Some properties of pseudo-Abelian varieties.

Memoria di Leonarp RorH (a Londra).

Suommary. - This work is a study of the algebraic varieties which are invariant under
continuous groups of aulomorphisms the trajectories of which are PIiCARD wvarieties.

The present work continues and amplifies previous studies (18, 19) of
pseudo-Abelian varieties, i. e. the varieties which admit continuous groups
of automorphisms whose trajectories are PICARD varieties, forming congruences
or systems of index unity. Since the previous papers on this subject were
written, a number of important results (which are described in § 1) have
appeared ; these have made it possible to remove the restriction (imposed
in 18) that the trajectories of the group should have general moduli.

We begin by recapitulating or establishing some properties of algebraic
varieties which are required in the sequel. In the first place, from a new
definition, due to B. SEeRE (23), of the canonical varieties X,(U,) of a
variety U,, we deduce relations between the canonical systems of any two
varieties U,, Uy in biregular (n, 1) correspondence; these include the case
k=p — 1, which is classical, and also the case k = 0, which has been dealt
with in (18). We next (§ 3) survey briefly the PIcARD varieties, and the
Abelian varieties which are mapped on them by involutions of various kinds;
among such varieties, those for which the associated involutions are free
from coincidences are specially important in our work. We call these Abelian
varieties of the first species; it follows from § 2 that their canonical varieties,
whether effective or virtual, are all of order zero.

We then proceed (§ 4 et seq.) to consider the pseudo-Abelian varieties.
The essential fact about such a variety W, is that, in addition to the con-
gruence | V,} (1<<g<<p—1) of trajectories, it contains a complementary
congruence of varieties V,_,; by means of these two congruences W, can
be mapped on a multiple variety W, which may or may not be pseudo-
Abelian. From this mapping we deduce inequalities for the numbers g, of
linearly independent i-ple integrals of the first kind; we also prbve that the
canonical varieties of W, are either of order zero or else belong to the
congruence of trajectories, and we obtain equivalences for the varieties of
the latter type. It follows from this that the canonical invariants of W, are
all zero, and that the arithmetic genus of W, is equal to (— 1)P—,
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A particularly simple class of pseudo-Abelian variety is that of the
quasi-Abelian varieties, which have been studied in detail by SEVERI (§ 6).
A more interesting class, which- we examine in §§ 7, 8, consists of the
improperly Abelian varieties which are mapped by superficially irregular
involutions on PICARD varieties. Another class (§ 9) comprises those types
which can be mapped on multiple quasi-Abelian varieties; this includes the
elliptic surfaces of geometric genus zero, which were first investigated
systematically by ENRIQUES (7).

The problem of classifying the improperly Abelian varieties of higher
species — i. e. those types for which the associated involutions on the
PIcARD variefies possess coincidences of varions kinds — depends in part
on the determination of their canonical systems; as will appear, such an
investigation would require results in the theory of dilatations (24) which
are not yet available. Again, the question (the importance of which was
recently pointed out to the writer by Prof. SEVERI) of classifying the pseudo-
Abelian varieties of given dimension p whose canonical varieties are all
(effective or virtual) of order zero depends for its solution on that of the
analogous problem for varieties (not necessarily pseudo~Abelian) of dimension
less than p; and as yet this is known only for p =2. From this limited
result, however, we obtain (§ 10) a new characterization of the PIcARD
threefolds as the only threefolds which admit a finite continuous group of
automorphisms and for which the canonical surface and canonical curve are
both effective of order zero.

1. Preliminary results. The canonical systems. - We begin by recalling
a number of results, some classical, others recent, which will be required in
our work; and, among the latter, a remarkably simple definition, due to
B. SEGRE (23), of the canonical systems of an algebraic variety. Let U, be
a non-singular algebraic variety, and let S; be a general hypersurface of U,,
i. e. one capable of varying in an oo” linear system the generic member of
which is non-singular, and which is such that any oco*+* subsystem possesses
a pure Jacobian variety J,(S;) of dimension k k=0,1,.., p—1): then,
it S, 4=1,2,..,r; r>p—k) are any r general hypersurfaces of U, it
may be shown that the canonical varieties X,(Up) k=0, 1,.., p—1) are
giveniby the formula

(1) Xu(U,) = Ju(S) — B Jx(S: + 8p) 4 oo + (— Y48, + 8, + . + S,).

This result may be extendedto the case where S; is any non-singular
hypersurface of U,, not necessarily general. We then introduce the adjoint
varieties J4,4(S) of any such hypersurface S by means of the equivalences

) Xy(Uy) = AuS) — Xa(S) k=1, 2,.., p—1),
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where X, _(S) = 8. In the case k = 0, which merits separate consideration, we
may instead proceed as follows. Let S be a hypersurface belonging to a
rational pencil | 8|, of general character, with Jacobian set &; then X, is
defined inductively, for p = 2, 3,..., by means of the equivalence

3) X Up) =5 — 2X(8) — X(§?).

If S belongs to an irrational pencil, of genus p > 0, and of general character,
then it may be proved that

(4) Xo(Up) = 8 + 2(e — 1)X,(S).

The order of the series { X (U,)}, called the Severi series of U,, is equal fo
I 4 (—1)?2p, where I is the ZEUTHEN-SEGRE invariant of U,.

Corresponding to the value ¥ =p — 1, we have the virtual impure cano-
nical system | X, |, with effective freedom P, —1 and virtual freedom
P, — 1, where P, and P, are respectively the geometric genus and arithmetic
genus (‘) of U,; the system |iX,_,| (i > 1), if effective, has freedom P;-- 1,
where P; is the éth plurigenus of U,. We denote by Q, the virtual grade of
the system | X,_, |, and by Q; (=1, 2,.., p—1) the virtual arithmetic
genera of the varieties (X?—¥); in the case where | Xp—t | is free from
multiple base elements, these satisfy the relation. conjectured by SEVERI (29)
and established by Hoper (18),

(5) l—(— )PP, =Q, — Q, + ... 4 (— 1)>Q,_, +p — (— 1)°.

The character Q, is one of the set of canonical invariants which are
defined as the intersection numbers [X;X;, ..X;] of the various canonical
systems; here the suffixes ¢, 4,,.. may take any values such that
i, + 4, + .. +4,.=(r — 1)p, repetitions of any variety X, being allowed. It
was shown by Topp (31) that, subject to the hypothesis that P, is an enu-
merative character of U,, the number P, 4 (— 1)? is expressible as a homo-
geneous linear function, with constant positive coefficients, of the canonical
invariants. TopD’s relation for P, has since been obtained by HirzEBRUCH (12)
without making use of any unproved hypothesis.

