On uniform distribution of sequences
in GF\q, x| and [GFq, x| (*)

by Joux H. Hopses (U.8. A) (*%

Summwmary., - Analogs are proved for sequences in == GFlg, x] and ¥ =GF|q, x| of
resulis proved in 1962 by C.L. Vanden Eynden concerning wuuiform distribution of
sequence of integers relafed to sequences of real numbers. The econcept of uniform disiri-
bution {mod m), m an integer, in Vanden Eyndew's work is sometimes replaced here by
modifled forms of uniform distribution (mod M) M € ®.

1. -« Introduction and preliminaries.

Let @ = GF{gq, z| denote the field of all formal expressions

m

(1.1) a= I ¢z (c€GF(Q),

§ s O0)

where z is an indeterminate and the coefficients ¢; all belong to an arbitrary
fixed finite field of ¢ = p* elements. Let ® = GF[q, z| denote the subring
of @ consisting of all polynomials in z over GF(g). Throughout this paper,
lower case GREEK letters will denote elements of @ and italic capitals will
denote elements of @, except as indicated.

If « has the representation (1.1) with ¢, == 0, following Carritz [1; §2]
we define the degree of a by dega — m, where m is an integer which may
be positive, negative or zero. We also define deg0) = — oo, where —oco <k
for all integers k. The inlegral part and fractional part of «, denoted by [«]
and ((«)) respectively, are defined by

(1.2 [e] = g ¢ and {(@)) =a —[a] = g.‘:l cixt,

jem—0

80 that [¢]€® and deg((x)) <0. We note that for any «, €@, [a 4 B] = [«] - [8]
and (& + B)) = ((@)) + ((B))- The statement o = (mod 1) is defined to mean

(*) Supported by NSF Research Grant GP 6315.
(**) Entrata in Bedazione il 18 giugno 1969.
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that . = B 4+ 4 where 4 €®, that is, 4 is a polynomial. Thus every «€ @’
is congruent (mod 1) to a unique 3, namely § = ((«)), such that deg <O0.

The following definitions are also due to Carvitz [1; §4]. Given an
infinite sequence I' = {y;} in @', an arbitrary element 8 of ® and any posi-
tive integers n and %, let Nin, 3) be the number of yv; with 1 ={= n such
that

(1.3) deg (v — B < — .

Then the sequence I' is said to be uniformly distribuied (mod 1), abbreviated
as u.d. (mod 1) in @' if and only if for all £ =1 and all B€ @’

(1.4) lim Nyn, B)/n = q—*,
700

and is said to be semi-uniformly distributed (mod 1), abbreviated as s.u.d.
(mod 1), in @& if and only if for all £ 21 and all €9’

(1.5) lim Ng', B)/q' = q~*.

(We note CARLITZ used the phrase weakly uniformly distributed for the concept
we have called here semi-uniformly distributed. Since a somewhat different
concept of weakly uniformly distributed is to be defined below for sequences
in @, it has seemed appropriate to rename the concept defined for @ by
(1.5).)

Let M be any monic (leading coefficient equal to 1) element of & of
degree m > 0. The case M =1 would be trivial here and the terminology
wounld conflict with that established above). Let 6 = {4;} be any infinite
sequence of elements of ® and for any B€® and integer n = 1, let §(n, B, M)
denote the number of terms among A4,, .., 4. such that 4; = B (mod M)
Then as in {2] we say that the sequence 8 is uniformly disiributed modulo
M, abbreviated as u.d. {mod M), if and only if

{1.6) lHmbn, B. MY/n=q", (all B €®),

n~>00
and is wuniformly distribuled, abbreviated as u.d., if and omnly if it is wu.d.
(mod M) for every monic M of degree >0 in ®. By analogy with (1.5) we
define 0 to be semi-uniformly disiributed modulo M, abbreviated as s.u.d.
(mod M) if and only if

(1.7) lim6(g* B, M)/q = ¢, (all B€ @),

1300

and semi-uniformly distributed if and only if it s.u.d. (mod M) for all monic
M of degree >0 in .
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For certain guestions of interest concerning sequences in @ a somewhat
different condition than (1.6, or (1.7) must be used. Let 6 be an infinite
sequence in @ in which no element of ® appears infinitely many times. For
any B € ®, any monic M € ® of degree m > 0, and any integer n = 1, let

8(n) = number of terms of 0 such that deg 4; < n,
(1.8 N, n, B, M)= number of terms of 6 such that degd:<n
and 4;= B(mod M).

