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Summary. - An hereditary system is a system whose present state is determined in sorn~ 
way by its past history. We formulate a class of such systems which includes functional 
differential equatious of retarded type a~ld many equations of neufral type as ~vell as 
Volterra integral equation, s. Theorems of existence: u~ique~ess, continuation and co~ti- 
nuous dependence are proved. 

t .  - In t roduct ion .  

An hereditary system is a system whose present state is determined in 
some way by its past history. A functional  differential ,  equation of retarded 
type is an hereditary system in which the derivative x(f) of the slate x at 
time t is specified as a function of the past values of x over some interval. 
A functional  differential  equation of neutral  type is an hereditary system 
in which x(t) is specified as a function of the past values of x and ~v over 
some interval. A ¥OLTERRA integral equation is an hereditary system in 
which the state x(t), t ~ 0 ,  is specified as a function of i t s  history over 
[0, t]. A difference equation is an hereditary system in which the state x(t) 

is specified as a function of its past history over some finite interval. 
In this paper, we formulate a class of hereditary systems which is large 

enough to include equations of all of the above mentioned types. The 
formulation includes all functional  differential  equations of retarded type, 
VOLTERRA integral equations and difference equations. The formulat ion does 
not include all funct ional  differential  equations of neutral  type, the basic 
restriction being that the derivative x occurs l inearly in the equations. We 
give theorems of existence, uniqueness and continuation of solutions, as well 
as theorems on the dependence of solutions on initial data and parameters.  
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2. - F i x e d  p o i n t  t h e o r e m s .  

In this section, we give a slight generalization of the SCttAUDER fixed 
point theorem due to KRAS~OSEY, SK][I [4] and introduce the class of uniformly 
compact  operators which are useful  for proving theorems on continuous 
dependence of solutions of hereditary differential  equations on initial data 
as well as parameters.  Throughout  the paper, an operator  is said to be compact 
if it is continuous and bounded sets into precompact  sets. 

LEY[MA 2.l. - Suppose F is a closed, bounded, convex subset of a Banach 
space X. I f  T : r--> X is a contraction, S : r--> X is compact, T(P) 
S([) aef { z -~ Tx ~ ~y, x, y ~ F } C P, then T + S has a fixed point in F. 

PROOF. - If  I is the identity mapping, the fact that T is a contraction 
implies I - -  T is a homeomorphism between r and (][-- T)L 

We next show that S(~)C ( I - - T ) P .  For any y e S(r), define the sequence 
of successive approximations [ xn }, n---  0, 1, 2, ..., Xoe P arbitrary, x~+~ -- 
y ~ T x , ,  n----0, 1, 2 . . . . .  Each ~r~eP since T(P) - [ -S (F)cF .  Furthermore,  
since T is a contraction, I x n + l - x , , l ~ c t l x ~ - ~ r n - ~ I ,  for some 0 ~ a <  i and 
n - - 1 ,  2, .... Therefore, the sequence {x~} forms a CAUCK¥ sequence which 
must converge to some element x in F. It is clear that w satisfies ( I - -  T)x ~-- y. 
Consequently, S(V) C ( I - -  T)I!. 

Since I - - T  is a homeomorphism between l: and ( I - - T ) I  ~ and S(r)C 
( I - - T ) P ,  finding a fixed point of T - t - S  in 1~ is equivalent  to finding a 
fixed point of ( [ ~  T)-~S in P. The operator ( I - - T ) - ~ S :  1~---> P is compact. 
If  A is the convex closure of ( I -  T)-~S(F), then A C I ~ is compact  from a 
theorem of MAZUR Furthermore,  ( I - - T j - ~ S A ) C  A and the SCI-IAUDER fixed 
point theorem implies the existence of a fixed point in A C I !  This proves 
the lemma. 

DEFINITION 2.1. - Suppose X, Y, Z are BA~¢~_¢~I spaces, P, h are subsets  
of X, Y respectively and S : A X F ---> Z. Let the values of S in Z be denoted by 
Syx. The mapping S is said to be u~iformly compact on A X F if for each 
closed, bounded subset  A ~ c A ,  I?~cP,  the set {z-~ Szx , (y, x)~A~XI:~} is 
relatively compact, and Sz :F- ->  Z is continuous for each y e A .  

LEMMA 2.2. - Suppose X,  Y are Banach spaces, A is a subset of  Y and 
is a closed, bounded, convex subset of X. Also, suppose T : A  X P--->X is 

such that Ty is a contraction for each y ~ A at~d S : A x P -+ X is uniformly 
compact, Ty~ ~ Sxl ' c  F for each y e A .  I f  there is a yoGA such that Sxx 
Tyx are continuous at yo uniformly for x e P, and the equation 
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has a unique solution x(yo)eF at yo, then the solutions x(y), y e A ,  o f  (2.1) 
in ~ are continuous at yo. 

PROOF. - ]~rom L e m m a  2.1, there  is a solut ion of (2.1) for  each  y in A. 
Suppose  y,  e h ,  n - - 1 ,  2, ..., approaches  yo as n--->c,z and let x.  be any  
solut ion of (2.1) cor responding  to y --  y,~, n --  0, 1, 2, .... F r o m  the hypothesis ,  
xo is the only  solut ion of (2.1) for y m y o .  Since  Tyx is con t inuous  at  yo 
un i fo rmly  for x E F ,  there is a sequence  ~,, > 0~ ~.-->0 as n---> cxz such tha t  
] T x - -  T y o x ] < ~ . ,  for all  x e [ ' ,  n - -  1, 2, .... Fu r the rmore ,  since S is uni- 

fo rmly  compact ,  there are a z e X  and  a subsequence  of the y,  which  we 
again  label as y,  such tbat  Sy, x,--> z as n--> c~z. Therefore ,  

( I - -  T~o)X° = 5~x .  + ~; , : .  --  ~oXo 

.->z as n - - > ~ .  

Consequent ly ,  Ty o a cont rac t ion  impl ies  x.  converges to w-----(I--Tyo)- tz  as 
n - - > ~ .  I t  is c lear  that  w is a f ixed point  of Ty 0 ~-Szo and  therefore  w ~ Xo. 
Since every  subsequence  of the sequence  x~ must  have a subsequence  converging  
to xo, it  fol lows thnt the sequence x~ converges to xo. F ina l ly ,  the sequence  
of f ixed points  x,. being a rb i t ra ry  implies  the conclus ion  of the lemma.  

Even  though  it is not needed in the following, essent ia l ly  the same 
proofs as above yie ld  the fo l lowing genera l iza t ions  of L e m m a s  2.1 and  2.2. 

LEMMA 2.3. - Suppose F is a closed, bounded convex subset of a Banach 
space X. I f  T : g---> X is such that I - -  T is a homeomorphism between r and  
( I - - T ) F ,  S : X - - > X  is compact, S(F) C ( I - -  T)r, then 7 ' + S  has a fixed, 
point  in g. 

