoudition is equivalent  to 

dim A < oz and dim ;Ii~(,~2~ ) = dim A, 

or by (16) it is equivalent  to 

dim A < c~ and dim A = n - -  dim ~YS(~). 

The unieity condition for solution of b.v.p. (8) is ~ 5 ( ~ ) =  10}, or by 

(15), dim ~(~32~r)= n. This condition implies the existence of solutions for 
any (% l)~ L~(C '~) ),( A, provided that dim A = n. 

It  follows that, generally, for b.v.p. (8) the al ternat ive of Fredholm (') 
does not hold. Note also that the al ternative holds always if h = C ~. 

5 . -  Examples. 

1. Take now A = Cp. Then ~32 can be represented by a n X p  matrix 
~ -- (~32ik), where ~2i k ~ C'a and 

~32~ = (Y. < ¢?i, $3J 1 >,  ..., E < ~i, ~3jP >), for ¢?eC, a(C'*). 
i 

(~) I.e. the b.v.q. (8) has solutions for any  (% l) ~ LI(C ")),( A, if and only  if the homo. 
geneous  b.v q. ~x--- .  0 has on ly  the zero solution. 
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Let us designate this matr ix also by ~2. The operator ~2~: C ~ CP 

may be represented a n X p matr ix  ~ u  =:: ( ~ ) .  
It is well known that the l inear functionals ou CP may be identified to 

the vectors )~CP, the value of the fuetional ), on the vector l being l.k' (we 
denote by k' the transposed vector). It is easy to see that t~2k' may be repre- 
sented by the product t~2k' ~ ~fl,', 

Then the adjoint problem is:  determine yeC'~,(C ~) and ),~CP so that 

(17) tDy + Ay + ~2k' -- O. 

The necessary and sufficient condition (11), that equation (17)posesses 

solution, is ~zu~- '--0.  If ~ r ]  is tile pseudo-inverse  of PE~nOSE [6], then the 
vectors k e CP, which verifie ~ u k '  ----- 0, are 

where Ep is the p X p  unit  matrix.  The corresponding to k solution y of (17) 
is uniquely determined.  

Suppose now that ffJ2 is a Stieltjes measure,  ~2-~  dM~ i.e. 

f .  
~'~ ~ I ¢~;t)dM(t), for ~ ~(c"), 

~Z 

where M is a n ' > (  p matrix,  whose entries are functions of  bounded varia- 
tion o n  I, continuous on [~, ~). If )~ has the form (18), by Section I it follows 
that the unique s dution y of (17~ is the function of bounded variation on L 
continuous at the right on [a. ~), 

(19) y(s)--  I~ . ;U-~(s)U(t)dM(t)lk ', s~ I ,  
6t 

Wh~].S the solut ions  of the ad jo in t  problem are (Y), where  ~ is given by 

(18) and y by (19). The b.v.p, has solutions if and only if (% l) is orthogonal 

to any sohltion (Y), i.e. if and only if 

2. Let v be a vector of C '~. Let us consider the following b.v.p.: given 
p e L~(C ~) and l e L ~, determine ;c ~ C~(C ~) such that 

(20) ~ ¢  --  ~, x.  v' ~- l 
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Here A ~ L ~ and ~2 is the operator ~a(C ~) ~ L t, ~ 2 ~ ) - "  ~v'. The adjoint 
operator t~2: L+~C'~(C ") is defined by t ~ : ) , _  ),v'. Note that ~(t~:)cL¢¢(C-). 
The adjoint problem is:  find ~.~ L + and y ~ ~'a(Cn), such that 

(21) tDy ~ Ay ~= )~v' -~ O. 

By Section 1 follows that this problem has a solution if and only if 

/ i  

(22) l )~(t)U(t)v'dt -- O. 
J 

$ fa  

y(s) -- IU-~(s)U(t)~(t)v'dt, s e (23) L 
t /  6~ 

We see that the b.v.p, problem (20) has solutions if and only if 

f o r  aI ly  s o l u t i o n  ( ~ ) o f  the  ad jo i l l t  p r o b l e m .  N o t e  t h a t  th i s  c o n d i t i o n  is e q u i .  

valent  to 
s 

f Z(t)ll(t)'+ f +(s)U-:(s)U(t)v'ds]dt--O 
c~ 1; 

for any ), e L ~ satisfying (22). 
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