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Summary. - £Veeessary and su]]ieient conditions /or integral boundedness are gizen in terms 
o] a Liapunov ]unction are given the construction o] the I~ia~)nnov ]unction is a modification 
o] the Ot~amura ]unction. Similar results are also given ]or the extendability o] solutions 
under integral laerturbations. 

Introduction. 

Much research has been done concerning the preservation of stability and asymp- 
totic stability under integrable perturbations. In  particular, VI~K0C [6] defined an 
unperturbed system to be integrally stable if the solutions of the perturbe4 equation 
starting near the origin remain near the origin provide4 the perturbations are inte- 
grable. Simple criteria for integral stability were obtained by YRK0C in terms of 
the existence of a IAapunov function V(t, x) defined in a closed cylinder about the 
origin and satisfying a JMpschitz condition in x in which the Lipsehitz constant is 
independent of t and x. Yery recently CHow [2] and CHow and ¥0RKE [3] have 
extended Vrkoe's work by using a modification of a function essentially due to 
O K ~ u r ~  [5] and Yos~zAwA [7]. Not only are their proofs substantially simpler 
than those of Vrkoc, but  they have also enlarged the class of admissible perturbations 
to include the absolutely 4iminishing functions. 

In  this paper we develop the natural analogue of integral stability for the cases 
of boundedness and extendability on [to, oo). Roughly speaking, integral boundedness 
(extendability) is the preservation of the uniform boundedness (extendability) of 
solutions under integrable perturbations. Criteria for integral boundcdness (exten- 
dability) are obtained in terms of a IAapunov function defined in 12 ×R ~. The 
construction of the Liapunov function is again a modification of the Okamura 
function; however, since the domain is no longer a compact set (as in the case 
of stability) we are not able to use the techniques easily available such Aseoli's 
Theorem to obtain properties of the IAapunov function. 
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For the unperturbed system 

(E) :~ = f(t ,  x ) ,  

where f: R ×R~->/~ ~ is continuous, integral boundedness obviously implies uniform 
boundedaess, but  not conversely (see Example 1). However, if all solutions of (E) 
arc uniformly stable, then uniform bouadedness aud integ~'ul extendability are equiv- 
alent if ] satisfies ~ global Zipsehitz condition. 

1. - Def init ions  and preliminaries.  

Let  / t  ~ denote Euclidean d-space and I" 1 will denote ~ny d-dimensional norm. 
Represent ~ solution of the unperturbed differential equation (E) through (to, xo) 
with to > 0 by x(t, to, Xo). Consider the perturbed equations 

(It) 2 = ](t, x) ÷ r(t, x ) ,  

(P) 2 = ](t, x) + g(t) , 

and denote solutions of (H) and (P) through (to, xo) by  x~(t, to, xo) and x~(t, to, xo) 
respectively. 

Except when indicated, assume throughout that  ]( . ,  x) is measurable for each x, 
](t,.) is continuous for each t, I]l is bounded on compact subsets of (0, oo) × / ~  (the 
same conditions hold for r(t, x)) and g: [0, c~) -->/~ is measurable. 

Let  V: [0, co) x R ~ - , R  be ~ Liapuaov function. Define the t ime derivative of V 

along solutions of (E) as 

sup { (V(t + h, + v(t, 
h-->0 + /& 

I f  V is Lipschitzean with respect to x, then it is well known ([7]) that  

l?~(t, x)-~ lim sup / (V(t + h, x + hi(t, x ) ) -  V(t, x)) . 
k-+O + fb 

The following definitions will be used: 

DE~ITIO~" 1. - Solutions of (E) are integrally bounded if for each ~ > 0 and 
and ~ > 0 there exists # ~ fl(~, ~7) > 0 such that  wheuever ]xo] < ~ and 

0o 

sup ]R(t ,x)ldt< v 
J lxI <fl(~,v) 

to  

then Ix~(t, to~xo)l<fl for all t>to>O where xa is ~ solution of (It). 
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Using techniques  similar to  those used by  HALAN)~¥ [4, p. 96] for the  case of 
stabil i ty,  the  following lemma shows t h a t  i t  is sufficient to  only consider (P) for in- 

tegra l  boundedness.  

