
Convergence of Double Fourier  Series (*). 

~RED USTINA tEdmonton, Canada) (¢*) 

Summary. - Let a 27:-periodic function f(x,  y) be continuous in  some neighbourhood of the point 
(x, y) except possibly along finitely many lines 1 i,  lz, ...~ l~ te~'minating at (x, y). The 
problem of convergence of the Fo~rier series of  f (x ,  y) at  the poi~t (x, y) is examined 
in some detail. I t  is established that under certain restrictions on the variation of 
f (x ,  y), and also on the lines t i ,  l:, .... lk, the fourier series converges to a value bounded 
above by the l imit  superior, and below by the l imit  inferior of  f ( x  %u,  y-t-v),  u, v ~ O ;  
this value depending on the manner in  ~vhich the series is summed. 

1. - P r e l i m i n a r y  R e m a r k s .  

The problem of convergence of the double FouRIeR series of a function 
f ( x ,  y) at a point has been investigated by a number  of authors but  at the 
present  time it is still lacking a complete solution. For  some of the results  
on this topic, the reader  is referred to the works of G .H.  HARDY [7], L. TO- 
~]~LLI [10] and [11], and E . W .  ItOBSO~ [8]. In this paper, we extend some 
of these known results. In particular,  all of the results referred to require  
the existence of f(~+, y+), f(~c+, y-), f(w-. y+) and f(a~-, y- )  for convergence 
at the point (x, y), and thus require  that in some neighborhood of this 
point, the function is coninuous except  possibly along lines through this 
point, parallel to the coordinate axes. We remove this restriction and relax 
somewhat  the definition of bounded variat ion in a neighborhood of this point. 

This same problem is pretty well solved in the one dimensional case, 
and many of the results  may be found in any standard treatise on the 
subject.  Among these may be mentioned the works of N.K.  BAR¥ [1], and 
A. ZYGMU~D [13]. Some of the results carry over from the one dimensional to 
the two dimensional case in a very obvious manner. Others,. however, are 
much more difficult  to establish because of the greater amount  of work 
involved, and also because,  for instance, in going to two dimensions, the 
definition of bounded variat ion loses its uniqueness.  Some of the ways in 
which this concept may be defined can be found in a paper  by C.R. ADAMS 
and J .A .  CI~AI~]~SO~ [5]. 

(*) The preparation of this paper was financed~ in part, by a Canad;au Mathematical 
Congress Summer Research Grant (1968). 

(**) Entrata in Redazione il 3 febbraio 1969. 
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2. - Some Preliminary Definitions. 

In the sequel, a rectangle with vertices at (a., c), (b, c), (a, d) and (b, d), 
a_< b, c ~ d ,  is denoted by [b, d; a, c], and in particular,  for a fixed point 
(~c, y), we let I - - I ( x ,  y ) = : [ x + r : ,  y ~ ;  x - - u ,  y - -v : ] ,  [(x; ~ ) = [ x + ~ ,  
Y-t-v:; x , - -~ ,  y--v:] ,  I(y; ~ ) = [ x - t - z ,  y - l - E ;  x - - ~ ,  y - - ~ ] ,  and _h~= 
- -5 ( (x ,  y); ~ ) - - I ( x ;  8)t_J I(y: ~), so that N is a cross-neighborhood of the 
point (x, y). Also, we let fib, d; a, c )=  f(b, d ) -  f(a, d ) -  f(b, c)-t-f(a, c). 

Let R = [b, d; a, c]. For fixed y, c <_ y ~ d, the total variation of f(zc y), 
considered as a function of x on [G b], is denoted by V(f(x); y, R), with 
V(f(y); x, R) defined in a similar manner. Occasionally it will be convenient  
to consider these total variation functions over a point set consisting of a 
single line, say the line joining the points (a, y) and (w', y) in the case of 
V(f(x); y, t7). In such a case we use the notation V(ftx); y, [a, g] )o r  V(f(x); 
y, (a, a~')), depending on whether or not the end points are included. 

A function f(x, y) is said to be of bounded variat ion in the TO~ELLI 
sense on a rectangle R - - [ b ,  d; a, c] i[ V(f(~c); y, 17) and V(f(y); x, R) exist 
for almost all x, respect ively for almost all y, and if the integrals 

b d 

a v 

exist in the LEBESQUE sense. This definition is extended to any open or 
closed irregularly shaped region in an obvious manner. First,  let R be any 
closed region bounded by a simple, closed path. For  each real constant c, 
the line y - - c  intersects R on a set of at most countably many closed 
intervals L,  and for each y, let 

V(f(x); y, t7)= Z~V(f(x); y, L). 

In a similar way, let 

V(f(y); x, R) = Zs V(f(y); x, Is). 

If  V(f(x); y, t~) and F(f(y); x, R) exist for ahnost all y, respectively for 
almost all x, and if the integrals 

f v(f(y); x, R)dx, f V(f(x); y, R)dy, 
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where = = { x : : ~ y  and (x, y )~R}  and ~ - - { y : ~ t x  and (x, y )ER} ,  exist in 
the LEBESGUE sense, then f(x, y) is said to be of bounded variat ion in the 
TONELLI sense on R. 

This definition is extended to the case where R is not closed by defining 
V(f(x); y~ L) as the supremum over Ii of V(/(x); y, Ii), where I is any 
closed interval  in /~. F(f(y); x, I])is defined in a similar manner.  We use 
this general form of definition of bounded variation in the TONELLI sense 
in the sequel. Furthermore,  we will say that [(x, y) is of bounded variation 
in the restricted TONELLI sense, or more simply of bounded variation T on 
R if, in addition, the families ( V(f(x); y, R)}andIV(f (y);  x, R)} are bounded 
uniformly for almost all y, respectively for ahnost all x~, on R. Of course, 
we are mainly concerned with the behavior of the FOUIUER coefficients, and 
since these do not change with a change of the function on a set of measure 
zero, we may equally well assume that the families [V(f(x); y, R)} and 
{ V(f(y); x, R)} are bounded uniformly whenever f(x, y) is of bounded variation 
T o u R .  

For an example of a function which is of bounded variation in the 
TO~ELLI sense but not of bounded varialion T on a region R, let R = [1,1 ; 0,0] 
and let [(x, y) = 1/(x~/2 -4" y~/2) if ~s d- y ~ 0, and let f(0, 0) -" 0. It is easily 
seen that f(x, y) is such a function. 

Now suppose that V(f(y); x, R) exists for almost all x and the integral 

f v(f(y); x, R)dx 

exists in the LEBESC~UE sense, where a is defined as before. If  nothing is 
assumed about the set I F(f(x,); y, R)}, f(x, y) will be said to be of bounded 
variation in the TONELLI sense with respect to y on R. If in addition the 
family ( V(f(y); x, B) I is bounded uniformly for almost all w, then f(x, y) 
is said to be of bounded variation in the restricted TONELLI sense with 
respect to y on t~, or more simply of bounded variation T with respect to 
y on R. Bounded variation with respect to ~ on R is defined in a similar 
m a n n e r .  

3. - Convergence of  Double Four ier  Series at a Point .  

Before stating the main result  of this paper, we define an integral which 
we express as a function ~p((}). 

