On the determinant of an asymmetric hyperbolic region.

by C. G. LExRERKERKER (a Utrecht, Olanda).
dedicated to Prof. B. SEGRE.

Summary. - 4 main problem in the geometry of numbers is the evaluation of the so-called
determinant of various regions. The author, derives a new estimate for the determinani
of a certain two-dimensional region bounded by two hyperbolas and applies his result
to a problem in the theory of automorphic star bodies.

1. Introduction.
Let x, y be the Cartesian coordinates of a point in the plane. For given
positive numbers a and b let K, , denote the domain, determined by

Kop: —a<ay=<b.

The main object of this note is to derive a new upper bound for the deter-
minant of this domain.

We begin by recalling some of the usual definitions. Let M be an
arbitrary domain in R, and let A be any lattice in R, , the determinant of
which may be denoted by d(A). The lattice A is called M-admissible, if no
point of A, except for the origin, is an inner point of M. And the deter-
minant of M, denoted by A(M), is defined as follows.

10, if there exist M-admissible lattices, then A(M) is the lower bound
of d(A), taken over all M-admissible lattices.
20, if no such lattice exists, then A(M) = oo.
The determinant of the two-dimensional domain K, will be denoted

by A(a, b). For reasons of symmetry and homogeneity one has the obvious
relations

(1) A{a” b) - A(b7 a’)’

Alca, cb) =c*A(a, b) if ¢> 0.

Consequently, in order to evaluate or to estimate A(a, b), it is sufficient
to consider the case

(2) a=1, h>1.

In the following we alwaysisuppose that (2) holds.
In the case b =1 one has the classical result

3) A(l, 1)= V5.
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It is the merit of B. SEGRE to have first considered the more general,
asymmetric case (‘). In the case (2} his result takes the following form.
THEOREM 1. - If 6 =1, then

(4) AL, &)= Vb* +4b;

furthermore in (4) the equality sign holds if and only if b is a positive inleger.
We shall prove here that the inequality (4) can be sharpened as follows.
THEOREM 2. ~ Suppose b=>1. Let B be the smallest positive inleger =b
and let o denote the fraction b/[b). Then we have

() A(l, 6)=min | VF*+ 4b, oV& + 4bo .

The question whether or not the equality sign holds in (5) admits the fol-
lowing answer.

THEOREM 3. — Let § and o be defined as in theorem 2. Then in the rela-
tion (D) the equality sign holds if and only if either b salisfies the relation

oVB + 4bo < VP + 4b

or the fraction 8 4+ 2)/(8 + 1 — b) has an integral value.
We put (8 -+2)/(8 + 1 —b) =g, so that b=3+1—€1-l([3+2). For a fixed

value of B the number ¢ is restricted to the interval —;(ﬁ +2)<g=B+2

Consequently the condition that the fraction (3 + 2)/(8 +1—b) is integral is
equivalent with the following assertion :
there exist positive integers § and ¢ such that

©) b=p+1—i(+2  HB+D<g<p2

In particular b is of the form (6). if b is a positive integer. It is evident
that the right hand sides of (4) and () are equal if and only if & is a posi:
tive integer, and that theorem 1 is included in theorems 2 and 3.

For the proof of theorems 2 and 3 it appears useful to consider a parti
cular set of Ki,-admissible lattices. Let & be the boundary of Kj, and let
B,, B, be the parts of B which belong to the first and the second quadrant
respectively. Further let P be the point (— 1, 1); clearly P lies on &B,. Now
we denote by ¥,(P) the set of those K s-admissible lattices, which contain P
as a lattice point. The principal part of the proof of theorems 2 and 3
" consists in a. proof of the following two lemmas (sections 2 and 3).

(1) B. SguRE, Lattice points in infinite domains and asyminetric diophantine approxi-
ations, « Duke Mathem. Journal », 12 (1945), 337.365,
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LEMMA 1. - Let b= 1 be arbitrary. If N\ is a lattice of the set },(P), then
(@) dA) = VE 4 4.

LeEMMA 2. - The set Xo(P) contains a lattice A, with
(7) d(No) = VB + 4b,

if and only if the fraction (B + 2)/(B+ 1 — b) has an integral value.

