On uniform distribution of sequences in $GF \mid q, x \mid$ and [GFq, x]. (*)

by John H. Hodges (U.S.A.) (**)

Summary. - Analogs are proved for sequences in $\Phi = GF[q, x]$ and $\Phi' = GF[q, x]$ of results proved in 1962 by C.L. Vanden Eynden concerning uniform distribution of sequence of integers related to sequences of real numbers. The concept of uniform distribution (mod m), m an integer, in Vanden Eynden's work is sometimes replaced here by modified forms of uniform distribution (mod M) $M \in \Phi$.

1. - Introduction and preliminaries.

Let $\Phi' = GF(q, x)$ denote the field of all formal expressions

(1.1)
$$\alpha = \sum_{i=-\infty}^{m} c_i x^i \qquad (c_i \in GF(q)),$$

where x is an indeterminate and the coefficients c_i all belong to an arbitrary fixed finite field of $q = p^z$ elements. Let $\Phi = GF[q, x]$ denote the subring of Φ' consisting of all polynomials in x over GF(q). Throughout this paper, lower case GREEK letters will denote elements of Φ' and italic capitals will denote elements of Φ , except as indicated.

If α has the representation (1.1) with $c_m \neq 0$, following CARLITZ [1; §2] we define the *degree* of α by deg $\alpha = m$, where *m* is an integer which may be positive, negative or zero. We also define deg $0 = -\infty$, where $-\infty < k$ for all integers *k*. The *integral part* and fractional part of α , denoted by $[\alpha]$ and $((\alpha))$ respectively, are defined by

(1.2)
$$[\alpha] = \sum_{i=0}^{m} c_i \iota^i \text{ and } ((\alpha)) = \alpha - [\alpha] = \sum_{i=-\infty}^{-1} c_i x^i,$$

so that $[\alpha] \in \Phi$ and $\deg((\alpha)) < 0$. We note that for any α , $\beta \in \Phi'$, $[\alpha + \beta] = [\alpha] + [\beta]$ and $((\alpha + \beta)) = ((\alpha)) + ((\beta))$. The statement $\alpha \equiv \beta \pmod{1}$ is defined to mean

^(*) Supported by NSF Research Grant GP 6515.

^(**) Entrata in Redazione il 13 giugno 1969.

that $\alpha = \beta + A$ where $A \in \Phi$, that is, A is a polynomial. Thus every $\alpha \in \Phi'$ is congruent (mod 1) to a unique β , namely $\beta = ((\alpha))$, such that deg $\beta < 0$.

The following definitions are also due to CARLITZ [1; §4]. Given an infinite sequence $\Gamma = \{\gamma_i\}$ in Φ' , an arbitrary element β of Φ' and any positive integers n and k, let $N_k(n, \beta)$ be the number of γ_i with $1 \leq i \leq n$ such that

(1.3)
$$\deg\left((\gamma_i - \beta)\right) < -k.$$

Then the sequence Γ is said to be uniformly distributed (mod 1), abbreviated as u.d. (mod 1) in Φ' if and only if for all $k \ge 1$ and all $\beta \in \Phi'$

(1.4)
$$\lim_{n\to\infty} N_k(n, \beta)/n = q^{-k},$$

and is said to be semi-uniformly distributed (mod 1), abbreviated as s.u.d. (mod 1), in Φ' if and only if for all $k \geq 1$ and all $\beta \in \Phi'$

(1.5)
$$\lim_{t\to\infty} N_k(q^t, \beta)/q^t = q^{-k}.$$

(We note CARLITZ used the phrase *weakly uniformly distributed* for the concept we have called here semi-uniformly distributed. Since a somewhat different concept of weakly uniformly distributed is to be defined below for sequences in Φ , it has seemed appropriate to rename the concept defined for Φ' by (1.5).)

