
Some properties of pseudo-Abelian varieties. 

M e m o r i a  di LEONARD ROTH (a L o n d r a ) .  

S u m m a r y .  - T h i s  w o r k  is  a s t u d y  o f  the algebraic  var ie t ies  w h i c h  are  i n v a r i a n t  u n d e r  
con t inuous  groups  o f  a u t o m o r p h i s m s  the tl 'ajectories o f  w h i c h  are  PICARD variet ies .  

The present  work continues and amplifies previous studies (18, 19) of 
pseudo-Abel ian varieties, i. e. the varieties which admit  continuous groups 
of automorphisms whose trajectories are PICARD varieties, forming congruences 
or systems of index unity. Since the previous papers on this subject were 
written, a number  of important  results  (which are described in § 1) have 
appeared;  these have made it possible to remove the restr ict ion (imposed 
in 18) that the trajectories of the group should have general  moduli. 

We begin by recapitulat ing or establishing some properties of algebraic 
varieties which are required in the sequel. In  the first place, from a new 
definition, due to B. SE~RE (23), Of the canonical  varieties Xk{U~) of a 
variety ~ ,  we deduce relations between the canonical  systems of any two 
varieties Uv, U~ in biregular  (n, 1) correspondence;  these include the case 
k ~ p -  1, which is classical, and also the case k----0, which has been dealt 
with in (18}. We next (§ 3) survey briefly the PICARD varieties, and the 
hbelian varieties which are mapped on them by involutions of various k inds ;  
among such varieties, those for which the associated involutions are free 
from coincidences are specially important  in our work. We call these kbe l ian  
varieties of the first species; it follows from § 2 that their  canonical varieties, 
whe the r  effective or virtual, are all of order zero. 

We then proceed (§ 4 et seq.) to consider the pseudo-A_belian varieties. 
The essential fact about such a variety Wv is that, in addition to the con- 
gruencc I Vq} (1 ~ q ~ p - - 1 )  of trajectories, it contains a complementary  
congruence of varieties V~_q; by means  of these two congruences W~ can 
be mapped on a mult iple variety W$ which may or may not be pseudo-  
Abelian. From this mapping we deduce inequali t ies for the numbers  g~ of 
l inearly independent  i -ple  integrals of the first k ind ;  we a]so prove that the 
canonical  varieties of W~ are either of order zero or else belong to the 
congruence of trajectories, and we obtain equivalences for the varieties of 
the latter type. It follows from this that the canonical  invariants of W~ are 
all zero, and that the ar i thmetic  genus of W~ is equal to ( - - 1 ) v - t  
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A particularly simple class of pseudo-Abelian variety is that of the 
quasi -Abel ian varieties, which have been studied in detail by SEVERI (§ 6). 
A more interesting class, wh ich  we examine in §§ 7, 8, consists of the 
improperly Abelian varieties which are mapped by superficially irregular 
involutions on PIOA~D varieties. Another class (§ 9) comprises those types 
which can be mapped on multiple quasi-Abelian varieties;  this includes the 
elliptic surfaces of geometric .genus zero, which were first investigated 
systematically by Elc~IQuEs (7). 

The problem of classifying the improperly Abelian varieties of higher 
species --  i. e. those types for which the associated involutions On the 
PIC~kRD varieties possess coincidences of various kinds - -  depends in part 
On the determination of their  canonical systems; as will appear, such an 
investigation would require results in the theory of dilatations (24) which 
are not yet available. Again, the question (the importance of which was 
recently pointed out to the writer by Prof. SEVERI) of classifying the pseudo- 
Abelian varieties of given dimension p whose canonical varieties are all 
(effective or virtual) of order zero depends for its solution on that of the 
analogous problem for varieties (not necessarily pseudo-Abelian) of dimension 
less than p ;  and as yet this is known only for p - - 2 .  From this limited 
result, however, we obtain {§ 1 0 ) a  new characterization of the PICARD 
threefolds as the only threefolds which admit  a finite continuous group of 
automorphisms and  for which the canonical surface and  canonical curve are 
both effective of  order zero. 

1. Prel iminary results. The canonical systems. - We begin by recalling 
a number  of results, some classical, others recent, which will be required in 
our work;  and, among the latter, a remarkably simple definition, due to 
B. SECURE ('23), of the canonical systems of an algebraic variety. Let Up be 
a non-s ingular  algebraic variety, and let S~ be a general hypersurface of Up, 
i. e. one capable of varying in an c ~  linear system the generic member of 
which is non-singular ,  and which is such that any ~a+~ subsystem possesses 
a pure Jacobian variety J~(S~) of dimension k ( k - - 0 ,  1, . . . ,  p - - 1 ) :  then, 
if Sj ( i - - 1 ,  2,... ,  r ;  r > p - - k )  are any r general hypersurfaces of Up, it 
may be shown that the canonical var ie t ies  X A ( U ~ ) ( k = 0 ,  1,..., p - - l )  are 
given~by the formula 

(i) Xh(U~) = E Ja{S~) - -  E JA(S, q- S~) -+- ... -I- (-- 1)"-'Ja(S~. -t- S 2 -t- ... + 8,.). 

This result may be extended.]to the case where St is any  non-s ingular  
hypersurfaee of U,,, not necessarily general. We then introduce the adjoint 
varieties~Aa(S) of any such hypersurface S by means of the equivalences 

(2) Xh(U,) =-- A s ( S ) -  Xh{S) (k : 1, 2, ..., p -  1), 
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where X v _,(S) "- S. In the case k --- 0, which merits separate consideration, we 
may instead proceed as follows. Let S be a hypersurface belonging to a 
rational pencil I S I ,  of general character, with Jacobian set ~; then X 0 is 
defined inductively, for p - - 2 ,  3, ..., by means of the equivalence 

(3) Xo( r,) - -  xo(s) - -  x o ( s ' ) .  

If S belongs to an irrational pencil, of genus ~ > 0, and of genera] character, 
then it may be proved that 

(4) Xo(Up) •-- ~ ÷ 2(~ - -  1)Xo(S). 

The order of the series 1Xo(Up)}, called the Severi series of Up, is equal to 
I + (--1)~2p, where I is the ZEU~KEI~-SEoR~ invariant of Uj,. 

Corresponding to the value k = p -  1, we have the virtual impure cano- 
nical system J Xp_, ] ,  with effective freedom P ~ - - 1  and virtual freedom 
IDa --  1, where Pg and Pa are respectively the geometric genus and arithmetic 
genus (') of Up; the system ]iXp_, i (i ~> 1), if effective, has freedom P ~ - - 1 ,  
where P~ is the ith plurigenus of Up. We denote by f)~ the.virtual  grade of 
the system [ X~-i I ,  and by f~ ( i - - 1 ,  2, ..., p - - 1 )  the virtual arithmetic 
genera of the varieties (XP-~); in the case where ] X ~ - l l  is free from 
multiple base elements, these satisfy the relation, conjectured by S]~v]~RI (29) 
and established by HODG~ (13), 

(I - -  ( -  1)p)P, = - Qi + ... + ( -  + p - -  (-- 1)p. 

The character g]o is one of the set of canonical invariants which are 
defined as the intersection numbers [Xi~Xi~ ... X ~  of the various canonical 
systems; here the suffixes i , ,  i~,.., may take any values such that 
i~ + i ~  + . . . - t - i , . - - ( r -  1)p, repetitions of any variety X¢ being allowed. I t  
was shown by TODD (31) that, subject to the hypothesis that P~ is an enu- 
merative character of U~, the number Pa + (--1) v is expressible as a homo- 
geneous linear function, with constant positive coefficients, of the canonical 
invariants. TODD'S relation for Pa has since been obtained by HIRZEBRUOH (12) 
without making use of any unproved hypothesis. 