The method of proof of lemma 1 is similar to a reasoning of K. OLLE-
RENSHAW and C. A. RoeERs given in the symmetrical case b=1 (*). We
note that lemma 1 does not imply that the set ¥,(P) is not empty. But this
fact, which, by the way, is wellknown, is an immediate consequence of
lemma 2. For this lemma implies that the set ¥,(P) is not empty for some
values of b, for imstance all positive integral values. Now the sef X,(P)
contains the set ¥},(P) if b and b, are any positive numbers with 1 <b<4,.
Hence #,(P) is not empty for any value of b =1 whatsoever.

Section 4 brings two further simple lemmas, whereafter in section 5 the
proof of our theorems is given. In the last section we give an application
to a problem in the theory of automorphic star bodies.

2. Proof of lemma 1.

Let A be an arbitrary lattice of the set ¥},(P). The straight line through
0= (0, 0) and P={(— 1, 1) contains an infinity of lattice points with mutual
distances V2. Consider the straight lines, which are parallel to this line and
pass through a lattice point. Exactly one of these lines passes through the
first quadrant and has a minimal distance to O. Call this line L. For any
two points P, and P, of L we shall denote by 3(P,, P,) the difference
between the abacissae of P, and P,. For points of L, which also belong
to A, this quantity takes all integral values.

Let y=2AX-—a be the equation of L and let S and T be the points of
intersection of L and the hyperbola xy = —1 (see fig. 1). Clearly &S, T) > 2.
Hence, by the above remark, the interior of the line-segment ST contains
at least two points of A. Now, since A is Kj,~admissible, these points do
not belong to the interior of Kj;. As a consequence, L intersects the
hyperbola xy = b, in two different points, Q and R say (see fig. 1). Further-
more the line segment QR contains at least two lattice points. So we have

)] 3Q, R)=1.

(?) KATHLEEN OLLERENSHAW, On the minima. of indefinite quadratic forms, « Journal
London Math., Soe.», 23 (1948), 148.153.
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Solving for « and y the pair of equations
wy=—1 yg=r—un,
and also the pair of equations

wy=>b, y=r—uw,

P (-1,4)

Ysoi

XY= -4

Pig. 1,

we find for the coordinates of the points S, T, @, R

1 1 s 1 15—
9) Bs=yr=gh+5 VA +4 ys=ar=51—5 VA" +4,

1, 1 ) I IR
(10) wq=y3=§k+§\/7x‘——4b, szszék—é\/P-—%,
with obvious notations. Consequently
(11 3(S, T)}=Vr* +4
(12) 8(Q, B) = VA* —4b.

Let us now suppose that k& is a positive integer with the following
properties :
101<Sk<p
20 3(Q, R)\=F.
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Then it follows from (12) that we have
A < Kt +-4b.
From the definition of § and the requirement 1° we learn that:
k<b;
hence, using (11), we deduce

3S, T)= Vi + 4b + 4 > Vi + 4k +- 4,

and so

35S, T)>k + 2.

Consequently, the interior of the line~-segment ST contains at least k-2
points of A. Since A is Kjj-admissible, these points must all belong to the
segment QR.

This leads to
Q. R)=k+ 1.

Clearly, in virtue of (8), the requirements 1° and 2° are fulfilled with
k=1, unless b=1. So, by a repeated application of the above reasoning,
we conclude that:

(13) 50, B)= 8,

the closed line-segment QR containing at least B 4+ 1 lattice points. In view
of (12), the last formula is equivalent with

(14) A=V + 4b.
The determinant d(A) is easily found to be equal to A. So, finally, (14)

is equivalent with (7). This proves lemma 1.

3. Proof of lemma 2.
We begin with some preliminary remarks. Let A be determined by

(16) A = VB 4+ 4b,
and let L be the line with equation y =2 —a. Denote by S, T and Q, R
the points of intersection of L and the hyperbola xy = — 1, xy =1 respecti-

vely (see fig. 2). Further let P* be the point (1, — 1), which is the reflection
of P in the origin and also lies on &. As in the proof of lemma 1, the
coordinates of the points S, T, @, B are given by (9) and (10), with A given
by (15). In particular we have

o<mﬁ=%\/pﬂ+4b—%p

Ly 1
<§Vﬁ +4B+4—§p=1,

Annali di Matematica 33
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hence
0 <axp<aps.