L E ~ A  2.4. - Suppose X,  Y are Banach spaces, A is a subset of  Y and 
F is a closed, bounded, convex subset of  X. Also, suppose T:  h X F - - > X  is 
such that I -  l'y is a homeomorphism between I' and ( I -  Y~)F for each y e A, 
S : A X F ---> X is uni formly  compact, Sy(I') C (I ~ T:)F for each y in h. I f  there 
is a Yo ~ A such that Syx and  ~ x  are continuous at yo uni formly  with respect 
to x e £ ,  and the equation (2.1) has a uniqlse solution x(yo)eF at yo, then 
the solutions x(y), y e h of  (2.1) in P are continuous at yo . 

3. - A general class of  hereditary differential  equations. 

Let  /~ denote  the real  line, R ~ be an  n=d imens iona l  l inear  vector  space 
wi th  norm t" l; let  ~2 denote  the set of all  compac t  subsets  of R and  let A be 
an  e lement  of ~2. I t  is convenien t  to assume that  zero is the max ima l  e lement  
of A. Le t  CA-: C(A, R ~) be the space of con t inuous  func t ions  mapp ing  A 
into R ~ with  [ :? I - -  sup~eA[ ~(0) 1 for all  ~ in C~. 

AnnaIi di Matematica 9 
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Let E be a connected interval of R, ~ be a continuous mapping of E X A 
into R such that :¢(t, A )~2 ,  :¢(t, 0 ) ~  t, ~(t, O ) ~ ( t ,  ~), a(t, 0 ) - - t  for all 
t ~ E ,  O ~  ~ c A .  If x is any continuous function mapping the range of ~ into 
R ~, we define an operator ~ : E  X 0e--> Ca by the relation 

(~,x)(0) = x(~(t, 0)), 0 e A, t ~ E. 

The triple (A, a, ~) will be referred to as an hereditary structure. 
Suppose (A, a, ~) is an heredi tary structure,  g ' E X  C~-->R" and 

f ' E  X C~-+ R ~. An heredi tary differential  equation is a relation of the form 

(3.1) 

where 

(3.2) 

d[D(t)~,~v] -- f(t, ~,~) 

D(t)? = ?(0) - -  g(t, ?), t e E, ? e Ca. 

If g - - 0 ,  then (3.1) reduces to the equation 

d x( t )  = f(t,  ~,~), (3.3) dt 

which is usually referred to as a functional differential  equation of retarded 
type. Functional  differential  equations (3.3) of re tarded type were first 
formulated in this manner  by J .K.  HALE and G.S. JONES in a seminar at 
RIAS in 1963 and was later published in an even more general  form by 
G.S. JO:SES [3]. The formulation given above is useful for a much wider 
class of problems occurring in the applicat ions-including certain equations 
of neutral  type as well a s  ¥ ' O L T E R R A  integral equations. 

To appreciate the generali ty of (3.1), let us consider some more special 
cases. If A-----[--r, 0], r ~ 0 ,  :¢(t, 0 ) - - t - I - 0 ,  0 e l - - r ,  0], ( ~ w ) ( 0 ) - - x ( t + 0 ) ,  
0 e l - - r ,  0], then (3.3) reduces to the usual functional differential  equations 
of re tarded type 

d 
d t  ~(t)  = f(t ,  x,) 

• d e f  where we have employed the conventional notation x,(O)~-El,x(O)--x(t+ 0), 
- - r  ~ 0 ~ O. If this simpler notation is again employed, we see that system 
(3.1) includes the general  class of equations 

(3.4) d[D(t)x,] ---- f(t ,  x,) 

where D,t) is defined in (3.2). 
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If f = 0 system (3.4) includes the difference equation 

(3.5) x ( t ) -  g(t, x(t), x(t - -  ~)~), ..., ~ c ( t -  +k)) -'- h(t) 

where the +j are nonnegative numbers.  If a function satisfies (3.4) on some 
interval and has a sufficiently smooth derivative, then carrying out the 
differentiation in (3.4) leads to the system 

(3.6) ~c(t) - g'+(t, vc,)x~ - -  g',(t, x,) - -  h(t) - -  f(t, x,), 

where x~(O) -- ~(t -}- 0), - -  r ~ 0 ~ 0. System (3.6) includes all of the equations 
of neutral  type for which the derivative occurs linearly. HALE and MEYEn [2] 
have considered equation (3.4) when g(t, ¢?) is l inear  in ?. DRIVER [1] has 

considered (3.6) with ~' gg(t, ¢?)--g(t ,  ~(--s(t))) and s ( t ) ~ 0 .  Driver has also 
treated cases l inear in the deriviative which cannot be written in the from 
(3.4). 

Equation (3.1) also includes VOLTERI~£ integral equations. To see this, 
let A --- [ ~  1, 0], ~(t, 0) = / ( 1  ~- 0), ~I,a~(0) --  x(/(1 -[- 0)) and suppose a " [0, o,z) X 
[0, c ~ ) X  R"=--> R", h ' [ 0 ,  c~)--> R" are given functions. If 

0 

(3.7) g(t, ~) - -  t I a:t, t(1 -+- c~), ~(0))d0 -+- h(t), t e [0, ~ ) ,  ¢? e CA, 
, J  
- - 1  

D(t, ~ ) =  ~ ( 0 ) -  g(t, ~), 
then 

(3.8) 

0 

D ( t ) ~ , ~ e  - -  x ( t )  - -  t f <t, t(1 + +), <t(1 + -- h(t) 
- -1  

----- x(t) --  f a(t, s, x(s))ds --  h(t). 
0 

If f _= 0 and x(0)----h(0), then (3.1) is equivalent to 

(3.9) 

t 

x(t) - -  h(t) -+- / a(t, s, x(s))ds. 
0 

The l i terature for equation (3.9) is very extensive and the most recent  
general  presentation of existence, uniqueness,  etc. is contained in the paper 
of ~ILLE]~ and SELL [5], NEUSTADT [ 6 ] .  

We now formulate the initial value problem for (3.1). For the heredi tary  
s t ructure  (A, ~, ~ )  and any a e E let E:  be the set of real numbers  defined by 

(3.10) E:  = (2~>~. see co :~(s, A) (~ ( - -  ¢x~, o] 
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where co G for any set G is the closed convex hull of G. The set E:  contains 
the set of real numbers on which an initial function must be specified in 
order to integrate (3.1) on all of E. The set E: may be larger than necessary 
if one is only interested in the integration of (3.1) on a part of E, but we 
always use the above set for simplicity in notation. 

Given a ~ in E and a function +eC~+, we say x : x ( ~ ,  +) is a solution 

of (3.1) with  in i t ia l  value ~ at ~ i f  there is a 7 > 0 such that ~ is defined 
and continuous on E~ U [~, ~ - [ - %  .v coincides with .+ on Eo, D(t)~l,x is con- 
tinuosly differentiable on [~, ~-{-~] and satisfies (3.1) on [~, o-}-7). 