Among the transcendental characters of Up we may note the numbers 
g, (i = l, 2, ..., p) of linearly independent /-pie integrals of the first kind; 
of these, the superficial irregularity g, and the geometric genus g~ (--Pg) 
are specially important. The numbers g~ satisfy the relation, due to KODAIR.~ (14), 

(6i ida - -  gv - -  g~-, --t- ... 4- (-- 1) t- 'g ,  

Finally, we note the applications of these results to the ease of a product 
variety. Supposing that Uz, ~---Uq X Up_q, where U~ and U~_~ are both non- 

(l) I t  is now known that the various alternative defini t ions of "Pa are all oquiv&lont 
(See 12, 15). 
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~ g a l a r ,  we~ ma S show (TOD~, 3D. that 

/i=O 

where it is to be understood thai ~ meaningless symbols are replaced by zeros. 
We also have the obvious ~orm-ula 

f 

1=0 

where meaningless symbols ai'~ replaeeit by zeros, 

Evidently boCh, g~ ands,,(8) ma~ ~t-av~ee~::b~ extemdb4 tmthi~ca~e ~here~U~ 
is the larodact~ ~o~,~ny numbe~ ot~ n0n-si:ngu~r: ~rie~ies.  

and where we write 

spondence w~th ani irredacible: n o n - s i ~ u ! g r ~ a r i e t ~ , ~ ;  ii.~ e~ thati  gi~ 
m a p p ~  b£ a n  i~ypltt$io~ ]~ o~ order  ~ on :~U#:~l~]~i-ag~in~ t~hat ~ ) i s '  a 
r .at ionaL£rans~rm o~ ~ .  A~ immediate co~seq~4mfme of' thisl ~last remark is 
t h ~  ff '9~* denote the ohaxac ters  o~ U~ eorr~si0on.di~g ~o g~, ,then we have 

~91 g* ~ g, (i---- 1, 2, ..., p). 

In  the cases i --- 1, i ---p, thin result is famih'ar ; for i ----- 1, it seems to have 
been stated exl~licifiy for i h e  first t ime by B ~ S I E ~  and D~. F a ~ c ~ x s  (2}. 

We n,~w~: im~pos~tl~e~:~onditiofiet]iat the correspondence between U~ and 
~ is bireg~trq  i. e. that there a r e  no fundamental  elements, and that the 
Coincide]roe [¢~_a~s~on Ui~ and the branch locus on U~ are both pure, consisting 
o~ o~ne m~ more irr~dvmible non-s ingular  hypersurfaces Such that no two 
e~mpo~ents o f  ¢ither locus intersect. We may represent these loci by the 
symb61s 

E (s - -  1)B~_~, E (s - -  1)B;2~, 

respectively;  here each number  s must  be a divisor of n, and the characters 
s may possibly assume different values. 

We then have the following equivalences for the canonical varieties of U~ : 

{10) Xa(U~) ~- Za(U;) -t- E (s - -  1)XalB~£,), 

where the bar over a symbol denotes the transform of the variety in question. 
This result follows readily from (1): for if S* is any general hypersurface 
of U~ (in the sense of § 1), with corresponding hypersurface S~, the Jacobian 
Ja(Sd evidently consists of the transform of the Jacobian JutS*), together 
with the composite variety Y~ ( s -  1)Ja(S~B~)_~). Thus S~ is likewise general ;  
hence, taking r general hypersurfaces S* on U~, and applying (1), we 
obtain (10). 
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In  particular, i f  the correspondence between Uv and U~ is without coi~w~i- 
deuces, it follows that the systems I Xa(U~) I are the transforms of the corre- 
sponding systems I Xa(U~) I. Moreover. each canonical invariant of U~ is equal 
to n times the corresponding invariant of U~. Hence, also, by the TODD- 
HIRZEBRUCH relation (§ 1), the arithmetic genera Pa, P* of U~,, U~ satisfy 
the equation 

(Ii) P~ -I- (-- l)~ --  n { P* + (-- I)~ }. 

The above considerations cannot in general be applied directly in a c a s e  

where either the branch locus of U~ or the coincidence locus of U~ or both 
possess components of dimension less than p - - 1 .  In  this case we must first 
perform one or more dilatations ('.)4:)'so as to convert such components into 
hypersuffaces, after which we can apply (10) to the transforms of Up and US 
so obtained. The latter will of course contain exceptional subvarieties in 
addition to any that the original models may have possessed; and in the 
present state of the theory it is not possible to say precisely how the cano- 
nical systems of U~ and U~ will be affected by transformations of this k ind .  

2. P i c a r d  v a r i e t i e s  and  A b e l i a n  v a r i e t i e s .  - An Abelian variety W~ is a n  

irreducible variety the coordinates of whose generic point are expressible as 
Abelian functions, of genus p, of p independent variables u , ,  u2,... , up. The  
rank r of W~ is defined as the number  of points in the primitive period 
parallelepiped which correspond to the generic point of W~. In  the case 
r - ~  1, W~ is called a PIOARD variety. 

It has been shown by SIEGEL and others (.2) (3) that any PIOARD variety 
can be cleared of singulari t ies;  and it can then be shown (4) that it is 
possible to remove also any exceptional subvarieties, thereby rendering the 
correspondence between the points of the variety and the incongruent  sets 
(u~) (1,1) and unexceptional.  We thus obtain a model which w.e denote by V~ 
and which will be used in all that follows; the symbol Vq will be used 
with a similar meaning. 

It  is known (16) that a general PIOARD variety V~ (i. e. one with general 
moduli) contains no PICARD subvarieties, but that, if Vr contains one such 
variety Vg, it must contain a congruence { Vq } of varieties Vq, the congruence 
itself being Picardian, i. e. representable by the points of a PIOARD variety;  
and, farther, that Vr must contain a second Picardian congruence I V~_ql 
of PICARD varieties V~_q. We shall call such a variety g~ special of type q 
(or p - - q ) .  This specialization process may be repeatedly applied to both Vq 
and Vv_q so as to yield, for example, a variety V~ containing p congruences 
of elliptic curves;  in particular,  Vv may be the product of p elliptic curves. 

(~) Including Prof. SEGRE, in an unpublished work which the writer has been privileged 
to consult. 
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It was first remarked by SEVERI (30), from transcendental considerations, 
that the canonical varieties o f  V~ are all  effective of  order zero. A geometrical 
proof of this result would be desirable. 

Next, we observe that the characters gi of V~ are given by the formula 

= 1, w oro produo  g~ P elliptic 

curves this follows from the extension of (8) already alluded to: the result, 
for any V~, is a consequence of the fact that the local topological structure 
of the latter variety is identical with that of the former. Hence, by (6), V~ 
has arithmetic genus (--l~p-~ - a  result first obtained by LEFSCHE~Z (16). 

Every variety V~ admits a completely transitive permutable continuous 
group of ~ P  automorphisms, represented by the equations 

(12) u;  - -  u, -t- a, (i - -  1, 2, ..., p}, 

where the a~ are arbitrary constants; for a given set of these constants, 
equations (12) represent a transformation of  the first kind. Conversely, every 
variety of dimension p which admits such a group is.a PmARD variety Vp (4). 

It is convenient to remark here that, if the group of automorphisms of 
the variety in question is only generally transitive, we obtain instead what 
SEVERI (27) has called a quasi-Abel ian variety Wp. SEVERI has proved (28) 
that W~ is either birational or is the product of a PIOARD variety Vq and a 
linear space S~_q; thus ~ is a simple special case of the pseudo-hbelian 
varieties considered in § 4. 