(3.1) DE:FINITION. - Let R(O) be [he region bounded by the positive u-axis,  
a ray from the origin making an angle 0 with the positive u-axis ,  and the 
boundary of the rectangle [a, b; - - a ,  --b]. 
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Then  

~o(0) _-- l im ( sin u sin v du dv, a, b - ->  
U V 

~(0) 

Tha t  ¢p(0) exis ts  for every  rea l  va lue  of 0 and that  it is a con t inuous  
func t ion  of 0 fol lows at once from L e m m a  1 of Sect ion  5. W e  use it in 
proving  our  main  r e su l t :  

(3.2) T]:IEOREM. - Le t  R -" Ix + ~, y + ~; ~ - -  ~, y - -  ~], ~ > 0, and let the 
k non - in t e r s ec t i ng  pa ths  to the point  (x, y), lz, 12, ..., l~, l~+~--11 divide 1~ 
into k open regions 1~, i - - 1 ,  2, ..., k, all e n u m e r a t e d  in a c o u n t e r - c l o c k w i s e  
s equence  with R~ b o u n d e d  by l~, 1~+1 and the b o u n d a r y  of R. Suppose  that  
for  each  i, l~ has  a l imi t ing angle  of app roach  to the point  (w, y), say 0~, 
0~(}~ < 2 r : ,  and suppose  there  exis ts  an in teger  k' such  that an a rb i t r a ry  
horizontal  or ver t ica l  l ine crosses  l~, i ~ 1, 2, .... k, at most  k' t imes. I f  a 
2g -pe r iod ic  func t ion  f(x, y ) i s  abso lu te ly  in tegrab le  on L if in the c ross -  
ne ighborhood  of (x, y), N - - ' N ( ( x ,  y); ~)--~I(x;  ~)(2 I(y; ~), f(x, y) is of 
bounded  var ia t ion  T with respec t  to y on I(~;  ~) and with respec t  to x on 
I(y; ~), and if f(x, y ) i s  con t inuous  at every  point  of each open region R~ 
with sup {V(f(x); y, R~)t-->O and sup [V(f(y); x, R~)}-->0 as ~--->0, then, 
hold ing  p/q constant ,  the r a n - - t h  par t ia l  sums  s~.(x, y) of the  FOURIER 
ser ies  of f(x, y) converge  to 

where  
u~f~ + u~f: + .. + uJ~, 

u~ -~ (1/r~ 2) t ~(tan-~(q/P tan 0~+~)) - -  ¢~(tan-~(q/p tan 0~))} 

f~ := lim f (x ~ u, y ~ v), u, v --> O, (~c -[- u, y q- v) e R~ 

u~ "Jc Uz + ... -b u~--  1 

21) -- 2m + I, 2q -- 2n -~ 1, 

tan-l(q/p tan O) being  taken  in the same quad ran t  as O. In par t icular ,  if 
2m -{- 1 = 2n + 1 as m, n - ->co ,  then 

u~ = (1/r~ 2) t "~(0~+1) - -  V(0~) }, i = 1, 2, . . . .  k. 

Fur the rmore ,  u~ is i ndependen t  of p/q if for some in teger  k", k"- -O,  1, 2, 3, 
O~--k"rc/2 and 0~+~-~ (k"-[-1)7:/2, p rov ided  that  for  some f ixed bu t  o therwise  
a rb i t r a ry  s, 0 < e <  1, we  have  1 / s ~ p / q ~ s  and in this case u ~ = 1 / 4 .  
If, in addit ion,  l~ and l~+s are  rays  f rom the point  (x, y), each  of which  is 
para l le l  to one of the coord ina te  axes,  and if f(~c, y) is also of bounded  
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variation T with respect to y on I(y; ~), then the right hand restriction on 
p/q  is removed. If it is also of bounded variation T with respect  to o~ on 
I(x; ~), then the left hand restr ict ion on p/q is removed also. 

(x +'w, y+Tr 

I(y;S) 

(x+B,y+S) 
.~2 RI 

~ 8 i  R2 l l : ' ~ k + l ~  

/ R~ ~ i ,  ÷1 

(x-S,y-S) 

I(×;S) 

4. - Examples  and Remarks.  

In  general, under  the hypothesis of the theorem, the restriction on p/q  
cannot be removed. For let g(x)=O, - - u ~ c < O ,  g(x)-- 1, 0 < x ~ %  and 
let h(x) be a contitluous function with period 2~: whose FOURIER series 
diverges to infinity at a point w', M ~ ~ ~' ~ 0. 
The FOURIEa series of the function 

f(x, y)--g(~)h(y)+g(y)h(x) 

diverges at every point (at', y) and (x, x'), and in particular,  at the point 
(~', ~e') in the square S -- (0, 0; -- % - -  r:), over which the function is identically 
zero. On the other hand, for every point (x, y ) eS ,  all the conditions of the 
theorem are satisfied, so that we have convergence to the funct ion value 
zero at each point in S provided that for some arbitrary,  fixed ~, 0 < ~ < 1, 
i/~ ~ p / q  ~ ,  m, n.-->oc. 

4nnali di Matematica 4 
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If we let f(x, y)--g(x)h(y), then the FOURIER series of f(x, y) converges 
at every point of the rectangle (0, 7:; --re, --r~) provided that p /q  > ~. I[ 
f(x, y)"-h(x)g(y), then we have convergence at every point of the rectangle 
(~, 0; - - u ,  - - r : )  provided that 1 / s ~ p / q .  Finally, i[ f(x, y ) - g ( x ) ,  then 
f(x, y ) i s  of bounded variation T with respect to both variables in L and 
the FOURIEI~ series converges with the restrict ion on p / q  removed entirely. 

Since the coefficients **~, i----i ,  2, .... , k, are functions of q/p,  it fellows 
that the par t icular  value to which the FOURIER series converges depends on 
what value of p/q  we choose, or to put in another way, it depends on the 
ray along which we sum the FOUI~IER series. This dependence can be shown 
directly in the case of some simple functions. We  give two examples to 
il lustrate the point. 

EXAMPLE 1. - Let  ['(x, y) : l, (x, y) e R = { (x, y):0 < y .-~ x and 0 < x ~ 7: }, 
let f(.r, y ) - - 0 ,  (x, y)$ R, and ]eL fix, y) be periodic with period 2~ in each 
variable. The mn- th  partial sum of the FOURIEt¢ series of f(x, y), S.,.,dx, y), 
evaluated at (0, 0) is given by 

7~, 7T 

s~. °(0, O) = 1/~2 f f~u, v) sin pu sin qv d~¢dv + o(1) 
~t q.) 

= t /7 :2 f  sinpUu SiUv (Iv dudv + o(1) 

R 

--> (1/u2):p(tan-~(q/p)), m, n --> ~ ,  p/q fixed, 

since the transformation u'-- lou,  v ' - - q v  carries the line v - - u  into the line 
v ' - - (q /p )u ' .  If we let p / q -  1, then s,.~(O, 0)--> 1/~2~¢(~:/4): 1/8, m, n---> ~ .  
Oa the other hand, if p /q  = ~, then s~,d0, 0).->0, e-->o C and 8ran(O, 0)--->1/4, 

--->0, as m, n-->oQ. The geometric interpretat ion in this case is obvious. 