Among the transcendental characters of U, we may note the numbers
g @=1, 2,.., p) of linearly independent i-ple integrals of the first kind;
of these, the superficial irregularity g, and the geometric genus g, (= P,
are specially important. The numbers g, satisfy the relation, due to KODAIRA (14),

(6) P,=g,— gy + ... +(—1)?~1g,

Finally, we note the applications of these results to the case of a produet
variety. Supposing that U, = U, U,_,, where U, and U,., are both non-

(1) It is now known that the varions alternative -definitions of P, are all equivalent
(See 12, 15).
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singular. we; may show (Topnp, 81) that
() Xy(U) =2 XU X XnalTp-g) 6=0, Lo, p— 1)

where it is to be understood that meaningless symbols are replaced by zeros.
We also have the obvious fermula

®) 9:=2 gU0)g:—Up-o) (=1, 2., p)

where meaningless symbols are replaced by zeros, and where we write
9ol Up) == Go(Up 1) 55 Lo

Evidently both {7} and-(8) may #t-once: be extended tosthercase where:U,
is the product: ofiany number of;non-singular varieties.

2. Correspondence ;formulae. > -Suppose-now. .thit U igtin:fu;1)! eorys.
spondence with an; irreducible non—smgu]ar svariety- Uy 4. el that; Uf s
mapped by an inyolution; I, of order, m on .Uzsand, agam,a that TJPAS a
rational fransform of U,. Aa immediate cofiseguence of this last remark is
that: if g demote the "oharacters.-of, U, eorresponding to gi, then we have

{9y 9 <¢i i=1, 2, .., p)

In the cases ¢=1, i =p, this result is familiar; for i =1, it seems to have
been stated explicitly for the first time by BAeNERA and DE FrRANCHIS (2).

Wé now imposeithe:éenditionotliat the correspondence between U, and
Uj is biregular; i. e. that there are no fundamental elements, and that the
¢oincidenee leensvon ¥, and the branch locus on Uy are both pure, consisting
of one er more irréducible non-singular hypersurfaces such that no two
eomponents of either locus intersect. We may represent these loci by the
symbols

S(e—1BGL, Z(s—1)BY,

respectively ; here each number s must be a divisor of n, and the characters
s may possibly assume different values.
We then have the following equivalences for the canonical varieties of U, :

(10) Xu(Uy) = Xy(U3) + 3 (s — 1) XuBL),

where the bar over a symbol denotes the transform of the variety in question.
This result follows readily from (1): for if S is any general hypersurface
of Uy (in the sense of § 1), with corresponding hypersurface S;, the Jacobian
J,(S,) evidently consists of the transform of the Jacobian Jy(S{"), together
with the composite variety X (s— 1)J,(S; ’l_1} Thus §; is likewise general;
hence, taking » general hypersurfaces S on U, , and applying (1), we

obtain (10).
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In particular, if the correspondence between U, and U, is without coinci-
dences, it follows that the systems | Xy(Uy)} are the transforms of the corre-
sponding systems | X,(Uz)}. Moreover. each canonical invariant of U, is equal
to n times the corresponding invariant of Uy . Hence, also, by the TopD-
HirzEBRUCH relation (§ 1), the arithmetic genera P,, P; of U,, Uy satisfy
the equation

(11) Py (— 1P =n | P} +(— )7},

The above considerations cannot in general be applied directly in a case
where either the branch locus of U, or the coincidence locus of U, or both
possess components of dimension less than p — 1. In this case we must first
perform one or more dilatations (24) *so as to convert such components into
hypersurfaces, after which we can apply (10) to the transforms of U, and U,
so obtained. The latter will of course contain exceptional subvarieties in
addition to any that the original models may have possessed; and in the
present state of the theory it is not possible to say precisely how the cano-
nical systems of U, and Uy will be affected by transformations of this kind.

2. Picard varieties and Abelian varieties. - An Abelian variety W, is an
irreducible variety the coordinates of whose generic point are expressible as
Abelian functions, of genus p, of p independent variables u,, ,, .., u,. The
rank r of W, is defined as the number of points in the primitive period
parallelepiped which correspond to the generic point of W,. In the case
r=1, W, is called a PICARD variety.

It has been shown by SiEGEL and others () (3) that any PICARD variety
can be cleared of singularities; and it can then be shown (4) that it is
possible to remove also any exceptional subvarieties, thereby rendering the
correspondence between the points of the variety and the incongruent sets
(#;) (1,1) and unexceptional. We thus obtain a model which we denote by V,
and which will be used in all that follows; the symbol V, will be used
with a similar meaning.

It is known (16) that a gemeral PICARD variety V, (i. e. one with general
moduli) contains no PICARD subvarieties, but that, if V, contains one such
variety V,, it must contain a congruence { V, | of varieties V,, the congruence
itself being Picardian, i. e. representable by the points of a PICARD variety ;
and, further, that V, must contain a second Picardian congruence { Vg |
of PICARD varieties V,_,. We shall call such a variety V, special of type q
(or p — g). This specialization process may be repeatedly applied to both V,
and V,_, so as to yield, for example, a variety V,, containing p congruences
of elliptic curves; in particular, V, may be the product of p elliptic curves.

(?) Inclnding Prof. SEGRE, in an unpublished work which the writer has been privileged
to consult,
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It was first remarked by SEVERI (30), from transcendental considerations,
that the canonical varieties of V, are all effective of order zero. A geometrical
proof of this result would be desirable.

Next, we observe that the characlers g, of V, are given by the formula

g = (I:) (=1, 2,.., p). In the case where V, is the product of p elliptic

curves this follows from the extension of (8) already alluded to: the result,
for any V,, is a consequence of the fact that the local topological structure
of the latter variety is identical with that of the former. Hence, by (6), V,
has arithmetic genus (— 1)?~' - a result first obtained by LerscuETZ (16).

Every variety V, admits a completely transitive permutable continuous
group of co? automorphisms, represented by the equations

(12) u =u, +a, (=1, 2., p)

where the a; are arbitrary constants; for a given set of these constants,
equations (12) represent a fransformation of the first kind. Conversely, every
variety of dimension p which admits such a group is a PICARD variety V, (4).