Turning now to the Abelian varieties W~ of rank r ~ 1, we first observe 
that, from the definition, it i s  clear that W~ can be mapped by a simple 
involution (a) of order r on a PICARD variety Vp ; hence a classification of W~ 
can be obtained from a study of the various kinds of involution which V~, 
whether general or special, can carry. This study is based on transcendental 
and group-theoretic methods which we shall now briefly describe. 

In practice it proves necessary to consider involutions /,, whose orders n 
are multiples of r. The primary characteristic of any such involution I ,  is 
the nature of the coincidence locus, which may have any dimension from 0 
to p - - 1  inclusive; and, in our work, particular importance attaches to those 
involutions which are without coincidences. In the case where V~ is general, 
it may be shown that any simple involution, without coincidences, on V~, is 
necessarily Picardian, and generable by a finite group of transformations of 
the first kind. E ~ I Q u E s  t7) has proved that any  variety which contains a 
Picard involution, without coincidences, is i tsel f  Picardian.  The remaining 
types of involution without coincidences which V~ can carry emerge from 
the general considerations which follow. 

(a) If,  however ,  degenera te  Abel ian  funct ions are al lowed in the def ini t ion of Wp, 
this m~y not be true (see § 8); bu t  we shall not consider  this case. 
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To begin with, we deduce from the correspondence between V~ and W~ 
that the pure canonical and pluricanonical hypersurfaces of W~, i f  effective, 
are all of order zero. Thus  the geometric genus and plur igenera  of W2, satisfy 
the inequalit ies P9 ~ 1, P ~  1. Next, it follows from § 2 that the characters  

g, of W~ satisfy the inequali t ies g, ~ ( P ) ( i  = 1, 2, ..., p) ;  in part icular ,  the 

superficial irregularity q (--g4) is given by q <_p. It  may be shown (25} that 
q----p if, and only if, W~ is a PICARD variety. In  the third place, it may be 
proved (19) that, if the involution I ,  possesses cx~ ~-~ coincidences, then 
P,----0 (all i). 

The group-theoret ic  method of 91assifieation, which was first applied 
systematical ly to the case p = 2 by BXG~rERA and DE Ft~ANCEIS (2), and 
also by E:~IQt~ES and SEVERI (8), is based on the theorem : I f  W~ has some 
plurigenus greater than zero, then I,, can be generated by a finite group ~,, 
of automorphisms of V~. This result,  for the case p - - 2 ,  was established in 
two stages (4) by BAGN~RA - D~ FRANC~rs (~) and D]~ FRANOHIS (6) 
respect ively;  the extension, for p ~ 2, is due to ANDI~EO~I (I). It does not 
follow that, if all the plur igenera  of W~ are zero, I .  cannot be generated 
by a group ~,, - in fact, examples of such groups are easily constructed;  
but it means that the systematic classification of the Abelian varieties has 
to be restr icted to those types which have some plurigenus greater  than zero. 

Assuming, then, that I,, is generable by a group 6 , ,  we may show (16, 17), 
that 6 .  itself can be generated by a finite set of l inear  substitutions, each 
of which is of the form 

p 
(13) u(--=- E a~iu~-~-bi (i = 1, 2, ..., p), 

i=1 

where a~ and bi are constants. In  the ease where Wr has superficial  irregu- 
larity q > 0, we may show fur ther  {16, 17) that q of the above relations may 
be taken to be 

(14) u~' - -  u~ + b~ [i : 1, 2, ..., q}. 

LE~'SCHE~Z (17t has remarked that, by modifying suitably the period matr ix  
of V~, the remaining transformations of the set (13) may be reduced to the 
canonical  form 

(15) u # ' :  e#uj -t- bj ff - -  q -I- 1, q ÷ 2, ..., p). 

The constants ej, called the multipliers of the substitution, are all roots of 
uni ty  other than uni ty  itself. 

(4) Separated by an interval of nearly 3() years. 
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In  the case where  ~,, is cyclic, all the t ransformat ions  are represented  
by powers  of (14) and (15}; when  ~,~ is non-cycl ic ,  the genera t ing  transfor- 
mat ions  all have equat ions  (14) in common.  

Suppos ing  then that  Wp has superf icial  i r regular i ty  q (0 ~ q  ( p )  and 
vir tual  canonical  hypersur face  of order  zero, we see f rom {14) that  I,, cannot  
possess coincidences  unless  b ~ - - 0  (all i), in which  case I ,  mus t  have c, oq 
coincidences  at least. 

I t  is impor tan t  to note that, i f  I .  is free from coincidences, the canonical 
varieties of W~ are all (efectixe or virtual) of order ~ero ; and W# is super. 
f~ially irregular. The first s ta tement  is an imme.diate consequence  of § 2;  
and it means  incidenta l ly  that  the t ranscendenta l  considerat ions  descr ibed 
above will apply to W~. To prove the second s ta tement  we observe that, 
when  q -  0, the equat ions  (15), in which  uj is subs t i tu ted  for uj', always 
aclmit solutions.  

We shall  call such a variety W~ an Abelian variety of the first species, 
it being unders tood  that  q ~ p ,  i. e. that  W~ is not a PICARD variety. 

4. Pseudo-Abel ian  varieties.  - We  consider  a non- s ingu la r  variety W~ 
which  admits  a permutab le  cont inuous  group ~ of ccq au tomorphisms  
!1 ~ q _ ~ p  --  1). The  trajectories  o f  ~ const i tute  a congruence  I Vq I of varie- 
ties Vq, the generic  member  of which is i r reduc ib le ;  each variety Vq is 
invar iant  under  ~, and no two trajectories intersect .  

Now when  a group possesses trajectories,  its t ransformat ions  may be 
ref lected in the trajectories in various ways :  here  we shall  make  the 
assumpt ion  that  ~ acts transitively, wi thout  exceptions,  on the generic  Vq and, 
~urther, that  Vq represents  biunivocal ly  and unexcept iona l ly  the transforma- 
tions of ~ :  it follows therefore  that  Vq is a PICARD variety in the reduced 
form descr ibed in § 3;  moreover,  the operat ions of ~ are t ransformat ions  of 
the first k ind  (5) on Vq. 

We call W~ a pseudo-Abelian variety of type q; as par t icular  cases we 
may ment ion  the ell iptic surfaces ( p - - 2 ,  (/---1), wh ich  have been s tudied 
in some detail, and the pseudo-Abel ian  threefolds ( p - - 3 ,  q - - 1 ,  2), which 
have been considered in previous work  (20, 21, 2"2). 

It  will  appcar  short ly that, as a hypothesis  of generali ty,  we may assume 
that  every i r reducible  t ra jectory of ~ is n o n - s in g u l a r ;  but  it will  also appear  
that  we may expect  t Vq I to contain a cer ta in aggregate of reducible  members ,  
each consis t ing of an i r reducible  non- s ingu la r  PICARD variety counted wi th  
a cer ta in mult ipl ici ty.  

The first step in the discussion is to prove that  W~ contains a second 
congruence t V~_q I, Picardian or Abelian of the first species, of c~q birationally 

('~') T h i s  f o l l o w s  f rom the  fac t  17) t h a t  ~ m u s t  b e  simply t r a n s i t i v e  on  Vq. 
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equivalent varieties V~_q. This is achieved exactly as in (18), where  it was 
assumed that Vq was general ;  in any case, however,  the method there employed 
yields a congruence 1 V,-ql of varieties V~_q which are transforms of one 
another  under  ~, and which cut the generic Vq in sets of an involution ia, 
of order  d--~-[VqV~_q], free from coincidences. If  Vq is general,  i d is neces- 
sari ly Picardian,  otherwise i~ may be Abelian of the first species (§ 3). The 
number  d, called the determinant of W~, is an important  charac ter  of the 
variety. 

