Eigenvectors and Surjectivity
for «-Lipschitz Mappings in Banach Spaces.
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Summary. ~ The main purpose of this paper is to find the conditions under which an lipschiiz
mapping, defined in a Banach space, admits eigencectors. We then apply the obtained results
to some swrjectivity problems proving theorems which contain, as particular cases, the well
known theorems of Rothe, Krasnoselskij and Schaefer.

1. - Imtroduction,

In this paper we consider surjectivity and eigenvector problems involving
a-Lipsehitz mappings, defined in a real Banach space X.

Such mappings will be defined below (see Section 2).

‘We recall here some of the simplest examples of «-Lipsehitz mappings: completely
continuous mappings (i.e. those that are continuous and map bounded sets into
precompact ones); Lipsehitz mappings (le. L: X — X such that |L(z)—L{y)|<
<K|w—yg| for any pair , yc X, and 0 < K < o0); sums of these two types of
mappings; mappings of semicontractive type (see [7]) ; a-contractions (see [2]).

The main purpose of this paper is to find conditions under which an «-Lipschitz
mapping admits eigenvectors. At the same time we obtain some surjectivity results
for those mappings.

Our results contain, as particular cases, some Theorems proved by W. V. PE-
TRYSHYN (see [7] and [8], see also [14]) and well known theorems of E. ROTHE
(see [10]), M. KRASNOSELSKIJ (see [11]) and H. SCHAEFER (see [12]).

2. — Notations and definitions.

The following list contains our basic notations and definitions.

1) X indicates a Banach space;
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2) B(0, R) ={zeX||2|<R};

3) 0B(0, B) ={we X||»| = R};

4) given any AcX, co(4) indicates the convex closure of A4;
5) the mappings considered are always continuous;

6) given T: X — X we say that o€ X is an eigenvector of T if T(z)= A
for gome real number A

By «(A), where A is any bounded set of X, we denote the infimum of all > 0,
such that A can be covered by a finite family of subsets with diameter less than &
(see C. KURATOWSKI [1]).

We will uge the following properties of the number « (frequently called measure
of noncompactness)

a) a{Ad) =0 iff 4 is precompact;
b) (co(4)) = a(4) (see G. DARBO [2]);

¢) a(L(A)) <|Lj«(4) for any linear mapping L:X - X, where by [L] we
indicate the norm of the mapping L.

A mapping T: X ->X is said to be a-Lipschitz with constant k, 0<k< oo,
if for any bounded and non precompact AcX

a(T(A)) < ka(4) .

Tf 0 < k<1, then it is called w-comtractive with constant k.

Some examples of a-contractions can be found in a recent paper by A. Vienout [3].
If &k —1, then T is called densifying [4]. If a(T(A)) <x(4), then T is called a-non-
expamsive; moreover 7T is completely continuous if «(T(4)) =0 for any bounded
subset 4 of X.

We will uge the following result proved by M. Furl and A. VIGNOLI (see [6]).

PrOPOSITION 1. — Let T:Q ->Q be densifying mapping of a bounded, closed and
conver subset of a Bamach space X. Then T has a fived point in Q.

The idea of densifying mapping was first introduced by B. N. SADOVSELT (see [13])
though he uged a different meagure of noncompactness. B. N. SApovsk1J called
those mappings condensing and proved a theorem analogous to Proposition 1. Here
we use Proposition 1, which is a consequence of more general results obtained by
M. FURI and A. VIGNOLI [6], since all of our results will be related to the Kuratowski
measure of noncompactness.
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The mapping n: X — B(0, R) defined by

T if Jo|<R,
Ro/|lz| it |o|>ER,

m(x) =

is called the radial retraction of X onto B(0, R).

3. — Some results.

We begin by stating a Lemma due to R. D. NusspatM [5]. In view of its im-
portance and for completeness sake we will prove it. Our proof is simpler than that
one given by Nussbaum.

LEMMA. — Let X be a Banach space and B the unit ball of X about the origin. Then
the radial retraction m: X — B 48 a-nonexpansive

PrROOF. — Let AcX be a bounded set. Clearly n(4)ceo ({0} U A). Therefore
a(m(A)) <cx(c—0 {0y v A)) =a({0} U 4) =«(4) .

The sharpest result of this section is represented by Theorem 2, but Theorem 1
is more useful for applications.

THEOREM 1. — Let T: B(0, R)—> X be an c«-Lipschitz mapping with constant K
and let L: X — X be an isomorphism.

