On uniform distribution of sequences
 in $G F\} q, x\}$ and $[G F q, x]$. (*) *
 by John H. Hodges (U. S. A.) (**)

Summary, - Analogs are proved for sequences in $\Phi=G F[q, x]$ and $\Phi^{\prime}=G F\{q, x\}$ of resulis proved in 1962 by C. L. Vanden Eynden concerning uniform distribution of sequence of integers related to sequences of real numbers. The concept of uniform disiribution (\bmod m), m an integer, in Vanden Eynden's nork is sometimes replaced here by modified forms of uniform distribution $(\bmod M) M \in \Phi$.

1. - Introduction and preliminaries.

Let $\Phi^{\prime}=G F\{q, x\}$ denote the field of all formal expressions

$$
\begin{equation*}
\alpha=\sum_{i=-\infty}^{m} c_{i} x^{i} \quad\left(c_{i} \in G F(q)\right), \tag{1.1}
\end{equation*}
$$

where x is an indeterminate and the coefficients c_{i} all belong to an arbitrary fixed finite field of $q=p^{x}$ elements. Let $\Phi=G F[q, x]$ denote the subring of Φ^{\prime} consisting of all polynomials in x over $G F^{\prime}(q)$. Throughont this paper, lower case Greek letters will denote elements of Φ^{\prime} and italic capitals will denote elements of Φ, except as indicated.

If α has the representation (1.1) with $c_{m} \neq 0$, following Carlitz $[1 ; ~ § 2]$ we define the degree of α by $\operatorname{deg} \alpha=m$, where m is an integer which may be positive, negative or zero. We also define $\operatorname{deg} 0=-\infty$, where $-\infty<k$ for all integers k. The integral part and fractional part of α, denoted by $[\alpha]$ and (($\alpha))$ respectively, are defined by

$$
\begin{equation*}
[\alpha]=\sum_{i=0}^{m} c_{i} i^{i} \text { and }((\alpha))=\alpha-[x]=\bar{\Sigma}_{i=-\infty}^{1} c_{i} x^{i} \tag{1.2}
\end{equation*}
$$

so that $[\alpha] \in \Phi$ and $\operatorname{deg}((\alpha))<0$. We note that for any $\alpha, \beta \in \Phi^{\prime},[\alpha+\beta]=[\alpha]+[\beta]$ and $((\alpha+\beta))=((\alpha))+((\beta))$. The statement $\alpha \equiv \beta(\bmod 1)$ is defined to mean

[^0]that $\alpha=\beta+A$ where $A \in \Phi$, that is, A is a polynomial. Thus every $\alpha \in \Phi^{\prime}$ is congruent ($\bmod 1$) to a unique β, namely $\beta=((\alpha))$, such that $\operatorname{deg} \beta<0$.

The following definitions are also due to Carlitz $[1 ; ~ \& 4]$. Given an infinite sequence $T=\left\{\gamma_{i}\right\}$ in Φ^{\prime}, an arbitrary element β of Φ^{\prime} and any positive integers n and k, let $N_{k}(n, \beta)$ be the number of γ_{i} with $1 \leqq i \leqq n$ such that

$$
\begin{equation*}
\operatorname{deg}\left(\left(\gamma_{i}-\beta\right)\right)<-k \tag{1.3}
\end{equation*}
$$

Then the sequence I is said to be uniformly distributed (mod 1), abbreviated as u.d. $(\bmod 1)$ in Φ^{\prime} if and only if for all $k \geqq 1$ and all $\beta \in \Phi^{\prime}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N_{k}(n, \beta) / n=q^{-k}, \tag{1.4}
\end{equation*}
$$

and is said to be semi-uniformly distributed (mod 1), abbreviated as s.u.d. $(\bmod 1)$, in Φ^{\prime} if and only if for all $k \geqq 1$ and all $\beta \in \Phi^{\prime}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} N_{k}\left(q^{t}, \beta\right) / q^{t}=q^{-k} . \tag{1.5}
\end{equation*}
$$

(We note Carlitz used the phrase weakly uniformly distributed for the concept we have called here semi-uniformly distributed. Since a somewhat different concept of weakly uniformly distributed is to be defined below for sequences in Φ, it has seemed appropriate to rename the concept defined for Φ^{\prime} by (1.5).)

