On the existence of periodic solutions of a certain non-antonomous differential equation

Rolf Reissig (Saarbrüoken) (*)

Summary. - Applying the Leray-Schauder fixed point theorem we prove the existence of a periodic solution for a non-autonomous differential equation with a bounded nonlinear term.

Let us consider the differential equation
(1)

$$
\begin{gathered}
x^{(n+1)}+a_{1} x^{(n)}+\ldots+a_{n} x^{\prime}+f(x)=p(t) \\
{[n \geqq 1, p(t+w) \equiv p(t)]}
\end{gathered}
$$

where the functions f and p are continuous for all values x respectively t and the constant coefficients $a_{i}>0(1 \leqq i \leqq n)$ satisfy the Hurwitz conditions

$$
D_{1}>0, \ldots, D_{n}>0
$$

for the n-th order equation

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 .
$$

Herein the following definition is used:

$$
D_{1}=a_{1}, D_{k}=\left|\begin{array}{ccccc}
a_{1} & a_{3} & & & a_{2 k-1} \\
1 & a_{2} & & & a_{2 k-2} \\
0 & a_{1} & . & . & a_{2 k-3} \\
0 & 1 & & & a_{2 k-4} \\
& & . & \\
& & . & \\
& & . & \\
0 & 0 & . & . & a_{k}
\end{array}\right|\left(k>1, a_{m}=0 \text { for } m>n\right) .
$$

(*) Entrata in Redazione il 18 agosto 1969.

Later on we have to consider the $(n+1)-t h$ order equation

$$
\lambda^{n+1}+a_{1} \lambda^{n}+\ldots+a_{n} \lambda+a=0
$$

taking a sufficiently small value $a>0$ and the same values $a_{k}(1 \leqq k \leqq n)$ as above. It is evident that the corresponding Hurwitz conditions

$$
D_{k}(a)>0(1 \leqq k \leqq n), D_{n+1}(a)=a \quad D_{n}(a)>0
$$

can be fulfilled too because $D_{k}(a), 1 \leqq k \leqq n$, is a polynomial with respect to a having the initial value $D_{k}(0)=D_{k}>0$.

The purpose of this paper is to prove
Theorem 1. - Equation (1) admits at least one periodic solution of period ω if
(i) $|f(x)| \leqq F$ for all x
(ii) $f(x) \operatorname{sgn} x>0$ for $|x| \geqq h>0$
(iii) $|p(t)| \leqq m,|P(t)|=\left|\int_{0}^{t} p(\tau) d \tau\right| \leqq M$.
[Condition (iii) is equivalent to $P(\omega)=\int_{0}^{\omega} p(\tau) d \tau=0$.]
The main tool of our proof will be the Leray-Schauder fixed point theorem (for example, see [4]).
a) Let $x(t), 0 \leqq t<T$, be a solution of equation (1); its derivative $x^{\prime}=y$ may be considered as a solution of the linear n-th order differential equation

$$
\begin{equation*}
y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y=p(t)-f(x(t)) . \tag{2}
\end{equation*}
$$

This equation is of the asymptotic stable type and a wellknown fact is that the following estimation holds for $0 \leqq i \leqq n-1$:
$\left(C\right.$ and x positive constants only depending on the coefficients $\left.a_{1}, \ldots, a_{n}\right)$.
A similar estimation may be written for $y^{(n)}\{t\}$.
Now, by a simple conclusion, the solation considered by us can be defined for all $t \geqq 0$ (i.e. $T=\infty$).