It is convenient to remark here that, if the group of automorphisms of
the variety in question is only generally transitive, we obtain instead what
SEVERI (27¢) has called a quasi-Abelian variety W,. SEVERI has proved (28)
that W, is either birational or is the product of a P1cARD variety V, and a
linear space S,_,; thus W, is a simple special case of the psendo-Abelian
varieties considered in § 4.

Turning now to the Abelian varieties W), of rank r > 1, we first observe
that, from the definition, it -is clear that W, can be mapped by a simple
involution (%) of order r on a PICARD variety V,; hence a classification of W,
can be obtained from a study of the various kinds of involution which V,,
whether general or special, can carry. This study is based on transcendental
and group-theoretic methods which we shall now briefly describe.

In practice it proves necessary to consider involutions I, whose orders »
are multiples of ». The primary characteristic of any such involution I, is
the nature of the coincidence locus, which may have any dimension from 0
to p — 1 inclusive; and, in our work, particular importance attaches to those
involutions which are without coincidences. In the case where V, is general,
it may be shown that any simple involution, without coincidences, on V,, is
necessarily Picardian, and generable by a finite group of transformations of
the first kind. ENRIQUEsS (7) has proved that any variety which contains a
Picard involution, without coincidences, is itself Picardian. The remaining
types of involution without coincidences which V, can carry emerge from
the general considerations which follow.

(3) If, however, degenerate Abelian functions are allowed in the definition of W,
this may not be true (see § 8); but we shall not consider this case.
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To begin with, we deduce from the correspondence between V, and W,
that the pure canonical and pluricanonical hypersurfaces of W, , if effective,
are all of order zero. Thus the geometric genus and plurigenera of W, satisfy
the inequalities P,<<1, P;<C1. Next, it follows from § 2 that the characters

g; of W, satisfy the inequalities g, << (f) (¢=1, 2,..., p); in particular, the
superficial irregularity q (= g,) s giver by q<p. It may be shown (25} that
g=p if, and only if, W, is a PIcARD variety. In the third place, it may be
proved (19) that, if the involution I, possesses oco?~! coincidences, then
P, =0 (all 4).

The group-theoretic method of ¢lassification, which was first applied
systematically to fhe case p==2 by BaeNERA and Dk Francuis (2), and
also by ENRIQUES and SEVERI (8), is based on the theorem: If W, has some
plurigenus greater than zero, then I, can be generated by a finite group G,
of automorphisms of V,. This result, for the case p =2, was established in
two stages (‘) by BaoNERA - DE FrawcHIS (2) and DE FRANCHIS (6)
respectively ; the extension, for p > 2, is due to ANDREOTTI (1). 1t does not
follow that, if all the plurigenera of W, are zero, I, cannot be generated
by a group G, - in fact, examples of such groups are easily constructed;
but it means that the systematic classification of the Abelian varieties has
1o be restricted to those types which have some plurigenus greater than zero.

Assuming, then, that I, is generable by a group §,,, we may show (16, 17),
that &, itself can be generated by a finite set of linear substitutions, each
of whieh is of the form

7

(]_3) 'M/." = i -+ bi (i = 1: 27 reey p),

dnd
j=1

where a;; and b; are constants. In the case where W, has superficial irregu-
larity ¢ > 0, we may show further (16, 17) that ¢ of the above relations may
be taken to be

(14) wi' = u; + b; i=1, 2,.., q)
Lerscuerz (17) has remarked that, by modifying suitably the period matrix

of V,, the remaining transformations of the set {13) may be reduced to the
canonical form

(15) u; = esu; -+ by (f=q+1, g+ 2.., p)

The constants e;, called the multipliers of the substitution, are all roots of
unity other than unity itself.

() Separated by an interval of nearly 30 years.
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In the case where §, is cyclic, all the transformations are represented
by powers of (14) and (15); when &, is non-cyclic, the generating transfor-
mations all have equations (14) in common.

Supposing then that W, has superficial irregularity ¢ (0 <g <p) and
virtual canonical hypersurface of order zero, we see from {14) that I, cannot
possess coincidences unless b, =0 (all ¢), in which case I, must have oo?
coincidences at least.

It is important to note that, if I, is free from coincidences, the canonical
varieties of W, are all (effective or virtual) of order zero; and W, is super-
fictally irregular. The first statement is an immediate consequence of § 2
and it means incidentally that the transcendental considerations described
above will apply to W,. To prove the second statement we observe that,
when ¢ =0, the equations (15), in which u; is substitnted for u,, always
admit solutions.

‘We shall call such a variety W, an Abelian variety of the first species,
it being understood that ¢ <p, i. e. that W, is not a PICARD variety.

4. Pseudo-Abelian varieties, - We consider a non-singular variety W,
which admits a permutable continuous group & of oco? automorphisms
(l<<g<p — 1). The trajectories of G constitute a congruence | V,} of varie-
ties V,, the generic member of which is irreducible; each variety V, is
invariant under §, and no two trajectories intersect.

Now when a group possesses trajectories, its transformations may be
reflected in the trajectories in various ways: here we shall make the
assumption that § acts transitively, without exceptions, on the generic V, and,
further, that V, represents biunivocally and unexceptionally the transforma-
tions of §: it follows therefore that V, is a PICARD variety in the reduced
form described in § 3; moreover, the operations of § are transformations of
the first kind (°) on V,.

We call W, a pseudo-Abelian variety of type q; as particular cases we
may mention the elliptic surfaces (p =2, ¢=1), which have been studied
in some detail, and the pseudo-Abelian threefolds (p=3, ¢ =1, 2), which
have been considered in previous work (20, 21, 22).

It will appcar shortly that, as a hypothesis of generality, we may assume
that every irreducible trajectory of G is non-singular; but it will also appear
that we may expect { V,} to contain a certain aggregate of reducible members,
each consisting of an irreducible non-singular PICARD variety counted with
a certain multiplicity.

The first step in the discussion is to prove that W, confains a second
congruence { V,_, t, Picardian or Abelian of the first species, of oo? birationally

() This follows from the fact (7) that @ must be simply transitive on V.
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equivalent varieties V,_,. This is achieved exactly as in (18), where it was
assumed that V, was general; in any case, however, the method there employed
yields a congruence { V,_,} of varieties V,_, which are transforms of one
another under §, and which cut the generic V, in sets of an involution 4,4,
of order d ={V,V,_,], free from coincidences. If V, is general, i, is neces-
sarily Picardian, otherwise ¢; may be Abelian of the first species (§ 3). The
number d, called the deferminant of W,, is an important character of the
variety.