Let M be any monic (leading coefficient equal to 1) element of Φ of degree m > 0. The case M = 1 would be trivial here and the terminology would conflict with that established above). Let $\theta = \{A_i\}$ be any infinite sequence of elements of Φ and for any $B \in \Phi$ and integer $n \ge 1$, let $\theta(n, B, M)$ denote the number of terms among A_1, \ldots, A_n such that $A_i \equiv B \pmod{M}$. Then as in [2] we say that the sequence θ is uniformly distributed modulo M, abbreviated as u.d. (mod M), if and only if

(1.6)
$$\lim_{n\to\infty} \theta(n, B, M)/n = q^{-m}, \quad (\text{all } B \in \Phi),$$

and is uniformly distributed, abbreviated as u.d., if and only if it is u.d. (mod M) for every monic M of degree > 0 in Φ . By analogy with (1.5) we define θ to be semi-uniformly distributed modulo M, abbreviated as s.u.d. (mod M) if and only if

(1.7)
$$\lim_{t\to\infty} \theta(q^t \ B, \ M)/q^t = q^{-m}, \quad (\text{all } B \in \Phi),$$

and semi-uniformly distributed if and only if it s.u.d. (mod M) for all monic M of degree > 0 in Φ .

For certain questions of interest concerning sequences in Φ a somewhat different condition than (1.6) or (1.7) must be used. Let θ be an infinite sequence in Φ in which no element of Φ appears infinitely many times. For any $B \in \Phi$, any monic $M \in \Phi$ of degree m > 0, and any integer $n \ge 1$, let

(1.8)
$$\begin{cases} \theta(n) = \text{ number of terms of } \theta \text{ such that } \deg A_i < n, \\ N(\theta, n, B, M) = \text{ number of terms of } \theta \text{ such that } \deg A_i < n \\ \text{ and } A_i \equiv B(\text{mod } M). \end{cases}$$

Then as in [2] we say that θ is *weakly uniformly distributed* modulo M, abbreviated as w.u.d. (mod M), if and only if

(1.9)
$$\lim_{n\to\infty} N(\theta, n, B, M)/\theta(n) = q^{-m}, \quad (\text{all } B \in \Phi).$$

and that θ is *weakly uniformly distributed* if and only if it is w.u.d. (mod M) for all monic M of degree > 0 in Φ .

We note that in all of the above definitions there is no loss of generality in restricting M to be monic of degree m > 0 and only letting B run through the q^m elements of any complete residue system (mod M). Also, all of the distribution properties defined are unaltered by the omission of any finite number of terms at the beginning of a sequence or the addition of a fixed element of the appropriate set to every term of a sequence.

In this paper we shall prove a number of results relating the distribution of sequences in Φ' to the distribution of certain associated sequences in Φ . The main application of these reselts is to the proof of the fact that if f(u)is a polynomial of degree k with coefficients in Φ' , $1 \leq k < p$, and some coefficient of f(u) besides f(0) is *irrational*, that is, is not a quotient of elements of Φ , then a certain related sequence $\theta_f = \{[f(A_i)]\}$ in Φ is w.u.d. The results obtained here are analogous to (but somewhat more involved than) those proved by VANDEN EXNDEN [4], and reported by NIVEN [3], for uniform distribution of sequences of real number and of integers.

2. - Relationships between uniform distributions in Φ' and in Φ .

Using the definitions given in Section 1 we first prove

THEOREM 2.1. - A sequence $\Gamma = \{\gamma_i\}$ in Φ' is u.d. (mod 1)/s.u.d.(mod 1) if and only if for all monic $M \in \Phi$, the sequence $\Gamma_M = \{[M\gamma_i]\}$ is

u.d. $(\mod M)/s.u.d.(\mod M)$.

PROOF. - We give the proof for uniform distributivity. The proof for semi-uniform distributivity is essentially the same.

Suppose that $\Gamma = \{\gamma_i\}$ is u.d. (mod 1) in Φ' . Let M be any monic element of Φ of degree m > 0 and $B \in \Phi$ be arbitrary of degree < m. Then with $\beta = B/M$, for all $k \ge 1$, by condition (1.4) we have

$$\lim_{n\to\infty} N_k(n, B/M)/n = q^{-k}.$$

If γ_i satisfies deg $((\gamma_i - B/M)) < -k$, Let

(2.1)
$$\gamma_i - B/M = F_i + ((\gamma_i - B/M)), \quad F_i \in \Phi.$$

If we multiply equation (2.1) by M and take the case k = m, we get

$$M\gamma_i = B + MF_i + M((\gamma_i - B/M)),$$

where deg $M((\gamma_i - B/M)) < 0$. Therefore, for such a γ_i ,

$$(2.2) [M\gamma_i] = B + MF_i \equiv B \pmod{M}.$$

Conversely, if γ_i satisfies (2.2), then (2.1) holds with deg $((\gamma_i - B/M)) < -m$. In view of this equivalence between (2.1) and (2.2), it is clear that for all positive integers n, all monic $M \in \Phi$ of degree m and all $B \in \Phi$,

$$\Gamma_M(n, B, M) = N_m(n, B/M),$$

so that

$$\lim_{n\to\infty}\Gamma_M(n, B, M)/n = \lim_{n\to\infty}N_m(n, B/M)/n = q^{-m}.$$

Thus Γ_M is u.d. (mod M) in Φ .