Let M be any monic (leading coefficient equal to 1) element of Φ of degree $m>0$. The case $M=1$ would be trivial here and the terminology would conflict with that established above). Let $\theta=\left\{A_{i}\right\}$ be any infinite sequence of elements of Φ and for any $B \in \Phi$ and integer $n \geqq 1$, let $\theta(n, B, M)$ denote the number of terms among A_{1}, \ldots, A_{n} such that $A_{i} \equiv B(\bmod M)$. Then as in [2] we say that the sequence θ is uniformly distributed modulo M, abbreviated as u.d. $(\bmod M)$, if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta(n, B . M) / n=q^{-m}, \quad(\text { all } B \in \Phi) \tag{1.6}
\end{equation*}
$$

and is uniformly distributed, abbreviated as u.d., if and only if it is u.d. $(\bmod M)$ for every monic M of degree >0 in Φ. By analogy with (1.5) we define θ to be semi-uniformly distributed modulo M, abbreviated as s.u.d. $(\bmod M)$ if and only if

$$
\begin{equation*}
\left.\lim _{t \rightarrow \infty} \theta\left(q^{t} B, M\right) / q^{t}=q^{-m}, \quad \text { (all } B \in \Phi\right) \tag{1.7}
\end{equation*}
$$

and semi-uniformly distributed if and only if it s.a.d. $(\bmod M)$ for all monic M of degree >0 in Φ.

For certain questions of interest concerning sequences in Φ a somewhat different condition than (1.6; or (1.7) must be used. Let θ be an infinite sequence in Φ in which no element of Φ appears infinitely many times. For any $B \in \Phi$, any monic $M \in \Phi$ of degree $m>0$, and any integer $n \geqq 1$, let

$$
\left\{\begin{array}{l}
\theta(n)=\text { number of terms of } \theta \text { such that } \operatorname{deg} A_{i}<n, \tag{1.8}\\
N(\theta, n, B, M)= \\
\text { number of terms of } \theta \text { such that } \operatorname{deg} A_{i}<n \\
\text { and } A_{i} \equiv B(\bmod M) .
\end{array}\right.
$$

Then as in [2] we say that θ is weakly uniformly distributed modulo M, abbreviated as w.u.d. $(\bmod M)$, if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N(\theta, n, B, M) / \theta(n)=q^{-m}, \quad(\text { all } B \in \Phi), \tag{1.9}
\end{equation*}
$$

and that θ is weakly uniformly distributed if and only if it is w.u.d. $(\bmod M)$ for all monic M of degree >0 in Φ.

We note that in all of the above definitions there is no loss of generality in restricting M to be monic of degree $m>0$ and only letting B run through the q^{m} elements of any complete residue system $(\bmod M)$. Also, all of the distribution properties defined are unaltered by the omission of any finite number of terms at the beginning of a sequence or the addition of a fixed element of the appropriate set to every term of a sequence.

In this paper we shall prove a number of results relating the distribution of sequences in Φ^{\prime} to the distribation of certain associated sequences in Φ. The main application of these reselts is to the proof of the fact that if $f(u)$ is a polynomial of degree k with coefficients in $\Phi^{\prime}, 1 \leqq k<p$, and some coefficient of $f(u)$ besides $f(0)$ is irrational, that is, is not a quotient of elements of Φ, then a certain related sequence $\theta_{f}=\left\{\left[f\left(A_{i}\right)\right]\right\}$ in Φ is w.u.d. The results obtained here are analogous to (but somewhat more involved than) those proved by Vanden Eynden [4], and reported by Niven [3], for uniform distribution of sequences of real number and of integers.
2. - Relationships between uniform distributions in Φ^{\prime} and in Φ.

Using the definitions given in Section 1 we first prove
Theorem 2.1. - A sequence $\Gamma=\left\{\gamma_{i}\right\}$ in Φ^{\prime} is u.d. $(\bmod 1) /$ s.n.d. $(\bmod 1)$ if and only if for all monic $M \in \Phi$, the sequence $\Gamma_{M}=\left\{\left[M_{\gamma_{i}}\right]\right.$ is

$$
\text { u.d. }(\bmod M) / \text { s.u.d. }(\bmod M)
$$

Proof. - We give the proof for uniform distributivitiy. The proof for semi-uniform distributivity is essentially the same.