Consequently, the straight line through P and R, M say, intersecis &, in
one further point and B, in exactly one point; call these points B, and T,
successively (see fig. 2).

L
R-‘
T
N
R
L.
Q
0 s
P‘Nr
Pig. 2.

We wish to determine these points B, and T,. An arbitrary point Z of
the line M ecan be written as

(16) Z = P* + {{R — P%),

where ¢ runs through all real numbers. This point lies on the hyperbola
ay = b, if and only if ¢ satisfies the equation

{1l4tYep— 1)} — 1+ Hyr+ 1)} =0.
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On account of (10) and (15) this relation reduces to

{1+t(évm—%p—1)€. |1 +t(%\/£3_’174_6+%[3+1)$=b,

B+1—0—B+2+0+1)=0.

One solution of this equation is given by f{=1, corresponding with the
point P* 4+ (R — P*) == R; the other solution is

=0b+1)/B+1-—-0).
Clearly this number is greater than 1. We find that B, is given by

b+lb4R—Pﬂ

[ &
(L7) B=P*+ g5y

and that B, and P* lie on opposite sides of R.

As a fact of elementary geometry, the line~segments P R and R,T,, cut
off from the line M by the hyperbolas xy=-—1 and xy =b, have equal
lengths. Hence we find

p+2
B+1-—0

Now suppose that there exists a lattice A, in the set ¥,(P), for which
(7) holds. Then, on account of (15) and (7'), this lattice is generated by P

and some point of L. The lattice points on L have mutual distances V2.
For the points Q, R, S, T we have, on account of (9), (10) and (15),

3(Q, B) =8, S, I)=VB*+4b+4>8+ 1

By the same argument as used in the proof of lemma 1, it follows that the
closed line-segment QR contains at least § -+ 1 lattice points. Consequently
Q and R are lattice points. Now, turning our attention to the line M, we
first remark that the open line-segments P R and R,T, belong entirely to
the interior of Ki; and so are free from lattice points. But P and R belong
to Ao. It follows that a point Z of the form (16) belongs to A, if (and only
if) ¢ is integral. From this we infer, taking into account the first half of
the relation (18), that B, and T, are points of A,. Henceforth, by (18), the
fraction (B + 2)/( + 1 — b) has an integral value.

Conversely suppose that ¢ —=(8 -+ 2)/(8 + 1 —b) is integral. Consider the
lattice A,, generated by P and R. We shall prove that A, is K, ,~admissible,

Since B is integral, from 5(Q, R) = it follows that Q is a point of A,.
On account of (17) and (18) also B, and T, are points of A,. Further P*
is a point of A,. Now we have

3(S, T) =V + b +4< VF+ B+ 4= +2,

(18) T, =R, + (R— P* = P* 4 . (R — P¥).




260 C. G. LERKERKERKER : On the determinant of an asymmetric, etc.

hence
5B, T)=315(8, T)— 8@ B)I<1;

so T does not belong to the interior of K 3.

Let Z,, ¥, be the closed line-segments PQ, R, T, respectively, and denote
by &, the closed part of Kj; contained between 2, and 2,. We split K,
into two parts, viz. the intersections of X, and the triangles PQT and TRT,
respectively. Since the pair of points E, P and likewise the pair R, P*
constitute a basis for A,, it is clear that the interior of each of these strips
is free from lattice points. The points of A, which lie on the boundary of
one of these strips are easily identified. One arrives at the conclusion that
the only lattice points which belong to A, are lying on the boundary B
of Kl,b .

Next, let ¢ be the ordinate of T, and let @ be the affine transformation
determined by
(19) Q:o'=t""2, y=1ty

The domain K, is left invariant under this transformation, as well as the
boundary . We further have

QP=T,.

We denote for a moment by R, Tf, M* the reflections into the line
y== of R, T,, M respectively. Clearly Q'P* =17, i. e. QI = P*.
Hence te line M* is transformed into M by the transformation Q. Then the
same is true for the points of intersection of these lines and the hyperbola
xy = b. In particular, we find

QQ=R,.