EXANPLE 2. - Suppose e, 0 < e < 1, is given and suppose that in 
I = [7:, n ; --  ,:. -- ~:], f(x, y) -- 1 on the region R = { (x, y) : ~ < [ y / x  I < 1/e }, 
and fix, y ) - - 0  otherwise. Geometrically, the region R is swept out by a 
line through the origin as this line swings from an angle of tan-X~ to an 
angle of t a n - q / ~ ,  and again as it swings from an angle of n/2-+-tan-is  
to an angle of re~2--I-tan-q/e, all relative to the positive x-axis .  As before, 
we have 
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7T, 7~ 

s.:O, o) = f f(u, v) SinuPU SinvqV dudv + o(t) 

- -  T :  , ~ " lT  

= 1/= fsi pu sinqVv dudv -{-o(1) 

41 { an-  qlp ) - -  (tan-  q lp) }, p, q 

since ~(0" + ku /2 )  --  9(0' + k~:/2) = ~(0") - -  ~(0'), k -- 0, ± 1, ± 2 . . . . .  Now 
let p, q ---> ~ .  If  at the same time, p / q  --> 0 or q / p  --> O, then s~,(O, O) ---> O, 
and this is independent  of the value e, 0 < e < i, that we choose. On the 
other hand, if p / q  -- t as p, q --> ~ then s,.~(0, 0)--> 4 / z  2 I ~(tan-~l/e) 
- -  ~(tan-~e) :4: 0, and in this case we also have that sm~(O, 0)---> 1, p / q  "- 1, 
p,  q-->cx~, ~ - )O.  In this case we note that the area of R, the area on which 
f(~, y) --  1, tends to the area of I as e-->0. 

Finally, we remark  that the function 9((}) is monotonically increasing 
with 0 for 0 > 0. Thus, the constants u~, i = l, 2, ..., k are all positive, 
with the obvious implication that under  the conditions of the theorem, the 
FOURIER series converges to some value in the interval Ira, M], where M 
and m are, respectively,  the maximum and the minimum of the set of values 
{ f : i - - 1 , 2 , . . . , k } .  

5. - Some Pre l imina ry  Lemmas. 

To expedite the proofs of our results, we prove a few lemmas. The point 
of depar ture  for our work is the function ~(0) defined in § 3. We  content 
ourselves here by proving the continui ty of 9(0). That  it exists for every 
choice of 0, - - c o  ~ 0 < ~ ,  can be shown by a modification of the proof of 
continuity, if such a proof should be required, but  on the other hand, it is 
an immediate corollary of Lemma 1. 

(5.1) LEMMA 1 . -  Let R(0)be  a region in the uv-plane  bounded by the 
positive u-axis ,  a ray from the origin making an angle 0 with the positive 
u-axis ,  and the boundary of the rectangle [a, b; - a ,  - -b] ,  a ~> 0, b ~ 0. Let  

9(0) = lira ( sin u sin v dudv, a, b --> oct. 
J u v 
R(0) 

The function ~(0) is a continuous function of 0 with ~(kr:/4)= I k ] n 2 / 8 ,  

k = O ,  i - l ,  ± 2 ,  -----3, .... 
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PROOF. - The numer ica l  values of ~(0} follow immedia te ly  on applying 
ao 

the known resul t  that  "t sin u du = ~:/2, and not ing that  the in tegrand is a n  

, 4  
0 

even funct ion in each variable, ~¢(~:/4) = 1/2~(7:/2), and for 0 > 0, ~(0 + 7:/2~ --  
~¢(0)-4-n2/4. It  remains  to prove the cont inui ty  of ~0(0), and i t  is sufficient  
to prove it for 0 _< 0 _< 7:/2. 

Firs t  consider  the interval  (0, T:/4] and let 0', 0" be such that  0 < 0', 
0"<_ 7:/4. Let  G be the region in the uv-p lane  bounded  by the rays v - - u  
tan 0' and v -  u tan 0" from the origin, and let G be otherwise unbounded.  
Then  

1 +(0') - -  +(0") t = 
.~ U V 
G 

Let 
~b(u, v) = sin u sin v, (u, v) E G 

= O, (u, v) ~ G. 
Then  

15.~) f +to') - -  +(o"~ 7 = i ~ ( -  1)i+Ju{i, J~l 
O, 0 

where 
'if, ~ff 

ofo ~(u, v) u(i, j) = . (u + iT:)(v + jr:) 

S u m m ing  first by rows, it is clear that  the sum 
exceed in absolute value the integral  

dudv. 

~. (--1)i+Ju(i, j) does not 
i ~ O  

f s i n u  s i n v  dudv, 
u +  in v + jT: 

O~ 0 

where the first square [(i + 1)r:, (j + 1)r:; iT:, ju] in the j - t h  row, any part  
of which belongs to G, is in the i - th  column. For  i > O, j > O, this is bounded 
by 4/(ij~2), and since i ~ j ,  this in turn  is bounded  by 1/j  2. If  R is the 
region bounded  by the lines v - - u t a n O ' ,  v - - u t a n O "  and v - -n r~ ,  where n 
is some positive integer,  and if A(R) is the area of R, then 

U ~) j=n  
R 

cO 

A(R) + x 1/y. 
, /~r[  
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Given any s > 0, n many be chosen large enough so that  the contr ibut ion 
of the sum on the r ight  does not exceed s/2. On the other hand,  A(R)--> 0 
as 0'--> 0" or as 0"--> 0'. Thus,  for 0' and 0" near  enough, A(R)<  ~/2, so that  
for some ~ > 0, 

I ~(0') - -  ~((}") [ < ~, [0' - -  0"[ < 8 0 < 0', 0"~_ ~ / 4 .  

This proves cont inui ty  of ~(0) over the interval  (0, 7:/4]. 
Continui ty  of ~(0) over ~he interval  [7:/4, 7:/2) is proved in exactly the 

same manner  except  the region R is taken to be the region bounded  by the 
lines v ~ - u t a n 0 ' ,  v - - u t a n 0 "  and u ' - n r : ,  and the summat ion  on the r ight  
in (5.2) outside of R is per formed first along the columns to obtain the 
analogue of (5.3), 

cO 

] ~(0') - -  ~(0") I < A(R) q- Z 1/i 2. 

Since ~(0) --  rd/4 --  ~(r:/2 --  0), to complete  the proof of the lemma, we 
need only consider  the case where one of 0', 0", say 0", equals  7:/2, and 
0'--->0", 0 ' ~  0". Here  the region G is bounded by the positive v-axis,  and 
the ray f rom the origin v - - u  tan 0', and is otherwise unbounded,  and R is 
bounded  by these same two rays and the l ine v - -n ~ : .  

With u(i, j )de f ined  as in (5.2), let ~' be fixed and let k - - [ n ~  tan0']. 
As before, we get 

OO, GO 

(5.4) [ ¢~(rc/2) - -  T(0') t -- [ Z (-- 1)~+~u(i, j) l 
0 . 0  

oo, oo 

< A(R)q-I Z (-- 1)~+Ju(i, J) l, 
0, n 

where the summat ion  with respect  to j now runs  from n to cx~. 
To est imate the last sum, perform the summat ion  by columns and obtain 

I~ (-- 1)Ju(0, j) I ~- f Sinu u 

0 , 0  

sin v 
v-{-- n~: 

< 2/n. 

dudv 

TG 7T 

f sin u sin v l~n (- l)~+Ju(i, 2 I  -< u + i~: v + n~: 
0, 0 

dudv 

< 1~in, i----1, 2, 3, ..., k 

<C 1/in' ~ 1/i 2, i ~ k, 
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where for i > k, the first square [(i + l)r:, tj  -4- 1)r:; ir~, ju] in the i - th  column, 
any part  of which belongs to G, is in the n ' - th row. Since we may clearly 
assume that 0 ' >  7:/4, it follows that n ' ~ i ,  from which we get the last 
inequality.  Then from (5.4!, we get 

k 

A(R) 1/n 2 Z 1/i ~ I / i  2. < + ( + } + 
1 k 

Note that the right hand side above is also a uniform bound for the left 
hand side of the inequali t ies for all angles (} such that 0 ' ~  0 ~< 7:/2, for by 
increasing 0' in this range, A(R) is diminished, and the contribution of the 

o:) 

sum Z (--1)~+Ju(i, j), i ~ 1, 2, 3, ..., does not increase in absolute value. 