‘We shall assume that the generic V,_, is non-singular and thus, as
will be seen, we are led to suppose that every V,_, is non-singular.

Conversely, it may be shown that any variety W, which coniains a
congruence | V, | as defined above is pseudo-Abelian of type ¢; the proof of
this result, which is similar to that of the analogous theorem for elliptic
surfaces (7), depends on the fact that transformations of the first kind are
transferred from one variety V, to another, and rationally determinable, by
means of the involutions 7;, which can always be constructed.

We now proceed to obtain a mapping of W, on a maultiple variety W,
which is fundamental in what follows. First, in the case d =1, the con.
gruences { V!, { V,_,1 are birationally equivalent to V,_, and V, respecti-
vely, so that we may map W, on the product V,>X< V,_,; and, by the
assumptions already made, the representation is free from exceptional elements.

To obtain a mapping in the case d> 1, we first construct the variety
Wy = Vg X V;—y, where V; and V,_, are birationally and unexceptionally
equivalent to | V,_,{ and { V,{ respectively; such a variety contains two
congruences which, without risk of confusion, we may denote by | V; | and
{ Vp—q}, the varieties Vy being either Picardian or Abelian of the first spe-
cies, according to the nature of | V,_,{; in the former case W, is a pseudo-
Abelian variety of determinant unity. We now make correspond to the generic
point of Wy the set of d points (V,V,_,), thereby obtaining a representation
of W, on the d-ple variety W, .

Is this mapping each trajectory V, corresponds to a d-ple variety V;
in a representation which is without branch points, since the involution i,
is free from coincidences. Hence the branch locus on W, is either lacking
altogether or else consists of a number of irreducible varieties belonging to
the congruence { ¥, |, i. e. generated by varieties V4 ; such varieties, which
we shall suppose to be non-singular, may have any dimension varying from ¢
to p — 1 inclusive, those of dimension ¢ consisting of isolated varieties V.
To each generator Vg, say, of an (s — 1)-fold component of the branch
locus, there corresponds a variety V,, which is an (s — 1)-fold element of
the coincidence locus of the involution I; defined by the sets (V,V,_,), and
which is such that sV, ;= V,; the numbers s (2<s<"d) may a priori be
any divisors of d.
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Evidently each variety V,, is itself a trajectory of the group G, and is
therefore Picardian; and it is mapped on the d/s-ple variety V,, without
the intervention of branch points. As a hypothesis of generality we shall
assume that each V,, is non-singular.

We shall denote by (s— 1)Bi'™ (¢<<h<p—1) a typical (s— 1)-fold
component of the branch locus on Wj ; to it there corresponds an (s — 1)-fold
component — (s — 1)B, say — on the coincidence locus on W,. The variety
B{!, which we shall suppose to be non-singular, belongs to the congruence
{ V,}; any two varieties Bjf, BY which correspond to the same value of s
may intersect, m which case their common part consists entirely of trajectories.
. Bach variety By is pseudo-Abelian of type g, and is mapped on the d/s-ple
variety Bi" without the intervention of branch points.

In the case where all the numbers k are equal to p — 1, the correspon-
dence between W, and W, is biregular if — as we shall suppose — W,
is non-singular. In any other case it follows from a result of SEVERI (26)
that, if we require W, to be non-singular, each variety B{ for which
h < p —1 must be mapped by a hypersurface on Wy , so that the correspon-
dence possesses fundamental elements. However, with the hypotheses of
generality we -have made above, the representation of W, on W, has no
other exceptional features than those already described.

Two immediate consequences of the mapping may be noted here. In the
first place, the characters g;, gi* of W,, W, satisfy the inequalities g; = g."
(8 2), where the numbers g are given by (8); in particular, we have

(16) 9, =9.(V5) + 9.(Vy—y)

And since V, is either Picardian or Abelian of the first species, it follows
that in all cases W, is superficially zrregular

In the second place, while the varieties Bj are in general algebraically iso-
lated, it may happen that there ex1st two varieties . B}, By, corresponding
to the same value of s, such that sBi ths) in that case W, has divisor o,
greater than wunily, i. e. is endowed with torsion.

We conclude this section with some remarks concerning the construction
and classification of W,. In order to comstruct a projective model of W,,
it is first necessary to obtain a mapping of V, on the d-ple variety Vg, which
is Picardian or Abelian of the first species, as the case may be. The general
problem involved here has not so far been studied except for ¢=1; howe-
ver, the case where the representation on Vg is cyclic presents no difficulty,
and is dealt with exactly as in (18), to which we may refer for further details.

The process of classifying the variety W,, for given values of p and g,

is based on the study of the involution j,;, say, which the congruence { Vq§
cuts on any V,_,. The coincidences in j, arise solely from the varieties BY;
thus each B} cuts V,_, in a variety which is an (s — 1)-fold coincidence
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locus of j;. Next, we observe that V,_, is invariani under a permutable
group G, of aulomorphisms, namely the transformations of § which leave
each V,_, invariant. It follows that our first task is to determine those
varieties V,., which admit such groups of automorphisms, and to obtain the
characters of the corresponding involutions j,; for each involution j; we
shall have a determinate congruence { V, !, since j, and { V, ! are birationally
equivalent.

5. The canonical systems of W,. - Since the canonical systems of an
algebraic variety are invariant under any regular automorphisms, we should
expect that those systems { X,(W,)! which are not of order zero would belong
to the congruence of trajectories. More precisely, we prove that: The canonical
systems { X (W,)} (k=0, 1,..., p — 1) of any pseudo-Abelian variety W, of
lype q are of order zero for oll k< q, while for k= q, they salisfy the
equivalences

(17) Xu(W,) = Xp(Wy) +Z(s — )Xu(BY) (k=g g+ 1., p—1),

where each meaningless symbol is replaced by zero, and where X,(W,) passes
(s — 1)~ply through each B! for which h < k.

The first part of this theorem has already been established in (18), so
that we need only outline the proof here. This is by induction on p and k;
we consider first a general pencil | §| of hypersurfaces belonging to { V!
or, when q =p — 1, the pencil { V,_, | itself. Since the varieties S and S*
are both pseudo-Abelian of type ¢, it follows from the inductive hypothesis
that X (S) and X (S?) have order zero; we then show that the virtual num-
ber & in (3) is likewise zero, whence, by (3), X ,(W,) has order zero. The
result, for k=1, 2,.., ¢—1, then follows from the inductive hypothesis
and equation (2).