Assume that

i) |[I[E<1;

ii) T{w) = AL(x) for some x € 0B(0, R) implies 0 A<,
Then the set M ={|T(0) = L(x)} is nonempty and compact.

Proor. — Consider the mapping F: B(0, B)— X defined by F(@) = Lo T(x).
The mapping ¥ is densifying. Indeed,let 4 be any non precompact subset of B(0, E).
We have

a(F(4)) = (Lo T(A)) < | L |e(T(4)) < | L | Kx(A) .
Since |L*[K <1, it follows that «(F(4)) < a(4). Let m be the radial retraction
of X onto B(0, R). Bince z is a-nonexpansive, the composite mapping G =z F':
B(0, R} — B(0, B) is evidently densifying.
Thus, by Proposition 1 there exists an element » e B(0, R) such that

F@)=uw, i.e. moliteT{z)=2a
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We must show that Lo T(x) = . This is the case if
I T@)| <R

Agsume that |L*eT(w)|>R. Then xe€ 0B(0, R), therefore [z =E and
Lo Ta) = Jw, i.e. T(z)=AL{w). Hence

L7 e (@) | = | Aw] = 12]]

o] =|AR>R

But this is impossible since 0<A<1. Thus L. T(x) = and, consequently,
L(x) = T'(») and M ={mlT(m) = L(w)}is nonempty. Clearly M is closed and compact.

Indeed since G(M)= M we have to have that «(M)=0 otherwise the assump-
tion «(M)>0 would lead to the contradictory inequality a(M) = a(G(M)) < (M),
which follows from the densifying property of G.

CoroLLARY. 1. — Let T: B{0, R) = X be as in Theorem 1.

Assume that

i) if T(x) = As for some we 0B(0, R) then |A<h where h>K.
Then the set M ={a|T(w) = ha} is nonempty and compact.

PRrOOF. — The assertion follows immediately from Theorem 1 by putting L(z)= ha
for any re X.

As a particular case of Corollary 1 we have

COROLLARY 2 (see A. VIGNOLI [3], see also W. V. PETRYSHYN [14]). — Let
T:B(0, R) - X ba a-contractive with constant k(0 <k<1) and let T satisfy the fol-
lowing condition on °0B(0, R)

i) if T(w) = Po for some we 3B(0, R), then |f| << u where p is any real number
such that k<u<2—F.

Then there ewists x € B(0, R), such that T(x) = px.

COROLLARY 3 (see W. V. PETRYSHYN [7). — Let T: B(0, B)—> X be a densify-
ing mapping which satisfies the boundary condition

i) if T(x) = Av for some x e 0B(0, B) then 0<A<L.
Then M, the set of fiwed points of T in B(0, R) is nonempty and compact.
Proor. — Put L = I, the identity mapping of X, and apply Theorem 1.

COROLLARY 4. — Let T: B(0, R) — X be a densifying mapping such that for any
€ dB(0, R)

) Jo—T@|">T@) | —[z]" n>2.
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Then M, the set of fized points of T, is nonemply and compact.

ProoF. — Assume that T(w) = Az for some z¢€ 0B(0, R), A>0. By assumption i)
we have

lo—dz|r =1 — A" [o]*> A= [o|—|a|".

Then {1 — A]*>A*—1. This inequality implies that A< 1 and T satisfies the boundary
condition of Corollary 3.

REMARK. — As a special case, for n =2, we obtain a result of V. and A. ISTRA-
TESCU (see [9]) and W. V. PEIRYSHYN (see [7]).

CoROLLARY 5 (see E. RoTHE [10]). — Let T: B(0, R) — X be a compact mapping.
if for every we 0B(0, R), |T(x)]| < |x| then T has at least one fized point in B(0, R).

COROLLARY 6 (see M. KRASNOSELSKIJ [11)). — Let T': B(0, R) —~H be a compact
mapping, where H is o Hilbert space. If for any xe 0B(0, R)

T(@), 2> < @]
then T has at least one fiwed point.

Proor. — Assume T'(w) = Ar, 2>0. Then {ir, #) = Ajz|*<|#|* Thus i<,
and T satisfies the boundary condition of Corollary 3.

Let F: X — X be a mapping. We say that F is a-expansive if for any Ac X
we have

a(F(4)) >ha(4), h>0

Perhaps, the simplest example of an a-expansive mapping is the following. TLet

F: X — X be such that |F(z)—F(y)|>k|s—y], k>0, for all #, yeX, then F is
x-expangive.