Let s > 0  be chosen and fix k so that ~. 1 / i 2 <  ~/3. Now choose n so 
k k 

that 1/n{2-4- y~ l / i }  < ~ / 3 .  Then for all 0' such that [ t a n 0 ' ] ~ k ,  we have 
I 

] ~(r~/2) - -  ¢~(~') t < A(R) -f- 2~/3 .  

Let 0 ' --)r : /2.  Then A(R)--> O, and so for all 0' large enough, A(R)< s/3, 
and for all such 0', 

This completes the proof of the lemma. 

t5.5) COROLLARY.- Let  R be a region in the uv-plane  bounded by the 
rays v - -  u tan 0' and v ----- u tan 0", ~" > 0', and let R be unbounded otherwise. 
Then 

( sin u sin v dudv 
~ t ( R )  

• ) u v 
R 

exists as a finite, real number.  

PRooF. 
u(R) = { - }. 

(5.6) REMARKS. - It  is clear that ¢?(0)--0@. Also ~(0) is monotonically in- 
creasing for 0 > 0 as already indicated. 

(5.7) LEMMA 2. - Let  l' be a continuous path in the uv-plane, terminating 
at the origin, and let 0' be the limiting angle of approach of l' to the origin. 
Suppose also that there exists an integer k' such that any line 1 parallel  to 
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either coordinate axis will cross l' at most k' times. If  r' is the ray v -- u tan 0', 
and R' is the region lying on one side of r' and bounded by l', r' and the 
boundary of the square S = [5, 8; - -5 ,  --~], then 

s inpu  sinqvdudv=o(1),  8-->0, l l s > p l q > ~  , 
,~ U V 
R" 

where s is arbi trary but fixed, 0 ~ s <_ l, and the o(i) term tends to zero 
with 8, uniformly in p/q. 

I5.8) REMARKS. - In general, there will be two such regions, one on each 
side of the ray r'. 

If R' is contained in the interior of two adjacent quadrants,  then clearly 
r' is in one of these quadrants.  Since l' has a l imiting angle of approach to 
the origin, ~ can be chosen small enough so that l', and so also R', must 
eventually be contained in one quadrant.  Thus we assume that R' is already 
contained in some one quadrant .  

If  R' is in some quadrant  other than the first, then we can reflect it 
in a suitable manner  about the appropriate coordinate axes, and reduce the 
proof of the lemma to a region R' in the first quadrant.  This can be done 
without penalty since the integrand is an even function in each variable. 
Hence we assume that R' is already in the first quadrant.  

Pnoo)  ~. - Suppose first that 0' -- 7:/2 so that r' coincides with the positive 
v-axis, and R' is in the  first quadrant.  Let r be the ray v - - u t a n 0 ,  termi- 
nat ing at the origin, touching l' at least at one point distinct from the origin 
in the interior of S - - [ 8 ,  8; - -8 ,  --8],  and such that t', restricted to S, lies 
entirely on one side of r. Since l' has a l imiting direction of approach to 
the origin, it follows that 0--> u/2 as ~--> 0. 

Since 1/s>~p/f f>s,  the transformations u'- -pu,  v ' = q v  map the 
coordinate axes into the coordinate axes, the path l' into some new path, 
and the ray r into a new ray v ' - - u ' [ q / p ) t a n O - - u ' t a n  +. Because of the 
restriction imposed on p/q, the minimum value that q/p can take on is ~, 
so that the minimum slope the transformed ray will have is s tun0 .  Since 
0--->r~/2 as 8-->0, it follows that the lower bound for tile slope of the 
transformed ray may be taken arbitrari ly large by choosing 8 small enougb. 

Proceeding as in the proof of Lemma 1, let G be the region bounded 
by the positive v-axes, the transform of the path l', and the boundary of 
the transform of [8, 8; 0, 0]. That is, G is the transform of the region /~' 
under  the transformation u'-~ up, v '--qv.  Let R be that part of G below 
the line v - "  nu, where n is some integer. Then 
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R '  G 

k O0 

<_ A(R) + k' /n I 2 + Z l / i  } + k' Z 1/i 2, 

where k----[tan ~] and the factor k' appears because of the assumption that 
a vertical  or horizontal line will cross l' at most k' times. Since k' is fixed, 
choose k large enough so that for a given 5 ' >  0, the contribution of the 
last term on the right in (5.9) does not exceed ~'/3. Now choose n so that 
the middle term does exceed d/3, and choose ~ so that [tan ~] ~_ k. This can 
always be done since tan ~b - -  q/p  tan 0 ~ ~ tan 0, so that ~ --> r~/2 as 0 --> "z/2, 
and so as ~--> 0. 

Now choose ~ so small so that A(R} < e'/3. The left side of (5.9) then 
does not exceed 5'/3-]- 5'/3 ~ 5'/3 ~ 5', proving the lemma for the case 
considered. 

The case where 0 ' - - 0  and R' is along the upper  side of the positive 
u -ax i s  is proved in a similar manner. 

To complete the proof, suppose that the ray r, is oriented at some angle 
0', 0 ~ 0 ' ~  r:/2. Wi th  the ray r, v - - u  tan 0, as defined above, the transfor- 
marion u' -- pu, v' -~ qv carries r' into the ray v' = u'(q/p) tan 0', and r into 
the ray v ' - -u ' (q/p}  tan 0. The maximum difference in the slopes of these 
rays is 1/e(tan 0 ' - - t a ~  0), and since 0--> 0' as ~----> 0, this difference tends to 
zero with ~. 

Given d > 0, choose k so that k' Z 1/ i  2 ~ 5'/4. Let  G be the transform 
k 

of the region /~' and let R be the part  of G below the line v - -kT:  or to 
the left of the line u -  kr~, or both. Then 

(5.10) l f sin pu sin qV dudv [ "- f sin u sin V dudv ] 
• ~ U V U V 

R p G 

A(R)-[-2k'E 1/i 2, 
k 

where the factor k' again appears  because of the assumption that a horizontal 
or vertical  line will cross l' at most k' times, and the factor  2 appears  
because a part of G may fall above and a part  below the main diagonal in 
the transformed plane. The integral over the part of G in the complement 
of R is taken over individual squares of the type [(i ~ 1)re, tj ~ 1)re; ix, jr~l, 
and the contributions over such squares are summed by columns above the 
main diagonal and by rows below the main diagonal. 

The second term on the right in (5.10) does not exceed e'/2. Since 
A{R)-->0 as 0-->0', and so as ~-->0, uniformly in P/~l for l / 5 ~ p / q ~ E ,  
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it follows that under  this restriction, the left hand side does not exceed e' 
if ~ is taken small enough, uniformly in p/q .  This completes the proof of 
Lemma 2. 