On the other hand, suppose that for all monic $M \in \Phi$, $\Gamma_M = \{ [M\gamma_i] \}$ is u.d. (mod M) in Φ . Then for any $B \in \Phi$, if deg M = m,

$$\lim_{n\to\infty}\Gamma_M(n, B, M)/n = q^{-m}.$$

Let *m* be any positive integer and $\beta \in \Phi'$ be arbitrary. Then $\beta = F_{\beta} + ((\beta))$, with $F_{\beta} \in \Phi$ so $F_{\beta} = 0$ or deg $F_{\beta} \ge 0$ and deg $((\beta)) < 0$. Let *M* be any fixed monic polynomial of degree *m* and let

$$M((\beta)) = B + \gamma$$
 with $B \in \Phi$, $\gamma = ((M((\beta))))$,

so that deg B < m and deg $\gamma < 0$.

Now for any positive integer *n*, if $1 \leq i \leq n$ and $[M\gamma_i] = B \pmod{M}$, then by the equivalence of (2.1) and (2.2) we know that that $\deg((\gamma_i - B/M)) < -m$ But, $B = M((\beta)) - \gamma$ with $\deg \gamma < 0$, so that $B/M = ((\beta)) - \gamma/M$ with $\deg(\gamma/M) < -m$. Thus,

$$\deg\left((\gamma_i - \beta + \gamma/M)\right) = \deg\left((\gamma_i - (\beta)) + \gamma/M\right) < -m_i$$

which implies, since $\deg(\gamma/M) < -m$, that $\deg((\gamma_i - \beta)) < -m$. Conversely, if deg $((\gamma_i - \beta)) < -m$, then $[M\gamma_i] \equiv B \pmod{M}$ so that for all integers $n \ge 1$ $N_m(n, B) = \Gamma_M(n, B, M)$. Therefore,

$$\lim_{n\to\infty} N_m(n, \beta)/n = \lim_{n\to\infty} \Gamma_M(n, B, M)/n = q^{-m}.$$

Therefore $\Gamma = \{\gamma_i\}$ is u.d. (mod 1) and Theorem 2.1 is proved.

As an immediate consequence of this theorem we can prove

COROLLARY 2.2. – If $\{\gamma_i\}$ is any sequence in Φ' such that for all monic $K \in \Phi$ the sequence $\{\gamma_i/K\}$ is u.d. (mod 1)/s.u.d. (mod 1), then the sequence $\{[\gamma_i]\}$ is u.d./s.u.d. in Φ , that is, it is u.d. (mod K) for all monic $K \in \Phi$.

PROOF. - Again we only give the proof for uniform distributivity. Let $\{\gamma_i\}$ satisfy the hypothesis and K be any monic element of Φ so that $\{\gamma_i/K\}$ is u.d. (mod 1) in Φ' . Then by Theorem 2.1, for all monic $M \in \Phi$, $\{[M_{\gamma_i}/K]\}$ is u.d. (mod M). In particular, with M = K it follows that $\{[\gamma_i]\}$ is u.d. (mod K). Since K is arbitrary, it follows by definition that $\{[\gamma_i]\}$ is u.d. in Φ .

In [2; § 2] a sequence $\theta = \{A_i\}$ in Φ was defined to be rising if and only if $A_i \neq A_j$ and $\deg A_i \leq \deg A_j$ for all integers $1 \leq i < j$. (This is an analog for Φ of a strictly increasing sequence of positive integers.) In particular, any sequence θ containing all of the elements of Φ , each occurring once arranged according to monotonically increasing degree is a rising sequence and is easily seen to be w.u.d. although, as shown in $[2 \ \S 2]$, it need not be u.d. In order to consider the next results, we need to extend the concept of rising sequence to Φ' .