Furthermore we obtain (with a constant $C_{0}>C$)

$$
\begin{equation*}
\left|y^{(i)}(t)\right| \leqq C_{0}\left(m+F^{\prime}\right) \text { for } t \geqq T_{0} \tag{3}
\end{equation*}
$$

[T_{0} sufficiently large and depending on the initial values $y^{(j)}(0)$].
b) Integrating equation (1) from $t^{\prime} \geqq T_{0}$ to $t>t^{\prime}$ we find

$$
\begin{aligned}
& x(t)=x\left(t^{\prime}\right)-\frac{1}{a_{n}}\left[x^{(n)}(t)+a_{1} x^{(n-1)}(t)+\ldots+a_{n-1} x^{\prime}(t)\right] \\
& \\
& +\frac{1}{a_{n}}\left[x^{(n)}\left(t^{\prime}\right)+a_{1} x^{(n-1)}\left(t^{\prime}\right)+\ldots+a_{n-1} x^{\prime}\left(t^{\prime}\right)\right] \\
& \\
& -\frac{1}{a_{n}} \int_{t^{\prime}}^{t} f(x(\tau)) d \tau+\frac{1}{a_{n}}\left[P(t)-P\left(t^{\prime}\right)\right] \\
& \leqq x\left(t^{\prime}\right)-\frac{1}{a_{n}} \int_{t^{\prime}}^{t} f(x(\tau)) d \tau+\rho, \\
& \rho=\frac{2}{a_{n}}\left[n \alpha C_{0}(m+F)+M\right], \alpha=\operatorname{Max}\left(1, a_{1}, \ldots, a_{n-1}\right) .
\end{aligned}
$$

If $x(t) \geqq h$ [and consequently $f(x(t))>0$] for this interval $t \geqq t^{\prime}$ we obtain

$$
x(t) \leqq x\left(t^{\prime}\right)+\rho
$$

and furthermore

$$
\begin{gathered}
x(t) \leqq x\left(t^{\prime}\right)+\rho-\delta^{\prime}\left(t-t^{\prime}\right), \\
a_{n} \delta^{\prime}=\left\{\inf f(x) ; x\left(t^{\prime}\right) \leqq x \leqq x\left(t^{\prime}\right)+\rho\right\} .
\end{gathered}
$$

There must be a $t^{\prime \prime}>t^{\prime}$ such that

$$
x\left(t^{\prime \prime}\right)=h,
$$

and for $t \geqq t^{\prime \prime}$ the estimation

$$
x(t) \leqq h+?
$$

is valid.
A similar result may be derived for $-x(t)$.
Let be $T_{1}>T_{0}$ sufficiently large and

$$
k=\operatorname{Max}\left(C_{9}, \frac{2 n \alpha C_{0}}{a_{n}}, \frac{2}{a}\right) ;
$$

then we can summarize:
(4)

$$
\left\{\begin{array}{l}
|x(t)| \leqq h+k(m+M+F) \\
\left|x^{(i)}(t)\right| \leqq k(m+F), \quad 1 \leqq i \leqq n \\
\text { for } t \geqq T_{1}
\end{array}\right.
$$

c) Choosing (like above) a sufficiently small constant $a \in\left(0, \frac{1}{k}\right)$ we investigate the more general equation

$$
\begin{equation*}
x^{(n+1)}+a_{1} x^{(n)}+\ldots+a_{n} x^{\prime}+a x=\mu[a x-f(x)+p(t)] \tag{5}
\end{equation*}
$$

$$
(0 \leqq \mu \leqq 1)
$$

For $\mu=1$ we obtain the original equation (1).
If on the right hand side the variable x is replaced by a continuous ω-periodic function $u(t)$ equation (5) becomes a non-homogeneous linear equation with a uniquely determined ω-periodic solution

$$
\begin{equation*}
v(t)=\mu T\{u(t)\}, 0 \leqq \mu \leqq 1 \tag{6}
\end{equation*}
$$

The following interpretation is possible:
May B be the Banach space of all continuous functions $u(t), 0 \leqq t \leqq \omega$ with the boundary condition $u(0)=u(\omega)$ and the norm

$$
\|u(t)\|=\operatorname{Max}_{[0, \omega]}|u(t)|
$$

Then the operator T maps B into itself.
After replacing equation (5) by an equivalent first order system it is easily be shown that the mapping T is continuous and compact.

Applying the Leray-Schauder fixed point theorem we can state:
If there exists an a priori estimation for the fixed points of the operator $\left.\mu T_{1} 0 \leqq \mu \leqq 1\right)$ i.e. for the ω-periodic solations of equation (5), this equation will admit at least one ω-periodic solution for each value $\mu \in[0,1]$, especially for $\mu=1$.