(5.11) LE~)IA 3. - Let /~' be a region in the xy-plane,  bounded by two 
non- in tersect ing  paths l' and l" terminat ing at a point (x, y), and the boundary 
of the ncighbourhood S of (x, y), S ' -  [~c -{- 5, y -b ~; w - -  5, y - -  ~]. Suppose 
that t' and U have limiting angles of approach to (x, y), say 0' and 0" respec- 
tively, 0 " ~  0% and there exists an integer k' such that a horizontal or vertical 
line will cross l' or l" at most k' times. If f(x, y) is defined, continuous and 
of bounded variation T on R', and if sup I V(f(x); y, R')} ---> 0 and sup { V(f(y); 
x, R')} ----> 0 as ~ ----> 0, then 

j . lim f(x -{- u, y + v) sin p u  sin qv dudv  
u .v Rt 

-" u' f '  + o(1), 

where  the limit is taken as p, q-->oo, p / q  fixed, the o(1) term tends to 
zero with 5, and 

f' = lim f(x + u, y -.{- v), u, v ---> O, (~ + u, y + v) ~- R', 

u' = u'[p/q,  R) - -  lim f sin pUu SinvqVdudv 
R 

-~ ~( tan- l (q /p  tan 0")} - -  ~( tan- l tq /p  tan 0')), 

p, q --> oo, 

the region R being the region bounded by the rays v - - u  tan 0% v ": u tan 0", 
and the boundary  of the square [~, ~; - - 5 ,  --5].  

PROOF. - We identify the point (x, y) with the origin in the uv-plane,  
making it convenient  to identify a region R, having a prescribed configuration 
relative to the point (x, y), with the region R in the uv-plane,  having the 
same configuration relative to the origin. 

Assume that R' is contained in the first quadrant .  Then 

~nnali di Matematica 5 



34 F. USTINA: Convergence o] Double Fourier Series 

t5.12) f f(x ÷ u, y ÷ v) sinpUu SinvqV dudv 
R r 

f, f SinuPU Sinv qv dudv 
R ~ 

÷ flf( ÷u, y ÷ v ) - - f ' }  sinpUu sin qVdudv'v 
R" 

To estimate the first term, we draw the rays r', given by v----utah 0', and 
r", given by v = u tan 0", in the uv-plane,  and get at most four regions, say 
R'I, R~, R~' and /~', the first two being bounded by r' and l', and the last 
two by r" and t', with Ri and R~' on the clockwise side of r' and r" 
respectively, and R~ and R~' on the counter-clockwise side of r' and r". 
These regions are of the type described in Lemma 2, and we have 

f sinpu sin qv dudv 
U ~) 

R~ 

_j  upU 

+ l f - - ~ - - f (  -[- I l s i n p u  ' ~R'2' u v 

By Lemma 2, each of the last four integrals is o(1), 8.->0. Now let 

u' -- u'(p/~, R) = lim f SinuPU SinvqV dudv, 
R 

where p/q. is held constant, and get 

(5.13) lim f'f 
R r 

s inpu  sin qu dudv 

P, q - ->~ ;  

-~ u'f' + o(1), 1o, q-~ ~ ,  p/q constant, 

where the o(1) term tends to zero with 8. 
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To estimate the contribution of the second term, set g(u, v ) =  f(x ~ u, 
y ~  v ) - - f ' ,  and extend g(u, v) to the square S ' - - S ' ( ~ ) - - [ ~ ,  ~; 0, 0] by 
setting g(u, v) = O, (u, v)$ R'. If r is any ray in the first quadrant  with end 
point at the origin, set 

g(u(r), v(r))--g+(,(r), v(r))--g-(u(r), v(r)), 

where g+ and g -  have the usual meaning and we use the notation (u(r), 
v(r)) to indicate that u and v are restr icted to vary along r :  if 0 is the angle 
between r and the positive u-axis,  then v - - u  tan O. 

Above r, along lines parallel to the v-axis terminat ing on r, let V+(g(v); 
u(r), v) and V-tg(v); utr), v) denote the positive and negative variation 
functions of g(u, v), considered as functions of v alone for each fixed u, 
and set V+{g(v); u(r), v) = V-(g(v); u(rb v) = 0 below r. Below r, let V+(g(u); 
v(r), u) and V-(g(u); v(r), u) denote the positive and negative variation 
functions of g(u, v), considered as functions of u alone along lines parallel  
to the u-axis,  and set V+Ig(u); v(r), u ) - -  V-(g(u); v(r}, u ) =  0) above r. Then 

whore 
g(u, v ) = g i ( u ,  v ) - g ~ ( u ,  v) 

gi(u, v)----g+(u(r), v(r)} + V+lg(v); u(r), v)--~ V+(g(u); v(r), u) 

g'2{u, v ) =  g-(u(r), v(r)) + V-(g(v); u(r), v ) +  V-(g(v); v(r), u) 

is a decomposition of g(u, v) into two non-negat ive  functions with the property 
that above r, these functions are mononical ly increasing in v, and below r 
they are monotonically increasing in u. 

For a fixed ray r, let M ( r ) - - s u p  {g'l, g'2: (u, v )~S '  I" Let M(~)= sup 
{M(r)}, where now the supremum is taken over all rays in the first quadrant  
witl~ end point at the origin. Since f '  exists, sup{ lg(u, v) l : (u ,  v)eS'}-->O, 

--> O, and also sup { g+iu(r), v(r)) } --> 0 and sup { g-(u(r}, v(r}) 1 "-> O, ~ --> O. 
Since  s u p { V  If(x); y, t~') f and  sup IV( f (y ) ;  x, R') 1 t end  to zero wi th  5, it  
follows that sup l V+(g(v); u(r), v)}, sup{ V-(g(v); u(r), v)}, sup/  V~(g(u); v(r), 
u) l and sup(  V-(g(u); v(r). u)} all tend to zero with ~, uniformly in r. Thus 
also M(~)--> O, ~-->0, uniformly in r. 

Let r be fixed and let 

g(u, v) = { M~)--g~(u,  v) } -- ( M(~) -- g{(u, v)} 

= g,(u, v) - -  g2(u, v). 

This is a decomposition of glu, v) into two functions, and from the foregoing 
we conclude that these functions have the following properties. Each function 
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is non-negative, and for fixed r, each is monotonically decreasing in v above 
r, and monotonically decreasing in u below r. These functions are uniformly 
bounded in r, and the uniform bound, M(8), tends to zero with ~. 

Let S " =  [p~, q~; 0, 0] be the transform of S' under the transformation 
u ' - - p u ,  v ' - - q v .  Proceeding as in the proof of Lemma 1, we get 

f s inpu sin qv dudv  15.14) g~(u, v) u v 
S" 

( ( ;  ~ ) s inu  sin Vdudv 
--" gl , U V 

where 

0o, oo 

- -  E ( - -  1)*+]u(i, j) 
0,0  

7~, 7'r 

j( u(i, j} = gl iu ~- u j= + v~ s inu  s inv dudv.  

O, 0 

Summing by rows below the transform of the ray v - -  (p/q}u,  and by columns 
above this transform, it is easily verified that the above sum does not exceed 

oo 

the quantity 2M~8) [ 7:2 Jr":B t / i  2 } in absolute value. Since /3118) tends to zero 
1 

with 8, it follows that the left hand side in 15.14) tends to zero with 
uniformly in p / q .  

The estimate for the integral 

f g.~(u, v) sin pu  sin qV dudv  
~ V 

St 

is obtained in a similar manner. Then 

f { f(x + 
Rr 

u, y + v) --  f '  } s inpu sin q v d u d v  
? t  V 

f s inpu sin qv dudv  - -  { gl(u, v) - -  g2(u, v) } u v 
S" 

= o(1) + o(1) = o(1}, 8 --> o. 