L ~ A  1. - Solutions of (E) are integral ly bounded  if and  only if for each ~ > 0 

and ~ > 0 there  exists fl : fl(~, ~) > 0 such thu t  whenever  [xol < ~ and 

co 

f lg(t)ldt < 
ta 

then  Ixe(t, to, xo)l< fl for all t>~to>O where x~(t) is ~ solution of (P). 
The proof is t he  same as in  [4~ p. 96] wi th  ve ry  slight modifications and we shall 

omit  it .  
We  now define integral  exteffdabi l i ty  of (E) in te rms of (P) (the definition in te rms 

of (H) is equivalent  as in  the  case of bouadedness) .  

DV.FINITI0~ 2. -- Solutions of (E) are integral ly extendable  if for each to>~0, 

T < 0 ,  ~ > 0 ,  and ~ > 0  there  exists fl=fl(to, T, ~, ~) such t h a t  whenever  Ixol<~ and 

co 

f lg(t)]dt < 
to 

then  lxe(t, to, xo)[<f l  for re [%,  t o +  T] where x~(t) is a solution of (P). 
Examples  of integral ly bounded systems and integrally extendable  systems are 

& = 0 and &----x respectively.  I n  the  nex t  two examples,  we show tha t  uniform 
boundedness  does not  imply  integral  boundedness and extendabi l i ty  does not  imply 
integral  ex tendabi l i ty .  

EXAMPLE 1. -- Solutions of the  scalar equat ion 

(s) ~ : (x--~)(n+ l--x) n<x<~÷l, n : 1 ,2 ,  ... 

are uni formly  bounded  bu t  we now show t h a t  (S) is no t  integral ly  bounded  b y  con- 
s t ruct ing a funct ion  p(t) such t h a t  some solution of 

(sP) ~: (#--~)(n ÷i--$) +p(t) ~< #4{--{- 1, ~ : I, 2, ... 

where p(t)>~0 for t e [ 0 ,  oo), fp(t)dt<oo are not  bounded.  Pick  ~ point  (0, x o), Xo 
o 

not  an in teger ;  t hen  there  exists tl > 0 such t h a t  [x0] + 1 - -  x(tl, 0, xo) < ½ ([. ] rep- 
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resents the greatest integer function) where x(.) is a solution of (SP) in which 

p(t) ~ 0 te[O, t~], 

p(t)=_½ t e i t ~ , t ~ ÷ ] ] .  

Then x(t~ ÷ 1, O, xo) > [xo] + 1 and now define t~ > t~ + 1 such that [x(t~ -f- 1, O, xo)]+ 
+ l - - x ( t ~ ,  O, xo)< -~ in which 

p(t) =~ 0 t e [t~ + 1, t2], 

p ( t )~¼ te[t~, t~+ l ] .  

Then x(t.~ + I, O, xo) > [xo] -~ 2. Continuing this process, we have 

where 

and 

Ix(t, O, m o ) l ~  as t - + ~ ,  

co 

1 
p(t) =2~  , t e [ t ~ , t . + l ) .  

Hence fp(t)dt< co, and solutions are not integrally bounded. 
0 

The next example, a slight modification of an example in [1] shows that ex- 
tendabili ty does not imply integral extendability. 