We shall assume that the generic Vp_q is non-s ingular  and thus, as 
will be seen, we are led to suppose that every V~_q is non-singular .  

Conversely, it may be shown that any variety W~ which contains a 
congruence l Vql as defined above is pseudo-Abelian of type q; the proof of 
this result, which is similar to that of the analogous theorem for elliptic 
surfaces (7), depends on the fact that t ransformations of the first kind are 
t ransferred from one variety Vq to another,  and rat ional ly  determinable,  by 
means of the involutions i~, which can always be constructed. 

We now proceed to obtain a mapping of W~ on a multiple variety W~ 
which is fundamenta l  in what  follows. First, in the case d ' - - 1 ,  the con- 
gruences I Vql, I V~-ql are birat ionally equivalent  to Vp_q and Vq respecti- 
vely, so that we may map W~ on the product VqX V~_q; and, by the 
assumptions already made, the representat ion is free from exceptional elements. 

To obtain a mapping in the case d ~ 1, we first construct  the variety 
* where  ~ and * w; v; × = V~_q are birationally and unexcept ional ly  

equivalent  to I V~-ql and t Vql respect ively;  such a variety contains two 
congruences which, without  risk of confusion, we may denote by I V~ I and 
1 V~-ql, the varieties V~ being ei ther Picardian or Abelian of the first spe- 
cies, according to the na ture  of I V~-q I ; in the former case R~  is a pseudo-  
Abelian variety of determinant  unity. We now make correspond to the generic 
point of W$ the set of d points (VqVp_~), thereby obtaining a representat ion 
of W~ on the d-p le  variety W~. 

Is this mapl~ing each t ra jectory Vq corresponds to a d-ple  variety V~ 
in a representat ion which is without  branch points, since the involution i~ 
is free from coincidences. Hence the branch locus on W~ is either lacking 
al together or else consists of a number  of i rreducible varieties belonging to 
the congruence 1 V~ I, i. e. generated by varieties V~; such varieties, which 
we shall suppose to be non-singular ,  may have any dimension varying from q 
to p -  1 inclusive, those of dimension q consisting of isolated varieties V~. 
To each generator  V ~ ,  say, of an ( s - - 1 ) - f o l d  component of the branch 
locus, there corresponds a variety Vq,~ which is an ( s - - 1 ) - f o l d  element of 
the coincidence locus of the involution Ia defined by the sets (VqVn_q) , and 
which  is  such that sVq~---- Vq; the numbers  s ( 2 < _ s ~ d )  may a priori be 
any divisors of d. 

4 ~ I ~  d~ M a t o ~ t l n a  37 
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Evidently each variety Vq,8 is itself a t rajectory of the group 8, and is 
therefore P ica rd ian ;  and it is mapped on the d/s-ple variety Vq*,8 without 
the intervention of branch points. As a hypothesis of general i ty we shall 
assume that each Vq, a is non-singular .  

We shall denote by ( s - -1 )B~  (8) ( q ~ h ~ p - - 1 )  a typical ( s - - 1 ) - f o l d  
eompbnent of the branch locus on W~ ; to it there corresponds an ( s - -  1)-fold 
component  - -  (s - -  1)B~ ), say - -  on the coincidence locus on W~. The variety 
B~ 8), which we shall suppose to be non-singular ,  belongs to the congruence 
i Yq}; any two varieties B~ ), B(~ ) which correspond to the same value of s 
may intersect,  in which case their  common part  consists entirely of trajectories. 
Each variety B~ ) is pseudo-Abel ian of type q, and is mapped on the d/s-ple 
variety B~ (81 without  the intervention of branch points. 

In  the case where  all the numbers  h are equal to p - -  1, the correspon- 
dence be tween W~ and W~ is biregular  if m as we shall suppose - -  ~ 
is non-singular .  In  any other case it follows from a result  of S]~VERI (26) 
that, if we require W~ to be non-singular ,  each variety B~ ) for which 
h ( p -  1 must  be mapped by a hypersurface  on W~, so that the correspon- 
dence possesses fundamental  elements. However,  w i t h  the hypotheses of 
general i ty we h a v e  made above, the representat ion of W~ on W~',* has no 
other exceptional  features than those already described. 

Two immediate  consequences of the mapping may be noted here. In tile 
[irst place, the characters  g~, g* of Wr, W~ satisfy the inequalit ies g i ~ g *  
(§ 2), where  the numbers  g~* are given by (8); in particular,  we have 

(16) g, >_ g,(V$) + 

And since V~ is ei ther Picardian  or Abelian of the first species, it follows 
that in all cases Wp is superficially irregular. 

In  the second place, while  the varieties B~ ) are in general  algebraically iso. 
luted, it may happen that there exist two varieties B~  8), B~ 8/, corresponding 
to the same value of s, such that sB~ 8) ~-- sB~l; in that case W~ has divisor ~h 
greater than unity, i. e. is endowed with  torsion. 

We conclude this section with some remarks  concerning the construction 
and classification of W~. In order to construct  a projective model of W~, 
it is first necessary to obtain a mapping of V a on the d-ple  variety V~, which 
is P icardian  or Abelian of the first species, as the case may be. The general  
problem involved here has not so far been studied except for q - - 1 ;  howe- 
ver, the case where  the representat ion on V~ is cyclic presents no difficulty, 
and is dealt with exactly as in (18), to which  we may refer  for fur ther  details. 

The process of classifying the variety W~, for given values of p and q, 
is based on the study of the involution j a ,  say, which the congruence I Vq} 

. . . . . . .  S {8). cuts on any V~_~. The coincidences m j~ arise solely from the va rmhe  B~ ; 
thus each B~ I cuts V~_q in a variety which is an ( s ~  1)-fold coincidence 
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locus of Ja.  Next, we observe that  Vp_q is invariant under a permutable 
group ~a of automorphisms, namely the t ransformat ions  of ~ which  leave 
each V~_q invariant .  I t  follows that  our  first task is to de te rmine  those 
varieties l,'~_q which  admit  such groups of au tomorphisms,  and to obtain the 
characters  of the corresponding involut ions  j a ;  for each involut ion ja we 
shall  have a de te rmina te  congruence  i Vq ~, since j~ and { Fq ! are birat ional ly 
equivalent .  

5. The canonical systems of  W ~ . -  Since the canonical  systems of an 
algebraic variety are invar iant  under  any regular  au tomorphisms,  we should 
expect  that  those systems { Xa(W~) ! which  are not of order  zero would  belong 
to the congruence  of trajectories.  More precisely, we prove that  : The canonical 
systems { Xh(W~) t (k --" O, 1, ..., p ~ 1) of any pseudo-Abelian variety W~ of 
type q are of order zero for all k ~ q, while for k ~ q, they satisfy the 
equivalences 

(17) Xh(W,) ~- Xk(W;) ~- ~ (s - -  1)X,(B~ ')) (k--q,  q ÷ 1, ..., p -  1), 

where  e a c h  meaningless  symbol is replaced by zero, and where Xa(Wr) passes 
( s -  1)-ply th rough each B~ ) for which h < k. 

The  first par t  of this theorem has already been establ ished in (18), so 
that  we need only outl ine the proof here. This  is by induct ion  on p and k;  
we consider  first a general  penci l  I S ] of hypersur faces  belonging to { Vq ! 
or, when  q : p - -  1, the pencil  i V~-i I itself. Since the variet ies S and S ~ 
are both pseudo-Abel ian  of type q, it follows from the induct ive  hypothesis  
that  Xo(S ) and Xo(S 2) have order  zero;  we then show that  the vir tual  num- 
ber 8 in (3) is l ikewise zero, whence,  by (3), Xo(W~) has order zero. The 
result,  for k - - 1 ,  2, . . . ,  q - - 1 ,  then follows from the induct ive  hypothesis  
and equat ion (2). 