Suppose now that k= gq; then, if the correspondence between W, and
W, is biregular, (17) is merely a restatement of (10), the term X,(Wj) bemg
evaluated by using (7). Since W, = V; > Vp_,, where V; is either Plcardlan
or Abelian of the first species — so that X,(V;) is effective or virtual of
order zero for all h <q — it follows that the only (possibly) mon-zero term
in the expression fordX(Wy) is Vi X Xp_ (Vi)

In the case where the correspondence is not biregular, the first term in
the equivalence for X,(W),) is still the transform X,(W,) of the corresponding
canonical variety of W,, but the rest of the former reasoning cannot now
be employed; however, we can obtain the required result by applying (1)
directly to W,.

To this end consider, for ¢ <<p — 1, a general hypersurface S belonging
to the congruence { V, {, it being understood that the definition of generality
given in § 1 is now modified so as to apply only for £=>¢. We first note
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that any Jacobian Ju(S) (k¥ =q) necessarily belongs to { V,}, and also that,
if S contains a variety sV, , (§ 4), the latter counts (s — 1) times as part of
the Jacobian J,(S). Now any linear system | S| of freedom % +-1 cuts a
variety By in a linear system of the same freedom; then, provided that
E<h (all h), taking a sufficiently large number of general hypersurfaces
belonging to { V,} and applying (1), we obtain (17); if instead there exists
any variety B} such that h <k, this will be an (s — 1)-fold component
of X,(Wp,).

‘We now use the inductive hypothesis that the result holds for all pseudo-
Abelian varieties of dimeunsion less than p; since.each variefy BY is pseudo-
Abelian, the variety X,(BY) is either of order zero or belongs to the con-
gruence { V,}; and since X,(W,) obviously belongs to the congruence, the
theorem is established for all values of k.

It now follows that fhe canonical invariants of W, are all zero. For
these invariants (§ 1) are the respective intersection numbers of appropriate
sets of canonical varieties, and the latter either belong to the congruence
{ V,t or else have order zero. Hence also, the arithmetic genus of W, is
equal to (—1)#—'; this is an immediate consequence of the last result and
the Topp-HIRZEBRUCH relation (§ 1).

Consider in particular the system | X,_, |; by (17), this contains each
variety Bji as (s — 1)-fold component and passes (s — 1)-ply through each B!
for which 2 < p — 1. Since the intersection of any number of varieties X, ,
cannot have dimension less than g, it is clear that @ =0, Q,={— 1)*!
(=1, 2,..., ¢} In the special case where the varieties B{ are all absent,

we obviously have @, =( -4~ (i =1, 2,.., p—1), a result which agrees
with the SEVERI-HODGE relation (5). But in a case where | X,_,| possesses
multiple base elements the proof of this result — assuming that it still

holds — does not appear easy.

6. Examples: the quasi-Abelian varieties - We illustrate the preceding
results by considering first a quasi-Abelian variety W, (§ 3), i. e. a variety
of the form V,><S,_, (¢>0). It follows from § 3 that, in this case,

g,-:(;l) (where it is understood that meaningless symbols are replaced by

zeros) ; hence, in particular, W, has superficial irregularity ¢. And since all
the canonical varieties of V, are effective of order zero, we have X,(W,)=
= ViX Xp_o(Sp—g) k=0, 1,..., p—1). Now B. SEGRE (23) has shown that,

1
for any linear space S,, Xi(S,) = (— 1)""’(2-_‘; 1)Sn (h=0,1,..,r—1). From
this result we deduce that

X W) = (— 1)*'*‘(" —arl

L )Vex S =0, Ly p— 1,
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where meaningless symbols are replaced by zeros. Hence, for k < g, Xy(W,)
has order zero; X, (W,) = (— 1)?~%p — q +-1)V,; while, for k> q, Xy(W,) is
the sum of a number of quasi-Abelian varieties of type ¢, but is never of
order zero. This means that, for all k=g, the variety X,(W,), whether
effective or virtual, is never of order zero, and always belongs to the con-
gruence { V1.

In particular, putting k=p—1, we have X, = —(p—q+ 1)V, X Sp—,,.
Thus P,=P;=0 (all 4); and obviously @ =0, Q= (—1)"! i=1, 2,..,

p —1). And, as for all psendo-Abelian varieties, we have P, = (— 1)?—*.
As a second example we consider the case — of great importance in
the theory of Abelian varieties — ‘where W, has an effective canonical

hypersurface of order zero. In order to discuss this question we must assume
that the model W, which we have constructed is free from exceptional
hypersurfaces (all that we actually know is that each frajectory is similarly
free). 1n this case, then, there can be no varieties Béf)_1 on W,, since these
would be fixed parts of | X,_,|. And since, therefore, X, ,(W,) is the
transform of X,_,(W,), of which — as we have already remarked — the
only non-zero part (if any) is the variety Vy >< X,_,_,(Va_y), it follows that
V,_q must have a canonical hypersurface of order zero; though this need
not be effective.

The condition imposed on X, _, does not however exclude the presence
of coincidence loci B} (b < p — 1). For if these are dilated into hypersurfaces
on a model W,, say, it can still happen that the sum of such hypersurfaces, each
counted with the proper multiplicity, and the variety Xp_,(W;‘), constitutes
an exceptional hypersurface on W, which, on removal, leaves an effective
canonical hypersurface of order zero.

Suppose, however, that the involution I, is free from coincidences; in
this case, by § 2, we have

X Vo—g) = Xi(Vp—q) k=0, 1,.., p—q— 1)

It then follows that V,_, likewise has a canonical hypersurface (effective or
virtual) of order zero. It follows also that each canonical invariant of V,_,
is equal to 4 times the corresponding invariant of Vp .

If we suppose further that each variety XyW,) k=p—2, p—3,..., q)
has order zero, we see that all the canonical varieties of V,_,, and also those
of V,_4, have order zero. These may be either effective or virtual.

So far we have assumed that X, ,(W,) is effective; if instead we are
merely given that this variety is virtual (of order zero) the discussion is
more complicated, for in this case hypersurfaces Bg’ll will in general be
present. (See §§ 10, 11).
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7. Improperly Abelian varieties. - Let V, be a PICARD variety which is
special of type ¢ (§ 3), with complementary congruences { V, !, i V,_, !, say,
of PIcARD varieties; and consider, on V,, a (simple) involution I, which is
either free from coincidences or is such that the coincidence locus belongs
to the congrnence { V,!; thus no variety V, which does not form part of
the coincidence locus can intersect it. And suppose further that the generic V,
is not united in I,,.