Remark. - If all solutions of equation (5) are ultimately bounded and the bound can be chosen independently on μ, then the needed a priori estimation follows immediately.

In order to apply the preceding boundedness result (4) we write instead of (5)

$$
\begin{gather*}
x^{(n+1)}+a_{1} x^{(n)}+\ldots+a_{n} x^{\prime}+f_{\mu}(x)=\mu p(t), \tag{7}\\
f_{\mu}(x)=(1-\mu) a x+\mu f(x) .
\end{gather*}
$$

Bat the term $f_{p}(x), \mu<1$ doesn't fulfil condition (i). For this reason an auxiliary consideration is necessary.
May equation (7) possess an ω-periodic solution $x(t)$, and be

$$
S=\| x(t)=\operatorname{Max}_{[0, \omega]}|x(t)| .
$$

Replacing $f_{\mu}(x)$ by the function

$$
f_{\mu}^{*}(x)=\left\{\begin{array}{l}
(1-\mu) \alpha x+\mu f(x), 0 \leqq|x| \leqq S \\
(1-\mu) \alpha S \operatorname{sgn} x+\mu f(x),|x| \geqq S
\end{array}\right.
$$

we obtain an equation which admits the same ω-periodic solution $x(t)$. This equation belongs to the class (1) because conditions (i) and (ii) are satisfied:

$$
\begin{gathered}
\left|f_{\mu}^{*}(x)\right| \leqq(1-\mu) a S+\mu F<a S+F \text { for all } x ; \\
f_{\mu}^{*}(x) \operatorname{sgn} x>0 \text { for }|x| \geqq h .
\end{gathered}
$$

Applying the estimation (4) we conclude

$$
\begin{gather*}
S \leqq h+k\{m+M+a S+F), \\
S \leqq \frac{h+k(m+M+F)}{1-k a} \tag{8}
\end{gather*}
$$

This a priori bound for the ω-periodic solutions of (7) is only dependent on the parameters $a_{1}, \ldots, a_{n}, m, M, F, h$ of the system (1) and on the arbitrarily chosen value a; it is evident that we can finally set $a=0$ if $\mu=1$.

Remark. - If $n=0$ we have the differential equation

$$
\begin{equation*}
x^{\prime}+f(x)=p(t) . \tag{9}
\end{equation*}
$$

It is rather easy to prove
Theorem 2. - Equation (9) admits at least one ω-periodic solution if the (weaker) conditions are valid:
(i) $f(x) \operatorname{sgn} x>0$ for $|x| \geqq h$
(ii) $|P(t)| \leqq M$ for all t.

The proof is based on a boundedness result for $x(t)$ [derived by integration of equation (9)] and on the Leray-Schauder fixed point theorem.

If $n=3$ Theorem 1. is a generalization of some former results obtained by Ezeilo [1] and Sedziwy [5].

BIBLIOGRAPHY

[1] J.O.O. Ezerlo, On the existence of periodic solutions of a certain third-order differential equation. Proc. Cambridge Phil. Soc. 56 (1960), 381-389.
[2] J. Leray - J. Schadder, Topologie et équations fonctionelles. Ann. Sci. Éc. Norm. Sup. S. III, 51 (1934), 45-78.
[3] R. Reissig, Periodische Lösungen nichtlinearer Differentialgleichungen. Movatsb. Deutsch. Akad. Wiss. Berlin 8 (1966), 779-782.
[4] R. Reissig - G. Sansone - R. Conti, Nichtlineare Differentialgleichungen höherer Ordnung. Edizioni Cremonese, Rom 1969.
[כ] S. Scdziwx, On periodic solutions of a certain third-order non-linear differential equation. Ann. Pol. Math 17 (1965), 147-154.
[6] G. Villari, Soluzioni perindiche di una classe di equazioni differenziali del terz'ordine quasi lineari. Ann. Mat. Pura Appl. IV, 78 (1966), 103-110.