Suppose  now that k ~  q;  then,  if the correspondence  between W~ and 
W~ is biregular,  (17) is merely a res ta tement  of (10), the term Xa(W~) being 
evaluated by using (7). Since W ~ -  V~ X V~_q, where  V~ is ei ther  P icard ian  
or Abelian of the first species --  so that  X~(V~) is effective or vir tual  of 
order  zero for all h ~ q - -  it fol lows that  the only (possibly) non-zero term 
in the expression for~Xk(W~t is V~ X Xk_q(l:~_q). 

In  the case where  the correspondence is not biregular ,  the first term in 
the equivalence  for Xa(W~) is still the t ransform X h ( ~ )  of the corresponding 
canonical  variety of W~, but  the rest of the former  reasoning cannot  now 
be employed ;  ~however, we can obtain the required  resul t  by applying (1) 
direct ly  to W~. 

To this end consider,  for q ~ p - - 1 ,  a general  hypersurface  S belonging 
to the congruence  i Vq i, it being unders tood that  the def ini t ion of general i ty  
given in § 1 is now modif ied so as t~ apply only for k ~  q. We first  note 
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that any Jacobian  Jh(S) (k ~_ q) necessari ly belongs to i Vq }, and also that, 
if S contains a variety sVq,~ (§ 4), the lat ter  counts  {s--1) t imes as part  of 
the Jacobian  Jq(S). Now any l inear  system I S I  of f reedom k-e-1  cuts a 
variety B~ ) in a l inear system of the same f reedom;  then, provided that  
k ~ h  (all h), taking a suff ic ient ly  large number  of general  hypersur faces  
belonging to i Vqt and apply ing  (1), we obtain (17); if instead there exists 
any variety B~ I such that  h < k, this will be an ( s -  1)-fold component  
of x,( wp . 

We now use the induct ive  hypothesis  that  the resul t  holds for all pseudo-  
Abelian variet ies  of d imens ion  less than  p ;  s ince.each variety B~ / is pseudo-  
Abelian, the variety Xk(B~ ~1) is e i ther  of order  zero or belongs to the con. 
g ruence  tVq t; and since X'h(W~} obviously belongs to the congruence,  the 
theorem is establ ished for all values of k. 

It  now follows that  the canonical invariants of Wv are all zero. For  
these invar iants  (§ 1) are the respect ive intersect ion numbers  of appropr ia te  
sets of canonical  varieties,  and the lat ter  ei ther  belong to the congruence 
i Vqt or else have order  zero. Hence  also, the arithmetic genus of Wr is 
equal to (--1)v-~; this is an immedia te  consequence of the last result  and 
the TODD-HIRZEBRUC~ relat ion (§ 1). 

Consider  in par t icu lar  the system I X~_, I ;  by (17), this contains  each 
variety B~ ) as (s - -  1)-fold component  and passes (s --  1)-ply th rough each B~ ) 
for which  h ~ p - - 1 .  Since the intersect ion of any n u m b e r  of varieties X~_~ 
cannot  have d imension less than  q. it is clear that  Q0-"0 ,  0~ ----- ( - -1)  ~-~ 
( i - - 1 ,  2, . . . ,  q). In  the special case where the varieties B~ ) are all absent, 
we obviously have ~ = ( - i )  ~-~ (i = 1, 2,. . . ,  p - - 1 ) ,  a resul t  which agrees 
with the SEVERI-HOD(~E relat ion [5). But  in a case where 1Xp_t I possesses 
mul t ip le  base e lements  the proof of this r e s u l t -  assuming that  it still 
holds - -  does not appear  easy. 

6. E x a m p l e s :  the  quas i -Abel ian  var ie t ies  - W e  i l lustrate  the preceding  
resul ts  by consider ing first  a quasi-Abelian variety Wv (§ 3), i. e. a variety 
of the form VqxS~_q ( q >  0). I t  follows from § 3 that, in this case, 

g , - - - ( q /  (where it is unders tood that  meaningless  symbols are replaced by 

zeros) ;\'/hence, in part icular ,  W~ has super[ ieial  i r regular i ty  q. And since all 
the canonical  variet ies of Vq are effective of order zero, we have Xh(Wv)--'- 

W k ~ Xp_q(Sp_q) (k - 0 ,  1, ..., p -  1). Now B. SEOaE (23) ilas shown that, 

for any l inear  space S,., Xn(S,.)~ (-- i)"-nt' h'''_ + 1)Sa" (h=O, 1, r 1). From 

this resul t  we deduce  that  

Xa(.W~)____~(__l)p_a[__qA_|WqXSh_ q / , ~  1\ {k-~0, 1 .... ,p - - l } ,  
\Ig 1] -- q'4- 
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where meaningless symbols are replaced by zeros. Hence,  for k ~ q, Xh(W~) 
has order zero ; Xq(W~) ~ (-- 1)~-~(p - q ~- 1)Vq ; while, for k .'> q, Xk(W~) is 
the sum of a number  of quas i -Abel ian  variet ies of type q, but is never of 
order zero. This means that, for all k ~ q ,  the variety Xh(Wp), whether  
effective or virtual, is never  of order zero, and always belongs to the con- 
gruence { Vq }. 

In  part icular ,  put t ing k - - p  - -  1, we have Xp_j ~- - -  (p - -  q + 1)Vq~,~8~_q_ l . 
Thus P g - - P i - - - 0  {all i) ;  and obviously Q o = 0 ,  ~ 2 , ~ ( - - 1 )  *-~ (i~--1, 2,. . . ,  
p -  1). And, as for all pseudo-Abel ian  varieties, we have Pa - -~ ( - -1 )~ -~ .  

As a second example we consider the case - -  of great importance in 
the theory of Abelian variet ies - -  ~ h e r e  Wp has an effective canonical 
hypersurface of  order zero. In order to discuss this quest ion we must assume 
that the model W~ which we have constructed is free from exceptional  
hypersurfaces  (all that we actual ly  know is that each trajectory is similarly 
free). In this case, then, there can be no variet ies ~p-1~{8) on W~, since these 
would be fixed parts of I X ~ _ , [ .  And since, therefore, X~_~(W~) is the 
transform of Xp_l(W;) ,  of which - -  as we have already remarked - -  the 

$ only non-zero part  (if any) is the variety g~ ~ X p _ q _ l ( V ; _ q )  , i t  follows that 
. 

V~_q must have a canonical hypersurface  of order zero;  though this need 
not be effective. 

The condition imposed on X~_, does not however  exclude the presence 
of coincidence loci B(~ / (h ~ p - -  1). For  if these are dilated into hypersurfaces  
on a model W~, say, it can still happen that the sum of such hypersurfaces,  each 
counted with the proper  multiplicity, and the variety X~_~(W;), consti tutes 
an exceptional  hypersurface  on W~ which, on removal, leaves an effective 
canonical hypersurface  of order zero. 

Suppose,  however,  that the involution Ia is free from coincidences;  in 
this case, by § 2, we have 

Xh( V;_q) ~- Xh( V~_q) (k -~ O, 1, ..., p - -  q - -  1}. 

It then follows that V~_q l ikewise has a canonical hypersurface  (effective or 
virtual) of order zero. It  follows also that each canonical  invariant  of V~_q 
is equal  to d times the corresponding invari~nt of V~_q. 