Combining this with the estimate 15.13) of the contribution of the first term 
on the right in (5.12)completes the proof of the main part of the lemma, 
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To complete the proof, it remains to show that the limit u' of the integral 

f sin pu sin qV dudv 
U V 

R 

as p, q --> ~ ,  p /q  constant, is given by 

~(tan-~(q/p tan 0")) --  ~(tan-~(q/p tan-~0')). 

The transformation u ' : p u ,  v ' - - q v  carries the region R, bounded by the 
rays v ---- u tan 0" and v --  u tan ~', and the boundary of S'  into the region R", 
bounded by the rays v--" u(q/p)tan 0" and v-= ulq/p)tan 0', and the boundary 
of S " - - [ p S ,  q~; 0, 0]. Since pS, q8 .->cx~ as p, q.-> ~ ,  the integral 

tends to 

~ sin u sin Vdudv 
V 

¢p(tan-~(q/p tan 0")) - -  ~(tan-~(q/p tan 0')) 

by the corollary t5.5) to Lemma 1. 

(5.15) C O R O L L A R ¥ . - L e t S - - [ X ~ 8 ,  y - ~ 8 ; X - - 8 ,  y - -~]  be a neighborhood 
of the point (x, y), and suppose that k non- intersect ing paths l~, 12, ..., lk, 
lk+~---lt, terminat ing at (x, y), divide S into k open regions R~, R~, ..., R~, 
so that the boundary of R~ is traced out by l~, li+~, and the boundary of S, 
the paths l~, i --  1, 2, ..., k being enumerated  in a counter-clockwise sequence. 
Suppose that for each i, l~ has a limiting angle of approach to (x, y), say 
0~, and there exists an integer k' such that a horizontal or vertical line 
will cross l~ at most k' times. If f(w, y) is continuous in each open region 
R'~, and if for each i, sup { V(f(x); y, i~;) } --> 0 and sup { V(f(y); x, R'~) } --> 0 
as 8--> 0, then 

lim ( f ~ x  ~ u, y -{- v) s i npu  s inqvdudv 

i ~ V 

= u~f~ + u~f2 + ... + u~fk + o(1), 

where the limit is taken as p, q-->c,% p /q  fixed, the o(1) term tends to zero 
with 8, and for i = 1, 2, ..., k, 

u~ -- ~(tan-~(q/p tan 0~+~)) - -  ¢~(tan-~(q/p tan 0~)) 

f~ -- lim f(x + u, y + v), u, v --> O, (x -t- u, x + v) e Ri , 

tan-~(q/p tan 0) being taken in the same quadrant  as 0. 
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P~ooF. - W e  have 

f(x + u, y + v) sin pu sin qV dudv 
U V 

=lf+f +... + f l f(x + u' y + v) Sin pUu sin qv 

R 2 R 2 R k 

Applying Lemma 3 to each of the integrals on the right completes the proof 
of the corollary. That tan-~(q/ptan 0) must be taken in the same quadrant  
as 0 follows immediately from the geometry of the transformation u " - p u ,  
V' - -  q V .  

(5.16) REMARKS. - W e  also have the trivial result  that for each i, u~ 
exists as a real number,  and for every choice of 1)/q, 

ul  + u2 + ... + u~ = ~ : .  

~5.17) LEMMA 4. - Suppose that f(x, y) is of bounded variat ion T with 
respect  to x on the rectangle R' ----- [x + r:, y + ~ ;  x + 5 ,  y], ~ > 0 ,  and for 
some ~ > 0, f(x, y) is of bounded variat ion T with respect  to y on the part  
of R' above the line l' through the point {x + 5, y), with slope 5. Then 

f f(x + u, y + v) sin pu sin qv dudv 
U V 

R" 

---- o(1), p, q --> co, p / q  >__ ~. 

PROOF. - Let 1 be any line through the point (x-{-~, y) with slope not 
less than e. As in the proof of Lemma 3, f(x, y) can be expressed on R' as 
the difference of two functions, 

f(x + u, y ÷ v) - g~(u, v) - -  g2(u, v), 

where the functions gi(u, v) and g.2(u, v) are non-negative,  monotonically 
decreasing in x below I and monotonically decreasing in y above I. Since 
f(x, y) is bounded, of bounded variation T with respect to x on R' and with 
respect  to y on the part  of R' above l'~ these functions may be assumed to 
be uniformly bounded for every choice of line l through (x ~ 8, y) with 
slope not less than e. Let  ~(~) be such a uniform bound, 
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Then 

(5.18) f v) sin pu sin qv dudv 
f ( x + u ,  y +  u v 

R t 

- fg (u, v) sinpUu SinvqV dudv 

R t 

. s i npu  sin qv dudv. 
g~(u, v) u v 

R ~ 

To estimate the contribution of the first integral on the right in (5.18), 
assume that p, q are fixed, p/q ~ ~, and g~(u, v) is decreasing monotonically 
in u below the line l" defined by v - - - - (p /q ) (u -  5), and that it is decreasing 
monotonically in v above this line, and is non-negative.  The transformation 
u ' - ' p u ,  v ' - - q v  allows us to write 

f gl(u, v) s inpu  sin qv dudv 
U V 

R~ 

f -- 91 ~ q U V 
R 

where R ~ [pn, q~ ; p~, 0] is the tranform of the region R'. This transformation 
carries the line l" into the line l, defined by v - - u - - p ~ ,  with unit  slope. 

The function gl(-~, -~)remains bounded by M(e)and is monotonically decrea- 
J ~  

sing in u below 1 and in v above 1 
Now choose integers a, b, c, such that 

and let 

at: _< p~ < (a + 1)= 

bn ~ p n ~ .  ( b + l ) n  

c~: _< q~ < (c + 1)n, 

+(u, v) "- sin u sin v, 

- ~  0~  

lu, v) e R 

(u, v)~R 

15.19) 

TU ~ 

u(i, j) -- gl ~ -{- ~ 
0 , 0  

jn v) +(u, v) 
' -q + q (in + u)lj~ 't- v) dudv. 
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Then  

f (P v i s i n u s i n v  
g~ ' ~j  -~ v 

R 

dudv 

b, c 

-- E (--1)~+iu(i, j). 
a~ 0 

Per forming  the summat ion  by columns above l and by rows below l, we get 

77, ff 

) f  s i n u  s inv  I~ (--  1)~u(i, 0~' F < M(~ 
O, 0 

- -  dudv 

7~, 7~ 

b f sin u sin v 
~' (--  i)~+Ju( i, J}'i <-- M(~) u ~ - ~ + j ~ n  v +jrc 

0 , 0  

dudv 

< M(s)/j(a -[-j), j -- 1, 2, ..., 

1 ~ (-- 1)a+iu( a, J)'l < M(e) ( sin u sin v dudv 
o - ] ~ a ~ :  ~ -  

0 , 0  

< 2M(~)ia 
~ ,  77 

e f sin u sin v 1E~ (-- 1)~+~+]u(a + i, J( I <. M(s) u -~ ~-Jr ipr: ~ dudv 
O,O 

< M(s)/i(a -Jr- i), i = I, 2, .... c. 