EXA~IPLE 2. - Consider the scalar equation 

(S2) 2 = cf(t)h(x), 

co 

where ?:  [0, ~ ) ~  [0, ~ )  and satisfies f ~ ( t ) g t < ~ .  
0 

each integer ~ >  0 such that n < x < n  -F. 1, 

Define 1/h(x) as follows: for 

and 

1 1 
--n+l, 

h(n) = n ,  h(~ + 1) 

1 1 1 ] 
h ( x ) - - x  ~' for n + ~ - ~ < x < u % l  ( n + l ) ~ ;  

1 1 
is linear for n < z < n  + ~ ,  

h(x) 
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and for 

1 
( n + l )  (n_ i_ l ) ,<x<n-} - l .  

After  some e lementa ry  computa t ion ,  i t  follows t h a t  

f = c~ and h(r) -i-1 
t t 

- -  < ( : x : )  . 

Thus, solutions of ($2) are extendable  (in fact  uni formly bounded) ;  however,  some 
solutions of 

(s3)  ~ = ~(t)h(x) + ~(t) 

do not  exist  in the  future.  This can be seen by  picking any  point  Xo so large t h a t  

f dx 
h(x) -]------1 <:: ~(t)dt; 

~o 0 

t hen  the  solution x(t, O, xo) of ($3) is not extendable  on [0, c¢). 

2 .  - R e s u l t s .  

We now present  our main  results. 

T n : E 0 ~  1. - Solutions of (E) are integral ly bounded  if and only if there  exists 
a continuous L iapunov  funct ion  V(t, x) 4efined on [0, oo)×/~a satisfying 

(a) a(lxt)< V(t, x)<b(jxl) , a( r ) -+  c~ as r ~  c~ monotonical ly  and b(r) is m o n -  

o t o n e  increasing. 

(b) IV(t, x ) - -  V(t, y)[<K[x--yJ for  some K >  0, and  for all (t, x, y) ~ [0, c~) × 
X.~ a XR'L 

(~) V(t, ~,) < o. 

R,E~fA~K. -- Condit ion (b) (V satisfies a global Lipschi tz  condition) is the  essential 
characterist ic  of the  Liapurmv funct ion in  describing the  difference between uniform 
bou~de4aess and integral  bouudedness.  In the  case of uni form bolmdedness,  we 
can only conclude t ha t  the  L iapunov  funct ion is locally Lipschitz,  t ha t  is, the  
Lipschitz constant  dopends on t and x when ] is locally Lipshitz. Even for 
the  case in which ] satisfies a global Lipschitz condition, we cannot  conclude there  
exists a Liaplmov funct ion satisfying a global Lipschitz condit ion as Example  1 
shows. However,  if we assume all solutions of (E) are uniformly bounded and 
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uniformly stable (Ix(t, to, Xo) - -  x(t, to, yo)l <Llxo- -Yo[  for all t > t 0 > 0  and Xoe R ~, 
y 0 e / ~ ) ,  then  i t  is not  difficult to  show V(t, x) ~ sup Ix( t+ z, t, x)] satisfies (a), (b), 

z~>o 

and (c). t tenee ,  wi th  Theorem 1 we have the following corollary. Observe tha t  no 
Lipschitz condit ion is needed  on ]. 

COl¢OlmA~¥ 1. - Assume all solutions of (E) are uniformly stable. Then, solutions 
of (E) ~re integrally bounded  if and only if t hey  are uniformly bonnded.  

Tm~o~E~ 2. - Solutions of (E) are integrally extendable  if and only if there  exists 
a continuous L iapuuov  funct ion satisfying (b), (c), an4 

(a) v(t,  x ) -~  oo as ixl-~ ~ uniformly for t in compact  sets of [0, co). 

I~E~A~K. - If  ] is locally Lipschitz, then the  extendabi l i ty  of a solution is equiv- 
alent to the  existence of u ZiapunoY function satisfying (v), (g) and a local Lipschitz 
condition. However ,  b y  assuming tha t  f satisfies the  Lipschitz condition, 

(2.1) If(t, xO - - / ( t ,  x~)l < 2(t)lx~--x~ I , where A(t) 

is continuous, then using the function V(t, x ) =  Ix[, which satisfies (a) and (b), we 

obtain 

(2.2) V <Z(t) V +  I/(t, 0)1, 

F rom the  var ia t ion of constants  formula,  the  solutions of (2.2) are extendable.  A 
slight modification of Theorem 2 implies tha t  conditions (a), (b), and  (2.2) also yield 
the  integral  extendabil i ty .  We thus obtain  the  following corollary. 