I t  is clear that x is a solution of (3.I) with initial value + at ~ if and 
only if x satisfies the equation 

(3.11) x( t ) -~ ~(t ) ,  t e ~ ,  
t 

* /  
(7 

In the applications, it is convenient to have a different hereditary 
structure in the operator D(t) than in the right hand side of (3.1). This more 
general situation is treated in the following way. Let (A~, :~, C~),(A2, ~2, ~2) 
be heredi tary structures, let A - -  A1 Y, A2, ~ - -  (~ ,  a~), Ct,x --  (all,c, Ct2,x). If  
g, f are as before, we can define a functional  differential  equation as (3.1). 
If g(t, % q~), t e E ,  ¢~eCA~, ~ e C ~ ,  is independent of q~ and f(t, % ~,) is inde. 
pendent of % then the herditary structure in D is (A~, a~, ~ )  and the 
hereditary structure in f is (A~, :~, ~I~). No change in the statement or 
proofs of the theorems below is required for this more general situation. 

4. - Existence of solutions. 

In  this section, we give sufficient conditions on g and f to ensure the 
existence of a solution of the initial value problem for (3.1). 

DEFINITION 4.l. - Suppose A is a compact subset of R, Oe A, 0 in A implies 
0 ~ 0  and suppose U is an open subset of R X C+~. For any (t, ~)e U, 
any ~ 0 ,  s ~ 0 ,  let Q(t, % ~, s) -- { +. e CA " (t, ~b) e U, l ~ - ~ [ ~ ~t, ,~(O)- ¢~(O), 
0 < - - s ,  0e A 1. We say a continuous function g ' U - - >  R ~ is nonatomic at 
zero if for any (t, "4) e U, there exist so ~ so(t, ~) > O, ~to-- po(t, ~0) > 0 continuous 
in t, ~ and a scalar function ~(t, ~, ~, s) defined and continuous for (t, ~)e U, 
0 ~ s  ~ S o ,  0 ~ t~ ~ ~o, nondecreasing in ~, s such that ~(t, % ~o, So) < 1 and 

(4.1) !g¢,  4) - -  g(t, ¢;) i ~ g t ,  v, ~, s) t + - -  ~ I 

for t in R, ~eQ( t ,  % ~t, s) and all O ~ s ~ s o ,  0 ~ ~ o .  
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If W is any subset of U such that so, ito can be taken independent  of 
(t, ~) in W for which #(W, ito, so) - -  sup ~(t, % ito, so)< 1~ then we say g is 
un i formly  nonatomic at zero on W. re 

If g(t, ~) is l inear in q9 and has the representat ion 

u(t, f[do,(t, 
A 

for all ~ e C ~ ,  then g being nonatomie at zero is an expression of some 
continuity of g(t, ~) in ~ as well as the fact that the jump in ~(t, 0) at 0 - -  0 
is < 1. If  the corresponding #(t, % p, s) vanishes for s = 0, then the measure  
generated by ~(t, 0) is nonatomic at zero. This is the motivation for the 
terminology. In this case, any so e A  sufficiently small will satisfy the pro- 
pert ies in the definition and the function ~(t, ~, it, s) is independent  of it, % 

If  there is an ~ < 0 such that g : E  X CA->t~ ~ depends only upon the 
values of ~(0) for O ~ A, 0 ~ ~ < 0, then g is nonatomic at zero with ~(t, % It, s) --  0 
for all t, % it, s, ~ < -  s ~ 0. In particular,  g(t, i~) - -a( t ,  ~(cz(t)--t)), where 
a ( t ) - -  t~  A, :~(t)-- t ~ ~ < 0, t ~ E  is nonatomie at zero. 

If  g(t, ~)--~:(0),  then i g(t, ~ ) - -g ( t ,  ~ I ~ ( 2 1 ~ ( o )  I + ~ ) l ~ ( o ) - ~ O ) l  if 
I ~ - - ¢ p l ~ i t .  Therefore, if V - - ~ ( q ~ C : l ~ l ~ v } ,  2v - l - i t o<  1 and U : ( - c ~ ,  
cx~) ~ V, then g is nonatomic at zero relative to the set U. In fact, one 
takes #(t, % it, s ) - - 2 v ~ - ~  for all t, % s, 0 ~ _ _ ~ i t o .  Because of examples  
of this type, the term nonatomic at zero is being abused. 

Suppose A - - - - [ ~ I ,  0], V is an open set in R", E - - ( - - c ~ ,  c~), a : E X  
E X V--->/~" and for every compact  subset  K of V there is a function pgt ,  u), 
(t, u) e E  X E such that 

(4.2) [a(t, u, ~ ) - -  a(t, u, y) l ~ p K ( t ,  u) t~c-- Y l 

for (t, u, x), (t, u, y) e E  X E X K. If g(t, ~) is defined as in (3.7), then 

I g(t, ~) - -  g(t, 4) 1 ~ g t ,  ~, it, 8)] r - + 1 

for all t ~ E, ~ ~ Q~t, % it, s), where 
t 

~(t, % it, s) = I p~(t, u)du 
J 

Any conditions on the function a which will ensure that the function 
~(t, % it, s) is cor~tinuous in all variables implies that the function g in ~3.7) 
is nonatomic at zero. See ~:~ILLER and SELL [5] for conditions on a which 
will imply this lat ter  property.  
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We will have m a n y  occasions to use the  fol lowing m a c h i n e r y  in sl ightly 
d i f fe ren t  forms so that  it is conven ien t  to e levate  it to a lemma.  

For  o ~ R ,  b > ~, let  I be e i ther  the closed in terva l  [~, b] or the open 
in terva l  [~, b). For  b - - ~  we take  I as the  empty  set. Let  x e CE~u± with 
x(0) = ~(0) for 0 in E~. Suppose  (A, ~z, ~ )  is an he red i t a ry  s t ruc ture ,  U an open 
set in R X  CA and tile c losure  W o f  the set /(t, ~ x ) : t e I }  as well as an 
s -ne ighborhood  V~(W) of W are con ta ined  in U. Let  E e l .  For  any  real  
n u m b e r s  "C, 8 > 0, def ine  I~(~)-- { t : ~ ~ t ~ ~ + • }, F(y,  8, ~, ~ x )  - -  { (t, 4) 
s × C~" t s I~(~), l ~ - -  ~ : x l  <-- ~ } and  $(V, S, ~) = I Y e C~u~(~) y ( t )  = 0, t e E~, 

]y ( t ) ]~8 ,  tsIv(E )}. Let  F(~f, ~ ) = F ( y ,  ~, W ) =  U {B(y, 8, ~, ~ I~x ) :~e I } .  

Final ly ,  for  x e Cz~u~, def ine  x :E  CE~wv(~) by x : ( t ) = x ( t )  for t in E~ and 

x:(t) - -  x(~), t in /(~).  