If we suppose further  that each variety Xkt W~i (k ~ - - p -  2, p -  3, ..., q} 
has order zero, we see that all the canonical varieties of  V~_q, and also those 
of V~_q, have order zero. These may be either effective or virtual. 

So far we have assumed that Xp_i(W~) is effect ive;  if instead we are 
merely given that this variety is virtual (of order zero) the discussion is 
more complicated, for in this case hypersurfaces  B ~ I  will in general be 
present. (See §§ 10, l l) .  
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7. Improper ly  Abelian varieties. - Let V~ be a PmARD variety which is 
special of type q (§ 3), with complementary congruences i ~ ! ,  i V~-q !, say, 
of PIC.~RD variet ies ;  and consider, on V~,, a (simple) involution I,, which is 
e i ther  free from coincidences or is such that the coincidence locus belongs 
to the congruence {Vq!;  thus no variety Vq which does not form part  of 
the coincidence locus can intersect  it. And suppose fur ther  that the generic V~ 
is not united in I,,. 

It  then follows that the variety W~ which maps 1,, contains a congruence 
i Vq} of varieties Vq, image of the congruence { Vq}; the generic member  Vq 
maps a set of n varieties Vq, in general  d is t inct . f rom one another,  so that 
Vq is itself a PICARD variety. Also since the PIOARD congruence i Vq! is 
mapped on the n-fold  congruence i Vq!, it follows that the lat ter  is ei ther 
Pieardian or Abelian;  the aggregate of branch elements (if any) of the cor- 
respondence arises from the varieties 17q,8, say, which are loci of sets of 
n/s (2~_~s_~n) points homologous to each other in I,, : corresponding to a 
variety Vq,, we have a reducible variety sVq,, (== Vq) such that Vq,~ is in 
(1, n/s)correspondence with Vq,~. Each variety Vq,, is an ( s -  1)-fold element 
of the branch locus;  and, by § 3, Vq,~ is itself a PICARD variety. 

Corresponding to the congruence i V~-q! we have on W~ a congruence 
t V~_q t which maps the former in a correspondence without branch elements ; 
hence {V~_q! is ei ther Picardiall  or Abelian of the first s p e c i e s -  and if 
} Vp-qi is general,  the first al ternative must hold. The varieties Vv_q are all 
birat ionally equivalent ;  in the case where  [ .  is without  coincidences V~_q 
is ei ther  Picardian or Abelian of the first species, while, if I,, possesses 
coincidences, V~_q is Abelian 4but not of the first species), being mapped by 
an involution on Vp_q whose coincidence locus is the intersection of ~ _ q  
with the coincidence variety of I , .  

In  any case we see that Wp is ei ther special Picardian or pseudo-Abe- 
lian of type q:  and that, except when Vq, V~_q, i Vq! and i V~_qt are all 
Picardian,  the second alternative must hold. 

In conclusion, then, the variety ~V~ representing a simple incolutiou I,, 
on a special Picard variety l~ of type q which is such that the coincidence 
locus (if  any) belongs to the congruence i Vq ! while : Vq ! is not united in I,,. 
is either special Picardian or pseudo-Abelian of type q. In the latter case W~ 
co~tains an Abelian congruence i Vq ! of trajectories, image of Vq !, a~d a 
complementary congruence i V~_q !, Picardian or Abelian of the fit~st species, 
of Abelian varieties Vp_q which are Picardian or Abelian el the first species 
if, and only if, I,, is without coincidences. 

8. \Ve m)w obtain a. condition sufficient to ensure that au Abelia41 
variety W~, which is w,(tpped by an involution I,, ou a Picard cariely V,, 
should bc psendo-Abelian of type q. [n § 7 w~, made uo hypothesis concerning 
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the plur igenera  of W~ : but we shall now require  to assume that W r possesses 
an effective or virtual canonical hypersurface of  order zero. This is necessary 
in order that the group- theoret ic  considerations of § 3 should apply;  for it 
is known that there exist Abelian varieties of plur igenera  zero, representable 
by involutions L, on PICARD varieties, w h i c h c a n n o t  be generated by groups ~,, 
of automorphisms. And there exist also Abelian varieties lin the wider  sense} 
of plur igenera  zero which are not so representable.  Consider, for example, 
a quasi-Abel iau variety of type q, W r - - V q  X S~,_q (q > 0): if this could be 
mapped by an involution on a PICARD variety Vr, the PICARD congruence 
i Vq! corresponding to the birational congruence i Vq! on W~ would be 
mapped on the lat ter  without  branch elements (since there are no trajectories 
Vq,~t - and this is impossible. 

Suppose then that Wv is an Abelian variety, mapped on Vp by an invo- 
lution I,, ; and suppose fur ther  that W r has some plurigenus greater  than 
zero. Let W v have superficial  i r regular i ty  q !0 < q  < p } ;  then it follows 
from § 3 that I ,  must be generable by a finite group of automorphisms of 
V v. the group being representable by a finite set of equations such as ~14} 
and t!5). Now it is obvious that equations ~141 are invariant  under  a conti- 
nuous group ~ of c,zq transformations of the first kind, the trajectories of 
which are PICAnD variet ies;  hence 1I~ is a pseudo-Abel ian variety of type q. 
)[oreover, the congruence i Vq : of trajectories of ~3 can arise only from a 
congruence i Vq~ of varieties on Vv: and from the general  theory of PICAI~D 
varieties we know that this congruence must be Picardian and that its 
members must be PICARD variet ies:  that is. V~ must be special of type q. 
We know also that l~  must contain a second PICARD congruence ~~r-q! of 
PICARD varieties Vr-q: and this congruence gives rise to the complementary 
congruence i Vv-q; on lI~ which we have described in § 7. 

Now it is clear ti~at the involution tcontained in or coincident with L,J 
defined by ~141 and 1151 will admit coincidences if, and only if, b , - - 0  lall i); 
and in that case there are at least ~--¢q coincidences, belonging to the con- 
gruence !V0i .  Hence 

Ecery cariety 11~ of superficial irregularity q (0 < q < p~ a~d with some 
plurige~us greater than zero, which is mapped by ct~ i~vol~tio~ on a Picard 
variety Vv, is pse~tdo-Abelian of type q: moreover. Vp m~tst be special of 
type q, and the coi~cide~ce locus of the i~colulion must be!o~tg to the congr~te~ce 
Jchich maps the co~lgrue~tce of trctjectories o1~ ll" v. 

With the notation of ~ 4. we may map 11 v on the d-pie variety 
~1~ ~---V~ X V~_q. where, by what has been said. ~q and I~_,~ are Abelian 
varieties of genera q and p - - q  respect ively:  hence the coordinates of the 
generic l:oint P* of ~l~ are expressible as rational functions of the coordi- 
nates t~f two points, lying on Abelian varieties of genera q and p - - q  
rcsp(,ctiv~qy. It follows that tho coordin:~tes of the generic point P of II~. 
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which is mapped on the d-pie  variety W~, are expressible as algebraic 
functions of the coordinates of P*, that is to say, as algebraic functions of 
Abelian functions of genus q and other Abelian functions of genus p - - q .  
By virtue of this result  (19) we may call W~ an improperly Abelian variety ('~). 
In many cases, one or both of the congruences i Vqt, i V~_qi are themselves 
improperly Abelian, and then the genera of the Abelian functions required 
for the parametr ic  representat ion can be lowered still further.  

Conversely , if W~ is a pseudo-Abel ian  variety of type q which is also 
Abelian, and which is the image of an involution on a PmARD variety Vp, 
the lat ter  must be special of type q;  also the involution is either free from 
coincidences or else the coincidence locus belongs to the congruence which 
maps the t rajectories  on Wp. And Wp is necessari ly improperly Abelian. 