COrOlLArY 2. - Assume t](t, xl) - -  ](t, x~)t < )L(t)[xl-- x~[, where A(0 is continuous. 
Then solutions of (E) aa'e integrally extendable.  

In  Example  2, h(x) does not  s a t i s ~  a global Lipschitz condition and this  agrees 

with our results. 

3 .  - P r o o f .  

P~0oF oF T~Eo~E~ 1. - Assume V satisfies (a), (b), and (c). 

imply 

I?~(t, x ) <  ]?~(t, x) + Klg(t) ] <KIg(01 • 

g e n c e  
t 

v(t, xp(t, to, Xo)) < V(to, Xo) + Kfig(s)las; 
to 

Then (b) and (e) 
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and from (a) for IZol< 

a(lxp(t, to, xo)l) ~< b(z¢) -[- Kv], 

¢0 

where f ig(s)las < v. This implies 
0 

Ix~(t, to, xo) i <<. a-~(b(a) -]- KN) ~ fl(z¢, ~7), 

thus proving that  solutions are integrally bounded. 
Conversely, assume solutions are integrally bmmde4 . .Le t  A(t, x) be the set of 

absolutely continuous flmctions {q~(')} define4 on [0, t] satisfying q~(0)= 0 an4 
~(t) -- x. Define 

t 

V(t, x) = inf |l?'(s)--](s, ~(s))lds. 
[i 

0 

This is the Okamura function and many of the techniques we use now have been 
developed by YOSmZAWA [7, p. 5-8] for the case of uniqueness of the zero solution. 
Thus, for some parts of the proof, only references will be indicated. As mentioned 
before, since the domain of the .Liapunov function is [0, oo) ×R ~ instead of [0, oo)× 
× {x: ]x] < @} (as in stability and uniqueness) certain techniques will be developed. 

.Let p~(t~, x~) and p~(t~, x~), t~<t~, be any two points in R ~ a~d denote by ~p~,~, 
the family of all absolutely continuous functions {q~(t)} defined on [t~, t~] satisfying 
~(t~)--~ x~ and ~(t~)= xs. Define for t2> t~ 

t2 

tx 

I f  t~ = t~, l e t  ~(p~, p~) = Ix~--x~l.  

.Let {q~(t)} be a sequence such tha t  

t~ 

(3.1) v(p~, p:) = lira h ~ ( t )  cf~(t))ldt . 
~--> ¢0 3 

t l  

We show {q~(t)} is uniformly bounded on [t~, t~]. Define 

g~(t) = { ~(t)0 -- / ( t ,  F~(t)) t~<t.tl<t<t~ 

Then from (3.1), flg~(t)ldt< MI for some M I >  0 and for all k; moreover, let w~(t) 
0 

for t~[ t l ,  oo) be a solution of 

= ](t ,  x) + g~(t) ,  
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iu  which x~(t)=~,(t)  for t e [ t l ,  t2]. Since solutions of (E) are i~tegrally bounded, 
[x~(t)l<fl(lx~[, M~) for all k and t>t~; t Ience {~(t)} is uniformly bounded. Using 
this,  we now show the  existence of K such t h a t  

(32) 

where R depends on fl and  the  interval  [t~, t.2] (This is Lemm~ 1.2 in [7]). Since ~k(t) 
is uni formly bounded there exists u R such tha t  l](t, ~k(t)[ < K  for t e [tl, t~] by  the  

hypotheses  on f. Therefore, 

tu t~ t~ 

t l  tl t ,  

Prooceding as in Lemma 1.2 of [7], we obtain (3.2). Similarly, Lemmas 1.3 and 1.4 

in [7] hold and  thus  

(3.a) v(p,, p~) <v(p~, p~) + v(p~, pD 

and 

(3.4) [v(p~, P2) --v(p~, pa)[ < [x,--x~ 1 + K~(ta--t~) 

for any  points Pl, P2, PaeR ~ and t~<t~<ta, where K~ depends on the  interval  [t~, ta] 
as well as on ~ bound on a minimizing sequence {q,} defined in (3.1) for v(p~, p~). 