Suppose that $\Gamma=\left\{\gamma_{i}\right\}$ is u.d. $(\bmod 1)$ in Φ^{\prime}. Let M be any monic element of Φ of degree $m>0$ and $B \in \Phi$ be arbitrary of degree $<m$. Then with $\beta=B / M$, for all $h \geqq 1$, by condition (1.4) we have

$$
\lim _{n \rightarrow \infty} N_{k}(n, B / M) / n=q^{-k}
$$

If γ_{i} satisfies $\operatorname{deg}\left(\left(\gamma_{i}-B / M\right)\right)<-k$, Let

$$
\begin{equation*}
\gamma_{i}-B / M=F_{i}+\left(\left(\gamma_{i}-B / M\right)\right), \quad F_{i} \in \Phi \tag{2.1}
\end{equation*}
$$

If we multiply equation (2.1) by M and take the case $k=m$, we get

$$
M \gamma_{i}=B+M F_{i}+M\left(\left(\gamma_{i}-B / M\right)\right)
$$

where $\operatorname{deg} M\left(\left(\gamma_{i}-B / M\right)\right)<0$. Therefore, for such a γ_{i},

$$
\begin{equation*}
\left[M_{\gamma_{i}}\right]=B+M F_{i}=B(\bmod M) \tag{2.2}
\end{equation*}
$$

Conversely, if γ_{i} satisfies (2.2), then (2.1) holds with $\operatorname{deg}\left(\left(\gamma_{i}-B / M\right)\right)<-m$. In view of this equivalence between (2.1) and (2.2), it is clear that for all positive integers n, all monic $M \in \Phi$ of degree m and all $B \in \Phi$,

$$
\Gamma_{M}(n, B, M)=N_{m}(n, B / M)
$$

so that

$$
\lim _{n \rightarrow \infty} \Gamma_{M}(n, B, M) / n=\lim _{n \rightarrow \infty} N_{m}(n, B / M) / n=q^{-m}
$$

Thus Γ_{M} is u.d. $(\bmod M)$ in Φ.
On the other hand, suppose that for all monic $M \in \Phi, \mathrm{P}_{M}=\left\{\left[M_{\gamma_{i}}\right]\right\}$ is u.d. $(\bmod M)$ in Φ. Then for any $B \in \Phi$, if $\operatorname{deg} M=m$,

$$
\lim _{n \rightarrow \infty} \Gamma_{M}(n, B, M) / n=q^{-m}
$$

Let m be any positive integer and $\beta \in \Phi^{\prime}$ be arbitrary. Then $\beta=F_{\beta}+((\beta))$, with $F_{\beta} \in \Phi$ so $F_{\beta}=0$ or deg $F_{\beta} \geqq 0$ and $\operatorname{deg}((\beta))<0$. Let M be any fixed monic polynomial of degree m and let

$$
M((\beta))=B+\gamma \quad \text { with } \quad B \in \Phi, \quad \gamma=((M((\beta)))
$$

so that $\operatorname{deg} B<m$ and $\operatorname{deg} \gamma<0$.
Now for any positive integer n, if $1 \leqq i \leqq n$ and $\left[M \gamma_{i}\right]=B(\bmod M)$, then by the equivalence of (2.1) and (2.2) we know that that deg ((γ_{i} $B / M))<-m$ But, $B=M((\beta))-\gamma$ with $\operatorname{deg} \gamma<0$, so that $B / M=((\beta))-\gamma / M$ with $\operatorname{deg}(\gamma / M)<-m$. Thus,

$$
\operatorname{deg}\left(\left(\gamma_{i}-\beta+\gamma / M\right)\right)=\operatorname{deg}\left(\left(\gamma_{i}-((\beta))+\gamma / M\right)\right)<-m,
$$

which implies, since $\operatorname{deg}(\gamma / M)<-m$, that $\operatorname{deg}\left(\left(\gamma_{i}-\beta\right)\right)<-m$. Conversely, if $\operatorname{deg}\left(\left(\gamma_{i}-\beta\right)\right)<-m$, then $\left[M \gamma_{i}\right] \equiv B(\bmod M)$ so that for all integers $n \geqq 1$ $N_{m}(n, B)=\Gamma_{M}(n, B, M)$. Therefore,

$$
\lim _{n \rightarrow \infty} N_{m}(n, \beta) / n=\lim _{n \rightarrow \infty} \Gamma_{M}(n, B, M) / n=q^{-m} .
$$

