Equation (20) must hold for all values of the indices j and m, and for every function $\varphi(\lambda) \in D^{\prime}$; in particular, if λ_{0} denotes any fixed value of λ, (20) must be verified if one sets $\varphi(\lambda)=\left(\lambda-\lambda_{0}-i\right)\left(\lambda-\lambda_{0}+i\right) \exp \left(-\lambda_{0}^{2}\right)$, and this implies $A^{j, m}\left(\lambda_{0}\right)=A^{j, m}\left(-\lambda_{0}\right)$. Thus, since λ_{0} is arbitrary, every function $A^{i, m}(\lambda)$ is an even function of its argument, and the operator of multiplication by $A^{j, m}(\lambda)$ commutes with R. Next, from the explicit form of the matrix elements $\mathscr{J}_{0_{j r m}}^{j, m}$ and $\int_{3_{3, m}}^{j, m}$ it is obvious that the operator $\exp (i D)$ ean be expressed in the form

$$
\begin{equation*}
\exp (i \mathfrak{D})=f_{0}^{j, m}(\lambda) \mathfrak{S}_{0_{j, m}}^{j, m}+f_{3}^{j, m}(\lambda) f_{3_{j, m}}^{j, m}+g^{j, m}(\lambda) R \tag{21}
\end{equation*}
$$

with a suitable choice of the function $f_{0}^{j, m}, f_{3}^{j, n n}$ and $g^{j, m}$, so that the commutativity of the operator of multiplication by $A^{j, m}(\lambda)$ with $T_{0_{j, m}, m}^{j, m}, \mathscr{T}_{a_{j+m}}^{j, m}$ and R implies that $A^{j, m}(\lambda)$ commutes with $\exp (i D)$: but this is only possible if the functions $A^{j, m}(\lambda)$ are constants, as one can prove by reproducing the argument used in sect. I-8 to obtain a strictly analogous result. Finally, the commutativity of \mathfrak{A} with \mathcal{N}_{3} implies that the constants $A^{j, m}$ must all coincide, and the proof is completed.

9. - The unitary representations of \mathfrak{B} with zero mass and spin $\frac{1}{2}$.

If $b(\lambda)=c(\lambda)=0$ and $a(\lambda)$ is such that the operators are self-adjoint, i,e. satisfies the identity $\bar{a}(\lambda+i) \equiv a(\lambda)$, the corresponding representations of \mathfrak{P} can be shown as above to be irreducible, and the eigenvalues of \mathfrak{J}^{2} and W both vanish.

It is known ${ }^{*}$) that in this case the helicity operator $\sum_{i} \mathscr{J}_{i} \mathcal{M}_{i} / \mathcal{T}_{0}$ is a multiple of the identity and its value turns out to be $\frac{1}{2}$ in our case. Thus all the representations corresponding to (18) are mutually equivalent.

The same considerations apply to the representations corresponding to (19), except that the value of the helicity is $-\frac{1}{2}$ in this case.
(*) Cfr. Schweber [4], p. 51.

REFERENCES

[1] V. Cantoni, Ann. Mat. pura e appl., Serie IV, vol. 89 (1971).
[2] E. Wrgner, Ann. Math., 40 (1939), p. 149.
[3] H. Joos, Forschr. Phys., 10 (1962), p. 65.
[4] S. Schweber, An Intraduction to Relativistic Quantum Field Theory, Harper and Row, New York, 1964.

ERRATUM: Construction etc., vol. LXXXIX, pp. 363-380.
p. 365 , line 1 instead of: $\left(N_{01}, N_{02}, N_{03}\right)$ read: $\left(M_{01}, M_{02}, M_{03}\right)$
p. 365, line 8 instead of: $F=-\frac{1}{2} M_{a b} M^{a b} \quad$ read: $F=-\frac{1}{4} M_{a b} M^{a b}$
p. 374, line $23 \quad \operatorname{read}: \mathfrak{S}^{j *}[\varphi]=\left\{2 C_{j} \mathscr{S}^{j-1}\left[\frac{1}{O_{j}} \varphi\right]-O_{j} O_{j-1} \mathscr{S}^{j-2}\left[\frac{1}{C_{j} O_{j-1}} \varphi\right]\right\}$
p. 375, end of line 29, remove the comma and insert; and $w(\lambda)=q(\lambda) \exp \left[-\lambda^{2}\right]$