It then follows that the variety W, which maps I, contains a congruence
{ V,t of varieties V,, image of the congruence { Vq {; the generic member V,
maps a set of n varieties V,, in general distinct.from one another, so that
V, is itself a PICARD variety. Also since the PICARD congruence {I_iq? is
mapped on the n-fold congruence { V,!, it follows that the latter is either
Picardian or Abelian; the aggregate of branch elements (if any) of the cor-
respondence arises from the varieties Vys, say, which are loci of sets of
n/s (2<<s<n) points homologous to each other in I,: corresponding to a
variety V,, we have a reducible variety sV, , (== V,) such that V,, is in
(1, n/s) correspondence with V, ,. Each variety V,, is an (s — 1)~fold element
of the branch locus; and, by § 8, V,, is itself a PICARD variety.

Corresponding to the congruence { V,_,! we have on W, a congruence
{ V,—q} which maps the former in a correspondence without branch elements ;
hence {V,_,} is either Picardian or Abelian of the first species - and if
} V,—qi is general, the first alternative must hold. The varieties V,_, are all
birationally equivalent; in the case where I, is without coincidences V,_,
is either Picardian or Abelian of the first species, while, if I, possesses
coincidences, V,_, is Abelian (but not of the first species), being mapped by
an involution on V,_, whose coincidence locus is the intersection of V,_,
with the coincidence variety of I, .

In any case we sec that W, is either special Picardian or pseudo-Abe-
lian of type q: and that, except when V,, V,_,, { V,! and { V,_,} are all
Picardian, the second alternative must hold.

In conclusion, then, the variety W, vepresenting a simple incolution I,
on a special Picard wvariety V, of type q which is such that the coincidence
locus (if any) belongs to the congruence ;| V, 1 while V,\ is not united in I, .
is either special Picardian or pseudo-Abelian of type q. In the latter case W,
contains an Abelian congruence | V,: of trajectories, image of . V,!. and a
complementary congruence ; V,_,+, Picardian or Abelian of the first species,
of Abelian varieties V,_, which are Picardian or Abelian of the first species
if, and only if, 1, is without coincidences.

8. We now obtain a condition sufficient to ensure that an Abelian
variety W,, which is mapped by an involution I, on a Picard variety V.
should be psendo-Abeliain of type q. In § T we made no hypothesis concerning
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the plurigenera of W,: but we shall now require to assume that W, possesses
an effective or virtual canonical hypersurface of order zero. This is necessary
in order that the group-theoretic considerations of § 3 should apply; for it
is known that there exist Abelian varieties of plurigenera zero, representable
by involutions I, on PICARD varieties, which cannot be generated by groups &,
of antomorphisms. And there exist also Abelian varieties (in the wider sense)
of plurigenera zero which are not so representable. Consider, for example,
a quasi-Abelian variety of type ¢, W, =V, X §,_, (g > 0): if this could be
mapped by an involution on a PICARD variety V,, the PicARD congruence
{ V,} corresponding to the birational congruence ; V,! on W, would be
mapped on the latter without branch elements (since there are no trajectories
V4 s) - and this is impossible.

Suppose then that W, is an Abelian variety, mapped on V, by an invo-
lution I, ; and suppose further that W, has some plurigenus greater than
zero. Let W, have superficial irregularity ¢ (0 < ¢ < p); then it follows
from § 3 that I, must be generable by a finite group of automorphisms of
V,. the group being representable by a finite set of equnations such as (14)
and (15). Now it is obvious that equations (14) are invariant under a conti-
nuous group § of ~? transformations of the first kind, the trajectories of
which are PICARD varieties; hence 1V, is a pseudo-Abelian variety of type g.
Moreover, the congruence { V,: of trajectories of ¢ can arise only from a
congruence i V! of varieties on V,: and from the general theory of PIcARD
varieties we know that this congruence must be Picardian and that its
members must be PICARD varieties: that is. ¥, must be special of type g.
We know also that 1, must contain a second PICARD congruence V,_,} of
PIcARD varieties ¥,_,: and this congruence gives rise to the complementary
congruence ; V,_,i on 1, which we have described in § 7.

Now it is clear that the involution (contained in or coincident with I,)
defined by (14) and (15) will admit coincidences if, and only if, b;=10 (all i):
and in that case there are at least =c? coincidences. belonging to the con-
gruence ; V,{. Hence
Every variety W, of superficial irvegularity ¢ (0 < q < p) and iith some
plurigenus greater than zero, ihich is mapped by an involution on a Picard
variety V,, is pseudo-Abelian of fype q: moreover. V, must be special of
type q, and the coincidence locus of the involution must belong to the congruence
ihich maps the congruence of trajectories on 1.

With the notation of § 4. we may map 1[I}, on the d-ple variety
Wy = V5 X Vp_q. where. by what has been said. ¥, and T, are Abelian
varieties of gemera ¢ and p — ¢ respectively: hence the coordinates of the
generic point P* of I are expressible as rational functions of the coordi-
nates of two points. lying on Abelian varieties of genera ¢ and p—gq
respeetively. Tt follows that the coordinates of the gemerie point P of 11,.
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which is mapped on the d-ple variety W,, are expressible as algebraic
functions of the coordinates of P*, that is to say, as algebraic functions of
Abelian functions of genus ¢ and other Abelian functions of genus p —g.
By virtue of this result (19) we may call W, an improperly Abelian variety (").
In many cases, one or both of the congruences ; V,}, { V,_, | are themselves
improperly Abelian, and then fthe genera of the Abelian functions required
for the parametric representation can be lowered still further.

Conversely, if W, is a pseudo-Abelian variety of type g which is also
Abelian, and which is the image of an involution on a PicARD variety V,,
the latter must be special of type ¢; also the involution is either free from
coincidences or else the coincidence locus belongs to the congruence which
maps the trajectories on W,. And W, is necessarily improperly Abelian.

We may note here two interesting special cases:

(i) If, on the variety W,, the varieties V,_, are Picardian, then W, is
Abelian of the first species. For then the congruence { V,} cuts on V,_, an
involution which is necessarily Abelian, and so { V,} is itself Abelian. And
in any case { V,_,} is either Picardian or Abelian of the first species (§ 4).
We may thus map W, on a PicarDp variety V,, which is special of type g,
by an involution which is free from coincidences.