Therefore $\Gamma=\left\{\gamma_{i}\right\}$ is $u . d .(\bmod 1)$ and Theorem 2.1 is proved.
As an immediate consequence of this theorem we can prove
Corollary 2.2. - If $\left\{\gamma_{i}\right\}$ is any sequence in Φ^{\prime} sush that for all monic $K \in \Phi$ the sequence $\left\{\gamma_{i} / K\right\}$ is u.d. $(\bmod 1) /$ s.u.d. $(\bmod 1)$, then the sequence $\left\{\left[\gamma_{i}\right]\right\}$ is u.d./s.u.d. in Φ, that is, it is u.d. $(\bmod K)$ for all monic $K \in \Phi$.

Proof. - Again we only give the proof for uniform distributivity. Let $\left\{\gamma_{i}\right\}$ satisfy the hypothesis and K be any monic element of Φ so that $\left\{\gamma_{i} / K\right\}$ is u.d. $(\bmod 1)$ in Φ^{\prime}. Then by Theorem 2.1, for all monic $M \in \Phi,\left\{\left[M \gamma_{i} / K\right]\right\}$ is u.d. $(\bmod M)$. In particular, with $M=K$ it follows that $\left\{\left[\gamma_{i}\right]\right\}$ is u.d. $(\bmod K)$. Since K is arbitrary, it follows by definition that $\left\{\left[\gamma_{i}\right]\right\}$ is u.d. in Φ.

In [2; §2] a sequence $\theta=\left\{A_{i}\right\}$ in Φ was defined to be rising if and only if $A_{i} \neq A_{j}$ and $\operatorname{deg} A_{i} \leqq \operatorname{deg} A_{j}$ for all integers $1 \leqq i<j$. (This is an analog for Φ of a strictly increasing sequence of positive integers.) In particular, any sequence θ containing all of the elements of Φ, each occurring once arranged according to monotonically increasing degree is a rising sequence and is easily seen to be w.u.d. although, as shown in [2 § 2], it need not be u.d. In order to consider the next results, we need to extend the concept of rising sequence to Φ^{\prime}.
A sequence $\Gamma=\left\{\gamma_{i}\right\}$ in Φ^{\prime} will be called rising if and only if it has the properties:
(a) $\operatorname{deg} \gamma_{i} \leqq \operatorname{deg} \gamma_{j}$ for all $1 \leqq i<j$.
(b) For every sufficiently large integer t, the number $\mathrm{\Gamma}(t)$ of elements of Γ of degree $<t$ is $\overline{<} q^{t}$.

Furthermore, Γ will be called linearly rising if and only if it has property (2.3a) and the additional property
$\left\{\begin{array}{l}\text { There exists a linear polynomial } g(t)=k t+c \text { with integral coef- } \\ \text { ficients } k>0, c \text { such that for all sufficiently large } i \text {, deg } \gamma_{i}= \\ g\left(c_{i}\right) \geqq 0 \text { for some integer } c_{i}>0 \text { and for all sufficiently large } t, \\ \text { the number } \mathrm{\Gamma}(g(t)) \text { of elements of } \Gamma \text { of degree }<g(t) \text { is equal to } q^{2} .\end{array}\right.$

We note that if a sequence θ in Φ is rising in Φ, then it is also rising in Φ^{\prime} and if, in addition, it contains all the elements of Φ, then is linearly rising in Φ^{\prime} with $g(t)=t$.

Now, as a direct consequence of Theorem 2.1 we have
Corollary 2.3. - If sequence $\Gamma=\left\{\gamma_{i}\right\}$ in Φ^{\prime} is rising and u.d. (mod 1), then for all monic $M \in \Phi$, the sequence $\Gamma_{m}=\left(\left[M_{\gamma_{i}}\right]\right)$ is w.u.d. $(\bmod M)$ in Φ.

Proof. - If Γ satisfies the hypotheses then, by Theorem 2.1, for all monic $M \in \Phi, \Gamma_{M}$ is u.d. $(\bmod M)$ in Φ.