Then as in [2] we say that 6 is weakly uniformly distribuled modulo M,
abbreviated as w.u.d. (mod M), if and only if

(1.9) lim N(@®, n, B, M)/0(n) = q—, (all B € ),

73 00

and that 0 is weakly uniformly distributed if and only if it is w.u.d. (mod M)
for all monic M of degree >0 in &.

We note that in all of the above definitions there is no loss of genera-
lity in restricting M to be monic of degree m >0 and only letting B run
through the g™ elements of any complete residue system (mod M). Also, all
of the distribution properties defined are unaltered by the omission of any
tinite number of terms at the beginning of a sequence or the addition of a
fixed element of the appropriate set to every term of a sequence.

In this paper we shall prove a number of results relating the distribution
of sequences in @ fo the distribation of certain associated sequences In ®.
The main application of these reselts is to the proof of the fact that if f(u)
is a polynomial of degree k& with coefficients in @, 1 =k < p, and some
coefficient of flu) besides f(0) is irrational, that is, is not a quotient of ele-
ments of @, then a certain related sequence b,= {[f(4)]] in & is w.ud.
The results obtained here are analogous to (but somewhat more involved than)
those proved by VANDEN HYNDEN [4], and reported by N1vEeN [3], for uniform
distribution of sequences of real number and of integers.

2. - BRelationships between uniform distributions in @ and in @.
Using the definitions given in Section 1 we first prove

THEOREM 2.1. - 4 sequence I'={y;} in @ ¢s u.d. (mod 1)/s.n.d.(mod 1)
if and only if for all monic M € @, the sequence Ly = {[My]] is
u.d.(mod M)/s.u.d.(mod M)

Proor. - We give the proof for uniform distributivitiy. The proof for
semi-uniform distributivity is essentially the same.

Annali di Matematica 37
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Suppose that I' ={v;} is ud (mod 1) in @®. Let M be any monic
element of ® of degree m >0 and B€ ® be arbitrary of degree < m. Then
with 8 = B/ M, for all £ = 1, by condition (1.4) we have

lim Nin, B/M)/n = q*.

If v, satisfies deg ((y; — B/M)) < — k, Let

2.1) Yi— B/M = F; 4+ ((y: — B/M)), I € o.

If we multiply equation (2.1) by M and take the case k = m, we get
My, = B 4 MF; 4 M((y: — B/M)),

where deg M((y;: — B/M)) < 0. Therefore, for such a y;,

2.2) [My]= B4 MF, = B (mod M).

Conversely, if v; satisfies (2.2), then (2.1) holds with deg((yi — B/M)) < — m.
In view of this equivalence between (2.1) and (2.2), it is clear that for all
positive integers n, all monic M € ® of degree m and all B€Q,

P'u(n, B, M) = N,(n, B/M),
80 that
Hm 'y(n, B, M)/n =1lim Na.n, B/M)/n = q—.

=3 n—>a0

Thus I'y is vw.d. (mod M) in .
On the other hand, suppose that for all monic M€ ®, 'y = {[My;]} is
u.d. (mod M) in @. Then for any B€ @, if deg M = m,

limT'y(n, B, M)/n = q¢—.

n=>20

Let m be any positive integer and € ®' be arbitrary. Then B = Fg -+ (),
with Fg€ @ so Fp=10 or deg F; =0 and deg ((§)) <0. Let M be any fixed
monic polynomial of degree m and let

M@B)=B+y with B€o, yv=(ME,

so that deg B <m and degy < 0.