In the proof of the following Theorem 2, which is the most general result of this

Paper, we shall use for shortness sake Corollary 3, but another direct proof can be
given.

THEOREM 2. — Let F: X —> X be a homeomorphism (possibly nonlinear) o-expon-
sive will constant %> 0.

Let T': B(0, B) -~ X be an «-Lipschile mapping with constant k. Assume that
i) 0<k<h,
ii) T(») = F(Bx)

for some x € 0B(0, R) implies 0< <.
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Then M ={weX |T(w) = F(w)} is nonempty and compact,

ProOF. — Let 4 be a bounded and non precompact subset of X. Clearly
a(F-YA)) < ha(4). Indeed, a(A)=o(F o FYA4))> ha(FY(4)) ie o(FYA))<
<hla{d). Congider the composite mapping G = F-1.T:B(0, B) > X. We must
show that G is densifying. For any subset 4 c B(0, R) we have

a(G(A)) = a(F-1e T(4)) <h'a(T(A)) < khtaf{d)

Since k<h it follows that «(G(4)) <a(4) and G is densifying.
Condition ii) implies that & satisfies the boundary condition of Corollary 3, so
the assertion of Theorem 2 is proved.

4. — Applications.

In this section we give some applications of Theorems 1 and 2 to surjectivity
and other problems.

THEOREM 3. — Let T: X —X be an a-Lipschitz mapping with constant & and let
F: XX be a homeomorphism (possibly nonlinear) a-ewpansive with constant h> 0.
Assume that

i) 0<k<h;

ii) there exists a sequence {0B(0, B,)} of spheres and o sequence {y.; of positive
real numbers y,—> oo as n—> co such that for any 2> 1 and any € 0B(0, B.)

1T(@) — F(2)| >, -

Then the mapping T —F is surjective.

PROOF. — We have to show that for any given ye X there exists an element
zeX such that T(w)—F(r)=y. Since y,—>oco as n—>oco, choose n sufficiently
large that |y <y.: Evidently, the mapping ¢ == T'—y is «-Lipschitz with con-
stant k. Therefore, if G(x) = F(A») for some we 0B(0, f,) implies that A<1, then
Theorem 2 gives the existence of an ze B(0, §,) such that G(&) = F(z) and weare
done. Take A>1. Then

0= |6(@) — F()| = | T(2) — F(A0) —y| > | T(®) — F(4o) | — [y >»n— ly[ >0 -

This contradiction shows that <1 and the theorem is proved.

The following result, although being less general than Theorem 3, is more useful
for applications. Theorem 4 below can be regarded as a Corollary of Theorem 3,
but here we give a proof based on Theorem 1.
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THEOREM 4. — Let T: X — X be an a-Lipschitz mapping with constant k& and loi
L: XX be an isomorphism. Asswme that
i) L7 k<1;

ii) there ewists a sequence {OB(0, B.)} of spheres and o sequence {y,} of positive
real numbers y,— oo as 1 — oo such that for any 2> 1 and any % e 0B(0, B,)

| T(@) — AL(@) | >y

Then the mapping T — L is surjective.

Proor. — Let ye X. We must ghow that there exists an xeX such that
T(w)— L(x) =y. Choose n so large that [y <y.,.

The mapping ¢ = T —y is «-Lipschitz with constant k. If G(r)= AL{w) for
some » € 0B(0, f,) implies that A<1, then, by Theorem 1, there exists e B(0, §,)
such that G(x) = I{w) i.e. T(®)—IL{») =y. Assume A>1. Then

0 = |G(@) — AL@)| = | T(0) — AL{@) —y| > | T(@) — AL@)| — ly[ >y.— [y] > 0.

But this is impossible, so <1 and the assertion is proved.

COROLLARY 7. — Let T: X — X be an a-Lipschitz mapping with constant &k and
let h>%. Assume that

i) there exists a sequence {0B(0, f.)} of spheres and a sequence {y.} of positive
real numbers, y,—>oco as n-»oo, such that for any |A|>h and any
we 0B(0, f,)

\T'(@) — Az | > ya-
Then the mapping T — kI is surjective.