LEM]~A 4 . 1 . -  Using the above notation, let f, g : U--> R ~ be continuous, 
[ f l ~ M on V~(W) and g uniformly nonatomic at zero on V~(W). Then there are 
positive real numbers yo, 80, v and y, ~; O < y ~ yo, 0 < 8 < ~o/2 such that 

(i) (a) M y < v ~ / 2  or (b) M ~ , < v ( 1 - - v ) 8 / 2  

(ii) [ ~ , ~ - - ~ r x [ < S o / 2 ,  t e I~(~), ~ e I for W compact and a(b, O) < b 
for 0 < 0 .  

(iii) } g(t, ~x~)  - -  g(~, ~gx) t < v~/2, t ~ I~(~>, ~ e I [or W compact and a(b, 
0 ) < b  for 0 < 0 .  

(iv) F(~'o, ~o) C U 

(v) ~(t, +, ~o, y o ) ~ l - v  for (t, +)eF(yo, ~o) 

(vi) (t, ~ , (y- - [ -x ; ) )~F(yo ,  ~o) for t~I~(~), ~ I ,  a(b, O)<b for 0 < 0 ,  
y e ~($, ~, ~) and ~(b, O)< b for 0 < O. 

In  particular, i f  W is compact, ~(b, O) < b for 0 < O, g, f only continuous, 
and g nonatomic at zero on U are sufficient for (i)-(vi) to hold for some V~(w). 

Pl~oo~. - I t ems  (i), (iv), (v) are  immedia te  f rom the def in i t ions  and  the 
hypothesis .  If  W is compact ,  then  the hypothes is  on :¢ in (ii) implies  that  x 
can be ex tended  to a con t inuous  func t ion  on Eo U [o, b]. The  resul t  in (ii) 
as well as (iii) and (vi) are  now immedia te .  If  W is compact ,  and  g, f sat isfy 
the condi t ions  stated in the last par t  of the lemma,  then g is un i fo rmly  
nona tomic  at zero on W a n d  I f l ~ M  on some ~-neighborhood V~(W) of ~z  
This  proves  the lemma.  

REMARK.-  In  the appl ica t ion  of the l emma  W is a point  set in the 
ex is tence  theorem and is e i ther  compact  or closed and bounded  in the 
con t inua t ion  theorems.  
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TttEOREI'~[ 4.1. - Suppose (A, ~¢, c2) is an  heredi tary  s tructure a n d  U is 
an  open set in  R X C~. l f  g, f : U-.-> R n are cont inuous  a n d  g is nonatomic  
at  zero, then for a n y  ~ ~ R, ¢? ~ C~ ,  (~, ~I~'~)e U, there exists a solut ion o f  
(3.1) wi th  in i t ia l  value  ¢? at  ~ de f ined  a~d  cont inuous  on some set E~ U [~, b], 
b > ~ .  

PROOF. - Take W = { (~, ~ ) / "  W compact and the hypothesis imply that 
the conclusions of Lemma 4.1 hold for some numbers  T0, G > 0, 0 < T ~ To, 
O K ' < G ~ 2 .  In  this case, ~ = %  ~ t ) = ~ ( t ) ,  tEE~,  and (~(t)=~(t)--~(O),  
t E I~ = Ir(~), x¢ = ~, I is the empty set. 

Consider the t ransformation 7', S taking S = $(T, ~, ¢~) into CE~u~v 
defined by 

(Ty)(t) = O, t E E~ 
(a) 

(Ty)(t) ---- g(t, ~ d Y  + ~)) - -  g(~, ~ ) ,  t E I~ 
(4.4) 

(b) 
(Sy)(t) = o, t ~ F~ 

t 

(Sy)(t) = f f(s, ~(y + ~))ds, 

Recall that the solutions of (3.1) on (% ~ + T) with initial value ~o at ¢~ 
coincide with the solutions of (3.11). Therefore,  if y* is a fixed point of 7'--}- S 
in S, then x , * - - - y * +  ¢? is a solution of (3.1) on (~, ~-{-T) with initial value 
¢p at ~. Conversely, if ~* is a solution of (3.11) with ~c*--~E 8, then ~c*-- ¢? 
is a fixed point of S +  7'. 

We now show that S q -  7' has a fixed point in 8. From the definition, 
T y ( t ) + S z ( t ) - - ' O  for tEE~ for all y, zES.  Also, for any y, z in ~, t E I  v 
relation (4.4) and Lemma 4.1 imply 

I 7'y(t) + 3z(t) l 

+ 

t g(t, Cf,(y + ~)) --  g(t, CI~) i ÷ l g(t, ~ )  - -  g(% ~ '~ ) l  

f [ f(s, e2s(z + ~)) I ds 
~7 

v~ 

Therefore,  T-+-S" $-->$, T(8)-{-S(S)C$.  It is not difficult  to show that S 
is continuous. Moreover, S(S) C S and S is compact since 1 S y ( t ) - -  Sy(t') 1 

M I t - - t '  I for all t, t' in I v . Also, for y, z in S, by Lemma 4.1, 



72 J. K. HALE - M. A. CRuz: Existence, uniqueness, etc. 

t Ty(t) - ~ ( t )  t = I g(t, & ( y  + ~)) - -  g(t, & ( z  ÷ ~)) I 

~ ( 1  -- v)ly-- zl 

and T is a contraction on S. There[ore, Lemma 2.1 implies the existence 
of a fixed point of T ~  S in ~. This completes the proof of the theorem 

5. - Continuat ion of  solut ions and uniqueness. 

If  ~ is a solution of (3.1) on E~ (2 [~, a), a > ~, we say x is a continuation 
of x if there is a b > a  such that ~ is defined on E~U[~,  b), coincides with 

on E~ (2 [~, a) and satisfies (3.1) on (% b). A solution x is noncontinuable 
if no such continuation exists;  that is, E~ U [~, a) is the maximal interval of 
existence of the solution ~c. If  the conditions of Theorem 4.1 are satisfied~ 
then there is a solution of (3.1) on Eo L)[G a) for some a >  o. ZOR~T'S lemma 
implies the existence of a noncontinuable solution of (3.1). It is also true 
that the maximal interval of existence is open. 

THEOREM 5.1. - Under the same hypothesis as Theorem 4.1, i f  x(z, ~) is 
a noneontinuable solution of  (3.1) on E~ U [~, b), ¢? in CE~, (z, ~ ) E  U, ~(b 
0) < b for 0 < 0, then either 

(a) (tk, ~kw) for some sequence tk--> b-  as k--> ~ tends to the boundary 
~U of  U i f  the closure W of  { (t, C~,w)'v ~ t < b } is compact, or, 

(b) W is not compact in which case b - - o z  or the closure of G--- 
{ ~,~c • o _~ t < b } is not compact. 

PROOF.-  (b) follows readily from (a). We show the validity of (a) by 
contradiction. 

Let  W be compact. Then b < oo. Suppose W is properly contained in 
U, and (a) is not true. By Lemma 4.1, there are positive numbers,  70, 80, ?, 
and v, 0 < y ~ y 0 ,  0 < 8 ~  80/2 for which items (i) (b), (ii)-(vi) of that lemma 
hold. Define T as in the proof of Theorem 4.1 with ~ replaced by b - - y ,  

by the restrict ion xb_~ of x on E~_~, ~ ( y - b  ~) by ~dY ÷ xb-~), t in I ~ ( b -  y) 
and y in $ - ~ $ ( ? ,  8, b - - y ) .  T i s  a contraction on S. If 

(5.1) z(t) = O, t E Eb_ r 

t 

z(t) = f f(s, ~I~x)ds, b - -  y ~ t ~ b ,  
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then z is defined on Eb_v t.) [b - -  ?, b] since z(b) = lim z(t) exists and z E S(~', $, 
t-.)b-- 

b - - T ) .  The choice of 1" shows that z E ( [ - -  T)$ and there is a unique y in 

$ such that ( I - - T ) y - - - - z .  The uniqueness  of y implies y( t) ---- x( t) - xb_r(t) 
for t in [ b - - %  b). Hence  limx(t) exists and (b, 6Ibx) E U. By the existence 

theorem, ~ is continuable which is a contradiction. (a) must therefore hold 
and the theorem is proved. 

We want to get information as in (a) of the above theorem in terms of 
sufficient conditions on g and f. 

THEOREM 5.2. - Suppose p < 0 is such that g(t, ,~) depends only on values 
of  ~(0) for 0 ~ p < 0 and f maps closed bounded sets in U into bounded sets 
in R ~. [ f  ~ E R, ~ E E~ , (~, C~:~) E U and x si a noncontinuable solution x(~, ¢p) 
of (3.1) defined on its maximal  domain of existence E~ U [~, b), then, for every 
closed bounded subset W of U, there is a ~ E [~, b) such that (~, 6I~x.) is not in W. 

P R o o F . -  No loss in generali ty occurs in assuming (~, 61:~) is in the 
arbi t rary  closed bounded set W in U. The case b ~ cx~ is trivial. Suppose 
b<o% x(~, ~) is such that (t, 6Lx)EW for all ~ t < b  and t f t ~ M  on W. 

1 

The function ~f(s, ~,x)ds is therefore uniformly continuous for t in [~, b). 

Also the function g(t, C~,x) is uniformly continuous for t in [~, b) since g(t~ ¢p) 
depends only on values of ~(0) for 0 ~ p  < 0 .  Therefore, x(t) is uniformly 
continuous on [~, b) and can be extended to a continuous function on [v, b]. 
Since (b, xb)~ U, x can be continued as a solution of (3.1) beyond t ~ b. 
This is a contradiction and proves the theorem. 

The strong hypothesis was made on g in theorem 5.2 te ensure that 
g(t, C~,x) is uniformly continuous on [~, b). Any other condition on g which 
implies this property will yield the same conclusion as in theorem 5.2. 
When  g arises from a VOLTERRA_ integral equation, it is not too dificutt to 
give conditions so that g(t, 61,x) is uniformly continuous for t in [% b). See 
~/I-ILLER and SELL [5]. 

THEOREM 5.3. - Suppose (A, c~, ~)  is an hereditary structure and U is 
an open set in R X CA. I f  g : U----> t~ ~ is continuous, nonatomic at zero, 
f :  U--> R ~ is continuous and ](t, ~) is Lipschitzian with respect to ~ in each 
compact set in U, then for any ~ E R, ~ E CE~, (~, 6Io.~)E U, there is a unique 
solution of  (3.1) with init ial  value ~ at ~. 

PBOOF.-  The proof is essentially the same as the proof for ordinary 
differential  equations. 

AnnaIi di Matematica Io 
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6. - Continuous dependence o f  solut ions.  

In this section, we give sufficient conditions on f, g in (3.1) to ensure 
that the solution depends continuously upon the initial function as well as 
parameters.  

DEFINI~VION 6.1. - I[ A is a compact subset of R, U is an open subset  
of R ) <  CA, A is a subset of some BANACK space and g ' U X  A-->R" with 
values g~.(t, .~), )~ E A, (t, ~) E U, we say the family I g). }, )" E A, o~ functions 
taking U-->/~ is equi-nonatomic at zero provided there are functions so(t, ¢~) > O, 
?o(t, ~ )>  O, ~(t, % ~, s ) <  1 as in Definition 4.1 such that each g)., ) ,EA 
satisfies (4.1) for this ~(t, % t~, s), 0 ~ t ~ l ~ o  , O ~ s < _ s o .  

If there is an s < 0 such that each gz, ), EA, depends only upon values 
of ~(0) for 0EA,  0 ~ < 0 ,  then the family {g)~} is equi-nonatomic at 
zero. Also, if 

/ gz(t, ~) - -  [do~z(t, O)]~(~) 

and there is an s o > 0  and ~ < 1  such that for A ( s o ) - - { O E A ' - - s o ~ O ~ O }  

A(~o) 

for all ~o E CA, ), EA, then the family {gz} is equi-nonatomic at zero. 

TttEOREM 6.1. - Suppose (A, :¢, 6I) is an hereditary structure, U is an 
open set in R X C~, gk: U--->R ~, k-- -0 ,  1, 2, ..., are continuous functions, 
equi-nonatomic at zero, go is uni formly  continuous on closed bounded subsets 
of  U, gk--c, go as k--->~x~ un i formly  on closed bounded subsets of  U, f~: U-->R ~, 
k - - O ,  1, ..., are continuous and f~(s, 4)-->fo(s, ¢~) as k--->~, 4 - ~  for all 
(s, ~)~ U. Also, for any  compact W in U, there is an open neighborhood V(I/F) 
of W and a constant M such that 

(6.1) I £(t, 4) 1 ~ M, (l, 4) E V(W), 

k - - O ,  1, 2 . . . .  

Finally,  let ~ER ,  ~kEC%, (z, ~ k )  EU, k = O ,  1, 2, ..., ~k-->~o as k-->c~ 
and suppose xk ' -xk(~ ,  ~k), k - - 0 ,  l, 2, ..., is a solution of  

d 
(6.2) d-~ [Dk(t)~,~] "-- fk(t, ~,~), t ~ c, 

Dk( t )4  = 4 @  - -  g~(t, 4) 
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with initial value ¢~k at z. I f  Xo is defined on E,  kJ [~, b] and  is unique, 
then there is an integer ko such that the xk, k>__ko, can be defined on 
E~ (3 [z, b] and xk(t)--> x.d,t) un i formly  on E~ U [z, b]. 

PROOF. - The set W - - ( ( t ,  ~Xo), * ~ t ~ b }  is a compact  subset of U. 
Since the family of funct ions  gk, k ~ 0, is equ i -nona tomic  at zero, there are 
cont inuous  scalar  funct ions  so(t, ~) > O, ito(t, ~*) > O, ~(t, % ~, s) < 1, So(t, ~) ~ s ~ O, 
0 ~ it ~ ~o(t, @, (t, ~)E U, such that  each gk satisfies (4.1) for this ~(t, ~, it, s). 
Since W i s  compact,  there are So >0 ,  I re>0,  v > 0  such that  0 < s o < s o ( t ,  ~), 
0 < ito < ~to(t, ~), ~(t, % ~, s) < 1 - -  v, so(t, ~ ) ~  s > O, 0 ~ ~ ~ ~o't, ~), (t, ~)~ W. By 
hypothesis ,  for any (t, ~) ~ W and any ~ > 0, there is a d(t, % ~) > 0 cont inuous  
in (t, ~) such that  I so(t, ¢~) - -  so(t, ~)t < ~, I ito(t, ¢~) - -  ito~, ~)l < ~, ~(t, % it, s) --  
~(t, ~, it, s) l < e  for l t ~ t - l < d ( t ,  % ~), t ~ - - ~ i  <d(t,  ~, z). Therefore,  for e 

suff icient ly small, so(t, q~)> So, ito(t, ~)>  ~o, ~(t, ~P, it, s ) <  1 -  v for ] t - - - t ]  < 

d(t ,%e),  l ~ - - ¢ ~ l < d ( t ,  % ~), (t, ¢¢)~W, O~s~__So ,  0 ~ ~ o .  Since W is 

compact ,  there is a do > 0 such thai  these same inequali t ies  hold for [ t - -  t ] < 
do, I ~ - - ~ 1  < d o ,  (t, ¢?)~ W. From the hypothesis  on the f , ,  there is an open 
neighborhood V - - V ( W )  and a M > 0  such that  If~(t, ~ ) t ~ M ,  (t, ~ )~V,  

k - - 0 ,  1, 2, .... Choose d o > 0  so small  that  (t, ~ ) ~ V i f  l t - - - l l < d o  , Iq~-- 
~1 < do, (t, ¢~) e W. 

For  any z ~ R, ~ ~ C~ and any real numbers  7 > 0, ~ > 0, define F(7, ~) = 
F(~, 8, ~, ~) as in the proof of Theorem 4.1. F rom the above const ruct ion of 
V, there is an open neighborhood G C V of W and a 70 > 0, G > 0 such that  
F('(o, ~o, % ~ ) c V  for any (z, ~)~ VI. Choose Vx so that this is true and for 

any z~[':,  o~) and any real numbers  7, ~ define $(y, ~, z) as in Lemma  4.1 

and let ~ ~ CE~U,~ be defined by 7~(t) = ~(t), t ~ E~, ~(t) --  ~(z), t e I~. Suppose 

2~ < G and choose "~ ~ 70 so that  I ~ o  --  ~ o  I < ~o/2, [ go't, ~ o )  - -  go(z, ~Io¢~o) t 
< v~/2, t ~ I ~ ,  3I 7 < v~/2. Since the %, k ~ 0 ,  are a compact  set of C%, the 

~ ,  k ~ 0 ,  form a compact  set in C~u,~, ~-->~o as k-->~z. Therefore,  there 

is a ko ~ 0 such that  1 ~ , ~  --  ~ [ < ~o/2, t ~ I t ,  k ~ ko. Thus, (t, ~,(y -+- ~)) e 

F(yo, 8o) for t~ I~ ,  y ~ $ ( $ ,  ~, z). Since 

I gk(t, ~.,7~k) - -  gk(z, ~I~'+,~) l <: I gk(t, ~ , ~ )  --  go(t, C[.,~) I + [ go(t, ~,'~k) -- go(t, ~t,7+o I 

+ I go(t, ~,~o) ~ go(z, ~ o )  1 + I go(z, ~¢~o) --  go(Z, ~t:~) [ 

+ I go(z, 6I~'~k) - -  gk(z, ¢2~'~) [, 

the set ~k, k ~ 0  is compact ,  ~--> Vo as k - - > ~ ,  and gk(t, ¢~)-->go(t, ~) uniformly 
on compact  sets, it follows that  ko can also be chosen so that  t g~(t, C ~ k ) - -  
g~(a, ~ I ~ )  l < v~/2, t e I~, k ~ ko. 
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~ow, define the operators T~, S~, k = 0, 1, 2, ..., taking $(?, ~, ~) into 
C~,t/~ by the relations 

( T~y)(t) ---- O, t ~ E~ 

and 

(T~y)(t) --  ggt, ~ ( y  + ~)) - -  gg~, ¢3~),  t E I~ 

(S~y)(t) --  O, t ~ E: ,  

Since 

t 

(S~y)(t) --  f fk(s, ~.~(y -b ~))ds, 
f f  

i g~(t, ~L(y + ~)) - -  go(t, CL(y ~- ~,o)) ~- go(~, ¢3~o) - -  gd~, ~ : ~ )  I 

]ggt, ~ / y  + 7~)) _ go(t, c3,(y + ~)) l + i go(t, ~,,(y + ~)) - -  go(t, ~L(y + 7+o)) I 

+ !g@, ~ o )  - -  go(~, $~'+~) I + I go(,, ~ 0 )  - -  g~(~, ~+~) I 

the ~k --> ~o as k --> c,% ggt, ~)--> go(t, "~) uniformly on closed, bounded subsets 
of U and go(t, ~) is uniformly continuous on closed, bounded subsets of U, 
it follows that Tky--> Toy as k---> c,o uniformly for y E ~(,~. ~, a). Since ~k---> ¢~o 
fgt, ~.)-->fo(t, ¢~) as k - - > ~ ,  ~b-->V and the fk are uniformly bounded on 
V, it follows from the LEBESQUE dominated convergence theorem that 
Skz--> Soy as k - - > ~ ,  z--> y for each y E S('~ ", ~, ~). As in the proof of Theorem 
4.1, the operators Tk are contractions and the S~ are uniformly compact 
with Tk ~ S~" $(7, ~, ~) --> $(7, ~, ~). Lemma 2.2, therefore, implies the existence 
of solutions xgt) of (6.2) on E~ U I~ and xgf)-->xo(l) as k -+  c~ uniformly 
on E:  U 1~. Due to the compactness of the set {(/, ~],Xo)'t E [~, b] }, one com. 

pletes the proof by successively stepping intervals of length ~,. 
The above theorem on continuous dependence is satisfactory for many 

types of equations of neutral  type, but is too restrict ive for VOLTERRA 
integral equations. The next result  will be applicable to VOL~ERRA equations 
and requires the following 

DEFInitION 6 . 2 . -  Suppose (A, ~, ~)  is an heredi tary s t ructure  and U 
is an open subset o[ R X C~. Suppose g" U-->R ~ is a continuous function 
and ~ is an arbi t rary element in CE~ with (~, ~ ,~)C U. Let I v-- [~,  ~ + y ] ,  
B~(~) : { z E C%u~ ~ " z(t) : ~(t), t E E~, l z:t) - -  ?(~)l ~ ~, t E I  v }. Suppose ~, y are 
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chosen so that (t, ~ t z ) E U  for t E I v ,  zEB~(qo). For (t, z) E I v X B ~ ( ~ ) ,  the 

funct ion  .q : B~(~) ---> CI v defined by g(z)(t) = g(t, 6I,z), t E Iv, z E B~(~), is a 
N 

continuous map. We say g is a compact mapping  at ~ if g takes every such 

B~(~) into a relatively compact subset of C, v. ~[ore precisely, the set gB~(~) 
i s  bounded and for any ~ > 0, q~ as above and ~ > 0, there is a d(¢, 5, ¢~)> 0 
such that 

I gCt, 6I,z) - -  g(t', 6L,z) [ < e, 

i f  I t - -  t'I < d(,, 8, ~), t, t' E Iv, z E B~(~). If, in addition, d(~, ~. ~o) is continuous 
in ~, 8, % we say simply that g is a compact mapping. 

THEOREM 6.2. - Suppose (A, a, C~) is an hereditary structure, U is an 
open set in  R X CA, gk : U---> R ~, k = 0 ,  1, 2, ..., is continuous and  compact, 
go is nonatomic at zero and un i formly  continuous on closed bounded subsets 
of  U, gk--> go as k - - ->~  un i fo rmly  on closed bounded sels of U, and  the f~ 
sat is fy  the conditions of  Theorem 6.1. Also, let a ER,  ~kE Cz~, (~, 6I~q~k)E U, 
k - - 0 ,  1, 2, . . ,  ~k-->~o as k - - ->~  and let Xo = Xo(,, ~o)be a solution o f  (6.2) 
for k - - O  with ini t ial  value ~o at ~. I f  Xo is defined on E ~ U  [,, b] and is 
unique, then there is an  integer ko and a solution x k =  xk(v, ~k), k ~ k o ,  of  
(6.2) with ini t ial  value % at ~ defined on E~ U [~, b] and  x~(t)---> xo(t) un i formly  
on E~ U [~, b]. 

~EMARK. - In  the proof, it will be clear that the gk for k > 0 need 
only be compact at ~k. 

PROOF. - The set W =  {(t, ~,Xo), ~r~  t ~ b }  is ~ compact subset of U. 
Using go and the f~, k ~ 0 ,  rather  than the g~, f~, k__~0, as in the proof of 
Theorem 6.1, one can construct  open neighborhoods V~C V of W and find 
a To>0 ,  ~ o > 0  so that F(';o, ~o, ~r, q~)C V for any (~, ~)E V~. For any ~rER 
and any real numbers  y, ~, define ~(y, ~, z) as in Lemma 4.1 and let 
~ ( t ) - -  %(t), t EEl ,  7~(t)---- ~(c), t EI~-. Suppose 2~ < ~o and choose : ( ~ 7 o  
so that i ~I,~o - -  61~o l < ~o/2, [g(t, ~,'~o) - -  g(v, 6I~o I < v ~/2, t E I.~, M~ < v~/4. 
If ~--->¢~o, then there is a ko~__0 such that i ~ , ' ~ - - ~ 1  < ~o/2. Thus, 

(t, ~ /y -} -  ~))E F(~'o, ~o) for t E Iv, Y E $('(, 5, a). Also, the hypotheses on the 
g~ imply that /Co may also be chosen so that I g~(t, ~)--go(t ,  ~)1< ~/8 for 
(t, ~)E V~, k ~ k o .  

Define the operators T~, S~ taking ~(T, ~, ~) into C.ouz7 by the relations 

(T~y)(t) --  0 t E E~, 

(T~y)~t) = go(t, 6t,(y + ~)) - -  go(~, c 2 ~ ) ,  t E 1~, 

(3~y)(t) = O, t E E~, 
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t 

(~S~y)(t) -- f fk(s, Ct,(y + ~k))ds, t ~ IF, 
ff  

(S~yl(t) -- O, t ~ E~ 

(S~y)(t) = g~it, ~ / y  + ~)) - -  goit, ~ ( y  + ~)) - -  g~(~, dl~W) + go(~, C~'~), 

As in the proof of Theorem 6.1, the hypothesis on go implies that each 
of the operators Tk is a contraction for k ~ ko, Tky --> Toy as k --> o~ uniformly 

for y E S(y, 8, ~). Also, the Sk are uniformly compact with Sk--> So as k-->cx~. 

By hypothesis, each S is compact. To prove uniform compactness, observe 

first that ]~kyl<__v~/4 for all k ~ k o .  Furthermore ,  for any z >  0, the 
hypotheses on the gk imply there is a k~ --  k~(¢) ~ ko such that 

I gk(t, $,(y + ~)) - -  go(t, ~,(y + ~k))( < ~/3 

for k__>kl. Since go is compact, and the set ~k, k~_~0 is a compact subset 
of E~, for this same ~, there is a d-----d(~, ~)> 0, independent  of k, such that 

l go(t, ~,(Y + {k)) - -  go(t', ~,,(y + 7¢k) 1 < ~/3 

for all t, t' E IF, t t - -  t'[ ~ d, k ~ 0 .  Consequently 

for k>__kl(z), ] t - - t ' t ~ d ,  t, t'EI~-. Since each gk is assumed to be compact, 
it follows that we can fur ther  restrict  d so that the above inequali ty holds 

for all k ~ k o .  This proves the uniform compactness of the operators Sk. It  

is clear that Sk--> 0 as k----> oo. FinalLy, tile constants have been chosen in 
such a way that T~ + Sk'$('(,  8, a)-->$(y, 8, a) and Lemma 2.2 implies the 
existence of solution xk(t) of (6.2) on Eo U I~ as well as the fact that 
x~(t)-->xo(t) uniformly on E~ t.J I F. The compactness of W permits one to 
successively step intervals of length y until  the interval [~, b] is covered. 
This proves the theorem. 

Theorem 5 of MILLER and SELL [5] on  VOLTERRA integral equations is 
a special case of Theorem 6.2 in two respects. First, Theorem 6.2 involves 
systems much more general  than VOL~EI~BA integral  equations. Secondly, 
the nonatomic property at zero is only imposed on go and uniqueness is 
only assumed for equation (6.2) with k----0. If  fo ~ 0, the noaatomie property 
at zero of go implies uniqueness of the solution of (6.2) for k----0. 
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TEnoa}~  6 . 3 . -  Suppose (A, a, ~I) is an  heredi tary  structure,  U is an  
open set i n  R ~ C~, ~o is a real or complex, number,  h is a neighborhood o f  
~o, g : U X A--> R% g(t, +, ~) is cont inuous  in  (t, +, ~) at  ~ - -  ~o, g is equ i -  
non, atomic at zero, g). , . , ~o) is u n i f o r m l y  cont inuous  on closed bounded subsets 
o f  U, g(t, ~, ),)-->g J, ~b, ~o) u n i f o r m l y  on closed bounded subsets o f  U, 
f :  U X A--> R n, f(t, ~b, ~) is cont inuous  in  (t, ~, ~L) at ), - -  ~Lo, the cont inu i ty  
in  ~ bei~g u n i f o r m  wi th  respect to ).EA. For  any  o E R ,  ~pEE~, (~, ~t~:p)E U, 

E A, let x(o, % ).) be a solu t ion  o f  the equat ion 

(6.3) 
d 
::-[D(t, Z)8 ,x ]  = f(t, &~,, ),) 
dt 

D(t, ),)q = + ( 0 ) -  g(t, ~b, )~) 

w i th  i n i t i a l  value  ~ at  ~. I f  the solut ion ~c(~, % Xo) o f  (6.3) is un ique  a n d  
is defin.ed on E~ U [~, b], then there is a ~ > 0 such that  (6.3) has  a solut ion 

x(~, ~, ~) defined on E~ U [~, b] for I ~ - -  ¢P I < ~, I ~ - -  )~o I < ~, a n d  x(% ~, ~)(t) 
is cont inuous  in  (t, % k) at  (t, % )~o), t E [~, b]. 