Now for any positive integer n, if 1 =4¢=wn and [My]= B (med M),
then by the equivalence of (2.1) and (2.2) we know that that deg((y:—
B/ M) < —m But, B= M(B))— v with degy <0, so that B/M = (), — v/M
with deg (y/M) < — m. Thus,
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deg ((yi — B + v/M)) = deg ((v: — (B)) + v/ M) < — m,

which implies, since deg(y/M)< — m, that deg((y; — B)) < — m. Conversely,
if deg((y; — B)) < —m, then [My;] = B (mod M) so that for all integers n=1
N.(n, B)= I'u(n, B, M). Therefore,

lim N.n, B)/n =1lim I'y(n, B, M)/n = qg—™.

n—>20 n—>00

Therefore I' = {v;} is w.d. (mod 1) and Theorem 2.1 is proved.
As an immediate consequence of this theorem we can prove

CoroLLARY 2.2, - If | y:}| s any sequence in @' such that for all monic
K€ ® the sequence {v;/ K} i3 u.d. (mod 1)/s.u.d. (mod 1), then the sequence
{[yi]} s wd./s.ud. én @, that is, it is u.d. (mod K) for all monic K € @.

ProoF. - Again we only give the proof for uniform distributivity. Let
{v:} satisfy the hypothesis and K be any monic element of @ so that {y:/K |}
is u.d. (mod 1) in @. Then by Theorem 2.1, for all monic M€ ®, {[My:/K])
is u.d. (mod M). In particular, with M = K it follows that {[y:]} is u.d.
(mod K). Since K is arbitrary, it follows by definition that {[y;]} is un.d. in ®.

In [2; §2] a sequence 8 = {4;] in ® was defined to be rising if and
only if A4;== 4; and deg 4; = deg A; for all inftegers 1 =4 < j. (This is an
analog for @ of a strictly increasing sequence of positive integers.) In parti-
cular, any sequence 6 containing all of the elements of ®, each occurring
once arranged according to monotonically increasing degree is a rising
sequence and is easily seen to be w.u.d. although, as shown in [2 §2], it
need not be u.d, In order to consider the next results, we need to extend
the concept of rising sequence fo @'

A sequence I'={y;} in ® will be called rising if and only if it has
the properties:

(a) degy; =degy; forall 1=4¢<j.

(2.3) (b) For every sufficiently large integer {, the number I'(f) of elements
of T' of degree < ¢ is = ¢'.

Fuorthermore, I' will be called linearly rising if and only if it has property
(2.3a) and the additional property

There exists a linear polynomial g¢{f) =kt 4 ¢ with integral coef-
ficients k& >0, ¢ such that for all sufficiently large 4, degy, =
g(c) = 0 for some integer ¢; >0 and for all sufficiently large ¢

(2.4)
? the number I(g(f)) of elements of I' of degree < g(f) is equal to ¢'.

\
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We note that if a sequence 0 in @ is rising in @, then it is also rising in
@' and if, in addition, it containg all the elements of &, then is linearly
rising in @ with g(f) = 1.

Now, as a direct consequence of Theorem 2.1 we have

CoRrOLLARY 2.3. - If sequence I = {y;} in @ is rising and u.d. (mod 1),
then for all monic M € ®, the sequence I, = {[My:]] ¢s w.u.d. (mod M) in &.

Proor. - If I' satisfies the hypotheses then, by Theorem 2.1, for all
monic M€ ®, I'y is u.d. (mod M) in P.

Since I' is rising in @, by (2.3b) no element of ® appears infinitely
often in I' and by (2.8a) and (2.3b), for sufficiently large ¢ >0, the I'f) = ¢
elements of T' of degree <?¢ are the firsf I'({) elements of I. Therefore, for
any sufficiently large ¢ > 0, if Ty(f) =4 > 0, these § elements of I'y of degree
<t are the first j elements of I'y so that for any B € @,

N’\PM, Z, B, M) :FM(j, B, M)
Thus, since I'y is u.d. (mod M), it deg M = m,

lim NG, ¢, B, M)/Tu(t) = lim I'(j, B, M)/j = ¢,

1300 J>0

since the subsequence of distinct quotients on the left is a subsequence of
the convergent sequence of quotients on the right and no quotient in the
left sequence appears infinitely often. Therefore, by definition, I'y is w.u.d.
(mod. M) in @.

A result which is similar to Corollary 2.3, but seems to be more useful
in the applications we wish to consider, is

THEOREM 2.4. - If the sequence I' = {v.} in @ is lLnearly rising and
s.u.d. (mod 1), then for all monic M€ @, the sequence T'y = [[My]} s w.ud.
{(mod M) in .