PROOF. — Let ye€ X. We must show that there exists an # ¢ X, such that
T(@)—hao =y,

Choose # so large that |y| <y, and consider the mapping G =T —y. If
G(x) = Az for some w€dB(0,,) implies that |A]<h, then, by Corollary 1, there
exists e B(0, 8,), such that G(») = hw, i.e. T(@)—hz=y. Assume |A|>h. We
have

0= |6@)— | = |T(@)— o —y| > [T(@) — o] — |y| >y, —[y| > 0.
But this is a contradiction, so 1Al <h.
REMARK. — Theorem 3 and Corollary 7 give extensions to «-Lipschitz mappings

of some results proved by W. V. PEIRYSHYN (see [8]) for nonlinear P-compact
operators.
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CorROLLARY 8 (see A. VieNoil [3], see also W. V. PETRYSHYN [14]). — Let
T:X-—>X be an a-contractive mapping with constant k, 0 <k <1, and let u,
kE<u<2-—k. If there exists a sequence {0B(0, B,)} of spheres and a sequence {y.} of po-
sitive real numbers, p,—>co as n—> oo, such that for any 2> p and any =€ 2B(0, §,)

| T(@) — M| >pa -

Then the mapping T — ul is surjective.

As another application of the results obtained in seetion 3 we will give a ge-
neralization of a very well known result of SCHAEFER (see [12]). We prove a ge-
neral theorem (see Theorem 5 below) and we obtain Schafer’s result as a Corollary
to that theorem (see Corollary 10).

THEOREM 5. — Let T: X — X be an o-Lipschitz mapping with constant k and let
F: X—> X be a (possibly nonlinear) homeomorphism oa-ewpansive with constant h> 0
such that 0 < k<h. If there is no we X such that T(x) = F(x), then the st M =
={weX|T(w) = F(Jx) for some A> 1} is unbounded.

PROOF. — Let B,={we X||o|<n}and let 7, be the radial retraction of X onto
B, (see section 2). Put @,=m,oF1.T. Clearly G, is a densifying mapping of B,
into itself then, by Theorem A (see Introduction), there exists @, € B,, such that

Ty = G,,(a;,.) =Ty o 1o T(m,,) .

Evidently [F~to T(#,)] > n, otherwise z,oF 1oT(x,)=F1oT(m,), i.e. T(@s)=
= F(w,), contradicting the hypothesis. Now, from the definition of the radial re-
traction 7, we get |&,| =» and T(»,) = F(Av,), where A =n[|Fo T(x,)|>1 and
the theorem is proved.

The following result is a linear version of Theorem 5 (in the sense that the map-
ping L is an isomorphism). Theorem 6 below is not only much more useful in appli-
cations, but its formulation is very similar to the one of the above mentioned
result of SCHAEFER (see Corollary 10).

THEOREM 6. — Let T: X — X be an a-Lipschite mapping with constant k and let
L: X->X be an isomorphism such that |L|k<1. If there is no @€ X such that
T(x) = L(»), then the set M:{weXlZT(m) = L(w) for some A€ (0, 1)} is unbounded.

PrOOF. — Let B,={weX||s|<n} and let m, be the radial retraction of X
onto B,. Put G,=m,L1oT. Since @, is a densifying mapping of B, into itself
there exists #,€ B, such that #, = G,(@,) = %, o L1 o T(w,). Olearly |L*o T(@,)] > n,
otherwise 1, o It o T(w,) = Lo T(®,), i.e. T(»,) = L(w,), contradicting the hypo-
thesis. Then from the definition of radial retraction s,, it follows that [@.]=n
and L 1o T(2,) = hw,, with h>1. Thus b Y(Tx,) = L(x,) and h~*€(0, 1).
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CoROLLARY 9. — Let T: X — X be a densifying mapping. If there is no ze€ X,
such that T(x) == x then the set

M ={we X|AT (@) =u for some A (0,1)} is unbounded.
Proor. — Put L = I, the identity mapping of X, and apply Theorem 6.

CoROLLARY 10 (Schaefer’s Theorem [12]). — Let T be a compact self-mapping of
a Banach space X. If there ewists A, €[0,1] such that the equation » = A, T(®) does
not have any solution, then the set M ={ze X|o = AT(x), 0 < A< Lo} is unbounded.

Proor. — Suppose there is a 4,€[0, 1], such that the equation # = 1,T{z) does
not have any solution. Let G,: X —> X defined by G.(#) = n.(4T(»)). As in the
proof of Theorem 6, we can find #,€B,, B,={zeX||z|<n}, such that G(z,) =
=7, (T (®,) = ®,. Clearly |4,T(x,}| > n, otherwise A,T(x,) ==,. Then |z,| = n,
and 4,T(w,) = p*w, with 0 <p <1, 50 uiT(®,) =@, and 0 < uly< 4.
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