(i) Suppose that W, is an Abelian variety satisfying the conditions stated
at the beginning of § 8, and that the corresponding congruence { V,} contains
no trajectories Vg .. This means that the involution cut by { V, | on any V,_,
is without coincidences, so that V,_, is either Picardian or Abelian of the
first species; moreover, if the associated congruence { V,} is general, the
tirst alternative must hold. If { V,} is Picardian, so alsois V,_,, since V,_,
then carries a PicArRD involution free from coincidences. (§ 3); and { V,_,!
must be Abelian of the first species, since if this congruence were Picardian,

W, would also be Picardian. If instead { V,} is special of some type, then
{ V,} may be Abelian of the first species.

9. The case where W, is quasi-Abelian. ~ An important class of pseudo-
Abelian varieties is obtained by supposing in § 4 that the congruence { V,}
is birational and, more particularly, that it has invariant order wunily (26);
we may then take the variety V,_, to be a linear space Sy 4, so that Wy is
of the form Vg > S;—y. If we further assume that the congruence | Vp_y!
is Picardian, it follows that W, is quasi-Abelian of type ¢ (§ 3).

The variety W, mapped in the usual way on W, is of considerable
interest; thus, for p =2, it includes the entire class of elliptic surfaces of
geometric genus zero; more generally, for g=p ~ 1, we have a variety Wy
containing a rational pencil of trajectories V,_,. The discussion of this case

(®) Thus, in particular, every Abelian variety of the first species is improperly Abelian.
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is substantially the same as that of the particular case p=3 (21), to which
we may therefore refer for details. In what follows we shall suppose that
g<p-— 1L

To begin with, we remark that, since the involution cut by {V,} on
any V,_, is birational, it must possess coincidences. By the hypotheses made
concerning the nature of { V,} and the correspondence between W, and W; s
the coincidence locus on W, must be a hypersurface to which corresponds,
on W, the product of a PIcARD variety and a hypersurface in S, . Since
any two hypersurfaces of Sp_, intersect, and the base for hypersurfaces in
Sp—q is a prime, there is no loss of generality in supposing that the coinci-
dence locus on W, is an irreducible variety Bj';, corresponding to an
irreducible variety By{ on Wy ; Bil; is mapped on the d/s-ple variety Bi®
without branch points, so that, by § 2,

Xp(BiL1) = X,(Bp) k=0, 1,.., p—2).

Now Bj" is of the form V; > Vy_,_1, where V; is a PICARD variety and
V¥ ;-1 a non-singular primal of Sj_,, of some order n; so that X,(Bs" =
= Vg X X4(Vp-q-1). All that we require, therefore, is to determine the
canonical varieties of the primal Vp_, ;. These have been obtained by
B. SEeRE (23); thus, let 4, C denote respectively a prime and a non-singular
primal, of order n, in S,, so that C=mnA: then SEGRE has shown that
X(C) = y(h)A"", where
__r—-h-—l et r 4 1
=3 (T

) ni+i,
j:,:O

For the canonical varieties on W, we then use the equivalences (§ 5)

Xu(Wy) = XW(Wy) + (s — YXW(BEy) (=0, 1,..., p—1),
where, by § 6,

Xwp) = (- (R 20

. _ Q+1) Vg X Sik—q-

In particular, putting k= ¢ — 1, we obtain
Xy W) = Xp_ (W) + (s —- 1)BpL,

where X, (Wy)=—(p—q-+ 1)V} ><S}_4—1. Since By, is algebraiocally
isolated on W,, it follows that W, has geometric genus zero. This result
may be otherwise obtained by a simple induction argument. We consider,
on W,, the ocoP~' system | Wp,_, | of varieties corresponding to the varie-
ties Vg >< Sp_q—1; evidently these belong to the class of manifold at present
under discussion. We know that, for p =2, W, has geometric genus zero;
assnming, then, that a like property holds for W,_,, we deduce that it holds
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for W,. For if W, had geometric genus greater than zero, the characteristic
system of | W,_, | would necessarily be special, and this is impossible.

As regards the plurigenera of W,, these may or may not be positive;
it is a simple matter to construct examples for which P, =0 (all ) (C. f. 20).

We have so far assumed that { V,} has invariant order unity; in a case
where {V,} is birational but of higher invariant order, it is possible to
have a number of non-intersecting hypersurfaces Bg”_l corresponding fo the
same or different values of s. For V,_, can then contain a pencil of varieties
Vy_p-1 free from base points, and we can take B;_(’l) to be of the form
Vy > Vyq—1; the images of such varieties on W, will be non-intersecting.
Conversely, if the congruence { V,} is birational and it is known that there
exists a coincidence locus with non-intersecting components, or with compo-
nents corresponding to different values of s, then { V,} must have invariant

order greater than unity.

10. Applications to threefolds. - We begin by recalling the properties
of surfaces with canonical system or canonical series of order zero which
we shall require below. Let W, be a surface, free from exceptional curves
of the first kind, with effective or virtual canonical varieties X, and X, :
then a first result, due to ENRIQUES (7), states that, if W, has arithmetic
genus — 1, the surface is either elliptic (including elliptic scrollar) or Picar-
dian. In either case W, has (absolute) linear genus 1; moreover, W, is
improperly Abelian or Picardian according as X, is virtual or effective of
order zero.

From this DanToNI () has deduced the striking theorem: if X, has
order zero, then W, is elliptic (including elliptic scrollar) or Picardian.
DantoNI has further shown that the SEVER1 series of a surface, if of order
zero, must be effective. As before, W, will be improperly Abelian or Picar-
dian according as X, is virtual or effective of order zero.

While it seems unlikely that such precise results as the above could be
established for threefolds, it is possible to restate some of them in a weaker
form which admits of extension. Thus, if we recall (7) that any surface
which admits a finite continuous group (*) of automorphisms is either scrollar,
elliptic or Picardian, we may assert that
(9) any non-scrollar surface which admits a finite continuous group of auto-
morphisms has arithmetic genus — 1 and linear genus 1;

(i9) the only surfaces which admit a finite continuous group of automor-
phisms and which possess an effective canonical curve of order zero are
the PICARD surfaces.