As a oconsequence the line-segment X, is transformed by Q into X,.

We now put
K =Q7H,,

where m runs through all integers and the right hand side is defined in an
obvious way. Clearly the union of all domains cK,, coincides with the part
of K, above the w-axis.

The pair of points P, R, as well as the pair of points P, @, constitutes
a basis for A,. The same is true for the pair of points QP=1T,, QQ =R,
of A,. For, on account of (18) and the definition of the positive integer g,
we have

—T4+q{T1'—R|)=_T1+q(R_P*):_P*=Py
T,—(q—IT,—RB)=T,—(g— )B— P*=P*+ (B — P*)=R.

Consequently, not only the domain Kj, and its boundary &, but also
the lattice A,, is left invariant under the transformation Q. Hence, since
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the lattice points, which belong to J,, are lying on &, the same is true for
each domain ¥, . Hence the region bounded by &,, &, and the wm-axis is
free from lattice points.

Finally we remark that K, as well as A, are symmetric with respect
to the origin and also with respect to the line y =a. It follows fthat the
origin is the only point of A, interior to Ki s, i. e. that A, is Kj s;-admissible.

This completes the proof of lemma 2.

4. Some further lemmas,

The sot of K ;-admissible lattices is not empty, as we have proved that
even the set ¥,(P) is not empty. It follows from the general theory of star
bodies that there exists a so-called critical lattice of Kj,, i. e. a K-
admissible lattice A’ with determinant d(A’)=A(1, b) (}). An analogous
property holds for certain subsets of the set of K ;-admissible lattices. In
fact we shall prove the following

LEMMA 3. - Let H,(&B,) be the set of Ky s-admissible lattices N\ with

inf |y | = 1.
xy<0, {w, Y A
Put

(20) AL, b= inf d(A).
A € Ho(Bs)

Then there exists o K, ,-admissible lattice A, with
P=(1, HEN,, d(A)=A4%1, b).

REMARK. - Clearly a lattice A, with the above property belongs to the
set Jy(B,). In general, however, a lattice of this set may not contain any
point of the curve &B,.

Proof. - Each transformation @ of the type (19) leaves K, invariant
and so transforms any K ,-admissible lattice into another Kj ,~admissible
lattice. By suitable choice of { we can obtain that an arbitrarily chosen point
S1—I X of any lattice A is transformed by & into some point of the line
¥ = — «. So, on account of the definifions of the quantity A*1, &) and the
set J,(&B,), it is clear that there exist a sequence of lattices A, and a
sequence of positive numbers @, (k'=1, 2,..) such that:

a) Nn€HYB,) for n=1, 2,... and d(A,) — A*(1, b) as n — oo,

b)a,=1 for n=1, 2,... and a, — 1 as n — oo,

¢) 4, =(—an, 8,)€ N\ .
For each n =1, 2, ... there certainly exists a point B, in the first quadrant,
such that B, is a point of A, and furthermore 4, and B, econstitute a
basis of A,. The sequence of points B, is restricted to some bounded part
of the plane. Hence we can select a subsequence { B,,! which converges to
some point B. On the other hand, the points 4, tend to the point P = (— 1, 1).
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Let A, be the lattice generated by P and B. It follows from a wellknown

theorem of MAHLER (%) that A, is K ,-admissible, whereas we have

d{A,) = lim d(A.). The lattice A, possesses therefore the desired properties.
n— 00

It may be remarked that lemma 3 can easily be generalized in the
following way.

LeMMA 3. - Let S be a n-dimensional automorphic star body and let T
be its group of aulomorphisms. Let $B* be a closed part of its boundary, which
is left invariant under the transformations of ['. Further let ¥(B*) be the sel
of S-admissible lattices which have points arbitrarily near to B* and suppose
that X($*) is not empty. Then there exists a lattice )\, with

AN\ = inf d(A)
A € H(B%)

which is S-admmissible and contains o point of &B*.