Here the pr ime indicates that  only that  part  of the first term which results  
from performing the integrat ion (5.19) below the line l enters the sum in 
the case of summat ion  by rows, and only that  part  of the first term which 
resul ts  from per forming  the same integrat ion above l enters  the sum in the 
case of summat ion  by columns.  Collecting the results,  we have 

(5.20) f  )sin.. sin vv 
R 

< M(s) t 4 /a  -~ E 1/j(a + j )  + Z 1/i(a + i)} 
t 1 

< 2M(~) { 2/a .~- Z 1/i(a + i) }. 
1 
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Since a--> ~ as p, q . - > ~ ,  and the term inside the brackets  tends to zero as 
a- ->c% the left hand side in {5.201, and so the first term on the right in 
(5.18), is o(1), p, q - - > ~ .  

In a similar manner, it can be shown that the right side in (5.20) is an 
upper  bound for the second term on the right in (5.18) as well. Then 

~ f(x + u, y + v) sin pu  sin qv dudv 
U ~) 

--  o(1) + o(1) --  o(1), p, q--> :~, P/q  ~ ~. 

This completes the proof of the lemma. 

(5.21} REMARK. - If  f(X, y) is also of bounded variat ion T with respect  
to y on R', then M(e) may be replaced by a uniform bound on the functions 
g~(u, v) and g2(u, v). In such a case, the restriction p / q  ~ ~ can be removed. 
Taking this into account, we have 

(5.22) COROLLARY 1. - Let  ~ > 0  be given and let R = [ x + %  g + 8 ;  
x + ~ ,  y - - ~ ] U [ x - - ~ ,  y + ~ ;  x - - ~ ,  y - - ~ ] = R 1  U R 2 .  If  f(x, y), defined 
on R, is of bounded variation T with respect  to x on R, and if on R1 above 
the line through (x + ~, y) with slope ~ and below the line through the same 
point with slope - - e ,  and on R2 above the line through ( x ~  ~, y) with 
slope - - ~  and below the line through the same point with slope s, f(x, y) is 
is also of bounded variation T with respect  to y, then 

f f(x + u, y + v) sin p u  sin qV dudv 
U ~d 

R 

-- o(1), p, q --> ~ ,  p / q  ~ ~. 

If, in addition, fix, y) is of bounded variation T with respect  to y on R, 
then the restrict ion p / q  ~ e is removed. 

P R O O F .  - Let R = [ x + r : ,  y + ~ ;  x-]-~, y] U [x -~- 7:, y; x + ~ ,  y - - ~ ] U  
[ x - - ~ ,  y + ~ ;  x - - %  y ] U [ x - - ~ ,  y ; x - - r c ,  y - - ~ ] = B ~  U //'2U R ~ U R ~ . T h e n  

f(x + u, y + v) Sin pu  sin qV dudv 
U ~0 

R 

=lf+f+f+ftr(x+ 
4 

vi sin pu sin qv dudv u, Y I ! • u q.) 

4t~naIi di Matemarica 6 
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+ v ) +  u, + / ( x - u ,  
t 

R 1 

+ fix - u, y - v) l sin pu sin qv dudv. 
U V 

By the hypothesis, the functions f(x + u, y + v), f(x + u, y - -  v), f ( x - -  u, y + v) 
and f ( x - - u ,  y - - v )  are of bounded variation T with respect  to x on R'~, 
and with respect  to y on the part  of R; above the line through the point 
Ix + 8, y) with slope e. The corollary now follows by an application of the 
lemma and the remark  (5.21}. 

(5.23) COROLLAnY 2. - Let  e~>0  be given and let R = [ x + 8 ,  y + 7 : ;  
x - - 8 ,  y + 8 ] U [ x + 8 ,  y - - 8 ;  x - - 8 ,  y ~ n ] = R ~ U  R2. If  f(x, y), defined on 
R, is of bounded variat ion 7' with respect  to y on R. and if on R~ on the 
right of the line through the point (x, y + 8) with slope t /~  and on the left 
of the line through the same point with slope - - l / e ,  and on R2 on the 
right of the line through the point (z, y - -8 )  with slope - - 1 / ~  and on the 
left of the line through the same point with slope l /e ,  f(x, y) is also of 
bounded variation T with respect  to x, then 

I ' f (x  + u, y + v) s inpu  sin qv dudv 
U v 

R 

=o(1) ,  p, q--->~, 1/e_~_p/q. 

If, in addition, fix, y) is of bounded variation T with respect to z on R, 
then the restr ict ion l / e ~ p / q  is removed. 

PROOF. - The proof of Corollary 2 is immediate since it is only a resta- 
tement of Corollary 1 with the roles of p, a.nd q, x and y, u and v, and 
and 1/z interchanged. 

(5.24) LEMMA 5. - Suppose that f(x, y) is defined on the square I - -  [x + u, 
y + ~; x - - u ,  y- -7 : ] ,  and suppose that for some 8 ~ O, f(x, y) is of bounded 
variat ion T with respect  to x on Ity; 8) and with respect  to y on I(x; ~), where 
N =  N((x, y); 8 ) =  Iix; 5} U I(y; 8) is a cross-neighborhood of the point (x, 
y). Then, given e > 0, there exists 8' ~ 0 such that on the cross-neighborhood 
N ' =  Nt(x, y); ~'), f(x, y) has the following properties. {1) The function f(x, y) 
is of bounded variation T with respect  to both variables on the square 
S = [ x +  ~', y + ~ ' ;  x--~',  y--~']. (2) On R ' = [ x + ~ ,  y+~ ' ;  x+~',  y--8']U 
[x--~' ,  y + ~'; x - -r : ,  y - - 8 ' ] - - R {  U R~, f(x, y) is of bounded variat ion T 
with respect  to x; on the parts of R; above the line through the point  
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(x ~ ~', y) with slope ~ and below the line through the same point with slope 
- - ~ ,  and on the parts of R~ above the line through the point Ix - -~ ' ,  y) 
with slope - - ~  and below the line through the same point with slope ~, 
/'(x, y) is also of bounded variation T with respect  to y. (3} On R " - -  [x -/- ~', 
y--]-~; x - - ~ ' ,  y - } - ~ ' ] U [ ~ + ~ ' ,  y - - ~ ' ;  x - -~ ' ,  y--z:]=R'~' t2R'2' ,  [{x, y) is 
of bounded variation T with respect  to y; on the parts of R~' on the right 
of the line through (x, y + ~'~ with slope 1/~ and on the left of the line 
through the same point with slope - - l / e ,  and on the parts of R~' on the 
right of the line through (x, y - -~ ' )  with slope -- 1/e and on the left of the 
line through the same point with slope l/e, /(x, y) is also of bounded variation 
T with respect  to x. 

PROOF. - That ~' can be chosen so that fix, yt is of bounded variation 
T with respect  to both variables on S, with respect to x on R' and with 
respect  to y on R" is obvious, since by assumption, this is already true for 
the case ~' '< ~. To prove the remaining part  of the lemma, choose ~' so 
that 0 < ~ ' ~  ~/ (1-{-  e). Then S, the parts of R" on which f(x, y) is required 
to be of bounded variation T with respect  to y, and the parts of/~" on which 
fix, y) is required to be of bounded variation T with respect  to x are all 
contained in the square [x + ~, y + ~; x - - 8 ,  y - - 3 ] ,  so that the conclusions 
of the lemma follow. 

6. - P r o o f  of  the theorem. 

The proof of the Theorem now reduces to interpreting the results  of 
Section 5. 