Since Γ is rising in Φ^{\prime}, by (2.3b) no element of Φ^{\prime} appears infinitely often in Γ and by (2.3a) and (2.3b), for sufficiently large $t>0$, the $\Gamma(t) \leqq q^{t}$ elements of Γ of degree $<t$ are the first $\Gamma(t)$ elements of Γ. Therefore, for any sufficiently large $t>0$, if $\Gamma_{M}(t)=j>0$, these j elements of Γ_{M} of degree $<t$ are the first j elements of Γ_{M} so that for any $B \in \Phi$,

$$
N\left(\Gamma_{M}, t, B, M\right)=\Gamma_{M}(j, B, M) .
$$

Thus, since Γ_{M} is u.d. $(\bmod M)$, if $d e g M=m$,

$$
\lim _{t \rightarrow \infty} N(M, t, B, M) / \Gamma_{M}(t)=\lim _{j \rightarrow \infty} \Gamma_{m}(j, B, M) / j=q^{-m},
$$

since the subsequence of distinct quotients on the left is a subsequence of the convergent sequence of quotients on the right and no quotient in the left sequence appears infinitely often. Therefore, by definition, Γ_{M} is w.u.d. (\bmod , M) in Φ.

A result which is similar to Corollary 2.3, but seems to be more useful in the applications we wish to consider, is

Theorem 2.4. - If the sequence $\Gamma=\left\{\gamma_{i}\right\}$ in Φ^{\prime} is linearly rising and s.u.d. $(\bmod 1)$, then for all monic $M \in \Phi$, the sequence $\Gamma_{m}=\left\{\left[M \gamma_{i}\right]\right\}$ is w.u.d. $(\bmod M)$ in Φ.

Proof. - By definition of linearly rising, there exists a linear polynomial $g(t)=k t+c$ with integral coefficients $k>0, c$ such that for all sufficiently large i, $\operatorname{deg} \gamma_{i}=g\left(c_{i}\right) \geqq 0$ for some integer $c_{i}>0$ and for all sufficiently large t, the number $\Gamma(g(t))$ of elements of Γ of degree $<g, t)$ is $\left.\Gamma\left(g^{\prime} t\right)\right)=\Gamma(k t+c)=q^{t}$.

Let monic $M \in \Phi$ be arbitrary of degree $m>0$. For all integers $i \geqq 1$, $M_{\gamma_{i}}=M\left[\gamma_{i}\right]+M\left(\left(\gamma_{i}\right)\right.$, so that for all sufficiently large i,

$$
\operatorname{deg}\left[M \gamma_{i}\right]=\operatorname{deg} M\left[\gamma_{i}\right]=m+g\left(c_{j}\right)=k c_{i}+(m+c) .
$$

Since for all sufficiently large $\left.t, \Gamma\left(g^{\prime} t\right)\right)=q^{t}$, it follows that for all sufficiently large t, sequence $\Gamma_{M}=\left\{\left[M \gamma_{i}\right]\right\}$ has the property $\Gamma_{M}(k t+(m+c))=q^{t}$ and by property (2.3a), these q^{t} elements of $\Gamma_{b r}$ correspond to the first q^{t} elements of I. Also, by virtue of the equivalence between conditions (2.1) and (2.2), we see that for all $B \in \Phi$

$$
\left.N\left(\left.\right|^{\prime}, k t+(m+c), B, M\right)=N_{m}^{\prime} q^{t}, B / M\right)
$$

Therefore, for all $B \in \Phi$, since Γ is s.a.d. $(\bmod 1)$ in Φ^{\prime},
$\lim _{n \rightarrow \infty} \frac{N\left(\Gamma_{M}, n, B, M\right)}{\Gamma_{M}(n)}=\lim _{t \rightarrow \infty} \frac{N\left(\Gamma_{M}, k t+(m+c), B, M\right)}{\Gamma_{M}(k t+(m+c))}=\lim _{t \rightarrow \infty} N_{m}\left(q^{t}, B / M\right) / q^{z}=q^{-m}$.
since for sufficiently large n, the distinct quotients on the left are elements of a subsequence of the convergent sequence of quotients in the niddle and no quotient in the left sequence appears infinitely often. Thus by definition Γ_{M} is w.u.d. $(\bmod M)$ in Φ.