W e  may note here two interest ing special cases:  
(i) If, on the variety W~, the varieties Vp_q are Picardian,  then W n is 
Abelian of the first species. For  then the congruence i Vq} cuts  on V~_q an 
involution which is necessari ly Abelian, and so I Vq} is itself Abelian. And 
in any case t Vp_q} is either Pieardian  or Abelian of the first species (§ 4). 
We  may thus map Wp on a PICARD variety Vp, which is special 'of type q, 
by an involution which is free from coincidences. 
(it) Suppose that W v is an Abe l i an  variety satisfying the conditions stated 
at the beginning of § 8, and that the corresponding congruence i Vq I contains 
no trajectories V~.8. This means that the involution cut by t Vq f on any l~_q 
is without coincidences, so that V~_q is either Picardian or Abelian of the 
first species ;  moreover, if the associated congruence t Vq} is general, the 
first al ternat ive must  hold. If  i Vq} is Picardian,  so also is Vp_q, since V~_q 
then carries a PICARD involution free from coincidences  (§ 3); and t Vp_q} 
must be Abelian of the first species, since if this congruence were Picardian,  
W~ would also be Pieardian.  If  instead i "Vq! is special of some type, then 
i Vqt may be Abelian of the first species. 

9. The case where W~ is quasi-Abelian.  - An important  class of pseudo-  
Abelian varieties is obtained by supposing in § 4 that the congruence t Fq} 
is biralional and, more part icularly,  that it hi~s invariant order unity (26); 

S~_q, so that ]/V~ is q . * we may then take the variety to be a l inear space * 
of the form V~ x S ~ - q .  If we further  assume that the congruence { Vp_q / 
is Picardian,  it follows that W~ is quasi-Abel ian of type q (§ 3). 

The variety Wp mapped in the usual  way on W$ is of considerable 
in teres t ;  thus, for p----2, it includes the entire class of elliptic surfaces of 
geometric genus zero;  more generally, for q-----p - 1, we have a variety W~ 
containing a rational pencil  of trajectories Vp-l .  The discussion of this case 

(6) Thus, in particular, every Abelian variety of the first species is improperly Abelian. 
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is substantially the same as that (ff the par t icular  case p - - :  3 (~1), to which 
we may therefore refer  for details. In what follows we shall suppose that 
q < p - - 1 .  

To begin with, we r emark  that, since the involution cut  by IV  q} on 
any Vv_q is birational, it must  possess coincidences. By the hypotheses made 
concerning the na ture  of {Vq} and the correspondence between Wp and W~, 
the coincidence locus on W~ must be a hypersurfaee  to which corresponds, 
on W~, the product of a PICAI~I) variety and a hypersurface  in * S~_q. Since 
any two hypersurfaees  of * S~_ u intersect,  and the base for hypersurfaces  in 
S~_q is a prime, there is no loss of general i ty in supposing that the coinci- 
dence locus on Wp is an irreducible, variety B~)_a, corresponding to an 
irreducible variety ~p-l~*(:l on W~* ; B~8~1 is mapped on the d/s-ple variety ~.Is}~p_l 
without branch points, so that, by § 2, 

V ,D*I~ (k 0, 1, - -  2). 
- -  = . . . ,  i ,  

~ , { s }  , NOW L~p--1 is of the form V~ X V l ~ - q - 1  , where V~ is a PICARD variety and 
, , ( s  _ _  S~_q, of some order n ;  so that Xh(B~_'~-- V~_q-1 a non-s ingular  primal of * 

----V~ X Xh(V~_q_I). All that we require,  therefore, is to determine the 
canonical  varieties of the primal * V~_q_a. These have been obtained by 
B. SEGRE (2~); thus, let A, C denote respectively a prime and a non-s ingular  
primal, of order n, in St,  so that C ~  hA: then SEGRE has shown that 
X,,(C) = 7(h)A ''-h, where  

y ( h ) i :  ~ ( - - 1  - - a - , - s  r - I - 1  . n.~+,. 
j=o r ~ h  -- 1 --3 

For the canonical varieties on W~ we then use the equivalences (§ 5) 

Xa(IVp)-~Xa(W~) + (s-- 1)/a(B~L1 ) (k---0, 1 , . . . , p - -1 ) ,  

where,  by § 6, 

Xh(W~)=-- ( -1)~-~(P - -q  + ll) * - q +  xs _q. 

In particular,  putt ing k----- q -- 1, we obtain 

Xv_,(W~)--= X--p_,(W;)+ ( s - -  1)B~)__1, 

* 
where  X , , _ , ( W ~ ) ~ - - - ( p - - q +  1)V~ X Sp_q-i. Since B~)_I is algebraically 
isolated on Wv, it follows that W v has geometric genus zero. This result  
may be otherwise obtained by a simple induction argument.  We consider, 
on Wv, the ~¢~P-~ system [ Wv_ l ] of varieties corresponding to the varie- 
ties V~ X SlY-q-l; evidently these belong to the class of manifold at present  
under  discussion. We know that, for p - - 2 ,  W v has geometric genus zero;  
assuming, then, that a like property holds for Wv_,, we deduce that it holds 
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for Wp. For  if Wp had geometric genus greater  than zero, the character is t ic  
system of ] W ~ - l l  would  necessari ly be special, and this is impossible. 

As regards the plur igenera  of Wp, these may or may not be posi t ive;  
it is a simple matter  to construct  examples for which P~ - -  0 (all i) (C. f. 20). 

W e  have so far assumed that { Vq} has invariant  order un i ty ;  in a case 
where i Vq~ is birat ional  but  of higher invariant  order, it is possible to 
have a number  of non- in tersect ing hypersurfaees  B ~ I  corresponding to the 
same or different values of s. For  V~_q can then contain a pencil of variet ies 

, ~*/8) 
V~-p-1 free from base points, and we can take ~-,p-1 to be of the form 

, V~ X V~_q-1; the images of such varieties on Wp will be non-intersect ing.  
Conversely, if the congruence i Vqt is birational and it is known that there 
exists a coincidence locus with non- intersect ing components,  or with compo- 
nents  corresponding to different  values of s, then i Vq} must have invariant  
order greater  than unity. 

10. Applications to threefolds.  - We  begin by recalling the propert ies  
of surfaces  with canonical  system or canonical series of order zero which 
we shall require  below. Let  W~ be a surface, free from exceptional  curves 
of the first  kind, wi th  effective or virtual  canonical variet ies X l and X o : 
then a first  result, due to ENRIQUES (7), states that, if W~ has ari thmetic 
genus - - 1 ,  the surface is ei ther elliptic (including elliptic scrollar) or Picar- 
dian. In either case W.z has (absolute) l inear genus 1; moreover, W~ is 
improper ly  Abelian or Picardian  according as X t is vir tual  or effective of 
order zero. 

From this DAN~ONI (5) has deduced the striking theorem:  i f  X~ has 
order zero, then W~ is elliptic (including elliptic scrollar) or Picardian. 
DANTONI has fur ther  shown that the SEVERI series of a surface, if of order 
zero, must  be effective. As before, W~ will be improperly Abelian or Picar- 
dian according as X l is vir tual  or effective of order zero. 

Whi le  it seems unlikely that such precise results as the above could be 
established for threefolds, it is possible to restate some of them in a weaker  
form which  admits of extension. Thus, if we recall  (7) that any surface 
which admits a finite cont inuous group (7) of automorphisms is either scrollar, 
elliptic or Picardian,  we may assert that 
(i) any non-scrol lar  surface which admits a finite cont inuous group of auto- 
morphisms has ar i thmetic  genus - - 1  and l inear  genus 1; 
(ii) the only surfaces which admit a finite cont inuous group of automor.  
phisms and which possess an effect ive  canonical curve of order zero are 
the PICARD surfaces.  