We identify the point {x, y) in the xy-plane with the origin in the 
uv-plane,  and a region R in the xy-plane~ having a fixed configuration 
relative to the point (x, y), with a region R, having the same configuration 
relative to the origin in the uv-plane.  Thus the region R has a fixed 
meaning without ambiguity in either plane, and this allows us to transfer 
the discussion from one plane to another penalty. We do this in the sequel 
without specific mention. 

The mn- th  partial  sum of the FOURIER series of fix, y), s,~ix, Yl, 
evaluated at the point (x, y), is given by 

1° / sin pu  sin qv dudv 
(6.1) s.~(x, y)----7:: g(u, vl u v 

I 

where 2m ~ 1 -- 2p, 2n-}- 1 --  2q, I is the period square and 

g(u, v) -- t(x + u, y -t- v)uv/(4 sin u /2  sin v/2). 
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If we let sin t/t  = 1 when t = 0, then it is easily seen that the variation 
propert ies  of j' and g over any region in [ are identical.. If  [ is of bounded 
variation T with respect  to either variable on any region in I, then so is g, 
and conversely. Also, [ is bounded, continuous and absolutely integrable 
over any such region if and only if g is bounded, continuous and absolutely 
integrable. Finally, we note that if R'  is the region described in the statement 
of Lemma 3, then 

limg(u, v} -- lim [ ( x ÷  u, y ÷  v) = t', u, v->O, (u, v )~R ' .  

From the foregoing, it follows that if we replace t(x ÷ u, y ÷ v) by 
g(u, v) in the statement of the lemmas and corollaries of the preceding 
section, then in each case the conclusions are valid. 

We use the notation of Lemma 5 and denote the complement of 
N=-I(x ,  ~)U I{y; ~ } : = S U R ' L )  R", relative to the period square I : [ x ÷ ~ ,  
y ÷ ~ ;  x--r~,  y - - ~ ]  by C. Fix  p/q, then choose ~ > 0, ] / ~ p / g ~ .  Since 
otherwise we could choose a smaller  cross-neighborhood, we assume that on 
S, R' and R", the function f{x, y) already has the propert ies  (1), (2} and (3}, 
so that g(u, v) has these propert ies  i.a the image of these regions in the 
uv-plane.  Then 

(6.2) f + f + f ÷ v)Sinpu sinqv v 
S R '  R '"  C 

Since p, q---->~ as m, n- ->c~ and g(u, v), and so also gIu, v)/{uv), is 
absolutely integrable on C, by the RIEMANYT-LEBESGUE lemma we have 

(6.3) 1/~: 2 fg(u, v) SinuPU Sinv qv dudv 

C 

= o(1), /9, ff --> ~ .  

Next, under the hypothesis of Theorem t, tix, y), and so also g{u, v), 
satisfies the hypotheses of Lemmas 3 and 4. By the corollary tn Lemma 3, 
and the foregoing remarks, 

(6.4) 1/r~2f g(u, v) SinuPU Sinv qv dudv 

S 

= u~tl + ~,~t2 + ... + Uktk + 0(1)'+ 0(1}", 

where the o(1)', term tends to zero with 8, and the o(1)" term tends to zero 
as p, q-->~,  p/q fixed. If we denote the coefficients in the corollary to 
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Lemma 3 by u'~, then because of the factor 1/7: 2, the coefficients here are 
defined by u~ = u~/r: 2, i ~ 1, 2, ..., k. 

Finally, by the corollaries 1 and 2 to Lemma 4, we have 

 65} f v) sinpUu sinv qv dudv 

R~ 

- -  ol 1), p, q --> c,o, p / q  ~ 

(6.6) 1/,~ 2 fg(u, v) SinuPU Sinv qv dudv 
j~st 

= o(1), p, q - - > ~ ,  1 / ~ p / q .  

Using the estimates (6.3) to (6.6) in (6.2} we have 

(6.7} s~.(x, y) : u~t~ + u2f~ + ... -~ ukf~ + o(1}' + o(1)", 

P, q --> ~ ,  

where the o(1( term tends to zero with 
as p, q--> ~ .  

Let  ~ '>  0 be given. Choose ~ so 

p/q  fixed, 

and the o(1)" term tends to zero 

small that the o(1)' term does not 
o{1)" term exceed e / . .  Choose an integer k such that for p > k ,  q > k ,  the 

does not exceed e'/2. Then for all such p, q, 

l s~(x, y) - -  ultl - -  U212 - -  ... - -  Ukfk [ ~ e'. 

Since e ' >  0 is arbitrary,  we conclude the proof of the main result  of the 
theorem remarking that by Section 5, 

f f - - l i m t ( x - ] - u ,  y -{ -v ) ,  u, v-->O (u, v )eR~ ,  

uf : 1/r: 2 I ~(tan-~(q/P tan 0~+1)) - -  ¢~r~tan-~(q/ p tan 05))}, 

where t an - l (q /p  tan 0) is taken in the same quadrant  as 0. 
The remaning results of the theorem follow easily. We have ut + u2-[- 

... + uk ~- 1/r:2~(2r:)-- 1. That  us = l/r:2{ ~(0f+l) -- ~(0~)t when p / q - -  I is 
obvious. Fur thermore,  u~ is independent  of p /q  if for some integer k", k " - -0 ,  
l, 2, 3, Of~_k"=/2 and 0 f+ l : (k"~-1 )~ : /2 ,  for then one of tan 0f, tan0~+l is 
zero and the other is infinite, so that ~( tan- l (q /p tanO~+~)) - -~( tan- l (q /p  
tan~i))-~=2/4 independent ly  of what value we choose for p/q,  q p ~ O .  
However, in this ease the o(1) term in Lemma 3, and so the o(1}' term above 
might not go to zero with ~ uuiformly in p /q  unless the restrict ion 
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1 / ~ p / ~ l ~  is re ta ined.  Ba t  then this er ror  term is zero indent ica l ly  in 
p/q if the pa ths  l~ and l~+~ are  rays  f rom the point  (x, y). 

The  res t r i c t ion  oa p/i f ,  1 / ~ p / f f ~ s ,  ar ises  in yet  ano the r  ins tance.  
I t  ar ises  in ob ta in ing  the es t imate  for the in tegral  

If ÷ f l g(u' v) Sin pu sin qV v 

R ~ W~ 

by way of L e m m a  4. In  this case, this res t r ic t ion  is removed on the r ight  
only if f(x, y) is also o[ bounded  var ia t ion  T with respec t  to y on R', and 
it is r emoved  on the left  only if f(x, y) is of b o u n d e d  var ia t ion  T with 
respec t  to x on R". For  then in the f i rs t  ins tance  the un i fo rm uppe r  bound  
M(~) may be chosen  independen t  of ~ as r egards  Corol lary  t, and in the 
second ins tance  in may  be chose  independen t  of 1/s  as r egard  Corol la ry  2. 
In  fact, it is suf f ic ient  to rep lace  it by M =  sup { VIt(x);  y, I { y ;  $1)} ÷ sup 
{ V(t(y); x, l ( y ;  $))}-~ sup{ I [{x' , y ' } - - t ( x " ,  Y"}t :(x', y'}. ix", y " i e I { y ;  $)} and 
M-----supl V4f(y); x, I ( x ;  ~ ) ) } + s u p {  V(t(x); y, /'{x; ~ ) ) } ÷ s u p { ] f { x ' ,  y ' ) -  
f(x",  y " ) [ : ( x ' ,  Y't, (x", y " } e I ( x ;  ~)1 in the respec t ive  cases.  This  comple tes  
the proof  of the theorem.  
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