The Boundedness and Extendibality
of Differential Systems under Integral Perturbation
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Summary. — Necessary and sufficient conditions for inlegral boundedness are given in terms
of a Liapunov function are given the construction of the Liapunov funciion is a modification
of the Okamura function. Similar resulis are also given for the extendability of solutions
under integral perturbations.

Introduction.

Much research has been done concerning the preservation of stability and asymp-
totie stability under integrable perturbations. In particular, VRxoc [6] defined an
unperturbed system to be integrally stable if the solutions of the perturbed equation
gtarting near the origin remain near the origin provided the perturbations are inte-
grable. Simple criteria for integral stability were obtained by VREoC in terms of
the existence of a Liapunov funection V (¢, #) defined in a closed eylinder about the
origin and satisfying a Lipschitz condition in @ in which the Lipschitz constant is
independent of ¢ and x. Very recently CHOW [2] and CHOW and YorkE [3] have
extended Vrkoe’s work by using a modification of a function essentially due to
OxAMURBA [B] and YosmizawA [7]. Not only are their proofs substantially simpler
than those of Vrkoc, but they have also enlarged the class of admissible perturbations
to include the absolutely diminishing funections.

In this paper we develop the natural analogue of integral stability for the cases
of boundedness and extendabilify on [4,, o0). Roughly speaking, integral boundedness
{extendability) is the preservation of the uniform boundedness (extendability) of
solutions under integrable perturbations. Criteria for integral boundedness (exten-
dability) are obtained in terms of a Liapunov function defined in R xR The
construction of the Liapunov function is again a modification of the Okamura
function; however, since the domain is no longer 5 eompact set (as in the ease
of stability) we are not able to use the techniques easily available such Asgeoli’s
Theorem to obtain properties of the Liapunov function.
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For the unperturbed system
(B) &= f(t, ),

where f: R X R*— R? is continuous, integral boundedness obviously implies uniform
boundedness, but not conversely (see Example 1), However, if all solutions of (E)
are uniformly stable, then uniform boundedness and integral extendability are equiv-
alent if f satisfies a global Lipschitz condition.

1. — Definitions and preliminaries.

Let R? denote Euelidean d-space and |-] will denote any d-dimensional norm.
Represent a solution of the unperturbed differential equation (E) through (1, o)
with ¢,>0 by =(t, %, %,). Congider the perturbed equations

(H) & = f(t, @) +r(t, ») ,
P) & = f(t, ») + g{t) ,

and denote solutions of (H) and (P) through (&, %) by za(f, ty, 4) and @p(t, &y, @)
respectively.

Except when indicated, assume throughout that (-, #) is measurable for each =,
f(t,+) is continuous for each t, |f| is bounded on compact subsets of (0, co) X R¢ (the
same conditions hold for r(f,#)) and g:[0, co) - R¢ is measurable.

Let V:[0, co) X R*—> R be a Liapunov function. Define the time derivative of 14

along solutions of (E) as

. . 1 )
Vilt, @) = hIhILSol}p_ﬁ(V(t ~+ hy 2(t +R)) —V(t, a,)) .

If V is Lipschitzean with respect to #, then it is well known ([7]) that

Vylty ) = limsup T (V0 4B, &+ i 2)) — Vit, ) -

The following definitions will be used:
DEFINITION 1. — Solutions of (E) are integrally bounded if for each x>0 and
and > 0 there exists § = p(«,n)> 0 such that whenever |#,|<<a and

©

f sup |R(t, w)|dt <7y
tal <Bloem)
to

then [zz(t, &, #,)] < B for all t>1,>0 where @y is a solution of (H).
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Using techniques similar to those used by HALANAY [4, p. 96] for the case of
stability, the following lemma shows that it is sufficient to only consider (P) for in-
tegral boundedness.

LEvma 1. — Solutions of (B) are integrally bounded if and only if for each «> 0
and %> 0 there exists g = f(a, ) > 0 such that whenever |#,| <o« and

f lgi)dt<n

then |@plt, t, )} < B for all 1>4,>0 where xx(f) is a solution of (P).