For p~ ---- (0, 0) and  P2 = (t, x), t hen  V(t, x) = v(p~, P2). From (3.4), 

(3.5) Iv(*, x) --  v(t, x')I < Ix--xq ; 

hence V satisfies (b). I f  x(t) is a solution of (E), then from (3.3) i t  follows t h a t  V 
is non-increasing along solutions since v(p2, p~) = 0 for p~ = (t, x(t)) and P3 = (t + h, 
x(t + h)) for h >  0. Hence !?<0 ,  thus  satisfying (c). 

Le t  5 be a solution of (E) satisfying ~ ( 0 ) = 0 .  Since [~(t)l<C for some C > 0  

aud for all t > 0 ,  t hen  from (3.5), 

Iv(t, x) - vff ,  ~(t))l < I x - ~ ( t ) t  < [x l + c .  

Since V(t, ~(t)) ~ 0 for all t > 0 ,  then  

Iv(t, x ) ]<lx]  + 0 ,  

thus  satisfying the  right hand  inequal i ty  in (a). I t  thus remains to prove the left 
hand inequal i ty  of (a). Assume the  iuequalLty is not  true.  Then there exists some 
number  K I >  0, a sequence of points {x~} with  Ix~l-+ 0% as k---> oo, and a s e -  
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quenee of points {t~} such t ha t  

V(t~, x~) < K2 . 

For  each k >  O, the re  exists  ~ e A ( t ~ ,  x~) satisfying 

t~ 

~k(t)]eZt < K~-+- 1 .  
o 

Define 

/ ¢~(t) -](t,  ~(t)) 
g~(t) 

l 0 

JJet x~(t) for te[O, oo) be a solution of 

O < t < t ~  

t > t ~ .  

~(t) = f(t, x) + g~(t) 

such t h a t  x~(t)=9~(t) for t e [ 0 ,  t~]. Since flg~(t)ldt< K~ + 1 ,  we obtain f rom the  
o 

in tegra l  boundedness  of (E) t h a t  Ix~(t)l<fl(o, K~+ 1) for all t > 0  and  for all k. I n  
par t icular ,  Ix~(t~)I = l ~ ( t ~ ) l -  Ix~]<fi(0, K 2 + 1 ) .  This is a contradict ion,  thus  con- 
cluding the  proof of Theorem 1. 

PRoof'  oF T~EOR]~ 2. - Assume V satisfies (b), (e), and (g). Then  as ir~ the  proof 
of Theorem 1, 

v( t ,  x~(t, to, xo)) < v(to, Xo) + K v  

(3.6) < Va(to) + K~] 

for all ]x01<~ where V~(to)- sup V(to, Xo). Observing t h a t  the  r ight  hand side 
txol~<~ 

of (3.6) depends Oll to, ~, and  ~ and t h a t  V satisfies (d), t h e n  i t  follows for each 

F >  0 t ha t  there  exists fl = fl(to, ~, 7, T) such t h a t  Ix~(t, to, xo)[ < fl for t e [t, to + T]. 
This proves solutions are integrally extendable.  

ConYersely, if solutions are integral ly  extendable ,  t h e n  we may  use the  same Lia- 
punov  funct ion  as ill Theorem 1. The  proof t h a t  V satisfies (b), (e), and (d) is es- 
sentially the  same one used in Theorem 1 and we omit  the  details. 
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