We conclude this section with the following

LEMMA 4. - Let b be a real number =1. For z >0 denote by ¢(z) the
least positive integer =2. Then in the inferval 1 <x<b the function f(x),
defined by

fle) = x>V { (/) |* + 4bja,

takes its minimal value in one or both points x=1, x=>/[b] and not
elsewhere.

Proof. - Let x,, ,,.., ®; be the points of the interval 1<x<¥b,
where b/x is integral. The function f(x) is positive in the whole interval
1<x<b and continuous and monotoneously increasing in each point x =,
(v=1, 2,.., k). In each point x = x, it undergoes a negative jump and there
takes as value the right hand limit in that point. Furthermore, if k=2
and x, > x,, we have

fle,)? =ux? « (b* + 4bx.)
>+ (0° + dbay) = [la, )’
hence f{x,) > f(x,).

It follows that f(x) attains its lower bound in one or both points x =1,

x = b/[b], and not elsewhere.

We remark that, if we put b[b]=0c and denote by f the least positive
integer = b, the values f(1) and f(b/[b]) are given by

{ £(b/Ib )-( )V + 4b] = oVb* + 4bo.

() K. MauLER, On lattice poinis in n-dimensional star bodies 1. Huxistence theorems,
« Proc.. Royal Soc.», A, 187 {1948), 151-187, in partienlar theorem 8, p. 159 and theorem 19,
p. 178.
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5. Proof of theorems 2 and 3.
We begin with a preliminary consideration. Let A be a K; ;-admissible
attice. Put
a= inf [y |.
xy<0, (z,mc A
Clearly a = 1.
First suppose ¢ <b. By the transformation

' =a 'z, ¥ =ay

A is transformed into a lattice A’ with the following properties:

a) A’ is admissible for the domain Kj, sa,

b) inf ey | =1,

ay<0, (@, yhe A

¢) dA)=a7*d(A).
Hence A’ belongs to the set ¥ya(B,), defined with respect to the domain
Ki,pje. In virtue of lemma 3, there exists a Kj j,—admissible lattice A,
which contains P=(— 1, 1) and has determinant d(A,) = A*1, b/a), hence
A(AJ = d(A’). To the lattice A, we can apply lemma 1. So we get, recalling
the definitions of (2} and f(2),

NN ZV [ d(b/a)}* + 4b/a,

hence

(22) dN) = a*d(\) Z a*V { $(b/a) * + 4b/a = f(a).

Next suppose”a > b. Then A is also K, p,-admissible. Now by (3) (which
result could be obtained with the help of lemmas 1 and 2) we have
A(1, 1) =;V5. So by (1) we have

A, b) =b*A(l, 1) = b*V5,
hence
(23) d(A\) = A, b) = boVb = o V& + 4bo.
Theorem 2 now follows at once. For, consider any K, ;-admissible

lattice A, and define a as above. In the case ¢ < b, on account of (22) and
lemma 4, the number d(A) can be minorized as follows:

d(A) = min { f(1), f(b/b];

hence, from (21),

d(A)=min | VB 4-4b, cV& + 4bo |.

Clearly, on account of (23), the last relation also holds in the case a > b.
The same estimate holds for A(1, b), A being arbitrary. This proves theorem 2.
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In order to prove theorem 3, we first treat the case

(24) sV8 4 4bs < VFF + 0.

Since b/c is integral, by lemma 2 there certainly exists a Kj, ;,~admissible
lattice A, with determinant d(A,) = V(b/0)’ +-4b/c. Hence there exists a
K, -admissible lattice A’ with determinant d(A')=c*V(b/0)*+4b/c=0Vb*+4ba.
This lattice is also Kj ;-admissible. It follows from theorem 2 that, in the
actual case, theorem 3 is valid.

Next we consider the case

(25) aVb? +- 4bo > VB + 4b.
This implies, on account of lemma 4 and the relations (21),

fle) > f(1) if =>1.

Assume that in (D) the equality sign holds, and consider a critical
lattice A of K; ;. Let a be defined as in the beginning of this section. If
we had @ >b, then we might apply (23); so by (25) we should have
d(A) > VB* +-4b, contrary to our assumption. Hence we have o <b and
we may apply (22). Hence d(A)= f(z). But, by assumption, we have
d(A\)= VB + 4b = f(1). Hence, in virtue of the above remark, o is equal
to 1. Then lemma 3 learns us that there even exists a Kj,-admissible
lattice A, with

P=(—1, 1)€A,, a(A\,) = A(l, b):\/ﬁ2+4b.