The proof is the same ag in [4, p. 96] with very slight modifications and we ghall
omit it.

We now define integral extendability of (E) in terms of (P) (the definition in terms
of (H) is equivalent as in the case of boundedness).

DEFINITION 2. — Solutions of (E) are integrally extendable if for each t,>0,
T <0, x>0, and >0 there exists f= (i, T, @, ) such that whenever |m,| < and

f!g(t)ldt <7
o

then |wx(%, &, @o)| < f for te[t,, t,+ T] where x,(f) is a solution of (P).

Examples of integrally bounded systems and integrally extendable systems are
%=0 and &= » respectively. In the next two examples, we show that uniform
boundedness does not imply integral boundedness and extendability does not imply
integral extendability.

Examrre 1. — Solutions of the scalar equation
() T=@—nin+l1—2 ns<og<nt+l, n=12,..

are uniformly bounded but we now show that (8) is not integrally bounded by con-
strueting a function p(f) such that some solution of

(8P) = (@—njnt+l—o)4+p) ne<ntl, n=12,..

where p(t)>0 for t<[0, o), f p(tydt <oo are not bounded. Pick a point (0, ), 2,
0

not an integer; then there exists ¢,>>0 such that [2,]+ 1—a(t;, 0, 2,) <3 ([-1 rep-
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resents the greatest integer function) where #(-) is a solution of (8P) in which

p(t) =0 te(0,1,],

()=} telt,{,+1].

Then z(f, +1, 0, %,) > [2,] + 1 and now define {, > ¢, -+1 sueh that [x(f, 41, 0, z,)1+
1 —a(ty, 0, %) < % in which

=
i

0 telti+1,%],
pl) =1 tefty, t,-+1].

Then a(t, -1, 0, 2) > [4,] + 2. Continuing this process, we have

[w(t, 0, )| ~> o0 as t->o00,

where
p)=0, te(Ult+1,4]u [0,1]),

and

1
p(i):;_.%, t€ln, ta+1).

Hence f p(t)dt < oo, and solutions are not integrally bounded.
[

The next example, a slight modification of an example in [1] shows that ex-
tendability does not imply integral extendability.

BExawvere 2. — Consider the scalar equation

(82) & = @(t)h#) ,

where @: [0, o0) — [0, o) and satisfies f(p(t}di<oo. Define 1/h{x) as follows: for
L]

each integer n >0 such that n<w<n 41,

1 1
i =1
T R T R
1 f 1<< 1 1.
ol AT O
and

. s 1
is linear for n<ao<n —x——n—z,
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and for

1

After some elementary computation, it follows that

«©

¢ dr and J’ dar <
fﬂﬂym) ) 1%
1

1

Thus, solutions of (82) are extendable (in fact uniformly bounded); however, some
solutions of

(33) & = g(t) h(®) + ¢(t)

do not exist in the future. This can be seen by picking any point #, so large that

J 7 <o
£ o
then the solution (i, 0, #,) of (83) is not extendable on [0, oo).

2. — Results,

‘We now present our main results,

THEOREM 1. — Solutions of (E) are integrally bounded if and only if there exists
a continuous Liapunov function V(f, #) defined on [0, oo) X R? satisfying

(@) a(lo)) <V(t, ) <b(j#]), a(r) > o as 7 -> co monotonically and b(r) is mon-
otone inereaging.

®) [V, @) —V({E, y)|<Klo—y| for some K> 0, and for all (i, x, ¥) €[0, co) X
X B% X R4,

() V(t, »)<0.