(q) There is no loss of generality in assuming that the group is algebraic ((~. f. 7). 
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Both these results, as we shall see, extend to threefolds. In  order to 
state the corresponding theorems as concisely as possible, it will be conve- 
nient to introduce the following definitions. We  shall say that a threefold is 
scrollar or planar according as it is birat ionally equivalent  to a threefold 
generated by a congruence of lines or a pencil  of planes. W e  shall now 
prove that 

Any threefold which admits a fir~ite continuous group of automorphisms and 
which is neither scrollar nor planar has arithmetic genus and linear genus 
unity. 
The Picard threefolds are the only three folds which admit a finite continuous 
group of automorphisms and which are. endowed with effective canonical sur- 
face and canonical curve of order zero. 

Here  it is of course to be understood that the threefolds in quest ion 
have been cleared of exceptional  surfaces ; at present  it is not known whether  
such an assumption is restrictive. 

For the proof of the above results  we require  the classification, due to 
HALL ([l), Of the threefolds which admit finite continuous groups of auto- 
morphisms;  in the case where the group in quest ion has dimension l or 2, 
it may be shown that the threefold is scrollar or planar  or pseudo-Abel ian  
of type 1 or 2;  if the group has dimension 3, and is completely or generally 
transitive, the threefold is Picardian  or quasi-Abelian,  as the case may be, 
while if the group is intransit ive one of the former possibilt ies must hold. 
And since every PICARD. or pseudo-Abel ian  threefold has ari thmetic genus 1 
and (absolute) l inear genus 1, the first of our theorems is established. 

Turning now to the second, we remark  that, if the threefold W, has an 
effective canonical surface of order zero, then it must be Picardian  or pseudo-  
Abelian, since in all the other cases listed above we have P a - - 0 ;  we have 
thus to examine the pseudo-Abel ian  threefolds, for which, in the notation 
of § 4, q - - l ,  2. 

Consider first the case q - - 2 ;  this gives the hyperel l ipt ie  threefold, 
examined in detail  in (21); from the equivalences there given for the cane.  
nical systems, we see that, if the surface X, is effective of order zero, the 
pencil  I V , !  of trajectories must  be elliptic and free from surfaces Va,,. 
t t ence  i V~ ! cuts a curve V, of the complementary  congruence i Vi } in se t s  
of an elliptic involution which has no coincidences,  from which it follows 
that V, is elliptic. Also the congruence i V  t! must be P ica rd ian ;  for if it 
were Abelian of the first species, X, would be virtual, instead of effective, 
of order zero (21). Thus  W 3 is a PICAI~D threefold. 

5Text, let q - - 1 ;  then, as in § 6, we observe that, if X~ is effective of 
order zero. then there can be no surfaces B~ ') in the congruence I V  l} of 
t ra jector ies ;  also, if X~ is effective of order zero, there can be no curves B~ '1 
either. And since X~ cuts each surface of the elliptic pencil  { V~! on W a in 
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a canonical  curve, it follows that V. 2 must possess an ef[ective canonical  
curve of order zero;  hence, from the known classification (7) of surfaces,  
we can say that V~ is e i the r  regular  or Pieardian.  

Now the congruence iV,  ! cuts on V~ an involution free from coinci- 
dences ;  if, then, V.~ is Pieardian,  }Vi t  is either P icardiau  or Abelian of the 
first species. Thus W 3 can be regarded as a pseudo-Abel iau  threefold of 
type 2, with i V., } as the pencil  of t ra jec tor ies ;  hence / V~ ~ must be Picardian 
since, as remarked above, X~ would otherwise be virtual  of order zero. 
Thus W3 is a PICXaD threefold. 

Suppose, in the second place, that V~ is regular ;  then the involution 
cut by I V~ ! on V~ must be regular  of genus zero (7). Thus  the image V~ 
of i V, f must be regular  of genus zero ; and, by § 5, in order that X~ and X~ 
should both have order zero, it is necessary that V~' should have linear 
genus unity and SEYERI series of order zero;  which, by the above result  of 
D.~NTONI, is impossible. Hence  this case cannot arise. 

In conclusion, we observe that the fact that X,,(Ws) is of order zero is 
a consequenve of the hypotheses  of our theorem;  this is in s t r ic t  analogy 
with (~i). 

I1. We  shall now examine briefly the problems which arise in trying to 
extend the above results  to the case of a threefold for which (a) X~ is effective 
and X, virtual, of order zero, (b) X~ and X, are both vir tual  of order zero. 

In ease (a) we evidently have q- - -1 ,  since, when q- - -2 ,  X~ is always 
effective of order zero. Also, to secure the conditions stated, there must be no 
surfaces  B~ '), but  a certain number  of curves B~ 8) must be present.  The con- 
gruence i V~} cuts on each surface V~ an involution ia whose coincidences 
arise from these curves ;  precisely, each curve B~ ') cuts V~ in d/s points 
which are ( s - - 1 ) - p l e  coincidences of i~. 

As in § 10, V~ is either P ieard ian  or regular  of genus 1. In the former 
case, i a is of course Abeliau and W8 is Abelian of the first species, being 
mapped by an involution without  coincidences on a PICARD threefold;  thus, 
by § 2, both X~ and X~ certainly have order zero. But  while X.2 is effective, 
since X,(W~) is so, X t must  be virtual, on account  of the presence of the 
curves B~ ~1. The values of the numbers  d and s which are a priori possible, 
and the nature of the corresponding involutions i~, may be inferred from 
the work of BAGNERA and DE FRANCHIS (2). 

In the case where V~ is regular, we should first have to obtain all the 
involutions with a finite (non-zero) number  of coincidences which V~ can 
ca r ry ;  such involutions must be regular  and be endowed with at most a 
canonical  curve of order zero. The only cases that have so far been discussed 
are those for which the involutions have genus 1 (9; 10}; and even these 
results  need further  analysis  before they can be applied here. 
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Consider next  problem (b). First, le~ q -  2: then the equivalence for X 2 
given in (21) shows that the pencil  i V~l of t rajectories must  be ei ther  
elliptic or rational. If  it is elliptic, then the congruence f V~ ! must  be Abe. 
lian of the first  species, since otherwise X~ would be effective of order zero; 
also there can be no surfaces B~ 8), since X~ would otherwise have order  
greater  than zero. And since i F~t then cuts on V l an elliptic involution 
without coincidences, it follows that V l is elliptic. 

If instead i V~/ is rational, the surfaces B~ 8) are cer tainly present, and 
the various numbers  s must  be such as to give a vir tual  surface X 2 of order 
zero;  also t F i t  is e i ther  Picardian  or Abelian of the first  species. In  ei ther 
case we find that i F21 cuts on V~ a rational involution whose coincidences 
are  such as to make Vt elliptic. Thus  in all cases W 3 is an Abelian threefold. 

Next, let q - - 1 :  then, since X., cuts any surface of the pencil  t V~! in 
a virtual or effective canonical  curve (in this case of order zero), it follows 
that, if V 2 is regular,  e i ther  p g - - 1 ,  or p g - - 0  (in which case V~ is an 
ENRIQUES surface);  and that, if V, is i rregular,  the surface is ei ther  Picar.  
dian or kbe l ian  of the first species. In  all cases we have to consider the 
possibil i ty of both surfaces B~ 8) and curves ~ )  being present,  giving rise to 
united curves and united points in the corresponding involutions ig. The 
only case for which the necessary data are at present  available is that in 
which V 2 is P ica rd ian ;  in the remaining cases only general  s tatements con- 
cerning the nature  of the relative congruences  { Vi } can be made. 
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