A sequence $\Gamma = \{\gamma_i\}$ in Φ' will be called *rising* if and only if it has the properties:

((a) deg
$$\gamma_i \leq \deg \gamma_j$$
 for all $1 \leq i < j$.

(2.3) (b) For every sufficiently large integer t, the number $\Gamma(t)$ of elements of Γ of degree < t is $\equiv q^t$.

Furthermore, Γ will be called *linearly rising* if and only if it has property (2.3a) and the additional property

There exists a linear polynomial g(t) = kt + c with integral coef-(2.4) $\begin{cases} \text{ficients } k > 0, \ c \quad \text{such that for all sufficiently large } i, \ \deg \gamma_i = g(c_i) \ge 0 \quad \text{for some integer } c_i > 0 \quad \text{and for all sufficiently large } t, \\ \text{the number } \Gamma(g(t)) \quad \text{of elements of } \Gamma \quad \text{of degree} < g(t) \quad \text{is equal to } q^t. \end{cases}$ We note that if a sequence θ in Φ is rising in Φ , then it is also rising in Φ' and if, in addition, it contains all the elements of Φ , then is linearly rising in Φ' with g(t) = t.

Now, as a direct consequence of Theorem 2.1 we have

COROLLARY 2.3. – If sequence $\Gamma = \{\gamma_i\}$ in Φ' is rising and u.d. (mod 1), then for all monic $M \in \Phi$, the sequence $\Gamma_m = \{[M\gamma_i]\}$ is w.u.d. (mod M) in Φ .

PROOF. – If Γ satisfies the hypotheses then, by Theorem 2.1, for all monic $M \in \Phi$, Γ_M is u.d. (mod M) in Φ .

Since Γ is rising in Φ' , by (2.3b) no element of Φ' appears infinitely often in Γ and by (2.3a) and (2.3b), for sufficiently large t > 0, the $\Gamma(t) \leq q^t$ elements of Γ of degree < t are the *first* $\Gamma(t)$ elements of Γ . Therefore, for any sufficiently large t > 0, if $\Gamma_M(t) = j > 0$, these j elements of Γ_M of degree < t are the first j elements of Γ_M so that for any $B \in \Phi$,

$$N(\Gamma_M, t, B, M) = \Gamma_M(j, B, M).$$

Thus, since Γ_M is u.d. (mod M), if deg M = m,

$$\lim_{t\to\infty} N(_M, t, B, M)/\Gamma_M(t) = \lim_{j\to\infty} \Gamma_m(j, B, M)/j = q^{-m},$$

since the subsequence of distinct quotients on the left is a subsequence of the convergent sequence of quotients on the right and no quotient in the left sequence appears infinitely often. Therefore, by definition, Γ_M is w.u.d. (mod. M) in Φ .

A result which is similar to Corollary 2.3, but seems to be more useful in the applications we wish to consider, is

THEOREM 2.4. – If the sequence $\Gamma = \{\gamma_i\}$ in Φ' is linearly rising and s.u.d. (mod 1), then for all monic $M \in \Phi$, the sequence $\Gamma_M = \{[M\gamma_i]\}$ is w.u.d. (mod M) in Φ .

PROOF. - By definition of linearly rising, there exists a linear polynomial g(t) = kt + c with integral coefficients k > 0, c such that for all sufficiently large i, deg $\gamma_i = g(c_i) \ge 0$ for some integer $c_i > 0$ and for all sufficiently large t, the number $\Gamma(g(t))$ of elements of Γ of degree $\langle g(t) \rangle$ is $\Gamma(g(t)) = \Gamma(kt + c) = q^t$.

Let monie $M \in \Phi$ be arbitrary of degree m > 0. For all integers $i \ge 1$, $M_{\gamma_i} = M[\gamma_i] + M_{((\gamma_i))}$, so that for all sufficiently large i,

$$\deg [M\gamma_i] = \deg M[\gamma_i] = m + g(c_i) = kc_i + (m + c).$$

Since for all sufficiently large t, $\Gamma(g(t)) = q^t$, it follows that for all sufficiently large t, sequence $\Gamma_M = \{ [M\gamma_i] \}$ has the property $\Gamma_M(kt + (m + c)) = q^t$ and by property (2.3a), these q^t elements of Γ_M correspond to the first q^t elements of Γ . Also, by virtue of the equivalence between conditions (2.1) and (2.2), we see that for all $B \in \mathbf{\Phi}$