REMARK. ~ Condition (b) (V satisfies a global Lipschitz condition) is the esgsential
characteristic of the Liapunov function in describing the difference between uniform
boundedness and integral boundedness. In the case of uniform boundedness, we
can only conclude that the Liapunov function is locally Lipschitz, that is, the
Lipschitz constant dopends on ¢ and @ when f is locally Lipshitz. Even for
the case in which f satisfies & global Lipschitz condition, we cannot conclude there
exists a Liapunov function satisfying a global Lipschitz condition as Example 1
shows. However, if we assume all solutions of (E) are uniformly bounded and
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uniformly stable (|@(t, %, %) — #(t, T, Yo)| < L|wg — yo| for all t>%>0 and x,eR9,
Yo € R9), then it is not difficult to show V(i, #) = sup [#(t + 7, ¢, #)| satisfies (a), (3),

=0
and {¢). Hence, with Theorem 1 we have the following corollary. Observe that no

Lipschitz eondition is needed on. f.

CoROLLARY 1. — Assume all solutions of (E) are uniformly stable. Then, golutions
of (E) are integrally bounded if and only if they are uniformly bounded.

THEOREM 2. — Solutions of (E) are integrally extendable if and only if there exists
a continuous Liapunov function satisfying (b), (¢), and
(dy V{t, ») - oo as |#] —co uniformly for ¢ in compact sets of [0, o).
REMARK, — If f is locally Lipschitz, then the extendability of a solution is equiv-

alent to the existence of a Liapunov function satisfying (¢), (d) and a local Lipschitz
condition. However, by assuming that f satisfies the Lipschitz condition,

(2.1) (£, @) — f(t, @) | <A(f) |, — |,  where A(?)

is continuous, then using the function V(¢, 2} = |#|, which satisfies (@) and (b), we
obtain

(2.2) V<AtV [t 0)]

From the variation of constants formula, the solutions of (2.2) are extendable. A

slight modification of Theorem 2 implies that conditions (a), (b), and (2.2) also yield
the integral extendability. We thus obtfain the following corollary.

COROLLARY 2. — Assume |f(t, @) —f(f, %) < A($)|2, — 24|, Where A(f) is continunous.
Then solutions of (E) are integrally extendable.
In Example 2, k(z) does not satisfy a global Lipsehitz condition and this agrees

with our results.

3. — Proofs.

PrOOF OF THEOREM 1. — Assume V gatisfies (a), (b), and (¢). Then (b) and (c)
imply
Vit 0) <V 5(t, 2) -+ Klg(t)] < Elg(0)] -
Hence

V%%%%wM<Vmww+Kﬁmm%;

to
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and from (a) for |m,| <«

a|wp(ts 55 2)]) <b(e) + Knp
where T{g(s}}ds<xs. This implies
[2a(8, g5 ) <“‘1(b(°5) + K’?) = flay 1),

thus proving that solutions are integrally bounded.

Conversely, agssume solufions are integrally bounded. Let A(Z, #) be the set of
absolutely continuous functions {p(-)} defined on [0, ] satisfying ¢(0) =0 and
¢(t) = ». Define

V(t, ) = inf f|(p f(s, @(8))|ds .

q)EA(t x}

This is the Okamura function and many of the technigques we use now have been
developed by YosuizAwA [7, p. 5-8] for the case of uniqueness of the zero solution.
Thus, for some parts of the proof, only references will be indicated. As mentioned
before, since the domain of the Liapunov function is [0, c0) X R? instead of [0, 00) X
x{o: |#| < g} (as in stability and uniqueness) certain techniques will be developed.

Let pi(ty, @) and py(t,, 4,), t, <1y, be any two points in R* and denote by Vo, 2,
the family of all absolutely continuous funections {p(t)} defined on [t,, #,] satisfying
o(ty) =2, and @(t,) = x,. Define for §,> 1,

173

V(Pyy o) = m;fp f —1(t, p(t))| dt

If t, =1y, let o(py, ps) = |2, — ]
Let {g,(t)} be a sequence such that

8.1 v(p1, p2) = lim f l9x(t) — 1(2, @e(0))| 2

23
We show {,(t)} is uniformly bounded on [t,,?,]. Define

97k(t) - f(t7 ‘Pk(t)) L<St<t,
gr(t) =
0 t<t.