ProoF. - By definition of linearly rising, there exists a linear polynomial
9(t) = kt 4 ¢ with integral coefticients k> 0, ¢ such that for all sufficiently
large 4, degy:=g(c) = 0 for some integer ¢;> 0 and for all sufficiently large
!, the number ['(g($)) of elements of I' of degree < g't) is I'(g't)) = 'kt + ¢) = ¢'.

Let monic M € ® be arbitrary of degree m > 0. For all integers i=1,
My, = M[y,] + M((y:), so that for all sufficiently large i,

deg [My;] = deg M[y:] = m - glc)) = kc: + (m + ¢).
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Since for all sufficiently large ¢, I'(g#)) = ¢, it follows that for all sufficiently
large ¢, sequence Ty = {[My:]] has the property I'u(kt 4 (m + ¢)) = ¢* and by
property (2.3a), these ¢* elements of I'y correspond to the first ¢' elements of
I'. Also, by virtue of the equivalence between conditicns (2.1) and (2.2), we
see that for all B€®

Ny, kBt +m +¢), B, M)= N,'¢', B/M).

Therefore, for all B€ @, since T' is s.u.d. (mod 1) in @,

. N(Ts,n, B,M) . NTu, kt+4+m-+c), B, M) . S B et
lim = = i e o) um Vg’ B/MD/ gt =g

since for sufficiently large #, the distinct quotients on the left are elements
of a subsequence of the convergent sequence of quotients in the niddle and
no quotient in the left sequence appears infinitely often. Thus by definition
Ty is woud. (mod M) in &.

CoroLvary 2.6, - Let f(u) be any polynomial with coefficients in @ and
{ A} be any rising sequence in & which contains all the elements of @. If
the sequence 6 = | f(A4,)} is s.ud. (mod 1) in @, then for all monic M€ ®,
the sequence 8y = {[Mf( )]} is wu.d. (mod M) in .

Proor. - Let f(u) have degree k and ¢ be the degree, as an element of
@', of the leading coefficient of f(u). Then if deg A; =a;, degf(d)=ka;+¢c=0
for all sufficiently large a;. Let M € ® be monic of degree m. Then for all
integers ¢ =1, degf(4) = (ka; + ¢) <kt +¢ if and only if a; <{ and this
latter condition holds if and only if 1= 4= ¢'. Thus for all sufficiently large
{, the number 8(kf + ¢) of elements of 6 of degree <kl -+ ¢ is ¢'. Also, since
{4;} is a rising sequence, deg f(4:) = degf(4,) for all 1 =¢ < j. Therefore,
by definition, 0 is linearly rising sequence in ®'. Since by hypothesis 0 is
s.u.d. (mod 1) it follows by Theorem 2.4 that for all monic M € ®, the sequence
Oy = { | Mf(4)]} is w.ud. (mod M) in ©.

3. - An application to sequences in @.

The motivation for the introduction in section 2 of the concept of a
linearly rising rising sequence in @' and its role in Theorem 2.4 and Corol-
lary 2.5 is to be found in the following result.

Tarorem 3.1. ~ Let f(u) be any polnomial of degree k, 1 =k < p, with
coefficients in @' such that f{u)-— f(0) has at least one irrational (not a guo-
tient of elements of @) coefficient and let { A;} be any rising sequence in @
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which contains all the elements of ®. Then fthe sequence [[f(4:)]} is w.u.d.
in @

Proop. - For every monic K €®, the polynomial f(u)/K with coefficients
in @ has the property of f(u) stated in the hypotheses. Then by a result of
CarLirz [1; Theorem 9] if follows that { f(4:)/K} is s.u.d. (mod 1) in @ for
all moniec K€ @.

Thus, by Corellary 2.5, for any fixed monic K € @, the sequence {[Mf(4)/K]}
is w.u.d. (mod M) in ®. In particular, with M = K, [ [f(4,)]} is w.u.d. (mod K).
Since this result holds for all monic K€ @, by definition, {[f(4)]] is w.u.d.
in &@.

The case of this theorem with f(u) = Eu, where £ is irrational, has been
previously proved by the author [2; Theorem 4.2].
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