$$N(l'_M, kt + (m + c), B, M) = N_m(q^i, B/M).$$

Therefore, for all $B \in \Phi$, since Γ is s.u.d. (mod 1) in Φ' ,

$$\lim_{n\to\infty}\frac{N(\Gamma_M, n, B, M)}{\Gamma_M(n)} = \lim_{t\to\infty}\frac{N(\Gamma_M, kt + (m+c), B, M)}{\Gamma_M(kt + (m+c))} = \lim_{t\to\infty}N_m(q^t, B/M)/q^t = q^{-m}.$$

since for sufficiently large n, the distinct quotients on the left are elements of a subsequence of the convergent sequence of quotients in the niddle and no quotient in the left sequence appears infinitely often. Thus by definition Γ_M is w.u.d. (mod M) in Φ .

COROLLARY 2.5. – Let f(u) be any polynomial with coefficients in Φ' and $\{A_i\}$ be any rising sequence in Φ which contains all the elements of Φ . If the sequence $\theta = \{f(A_i)\}$ is s.u.d. (mod 1) in Φ' , then for all monic $M \in \Phi$, the sequence $\theta_M = \{[Mf(\neg_i)]\}$ is w.u.d. (mod M) in Φ .

PROOF. - Let f(u) have degree k and c be the degree, as an element of Φ' , of the leading coefficient of f(u). Then if deg $A_i = a_i$, deg $f(A_i) = ka_i + c \ge 0$ for all sufficiently large a_i . Let $M \in \Phi$ be monic of degree m. Then for all integers $t \ge 1$, deg $f(A_i) = (ka_i + c) < kt + c$ if and only if $a_i < t$, and this latter condition holds if and only if $1 \le i \le q^i$. Thus for all sufficiently large t, the number $\theta(kt + c)$ of elements of θ of degree < kt + c is q^i . Also, since $\{A_i\}$ is a rising sequence, deg $f(A_i) \le \deg f(A_j)$ for all $1 \le i < j$. Therefore, by definition, θ is linearly rising sequence in Φ' . Since by hypothesis θ is s.u.d. (mod 1) it follows by Theorem 2.4 that for all monic $M \in \Phi$, the sequence $\theta_M = \{|Mf(A_i)|\}$ is w.u.d. (mod M) in Φ .

3. – An application to sequences in Φ .

The motivation for the introduction in section 2 of the concept of a linearly rising rising sequence in Φ' and its role in Theorem 2.4 and Corollary 2.5 is to be found in the following result.

THEOREM 3.1. – Let f(u) be any polnomial of degree k, $1 \leq k < p$, with coefficients in Φ' such that f(u) - f(0) has at least one irrational (not a quotient of elements of Φ) coefficient and let $\{A_i\}$ be any rising sequence in Φ

which contains all the elements of Φ . Then the sequence $\{[f(A_i)]\}$ is w.u.d. in Φ .

PROOF. - For every monic $K \in \Phi$, the polynomial f(u)/K with coefficients in Φ' has the property of f(u) stated in the hypotheses. Then by a result of CARLITZ [1; Theorem 9] it follows that $\{f(A_i)/K\}$ is s.u.d. (mod 1) in Φ' for all monic $K \in \Phi$.

Thus, by Corollary 2.5, for any fixed monic $K \in \Phi$, the sequence $\{ [Mf(A_i)/K] \}$ is w.u.d. (mod M) in Φ . In particular, with M = K, $\{ [f(A_i)] \}$ is w.u.d. (mod K). Since this result holds for all monic $K \in \Phi$, by definition, $\{ [f(A_i)] \}$ is w.u.d. in Φ .

The case of this theorem with $f(u) = \xi u$, where ξ is irrational, has been previously proved by the author [2; Theorem 4.2].

REFERENCES

- L. CARLITZ, Diophantine approximation in fields of characteristic p, Trans. Amer. Math. Soc. 72 (1951), 187-208.
- JOHN H. HODGES, Uniform distribution of sequences in GF[q, x], Acta. Arith. 12 (1966), 55-75.
- [3] IVAN NIVAN, Uniform distribution of sequences of integers, Compositio Math. 16 Fasc. 1, 2 (1964), 158-160.
- [4] C. L. VANDEN EYNDEN, The uniform distribution of sequences, dissertation, University of Oregon, 1962.