Then from (3.1), f 19x(t)|dt < M, for some M,> 0 and for all k; moreover, let x(t)

0
for te{t,, o) be a solution of

& = f(t, ©) + gult)
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in which @(t) = @i(f) for te[t,, t,]. Since solutions of (E) are integrally bounded,
[@(t)]| < B(|w), M) for all k and t>t: Hence {p(t)} is uniformly bounded. Using
this, we now show the existence of K such that

(3.2 [0(py1, P2) — |21 — @, <K(t,—1t,),
where K depends on 8 and the interval [, ,] (This is Lemma 1.2 in [7]). Since g(t)

is uniformly bounded there exists a K such that |f(f, g.(f)| <K for t€[t,, t,] by the
hypotheses on f. Therefore,

f \ialt) — (1, @ul0)) | 1> f (el i — f 1(t, Gu(t)] e 23— a] — Bty — 1)

Prooceding as in Lemma 1.2 of [7], we obtain (3.2). Similarly, Lemmag 1.3 and 1.4
in [7] hold and thus

(3.3) V(P1y Ps) <V(P1s Pa) 1 V(D2 Ps)
and
(3.4) [9(py,y P2} —(P1, Pa)| < (o8 — 25| -+ Ky (t;—1s)

for any points p,, Ps, p;€ B and ¢, <f,<t;, where K, depends on the interval [t,, &;]
as well as on a bound on a minimizing sequence {g,} defined in (3.1) for v(p,, ps).
For p,= (0, 0) and p,= ({, 2), then V(t, 2) = v(p,, p.). From (3.4),

(3.5) Vi, ) -V, @)<le—a'|;
hence V satisfies (b). If @(t) is a solution of (E), then from (3.3) it follows that 14
is non-increasing along solutions since v(ps, ps) = 0 for p, = (4, #(f)) and p,= (t+h,
#(t + k) for h>0. Hence V<0, thus satisfying (c).

Let % be a solution of (E) satisfying Z0) =0. Since |E()|<C for some C>0
and for all ¢>0, then from (3.5),

Vi, @) — V(8 Z20) | < |z —2H)|<|o] + C.
Sinee V(t, 1)) = 0 for all >0, then
\Vt, o)l <lo] + O

thus satisfying the right hand inequality in (@). It thus remains to prove the left

hand inequality of (). Assume the inequality is not true. Then there exists some
number K,> 0, a sequence of points {w.} with [w;]-—>oc0, as k- oo, and a se-
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quence of points {#;} such that
Vitg, m) <K, .

For each k>0, there exists g, A(l,, z,) satisfying

[imty =1t )t < By 1.
Define
@ult) — 1t @ult))  O<i<ty
G:(l) =

1>, .

Let w,(t) for t<[0, co) be a solution of

Z(t) = f(t, @) + gulD)

such that 2,(f) = @,(t) for 1[0, t,]. Since f lgut)ldt < K, +1, we obtain from the
o

integral boundedness of () that |w.(t)|<f(0, K, + 1) for all >0 and for all k. In
particular, |w,(t:)] = |@ulte)] = |2 <B(0, Ky +1). This is a contradiction, thus con-
cluding the proof of Theorem 1.

Proor or THEOREM 2. — Assume V satisfies (b), (¢), and (d). Then as in the proof
of Theorem 1,

V(f" @ty to, %)) < Vi(to, @) + Ky
(3.6) <V,(t) + Kn

for all |m,| < o where V,(t,) = sup V(f, #,). Observing that the right hand side
[ENES-4

of (3.6) depends on %, x, and % and that V satisfies (d), then it follows for each
I'>0 that there exists f= f(t,, «, n, T} such that |@,({, t, %) < B for te[t, t,+ T).
This proves solutions are integrally extendable.

Conversely, if solutions are integrally extendable, then we may use the same Lia-
punov function as in Theorem 1. The proof that V satisfies (b), (¢), and (d) is es-
sentially the same one used in Theorem 1 and we omit the details.
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