Applying lemma 2 we conclude that the fraction (8 + 2)/(8 +- 1 — b) is integral.
Conversely, assume that this fraction is integral. Then by lemma 2 there
exists a certain Kj s-admissible lattice A with determinant d(A)= Vp* + 4b.
Hence in (5) the equality sign holds.
This completes the proof of theorem 3.

6. Application to a problem of Mahler.

Let ' be the group of the affine iransformations @ of the type (17). Let
us denote by | X | the distance of any point X from the origin. The group I
has the following properties:

a) Ki,» is left invariant under each transformation € in I';

b) if X is any point of the domain K;, then there exists a transfor-
mation Q in I' such that | QX | is smaller than a fixed number ¢ (for instance
c="b);

¢) if d is any positive number and X is any point of Kj», then there
exists a transformation Q in I' with |QX | > d.
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With the usual terminology, we can therefore say that K, is a full
automorphic star body (*).
‘We consider now the set of numbers b with

(26) 1<b<?, oVb* 4 4bs < V2 + 4b.

Since in this case we have o=0», B =2, the last inequality reduces to
b*vb < 2V1 +b. Consequently, the above set is the interval 1 <b<b,,
where b, is determined by

27) B=3(+b)  b>1

Further let s be any positive number and'let K ; be the set of points X with
X€K;s, | X|<Zs.

Let us consider a critical lattice A and let ¢ be defined as in section 5.
From theorem 3 and (26) it follows that we have d(A)=cVb® + 4bo = b*Vb.
Suppose @ >b. Then we have d(A)= Ala, b), hence, on account of the rela-
tions (1), d(A)=b%A(1, a/b). Here a/b is > 1. Now the right hand side of
the inequality (5) is a strictly increasing function of b. Consequently we have
d(A) > b%A(1, 1) = b*VD. This is a contradiction, and so we must have a <b.
Then we can apply the relation (22). This gives d(A)=f(a). On account of
lemma 4 and the relations (21) and (26) the function f(x), defined in lemma 4,
takes its minimal value in the interval 1 <2 <b in the point x—=b/[b] and
not elsewhere. Since in our case [b]=1, it follows @ =0. T'his. result may
be stated in the following equivalent form:

If 1<b<b,, then each critical lattice of K, is also a critical lattice
of Kb,b-

In particular, the part &, of the boundary of K;; does not contain a
point of any critical lattice of Kj ;. Consequently, for each critical lattice
of Ki» and each value of s >0 there exist lattices with a smaller determi-
nant which are infinitely near to it and are admissible for the domain K ,.
In particular, we see that:

If 1<b<b,, then
A(K:w) < A(Ky,5) == A(1, b) for each s> 0.
Using the appropriate terminology, we can say that K, is boundedly
irreducible if 1 <b <b,. So we have found a star body, which at the same

time is full automorphic and boundedly irreducible. Thus is answered one
of the problems raised by MAHLER (%).

{1} H. Davenport-C. A. RocErs, Diophantine inequalities with an infinity of solutions,
« Phil. Transactions Royal Soc. Liondon », 242 (1950), 811344,

() K. MAHLER, Lattice points in n-dimensional star bodies II, Reducibility theorems,
« Proc. Kon. Ned. Akad. v. Wet.», 49 (1946), in particular p. 629.
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We remark that another example of a star body of the above type is
given by J. W. 8. CassELs (*). CAsSELS also states in a footnote of the paper
cited that ROGERS-DAVENPORT have answered the problem, considering the
domain Kj,;, for positive irrational b (for b =b,, however, Ky ; is boundedly
reducible, as is immediately deduced from our considerations).

One could easily establish an analogous result for other b-intervals.
But, since out knowledge of the quantity A(l, b) is yet imperfect, we can
not determine them all and so we eontenft ourselves with the result given
above.

(5) J. W. 8. Cassgrs, On {wo problems of Mahler, « