Existence, uniqueness and continuous
dependence for hereditary systems (V).

J. K. HarLg (?) and M. A. Cruz (3} (¥

Summary, - An hereditary system Iis a system whose present state is defermined in some
way by its past history. We formulate a class of such systems which includes functional
differential equations of retarded type and many equations of neulral type as well as
Volierra inlegral equations. Theorems of exisiemce, uniqueness, continuation and conti-
nuous dependence are proved.

1. = Introduction.

An hereditary system is a system whose present state is determined in
some way by its past history. A functional differential equation of retarded
type is an hereditary system in which the derivative x(f) of the state ® ab
time ¢ is specified as a function of the past values of & over some interval.
A functional differential equation of neutral type is an heredifary system
in which 2(f) is specified as a function of the past values of ®» and # over
some interval. A VOLTERRA integral equation is an hereditary system in
which the state a(f), =0, is specified as a function of its history over
[0, 7]. A difference equation is an hereditary system in which the state «x(f)
is specified as a function of its past history over some finite interval.

In this paper, we formulate a class of hereditary systems which is large
enough to include equations of all of the above mentioned types. The
formulation includes all functional differential equations of retarded type,
VOLTERRA integral equations and difference equations. The formulation does
not include all functional differential equations of neutral type, the basic
restriction being that the derivative a occurs linearly in the equations. We
give theorems of existence, uniqueness and continuation of solutions, as well
as theorems on the dependence of solutions on initial data and parameters.
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2. - Fixed point theorems.

In this section, we give a slight generalization of the ScHAUDER fixed
point theorem due to KrAsNOSELSKII [4| and introduce the class of uniformly
compact operators which are useful for proving theorems on continuous
dependence of solutions of hereditary differential equations on initial data
as well as parameters. Throughout the paper, an operator is said to be compact
if it is continunous and bounded sets info precompact sets.

LeMMA 2.1. - Suppose I' is a closed, bounded, convex subset of a Banach
space X. If T: Y —=X is a contraction, S:I'-»X is compact, T(I)-4
S i-if:-f{z: Te + Sy, o, yeI' | C I, then T+ S has a fixed point in T.

Proor. - If I is the identity mapping, the fact that T is a contraction
implies I-- T is a homeomorphism between T and (I — T)I.

We next show that SI') C(I — T)[. For any ye S(T), define the sequence
of successive approximations {a.}, n=20, 1, 2, .., woe arbitrary, @, =

4 T, =0, 1, 2, .... Bach a,el' since T() - ST CT. Furthermore,
since T' is a contraction, |a,p — o, | << a]a, —a.a|, for some 0 << a <1 and
n =1, 2, ... Therefore, the sequence {x.] forms a CaUCHY sequence which

must converge to some element o in I'. It is clear that « satisfies (I — Tx == ¢.
Consequently, S(HC I — T)I.

Since I — T is a homeomorphism between ' and (I — T)' and SI)C
(I — DI, tinding a fixed point of T+ 8 in I is equivalent to finding a
fixed point of (I — T)~'S in I The operator (I — I)'S:I'—- I is compact.
It 4 is the convex closure of (I — T)'S(I), then A CTI is compact from a
theorem of MazUR. Furthermore, (I — T'S'4)C A and the ScHAUDER fixed
point theorem implies the existence of a fixed point in 4 CI. This proves
the lemma,

DeriNiTION 2.1. - Suppose X, ¥, Z are BANACH spaces, I, A are subsets
of X, Y respectively and §: A X I' = Z. Let the values of §in Z be denoted by
Syx. The mapping S is said to be uniformly compact on A X I' if for each
closed, bounded subset A1 C A, I'CT, the set {¢= S, (y, ) Ay X1} is
relatively compact, and S,:I - Z is continuous for each yeA.

Leuma 2.2. - Suppose X, Y are Banach spaces, A is a subset of Y and
T is a closed, bounded, convex subsel of X. Also, suppose T.:A X T'—X is
such that T, is a contraction for each yeA and S:A X T — X is uniformly
compact, T, 4~ ST CT for each yeA. If there is a y.e A such that S,
Tyx are conlinuous at yo uniformly for x €I, and the equation

2.1) (I— Tz = S
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has o unique solution x(yoyel' at yo, then the solutions x{y), ye A, of (2.1)
in I' are continuous at yo.

Proor. - From Lemma 2.1, there is a solution of (2.1) for each g in A,
Suppose y.€ A, n=1, 2, .., approaches y, as n —>oco and let x, be any
solution of (2.1) corresponding to y =y, »n =0, 1, 2, .... From the hypothesis,
®o is the only solution of (2.1) for y = yo. Since T\x is continuouns at yo
uniformly for weI', there is a sequence 3,>0, 8,—0 as n-—oc such that
| T, — T,x| <2, for all xel, n =1, 2, ... Furthermore, since S is uni-
formly compact, there are a z€ X and a subsequence of the y. which we
again label as g, such that S, x.-»> # as #— co. Therefore,

(I — Ty)en = 8, + Ty 20, — Ty,

wd 2 AR N —> OO,

Consequently, 7, a contraction implies a, converges to w = — T},) % as
n —oco. It is clear that w is a fixed point of T, - S,, and therefore w = u,.
Since every subsequence of the sequence %, must have a subsequence converging
to @, it follows that the sequence x. converges to w,. Finally, the sequence
of fixed points x, being arbitrary implies the conclusion of the lemma.
Even though it is not needed in the following, essentially the same
proofs as above yield the following generalizations of Lemmas 2.1 and 2.2.

Lemma 2.3. - Suppose I' is a closed, bounded convex subset of a Banach
space X. If T:I' — X is such that I — T is a homeomorphism between T and
-1, §: X=X is compact, STYCUI — T)T, then T+ S has a fixed,
point in L.

Linuma 2.4. - Suppose X, Y are Boanach spaces, A is a subsel of ¥ and
I' is o closed, bounded, convex subset of X. Also, suppose T:A X T—-X is
such that I — T, is a homeomorphism between I' and (I — T)I' for each yeA,
S:A X T— X is uniformly compact, S,(IYC I — T,)I for each y in A. If there
is a yo€ A such that Syx and T,x are confinuous at y, uniformly with respect
fo xel, and the equation (2.1) has a unique solution x(y.)el ai yo, then
the solutions x(y), y € A of (2.1) in I are continuous at yo.

3. - A general class of hereditary differential equations.

Let B denote the real line, B* be an n-dimensional linear vector space
with norm |.|; let Q denote the set of all compact subsets of R and let 4 be
an element of Q. It is convenient to assume that zero is the maximal element
of A. Let C, = (4, R*) be the space of continuous functions mapping 4
into R with [¢ | = suppe.| ¢(0)| for all ¢ in C,.

Annali di Matematica 9
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Let E be a connected interval of B, « be a continuous mapping of £ X 4
into B such that aff, 4)eQ, «{, O <t, o, O)<<oa(t, §), af, 0)=1¢ for all
teE, 0<({ed. If x is any continuous function mapping the range of « into
R, we define an operator & : E X x ~> O by the relation

(Ax)(B) = w(oft, B)), bed, te L.

The triple (4, «, &) will be referred to as an hereditary structure.
Suppose (4, «, &) is an hereditary structure, g:E X C.— R* and
f:E X Cs~> B*. An hereditary differeatial equation is a relation of the form

d

3.1 a—t[D(t)&,m] = fit, dwx)
where
8.2) Dityp = 9(0) — g(¢, ¢}, te kK, pe (4.

If g = 0, then (3.1) reduces to the equation
3.3 @ ity = ft, &
( . ) dtw )’“’ s 31:)3

which is usunally referred to as a functional differential equation of retarded
type. Functional differential equations (3.3) of retarded type were first
formulated in this manner by J. K. Haur and G. 8. JoNes in a seminar at
Rias in 1963 and was later published in an even more general form by
. 8. Jones [3]. The formulation given above is useful for a much wider
class of problems occurring in the applications-ineluding certain equations
of neutral type as well as VOLTERRA integral equations.

To appreciate the generality of (3.1), let us consider some more special
cases. If A=[—vr, O, r=0, «t, ) =14+9, 6e[—7r, 0], (D)) =+ ),
fe[—r, 0], then (3.3) reduces to the usnal functional differential equations
of retarded type

d

where we have employed the conventional notation a,(0)2Z &x(®) = x( + 9),

—r=<<0=0. If this simpler notation is again employed, we see that system
(3.1) includes the general class of equations

a
(3.4 i D0w] = t, @)

where D !) is defined in (3.2).
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If =0 system (3.4) includes the difference equation
(3.5) wft) — g(t, alt), et — o1), .., @t — o)) = W)

where the w; are nonnegative numbers. If a function satisfies (3.4) on some
interval and has a sufficiently smooth derivative, then carrying out the
differentiation in (3.4) leads to the system

(3.6) a(t) — gilt. e, — gilt, @) — h(f) = f(t, x),

where a/0) = {t 4 0), — r << 8 < 0. System (3.6) includes all of the equations
of neutral type for which the derivative occurs linearly. HALE and MEYER (2]
have considered equation (3.4) when g(f, ¢) is linear in ¢. DRIVER [1] has
considered (3.6) with E]&,(t, ) = g(t, o{— s(t))) and s(f)=0. Driver has also
treated cases linear in the deriviative which cannot be written in the from
(3.4).

Equation (3.1) also includes VOLTERRA integral equations. To see this,
let 4 =[—1, 0}, at, ) = #1 + 6), Sx0) = «((l 4 1)) and suppose a : [0, occ) X
[0, o) X R*—> R*, k[0, oc) —> B* are given functions. If

[

(3.7) g, @) =t f at, (1 + ), 3O + h(t), {0, o), v & Cu,
D(t’ CP) —_— CP(O) - g(ta CP)’

then

(3.8) DA = aft) — ¢ f alt, (1 + 6), @(l(L + 6))d5 — h(l)

i}
t

= p(f) — fa(t, s, x(8)ds — h(l).

0

If f=0 and 20) = WO), then (3.1) is equivalent to

(3.9 x(f) = h(t) + f alt, s, x(s))ds.

The literature for equation (3.9) is very extensive and the most recent
general presentation of existence, uniqueness, etc. is contained in the paper
of MirrLer and SeLn |5}, NEUsTAD?T [6].

‘We now formulate the initial value problem for (3.1). For the hereditary

structure (4, «, &) and any o€ E let E; be the set of real numbers defined by
(3.10) By = U,y .grcoa(s, 4) N (— oo, d
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where co G for any set G is the closed convex hull of G. The set E, contains
the set of real numbers on which an initial function must be specified in
order to integrate (3.1) on all of E. The set E, may be larger than necessary
if one is only interested in the integration of (3.1) on a part of E, but we
always use the above set for simplicity in notation.

Given a o in F and a function g€ Cr, we say x = (0, ¢) is a solulion

of (8.1) with initial value ¢ at o if there is @ v >0 such that x is defined
and continuous on E; U [0, ¢ - v), x coincides with ¢ on KE,, D{{&lax is con-
tinuosly differentiable on [0, ¢ -+ v] and satisfies (3.1) on [o, o -+ y).

It is clear that x is a solution of (3.1) with initial value v at o if and
only if x satisfies the equaftion

(311) x(f) = ¢(b), te ks,

Dty = D@) o + f fis, d.x)ds, t=oa.

In the applications, it is convenient to have a different hereditary
structure in the operator D(f) than in the right hand side of (3.1). This more
general situation is treated in the following way. Let (41, a1, ), (42, a2, &)
be hereditary structures, let 4 = 4: X 42, a = (a1, a2), dwx = (uw, dosx). If
g, f are as before, we can define a functional differential equation as (3.1).
If g, o, ), te B, peC,, be 0y, is independent of ¢ and fi§, o, &) is inde.
pendent of ¢, then the herditary structure in D is (41, o1, &) and the
hereditary structure in f is (42, a2, &h). No change in the statement or
proofs of the theorems below is required for this more general situation.

4, - Existence of solutions.

In this section, we give sufficient conditions on g and [ to ensuve the
existence of a solution of the initial value problem for (3.1).

DerINiTION 4.1. - Suppose 4 is a compact subset of B, 0e 4, 6 in 4 implies
<0 and suppose U is an open subset of B X C,. For any (f, ¢)€U,
any p=>0, s==0, let Q, o, p, 8) = deCai(t, YT, [§ — 9| < p, ) = ¢(0),
8 <—s, 6ed}. We say a continuous function g: U — R* is nonatomic at
zero if for any (4, ¢)e U, there exist 8o = 8ot, ¢) > 0, 1o = po(f, 9) > 0 continuous
in 7, ¢ and a scalar function g¢(f, 9, 11, §) defined and continuous for (f, ¢)e U,
0<<s<Cso, 0=y <<, nondecreasing in p, s such that g{f, ¢, po, &)< 1 and

(4.1) g, b —glt, @) | =elf, o, 1, O|d— 9]

for t in R, Y€ Q(, ¢, p, ) and all 0 <<s =<5, 0<p<po.
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If W is any subset of U such that s, po can be taken independent of
(t, ) in W for which o(W, o, 8)) =supelt, o, ito, 80) <1, then we say g is
uniformly nonatomic af zero on W.

If g(t, ¢) is linear in 9 and has the representation

glt, @) = j [dan(t, Blo(8)

for all ¢e C,, then ¢ being nonatomic at zero is an expression of some
continuity of g(f, ¢) in v as well as the fact that the jump in %(f, 6) at 6 =0
is < 1. If the corresponding p(f, ¢, 1, 8) vanishes for s = 0, then the measure
generated by %(f, 0) is nonatomic at zero. This is the motivation for the
terminology. In this case, any soe€ 4 sufficiently small will satisfy the pro-
perties in the definition and the function p(f, ¢, 1, 8) is independent of p, .

If there is an ¢ < O such that g:E X Us— K" depends only upon the
values of ¢(f) for H e 4, b<<e <0, then g is nonatomic at zero with p(¢, ¢, p, §)=0
for all £, 9, 1, 5, 6 < —8=<<0, In particular, g({, jv) = a(f, ¢(a(f) — {)), where
aft) —te 4, af)—t<<e <0, te F is nonatomic at zero.

It g, ¥ =¢%0) then |g, &) — gl o|=<@|#0)]+ w90 — 0| if
|& — ¢ |<<p. Therefore, it V={9eC:|9|<<v}, 2v4+po<1 and U= (- oo,
oc) X V, then ¢ is nonatomic at zero velative to the set U. In fact, one
takes of, o, p, §) =2v 4 p for all ¢, o, 5, 0<<p < po. Becanse of examples
of this type, the term nonatomic at zero is being abused.

Sappose 4 =[—1, 0], V is an open set in B", E=(— o0, o0), a: B X
E X V— B* and for every compact subset K of V there is a function pxit, u),
{t, uye E X E such that

(4.2) lalt, u, x)— alt, u, y)| < px(¢, u)|ox — y|
for (£, u, x), (¢, w, y)e B X E X K. If gli, v) is defined as in (3.7), then

‘g(ty CP)_g(t; ¢)|£P(t’ P S)ICP_"M

for all te B, ¢eQd, . u, 8), where
o, 5 )= [ oelt, wi
{15}
K={xeR:|le—gl)|<<p —s<<H=<0}.

Any conditions on the function @ which will ensure that the function
e(t, @, 1, 8) is continuous in all variables implies that the function g in (3.7)
is nonatomic at zero. See MiLLER and SeLL [5] for condiftions on @ which
will imply this latter property.
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We will have many occasions to use the following machinery in slightly
different forms so that it is convenient to elevate it to a lemma,

For ce R, b> o, let I be either the closed interval [s, ] or the open
interval [o, b). For b =10 we take I as the empty set. Let xe Oy ys with
x(0) = ¢(0) for 0 in E,. Suppose (4, «, &)is an hereditary structure, U an open
set in B X O, and the closure W of the set {(}, dw):tel} as well as an
e-neighborhood V(W) of W are contained in U. Let {el For any real
numbers v, 3> 0, define L({) = {¢t: {<<t<<C 47y, Fy, 5 § Jw)={(¢ d)e
B Oy iEIY{Q, 1 (I) — &{Z‘BI £5} and 5(7’ 8, 0= {ye OE;;U[Y(Z) Yy = 0, te By,
lyt) | <3, tel(Q)]. Let F(y, &)= F(y, 8, W)= U [F(y, 8, §, fuw):Lel}.
Finally, for xe OE.QUI, define 57:6 CEZU]Y(':) by Zr::(t)::w(t) for { in E, and
wll) =20, ¢ in I(0.

Levmma 4.1, - Using the above nolation, let f, g: U ~> B be continuous,
|fl<M on V(W) and g uniformly nonatomic at zero on V(W). Then there are
positive real numbers yo, 3o, v and vy, 8, 0 <y<<yo, 0 <8< %/2 such that

) {a) My <v8/2 or (b) My <v(l —v)3/2

(i) [&ch—- Qe | < %0/2, te I(C), Lel for W compact and «b, 8) <b
for 6 <0,

(iii) | glt, 61;:;'5) —g(G, Gue)| <v3/2, te I(0), Lel for W compact and «(b,
H<b for 6§ <0.

(iv) Flyo, 8)C U
V) el ‘1’9 8o, Yﬂ)gl -v for (i, QJ)GF(YG’ 2o)

(vi) (¢, Ay + )€ Flyo, B) for tel ), Cel, ab, 6) <b for <0,
yed(y, 3, ) and «b, 6) <b for 8 <0.

In particular, if W is compact, ab, 8) <b for 6 <0, g, f only conlinuons,
and g nonatomic at zero on U are sufficient for (i)~(vi) to hold for some V. (w).

Proor. ~ Items (i}, (iv), (v) are immediate from the definitions and the
hypothesis. If W is compact, then the hypothesis on « in (ii) implies that x
can be extended to a continuous function on E, U[s, bl The result in (ii)
as well as (iii) and (vi) are now immediate. If W is compact, and g, f satisfy
the conditions stated in the last part of the lemma, then g is uniformly
nonatomic at zero on W and |f|<< M on some e-neighborhood V. W) of W.
This proves the lemma.

ReEMARK. ~ In the application of the lemma W is a point set in the
existence theorem and is either compact or closed and bounded in the
continuation theorems.
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THEOREM 4.1. - Suppose (4, o, &) is an hereditary structure and U is
an open set in B X Cy. If g, [: U— B* are continuous and g is nonalomic
at zero, then for any ceR, ¢€Cs_, (o, dop)€ U, there exists a solution of
(8.1) with initial value ¢ at o defined and continuous on some set ;U [o, b],
b> .

Proor. - Take W={(s, d,9)}. W compact and the hypothesis imply that
the conclusions of Lemma 4.1 hold for some numbers yo, & > 0, 0 <y < 1o,
0<5<3/2 In this case, { =0, ¢{f) =%(), t€E,, and o) = o) = 9(0),
t€l, = I{o), .'i'g =, I is the empty set.

Consider the transformation 7, S taking 8 = 8(y, 8, o) into OEaU’y
defined by

(Ty)t) = 0, L€ E,
@ )
(ITy)t) = g, 5{:(?/ + o)) — g(o, aatp)’ t€ Iy

(Sy)t) =0, t€E,

4.4)
(b)

(S = f fis, Oy + s, L€,

Recall that the solutions of (3.1) on (s, o - y) with initial value ¢ at o
coincide with the solutions of (3.11). Therefore, if y* is a fixed point of 774+ S
in §, then a* = y* + ¢ is a solution of (8.1) on (s, o 4 y) with initial value
¢ at o. Conversely, if x* is a solution of (3.11) with a* — ¢ €8, then a* — ¢
is a fixed point of S 7.

We now show that S 7' has a fixed point in §. From the definition,
Ty(t) + Sz(f) = 0 for t€E, for all y, 2€8. Also, for any y, 2 in o, (€1
relation (4.4) and Lemma 4.1 imply

| Ty(t) + Selt) | < | g0t, Sty + %) — 9t A)| + | gt Eig) — glo, Aotp) ]

+ f | fis, Az 4 9)|ds

~ vd | v8
= P(t’ a;CPz, 5: Y)5 + "2— + §
< (1l —v)3 +v3=28.
Therefore, 7+ 8:8 -8, T(8)+ SE)CS. It is not difficult to show that S

is continuous. Moreover, S(8)C & and 8§ is compact since |Sy(t)— Syt)|<
< M|t—| for all ¢, ¥ in I,. Also, for y, # in 8, by Lemma 4.1,
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| Ty(t) — Tell) | = | gtt, Ay + 9) — g, e + 9)) ]
<olt, Ay +9), 3 1) Ay — e
<l —v)ly—z2]|

and 7' is a contraction on §. Therefore, Lemma 2.1 implies the existence
of a fixed point of 774 S in 8. This completes the proof of the theorem.

5. - Continuation of solutions and uniqueness.

If « is a solution of (3.1) on E. U [o, a), @ > o, we say «x is a continuation
of x if there is a b > a such that x is defined on K, U [g, b), coincides with
x on E; U (o, a) and satisfies (3.1) on (s, b). A solution @« is noncontinuable
if no such continnation exists; that is, E, U [s, &) is the maximal interval of
existence of the solution «. If the conditions of Theorem 4.1 are satisfied,
then there is a solution of (3.1) on E, U [o, a) for some @ > o. ZORN’S lemma
implies the existence of a noncontinuable solution of (3.1). It is also true
that the maximal interval of existence is open.

TuaroreM b.1. - Under the same hypothesis as Theorem 4.1, if x(s, @) is
a noncontinuable solution of (8.1) on E, Ulo, b), ¢ in Cp, (5, do9) €U, ab
6) <b for 6 <O, then either

(a) (f, dyx) for some sequence f,—>b— as k —>oc tends to the boundary
U of U if the closure W of | (f, dux) 0 <<t < b} is compact, or,

(by W is nol compaclt in which case b =oc or the closure of G =
[ o=t <b} is not compact.

Proor. - (b) follows readily from (a). We show the validity of (a) by
confradiction,

Let W be compact. Then b < oco. Suppose W is properly contained in
U, and (a) is not true. By Lemma 4.1, there are positive numbers, yo, 3, 7, 3
and v, 0 <y =<Cyo, 0 <8=8/2 for which items (i) (b), (ii)~(vi) of that lemma
hold. Define 7' as in the proof of Theorem 4.1 with o replaced by b—vy, o
by the restriction w,—, of @ on Ep_,, &y + ¢) by iy + o?b_\{), t in I(b—y)
and y in & = 8&(y, 8 b — ). 7' is a contraction on §. If

6.1) A)=0, tEE,,

#(l) = jf(s, .x)ds, b—y<t<b,

Lo
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then 2 is defined on E,—, U [b — vy, b] since #(b) = lim 2(#) exists and 2z € §(y, 3,

te3b
b — ). The choice of y shows that 2€ (I — 7’8 and there is a unique ¢ in
S such that (I — 7y = 2. The uniqueness of y implies y(f) = «(f) — Zc;,_Y(t)
for ¢ in [b — v, b). Hence lim a(f) exists and (b, flbxw)€ U. By the existence

=3 b
theorem, a is continnable which is a contradiction. (a) must therefore hold
and the theorem is proved.
We want to get information as in (a) of the above theorem in terms of
sufficient conditions on g and f.

TaroREM 5.2, -~ Suppose p <0 is such that g(t, v) depends only on values
of o) for 8<<p <0 and [ maps closed bounded sels in U into bounded seis
in B~ If c€R, o€ E,, (5, Ay0) €U and x si a noncontinuable solution x(s, ¢)
of (3.1) defined on ils maximal domain of existence E; U [a, b), then, for every
closed bounded subset W of U, there is a { €{o, b) such that C, 8wx) is not in W.

Proor. - No loss in generality occurs in assuming (o, d,9) is in the
arbitrary closed bounded set W in U. The case b = oo is trivial. Suppose
b <oco, (o, ) is such that (4, )€ W for all o<<i<b and |f|<<M on W.

The function [f(s, &.x)ds is therefore uniformly continuous for ¢ in [o, b).

Also the function g(f, &) is uniformiy continuous for ¢ in [o, b) since g(t, )
depends only on values of ¢(8) for 6 <<p < 0. Therefore, a(f) is uniformly
continuous on [o, b) and can be exfended to a continuous function on [o, b).
Since (b, x;)e U, « can be continued as a solution of (3.1) beyond ¢ =20.
This is a contradiction and proves the theorem.

The strong hypothesis was made on g in theorem 5.2 te ensure that
g, Q) is uniformly continuous on [o, b). Any other condition on g which
implies this property will yield the same conclusion as in theorem 5.2,
When g arises from a VOLTERRA integral equation, it is not too dificalt to
give conditions so that g, &) is uniformly continuous for ¢ in [0, b). See
MizLER and SELL [5].

TaroREM B.3. - Suppose (4, «, &) is an hereditary structure and U is
an open set in R X Cq. If g.U— B is continuous, nonatomic at zero,
7 : U~ R is continuous and f(t, ) is Lipschitzion with respect fo ¢ in each
compact set in U, then for any o€ R, 9€ C;_, (o, A,9)€ U, there is a unique
solution of (3.1) with initial value ¢ af o.

Proor. - The proof is essentially the same as the proof for ordinary
differential equations.

Annali di Matematica 10
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6. - Continuous dependence of solntions.

In this section, we give sufficient conditions on f, g in (3.1) to ensure
that the solution depends continuously upon the initial function as well as
parameters.

DerinmioNn 6.1. - If 4 is a compact subset of B, U is an open subset
of B X C,, A is a subset of some BaAnAcH space and ¢: U X A — E* with
values go(f, ¥), A€A, (£, )€U, we say the family {g, ], X€A, of functions
taking U — R" is equi-nonafomic at zero provided there are functions syt ¢) > 0,
wolt, 9) >0, glt, 9, p, 8)<1 as in Definition 4.1 such that each g, A €A
satisfies (4.1) for this p(f, ¢, p, 8), O << p << o, O << s < 8.

If there is an ¢ <0 such that each g, A €A, depends only upon values
of o) for 0€4, 6 <<e<O0, then the family {g,} is equi-nonatomic at
zero. Also, if

g, )= j [domi(t, 8))2()

4

and there is an so> 0 and p < 1 such that for A(s)={0€4;—s<bH=<0}

(dortt, Ot | < ¢!
A(sp)

for all p€ C4y, A€A, then the family {g,} is equi-nonatomic at zero.

TeEOREM 6.1. - Suppose (4, «, &) is an hereditary structure, U is an
open set in B X Cay g U—RBY, k=0, 1, 2, ..., are continuous functions,
equi-nonatomic at zero, go 18 uniformly continuous on closed bounded subseis
of U, gr—go a8 k—>o0 uniformly on closed bounded subsets of U, fi: U~> R,
E=0, 1, .., are continuous and fis, ¢)—>fos, ¢) as k—-oco, $y-»9 for all
(s, 9y U. Also, for any compact Win U, there is an open neighborhood V(W)
of W and a constant M such that

6.1) i, <M, ()€ VW),
k=01, 2, ..

Finally, let c€R, 9.€Cs, (5, o) €U, k=0, 1, 2, .., ¢—>w as k-0
and suppose x, = wi{s, o), k=0, 1, 2, ..., is a solution of

6.2) 2 el = 1, Q) t=o,
Dt = GO — gilt, ¥)
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with initial value @, al o. If xy, is defined on E, VU [o, b] and is unique,
then there is an integer k, such that the x., E=>=k,, can be defined on
E, U [o, b] and xt)— xo't) uniformly on E; U [o, b].

Proor. - The set W= {(, d,), o <t< b} is a compact subset of U.
Since the family of functions gx, ¥ =0, is equi-nonatomic at zero, there are
continuous sealar functions se(t, ¢) > 0, po(t, ¢) >0, ol @, p, 8) <1, 8¢, o) =5=0,
O p <<ty 9), ¢ 9)€ U, sach that each g, satisfies (4.1) for this o(f, ¢, p, sl
Since W is compact, there are 8 > 0, Lo >0, v> 0 such that 0 < so < so(t, @),
0 <po<pdt, @) ot 9 1, 8) <1 —v, 80, @) =8=0, 0 p<<pot, 9), ¢, )€ W. By
hypothesis, for any (¢, )€ W and any ¢ > O, there is a d{{, ¢, ¢) > O continnous
in {t (P} such that ISo‘ft Cp) “SQ(i q) i l?‘o(t) Cp) - P’O(—’i ‘%’)f <g, F’(t7 @ P S} -
ot, &, 1, 8)] <e for ]t—-t]<d(t 9, &), W—M < d{t, ¢, ¢). Therefore, for e
sufficiently small, sy, 4)> 8o, polt, $)> o, plf, ¥, 1, 8) <1 —v for |t —1] <
dit, v, 6), O —ol<dt, 3, ¢, (t DEW, 0<s=<8, 0<<p<p,. Since W is
compact, there is a do > 0 such that these same inequalities hold for [t-—f} <
do, |4 — o] <do, (¢, 9)€ W. From the hypothesis on the f;, there is an open
neighborhood V= V(W) and a M >0 such that |fi}, &)|<< M, (¢, )€V,
k=0, 1,2 ... Choose do>0 so small that (, )€V if |t —¢| < do, | —
¢l <do, (t p) € W.

For any s € R, € C, and any real numbers y > 0, 3 > 0, define F(y, 3) =
F(y, 3, o, ¢) as in the proof of Theorem 4.1. From the above construction of
V, there is an open neighborhood Vi C V of W and a v, > 0, 8 > O such that
F(yo, 8, o, ) C V for any (o, ¢)€ V1. Choose Vi so that this is true and for
any o €[t, oo) and any real numbers v, 3 define §(y, 3, o) as in Lemma 4.1
and let ¢, € C; LUl be defined by gok(t) = oi(t), t€EE,, gok(t) = p(0), tEI~ Suppose
25 < 3, and ehoose ¥ < 7o s0 that | &g — oo | < 50/2, | go't, 8{,%)—90(5, & 90) |
< v8/2, t€I~ My < v8/2. Since the g, kzO are a compact set of Cr , the
o, k=0, form a compact set in Cg LUl pk-—>cpo as k —» oo, Therefore, there
is a ko =0 such that | Jps — Ao | < 50/2 t€1,, k=k. Thus, (¢, Ay + ¢u) €
F(yo, 3) for t€1,, y €80y, 3, o). Since

lgult, Aupr) — gilo, Sowd) | < | gty ) — golt, Q)| + | golt, ) — go't, o |
+ | go(t, at'}éo) - g()(c; ao’%) l + IgO(G) aa%) - gU(Gr aocpk) I
-+ | go(o, Eopr) — gu(s, Sopr) |,

the set ¢, k=0 is compact, g1 — %o as k —> oo, and git, 9) — go't, ©) uniformly
on compact sels, it follows that ko can also be chosen so that |gf, dugpw) —
gk(ci ac(Fk)l < V5/2y t€ I*F; kz k‘o,
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Now, define the operators Ti, Sk, k=0, 1, 2, ..., taking $(y, 5, o) into
CEGUI; by the relations

(Twy)t) = 0, 1€ Hy

(Tay)t) = gult, Ay + o)) — gulo, o),  tELG
and
(Sky)(t) = O, t€ kb,

(Si)t) = f fds, Ay + ods, L€

Since

igk(t7 at(y + :Ek)) - g()(t; &»(y + %0)) + 90(07 aar‘PO) - gk(c) &G:Pk) I
< |g:lt, Ay + o) — golt, Aty + o) |+ 1 golt, Ay + 3)) — golt, Ay + 50 |
+ 1 goo, dopo) — golo, ope)| + 1 golo, dovr) — gu(o, Eopr) |

the @ —->c~po as k—> oo, guf, 9)—> go(f, ¥) uniformly on closed, bounded subsets
of U and gof, ¢) is uniformly continuous on closed, bounded subsets of U,
it follows that Ty — Toy as k —» oo uniformly for 4 €8(y. &, o). Since v —> o
fit, O)—>1folf, ¢) as k—>o0, ¢ —>¢ and the f, are uniformly bounded on
V, it follows from the LEBESQUE dominated convergence theorem that
Siz—> Soy as k —oo, 2y for each y €8y, 3, o). As in the proof of Theorem
4.1, the operators T, are contractions and the §; are uniformly compact
with T, + Si: 8y, 5, ) = 8(v, 5, o). Lemma 2.2, therefore, implies the existence
of solations wy(f) of (6.2) on K, U Iy and ayl)-> xo(f) as k — co uniformly
on K, U I;. Due to the compactness of the set { (!, dxo):f€ s, 0]}, one com-
pletes the proof by successively stepping intervals of length y.

The above theorem on continuous dependence is satisfactory for many
types of equations of neutral type, but is foo restrictive for VoLTERRA
integral equations. The next result will be applicable fo VOLTERRA equations
and requires the following

DeriNITION 6.2. ~ Suppose (4, «, &) is an hereditary structure and U
is an open subset of B X U,. Suppose g: U -— R* is a continuous function
and ¢ is an arbifrary element in Cp with (o, dev)€ U. Let I, =[o, o 4 7]
Byg) = {# € OEany c2(t) = o), L€ B,, |2t) — ¢(0)| << B, €I, ). Suppose 3, y are
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chosen so that (f, dw)€U for €1, 2€Byy). For ({, 2)€1L, X Byy), the
function g : By(e)—> Gy, defined by ge)t) = git, Ee), tET, 2€Byy), is a
continnous map. We say g is a compact mapping at ¢ if g takes every such
By(¢) into a relatively compact subset of U;. More precisely, the set §B5(cp)
is bounded and for any & >0, ¢ as above and ¢ > 0, there is a d(g, 3, ¢) >0
sach that

lgt, Q&) —g(¥, dw2)| <e,

it |t —¥|<de, 3, ), t, €L, 2€ Byp). If, in addition, d(e, 2. 9) is continuous
in g 3, ¢, we say simply that g is a compact mapping.

THEOREM 6.2. - Suppose (4, «, &) is an hereditary structure, U is on
open set in B X Cu, gx: U R, k=0, 1, 2, ..., is continuous and compact,
go @8 nonatomic at zero and uniformly continuous on closed bounded subsets
of U, gx— go as k — oo uniformly on closed bounded sets of U, and the f;
satisfy the condilions of Theorem 6.1. Also, let 6€R, ¢.€Cr, (o, dopp) €T,
E=0,1,2, .., gpr—>90 a8 k — o0 and lel xo = x(c, o) be a solution of (6.2)
for k=0 with initial value ¢, at o. If xo is defined on E; U [o, b] and is
unique, then there is an inleger ko and a solution x,= xo, @), k =Fko, of
(6.2) with initial value ¢, at o defined on ;U |[o, b] and xi(t) > xo(t) uniformly
on E,U s, bl

REMARK. - In the proof, it will be clear that the g for k>0 need
only be compact at ;.

Proor. - The set W= {(, o), c=<<#=<Cb} is a compact subset of U.
Using go and the fi, k=0, rather than the g, fi, £ =0, as in the proof of
Theorem 6.1, one can construct open neighborhoods Vi C V of W and find
a yo>0, 8 >0 so that F(yo, %, o, ¢)C V for any (g, ¢y € Vi. For any ¢€R
and any real numbers y, 3, define S(y, 5, o) as in Lemma 4.1 and let
c}k(t)chk(l), t€E;, Zok(t):cpk(c), t€I;. Suppose 23 <8 and choose ?gyo
so that | o — doo] < B0/2, | glt, Aivo) — g(o, Eovol <v3/2,tE€T;, My < vB/4.
If @.—>wo, then there is a ky=>0 such that | & — Eogi| < 50/2. Thus,
(t, &y + 9) € Flyo, 5o for te I, Yy E€S8(y, 3, o). Also, the hypotheses on the
gx imply that %k, may also be chosen so that |gut, 4)— golf, $)] <&/8 for
¢ eV, k=k.

Define the operators Ty, S, taking §(y, 8, o) into GEGUW by the relations

(T)y =0  {€E,

(Tug)t) = golt, Ay + ) — golo, o), L€,
Sy = S + Sw,

(Sy)t) =0, t€H,,
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Bt = [ fis, ety + s, L€ I,

Sty =0, teE,
(g’ky)(t) = gdlt, Ay + o) — gu't, Ay + 1) — 90, Aopa) + golo, Aopr), te Iz

As in the proof of Theorem 6.1, the hypothesis on g implies that each
of the operators T} is a contraction for k =Fky, Tiy — Toy as k — oo uniformly
for yEéS(«?, 5, o). Also,ﬂthe S, are uniformly compact with S — S0 as k —» oco.
By hypothesis, each S is compact. To prove uniform compactness, observe
first that }g’ky}gvgg’ék for all £=%ko. PFurthermore, for any ¢>0, the
hypotheses on the g, imply there is a & = kie) = ko such that

| gult, iy + o) — golt, Ay + o) | <e/3

tor k=k,. Since go is compact, and the set ¢;, k=0 is a compact subset

of E,, for this same ¢, there is a d = d(e, &) > 0, independent of k, such that

| golt, Sy + 91) — golt, Ay + o) | < /3

for all ¢, ¥ € I7, |t — | <d, k=0. Consequently
L9, Ay + o) — gl Aty + @) | <e

for k=hile), |t —1t'|<d, ¢, ¢ €I;. Since each g; is assumed to be compact,
it follows that we can farther restrict d so that the above inequality holds

for all k= k,. This proves the uniform compactness of the operators S;. It

is clear that S, — 0 as k — oo Finally, the constants have been chosen in
such a way that T, 4+ S:: 8(y, 8, o) > 8(y, 3, o) and Lemma 2.2 implies the
existence of solution ay(f) of (6.2) on E, U I; as well as the fact that
wi(t) — xo(f) uniformly on E, U I;. The compactness of W permits one to
successively step intervals of length vy until the interval [o, b] is covered.
This proves the theorem.

Theorem 5 of MILLER and SELL [5] on VOLTERRA integral equations is
a special case of Theorem 6.2 in two respects. First, Theorem 6.2 involves
systems much more general than VOLTERRA integral equations. Secondly,
the nonatomic property at zero is only imposed on g and unigueness is
only assumed for equation (6.2) with k= 0. If f, = 0, the nonatomic property
at zero of go implies uniqueness of the solution of (6.2) for k£ = 0.
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TaEOREM 6.3. - Suppose (4, o, &) is an hereditary structure, U is an
open set in B X C4, ko is a real or complex number, A is a neighborhood of
b, g . UXA— R, glt, 4, A) is continuous in (I, &, ) at A = ko, g is equi-
nonatomic al zero, g)-, -, Ao) 18 uniformly continuous on closed bounded subsels
of U, git, &, Ay ->glt, &, Ao uniformly on closed bounded subsels of U,
f:UXA—RY fiE, 4, X) is continuous in (I, b, A) at A =L, the continuily
in § being uniform with respect to A€ A. For any € R, 9€ E;, (o, 8,9 €U,
AEA, let x(5, 9, X) be a solution of the equation

6.3 2 1D, nel = ft, ey )

with initial value ¢ at o. If the solution x(o, ¢, i) of (6.3) is unique and
is defined on E,\J[o, b], then there is & § >0 such that (6.3) has a solulion
w0, o, A) defined on E, U o, b] for |o— 9| <& |2 — | <& and x(s, v, A
is continuous in (t, ¢, 1) at (¢, ¢, 2o, ¢ €[, b

Proor. - Theorem 6.1 implies the existence of the { in the statement
of Theorem 6.3 and the continuity of (s, 9, X)) in (9, 1) at (¢, Ao) uniformly
with respect to f. Since «(s, ¢, A) is a continuous fanction of ¢ for ¢€[s, ],
the conclusion of Theorem 6.3 follows.

An analogous result using Theorem 6.2 rather than Theorem 6.1 could
also be stated. The next result deals with the continuity of the solutions in
the initial time o.

THEOREM 6.4, - Suppose (4, «, &) is an hereditary struclure with
alt, B =1¢--6, 0€ A. If the conditions of Theorem 6.3 are satisfied, then there
is a >0 such that (6.3) has a solution (s, ¢, )) defined on E; U [, b] for
lo—o|<C lo—¢| <G A —2| < and 8x(s, 9, ) is continuous in (t, o, ¢,
}\) at ho.

Proor. - The special form aff, ) = {40, 6€ 4, permits one to repeat
the proof of the basic existence theorem by getting a fixed point of a set

which is independent of o. In fact, for any y =0, =0, let
SG’ S) = {ye GAUIO'?]:?/U): O: tGA: |@I(t)l£g, te[oi :\;]}

For any o€RB, 9€Cs, (5, &.9)€ 04, define g€ Cayp, 71 by oty = 9(c + 8,
1€ A, o(t) = ¢(c), t€[0, y] and choose y =0, =0 as in Lemma 4.1. Define
the transformations T, S, taking §(v, ) into Caypo,7) by
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(Teyty =0, 1€ A4,

(T2 = gt + o, Az + 9) — 9o, Aop),  tE[0, 7]
(Szyh) =0, tE€A,

and

t

(S0 = [ fls + 5, Ete + Eds.

o'

Suppose #* is a fixed point of T4 § in S(v, 8) and let &*(t 4 o) = 2%(f) + ¢(f)

for t€ 4 U [0, y]. Since «(f, )= a(f + 0) for all 6€ 4

w¥(t + o + 1) = 2¥(t 4 b) -+ ot + 9), 6€ 4, te[0, ¥),

implies that &, .a* = &s* + Q.. It is now clear that x* is a solution of
(6.3) with initial value ¢ at o. Conversely, any solution of (6.3) such that
®*(+ 4+ 0) — (+) € 8(y, 8) must be a fixed point of S T.

Theorem 6.1 can now be generalized to take into account variations in
o; namely, one can also allow in Theorem 6.1 a sequence o€ R converging
to oo as k —oo. The proof of Theorem 6.4 is now the same as the proof of
Theorem 6.3.

7. - Extension of the concept of a differential equation.

In Section 3, we defined an hereditary differential equation for continuous
functions f: E X C4— R* On the other hand, it was then shown that the
initial value problem was equivalent fo

(7.1) x(t) = ¢(t) t€E,

D8 = Do)Aap + f fls, Qaeyds, i=o.

This equation clearly will be meaningful for a more general class of functions
{ if it is not required that D&« have a continunous first derivative. The
purpose of this section is to generalize the well known concept of CARATHEODORY
conditions for ordinary differential equations so as to apply to (7.1).

Suppose 4 is a compact subset of (— oo, co) and Uis an open subset of
R X C4. A tunction f: U— B* is said to satisfy the Carathéodory condition
on U if f(t, ©) is measurable in { for each fixed ¢, continuous in ¢ for each
fixed ¢, and for any fixed (¢, ¢)€ U, there is a neighborhood V(f, ¢) of ({, )
and a LEBESGUE integrable function m such that
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(7.2) [f(s, D <m(s, (s, VETV(E, o)

If f: U — Br is continuous, it is easy to see that [ satisfies the CARa-
THRODORY condition of U. Therefore, the theory of (7.1) for f in this more
general class of functions generalizes the previous theory.

If f satisfies the CARATHEODORY condition on a set U, c€R ¢ € (g,
(o, 8o9) € U, we say a function x = (s, ¢) is a solution of (7.1) with initial
value ¢ at o if there exists a v > 0 such that ©€ Cg_yp, o141, 2(f) = 9(f), L € K,
and D(l)d.x satisfies (6.2) almost everywhere for {€[a, o+ v].

Using essentially the same arguments as in the previous sections, one
can extend all of the results to the case where f satisfies the CARATHEODORY
condition. Of course, in the theorems corresponding to Theorems 6.1 and 6.2
on continuous dependence, all f, should satisfy the CARATHEODORY conditions,
and condition (6.1) should be replaced by the following: For any compact
set W in U, there is an open neighborhood V(W) of W and a LEBESGUE
integrable function M such that the sequence of functions £, k=0, 1, 2, ...,
satisfy

| fils, D]I<<M(s), (5, € V(W)
E=0, 1, 2, ....
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