Corollary 2.5. - Let $f(u)$ be any polynomial with coefficients in Φ^{\prime} and $\left\{A_{i}\right\}$ be any rising sequence in Φ which contains all the elements of Φ. If the sequence $\theta=\left\{f\left(A_{i}\right)\right\}$ is s.u.d. (mod 1) in Φ, then for all monic $M \in \Phi$, the sequence $\theta_{M}=\left\{\left[M f\left({ }^{\prime} i\right)\right]\right.$ is w.a.d. $(\bmod M)$ in Φ.

Proof. - Let $f(u)$ have degree k and c be the degree, as an element of Φ^{\prime}, of the leading coefficient of $f(\boldsymbol{u})$. Then if $\operatorname{deg} A_{i}=a_{i}, \operatorname{deg} f\left(A_{i}\right)=k a_{i}+c \geqq 0$ for all sufficiently large a_{i}. Let $M \in \Phi$ be monic of degree m. Then for all integers $t \geqq 1$, $\operatorname{deg} f\left(A_{i}\right)=\left(k a_{i}+c\right)<k t+c$ if and only if $a_{i}<t$, and this latter condition holds if and only if $1 \leqq i \leqq q^{t}$. Thus for all sufficiently large t, the number $\theta(k t+c)$ of elements of θ of degree $<k t+c$ is q^{i}. Also, since $\left\{A_{i}\right\}$ is a rising sequence, $\operatorname{deg} f\left(A_{i}\right) \leqq \operatorname{deg} f\left(A_{j}\right)$ for all $1 \leqq i<j$. Therefore, by definition, θ is linearly rising sequence in Φ^{\prime}. Since by hypothesis θ is s.u.d. $(\bmod 1)$ it follows by Theorem 2.4 that for all monic $M \in \Phi$, the sequence $\theta_{M}=\left\{\left\lfloor M f\left(A_{i}\right)\right]\right\}$ is w.u.d. $(\bmod M)$ in Φ.

3. - An application to sequences in Φ.

The motivation for the introduction in section 2 of the concept of a linearly rising rising sequence in Φ^{\prime} and its role in Theorem 2.4 and Corollary 2.5 is to be found in the following result.

Theorem 3.1. - Let $f(u)$ be any polnomial of degree $k, 1 \leqq k<p$, with coefficients in Φ^{\prime} such that $f(u)-f(0)$ has at least one irrational (not a quo. tient of elements of Φ) coefficient and let $\left\{A_{i}\right\}$ be any rising sequence in Φ
which contains all the elements of Φ. Then the sequence $\left\{\left[f\left(A_{i}\right)\right]\right\}$ is w.u.d. in Φ.

Proof. - For every monic $K \in \Phi$, the polynomial $f(u) / K$ with coefficients in Φ^{\prime} has the property of $f(u)$ stated in the hypotheses. Then by a result of Carlitz [1; Theorem 9] it follows that $\left\{f\left(A_{i}\right) / K\right\}$ is s.u.d. $(\bmod 1)$ in Φ^{\prime} for all monie $K \in \Phi$.
Thus, by Corollary 2.5, for any fixed monic $K \in \Phi$, the sequence $\left\{\left[\bar{M} f\left(A_{i}\right) / K\right]\right\}$ is w.a.d. $(\bmod M)$ in Φ. In particular, with $M=K,\left\{\left[f\left(A_{i}\right)\right]\right\}$ is w.u.d. $(\bmod K)$. Since this result holds for all monic $K \in \Phi$, by definition, $\left\{\left[f\left(A_{i}\right)\right]\right\}$ is w.u.d. in Φ.

The case of this theorem with $f(\boldsymbol{u})=\xi u$, where ξ is irrational, has been previously proved by the author [2; Theorem 4.2].

REFERENCES

[1] L. Carlitz, Diophantine approximation in fields of characteristic p, Trans. Amer. Math. Soc. 72 (1951), 187.208.
[2] John H. Hodges, Uniform distribution of sequences in GF[$q, x]$, Acta. Arith. 12 (1966), ธ5.75.
[3] Ivan Nivan, Uniform distribution of sequences of integers, Compositio Math. 16 Fasc. 1, 2 (1964), 158.160.
[4] C.L. Vanden Eynden, The uniform distribution of sequences, dissertation, University of Oregon, 1962 .

[^0]: (*) Supported by NSF Research Grant GP 6515.
 (**) Entrata in Redazione il 13 giugno 1969.