PROOF.  - Theorem 6.1 implies the existence of the ~ in the statement 
of Theorem 6.3 and the continuity of x(a, ~, ).)(t) in (~,).) at (%)~o) uniformly 
with respect to t. Since x(z, % )~) is a continuous function of t for t E[z, b], 
the conclusion of Theorem 6.3 follows. 

An analogous result  using Theorem 6.2 rather  than Theorem 6.1 could 
also be stated. The next result deals with the continuity of the solutions in 
the initial time ~. 

TtIEOREI~ 6.4. - Suppose  (A, :¢, ~I) is an  heredi tary  s tructure  wi th  
~(t, O) --  t + O, 0 E A. I f  the condi t ions  o f  Theorem 6.3 are satisfied, then there 
is a ~ > 0 such that (6.3) has a solut ion x(~, % )~) defined on E~ U [~, b] for 
I -~ ~ ~1 < ~, l ~ --  ~1 < ~, ] k - -  )~o I < ~, and  ~,x(~, ~, )~) is cont inuous  in  (t, ~, ~, 
),) at ),o. 

P R o o F . -  The special form ~(t, 0 ) - - t -} -0 ,  0EA, permits one to repeat  
the proof of the basic existence theorem by getting a fixed point of a set 

which is independent  of c;. In  fact, for any ~, ~ 0,-~ ~ 0, let 

$(T, ~) ---- {y E C~u[o,~ 1 • y(t) = O, t E A, ly(t) l < ~ ,  t E [0, 7]}. 

For any a E R ,  ~ E C ~ ,  (a, Ct:~)EC~, define ~ECAuto.~i by ~ ( t ) - - ~ ( ~ + t ) ,  

t E A ,  ~(t)--  ~0(~), tE[0, 7] and choose T ~ 0 ,  8-_20 as in Lemma 4.1. Define 

the transformations T, S, taking S(7, 8) into CAUlO,~] by 
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(Tz)(t) = O, t E A, 

(Tz)(t) = g(t + ~, ~L(z + ~)) - -  g(,, ~ '¢) ,  t E [0, T] 
and 

(8z)(t) --  O, t E A, 
t 

(&)(t) = f f(s + ~, ~(~ + 7,))ds. 
. 2  
0 

Suppose z* is a fix(,d point of T + S  in $(7, o) a n d l e t  w * ( t + ~ ) - - z * ( t ) + { ( l )  
for t E A U [0, y]. Since ~(t, 0) - -  ~(t + 0) for all 0 E A 

,x*(t + ~ + ~) = z*(t + o) + 7~(t + % o E A, t e [0, ~,], 

implies that Eh+:~* = ~ , z * +  ~:~. It is now clear that x* is a solution of 
(6.3) with initial value ~0 at c. Conversely, any solution of (6.3) such that 
~c*(. + v ) - -  7~(.) E $(T, 6) must be a fixed point of S + T. 

Theorem 6.1 can now be generalized to take into account  variations in 
c~; namely, one can also allow in Theorem 6.1 a sequence ~kE R converging 
to Co as k-->co. The proof of Theorem 6.4 is now the same as the proof of 
Theorem 6.3. 

7. - Extension of  the  concept o f  a d i f ferent ia l  equation.  

In Section 3, we defined an heredi tary differential  equation for continuous 
functions [:E X CA-->R ~. On the other hand, it was then shown tha~ the 
initial value problem was equivalent  to 

(7.l) x(t) ---. ~(t) t E E ,  

D(/)~l,,x --  D(~)5l~'~ + f f(s, ~,w)ds, 
u 

t ~ .  

This equation clearly will be meaningful for a more general class of functions 
f if it is not required that D(t)~,x have a continuous first derivative. The 
pnrpose of this section is to generalize the well known concept of CARA~rI-I~ODOR¥ 
conditions for ordinary differential  equations so as to apply to (7.1). 

Suppose A is a compact  subset  of ( - -oo ,  oo) and U i s  an open subset  of 
R )< CA. A function f :  U--> R ~ is said to satisfy the Carathdodory condition 
on U if f(t, ~) is measurable in t for each fixed % continuous in ~¢ for each 
fixed t, and for any fixed (t, ~¢)E U, there is a neighborhood V(t, ~) of (l, ¢~) 
and a LEBES(~UE integrable function m such that 
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(7.2) ]f(s, + ) l ~  re(s), (s, +)E V(t, ~). 

If  f :  U--->R" is cont inuous ,  it is easy to see that  f sat isf ies  the CARA- 
Tn]~ODOa~Y condi t ion of U. Therefore ,  the theory  of (7.1) for f in this more 
genera l  class of func t ions  general izes  the previous theory. 

I f  f sat isf ies  the CAnAT~]~ODORY condi t ion on a set U, a E R  ~ E C%, 
(~, ~I:?) E U, we say a func t ion  x ~- x(a, ¢?) is a solut ion o f  (7.1) w i t h  in i t ia l  

value  ~ at ~ if there  exists  a T > 0 such that  xE  C~ou[:,:+v], x( t) - -  ~( t), t E E ~  

and D(l)~,x  sat isf ies  (6.2) a lmost  everywhere  for l E [v, a + T]. 
Using essent ia l ly  the same a rgumen t s  as in the previous  sections, one 

can ex tend  all of the resul ts  to the case where f satis[ies the CARATft]~ODOR¥ 
condit ion.  Of course,  in the theorems cor responding  to Theorems  6.1 and 6.2 
on con t inuous  dependence ,  all fk should sat isfy  the GAnAT~]~ODORY condit ions,  
and condi t ion (6.l) should  be rep laced  by the fol lowing:  For  any  compact  
set W in U, there is an open neighborhood V(W)  of W and a LEBESGUE 
in tegrable  func t ion  M such  that  the sequence  of func t ions  fk, k = 0, 1, 2, ..., 
sa t is fy  

I f~(s, +)1 ~ M(s), (s, +) E V(W) 

k : O ,  1, 2, .... 
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