(') There is no loss of generality in assuming that the group is algebraic (C. f. 7).
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Both these results, as we shall see, exiend to threefolds. In order to
state the corresponding theorems as concisely as possible, it will be conve-
nient to introduce the following definitions. We shall say that a threefold is
scrollar or planar according as it is birationally equivalent to a threefold
generated by a congruence of lines or a pencil of planes. We shall now
prove that
Any threefold which adwmits a finite continuous group of automorphisms and
which is neither scrollar wmor planar has arithmetic genus and linear genus
unity.

The Picard threefolds are the only threefolds which admit a finile continuous
group of aulomorphisms and which are. endowed with effective canonical sur-
face and canonical curve of order zero.

Here it is of course to be understood that the threefolds in question
have been cleared of exceptional surfaces; at present it is not known whether
such an assumption is resfrictive.

For the proof of the above results we require the classification, due to
HALn (11), of the threefolds which admit finite continuous groups of auto-
morphisms ; in the case where the group in question has dimension 1 or 2,
it may be shown that the threefold is scrollar or planar or pseundo-Abelian
of type 1 or 2; if the group has dimension 3, and is completely or generally
transitive, the threefold is Picardian or quasi-Abelian, as the case may be,
while if the group is intransitive one of the former possibilties must hold.
And since every PICARD. or pseudo-Abelian threefold has arithmetic genus 1
and (absolute) linear genus 1, the first of our theorems is established.

Turning now to the second, we remark that, if the threefold W, has an
effective canonical surface of order zero, then it must be Picardian or pseudo-
Abelian, since in all the other cases listed above we have P,=0; we have
thus to examine the pseudo-Abelian threefolds, for which, in the notation
of § 4, g=1, 2.

Consider first the case g=2; this gives the hyperelliptic threefold,
examined in detail in (21); from the equivalences there given for the cano-
nical systems, we see that, if the surface X, is effective of order zero, the
pencil {V,} of trajectories must be elliptic and free from surfaces Vi ,.
Hence { V,} cuts a curve V, of the complementary congruence i V,} in sets
of an elliptic involution which has no coincidences, from which it follows
that V, is elliptic. Also the congruence { V,! must be Picardian; for if it
were Abelian of the first species, X, would be virtual, instead of effective,
of order zero (21). Thus W, is a PIcARD threefold.

Next, let ¢ =1; then, as in § 6, we observe that, if X, is effective of
order zero. then there can be no surfaces BY in the congruence { V,} of
trajectories; also, if X, is effective of order zero, there can be no curves B’
either. And since X, cuts each surface of the elliptic pencil { V,} on W, in
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a canonical curve, it follows that V, must possess an effecfive canonical
curve of order zero; hence, from the kuown eclassification (7) of surfaces,
we can say that V, is either regular or Picardian.

Now the congruence { V,! cuts on V, an involution free from coinci-
dences ; if, then, V, is Picardian, } V, | is either Picardian or Abelian of the
first species. Thus W, can be regarded as a pseudo-Abelian threefold of
type 2, with { V,} as the pencil of trajectories; hence { V,} must be Picardian
since, as remarked above, X, would otherwise be virtual of order zero.
Thus W, is a ProArD threefold.

Suppose, in the second place, that V, is regular; then the involution
cut by {V,} on V, must be regular of genus zero (7). Thus the image V3
of { V,! must be regular of genus zero; and, by § 5, in order that X, and X,
should both have order zero, it is necessary that V¥ should have linear
genus unity and SEVERI series of order zero; which, by the above result of
DanrtoNt, is impossible. Hence this case cannot arise.

In conclusion, we observe that the fact that X (W,) is of order zero is
a consequence of the hypotheses of our theorem; this is in strict analogy
with (43).

11. We shall now examine briefly the problems which arise in trying to
extend the above results to the case of a threefold for which (a) X, is effective
and X, virtaal, of order zero, (b)) X, and X, are both virtual of order zero.

In case (a) we evidently have ¢ =1, since, when ¢=2, X, is always
effective of order zero. Also, to secure the conditions stated, there must be no
surfaces BY, but a certain number of curves BY must be present. The con-
gruence { V,} cuts on each surface V, an involution i; whose coincidences
arise from these curves; precisely, each curve BY cuts V, in d/s points
which are (s — 1)-ple coincidences of 7.

As in § 10, V, is either Picardian or regular of genus 1. In the former
case, ¢4 is of course Abelian and W, is Abelian of the first species, being
mapped by an involution without coincidences on a PICARD threefold; thus,
by § 2, both X, and X, certainly have order zero. But while X, is effective,
since X,(W5) is so, X, must be virtual, on account of the presence of the
curves BY. The values of the numbers d and s which are a priori possible,
and the nature of the corresponding involutions ¢;, may be inferred from
the work of BAGNERA and DE FranNcHIs (2).

In the case where V, is regular, we should first huve to obtain all the
involutions with a finite (non-zero) number of coincidences which V, can
carry ; such involutions must be regular and be endowed with at most a
canonical curve of order zero. The only cases that have so far been discussed
are those for which the involutions have genus 1 (9, 10); and even these
results need further analysis before they can be applied here.
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Consider next problem (b). First, let ¢ =2: then the equivalence for X,
given in (21) shows that the pencil { V,} of trajectories must be either
elliptic or rational. If it is elliptic, then the congruence { V, ! must be Abe-
lian of the first species, since otherwise X, would be effective of order zero;
also there can be no surfaces BY), since X, would otherwise have order
greater than zero. And since { V,} then cuts on V, an elliptic involution
without coincidences, it follows that V, is elliptic.

If instead { V,} is rational, the surfaces Bj are certainly present, and
the various numbers s must be such as to give a virtual surface X, of order
zero; also { V, | is either Picardian or Abelian of the first species. In either
case we find that { V,} cuts on V, a rational involution whose coincidences
are such as to make V, elliptic. Thus in all cases W, is an Abelian threefold.

Next, let g =1: then, since X, cufs any surface of the pencil { V,} in
a virtual or effective canonical curve (in this case of order zero), it follows
that, if V, is regular, either p,=1, or p,=0 (in which case V, is an
ExRIQUES surface); and that, if V, is irregular, the surface is either Picar-
dian or Abelian of the first species. In all cases we have to consider the
possibility of both surfaces By’ and curves BY being present, giving rise to
united curves and united points in the corresponding involutions ¢;. The
only case for which the necessary data are at present available is that in
which V, is Picardian; in the remaining cases only general statements con-
cerning the nature of the relative congruences { V,} can be made.
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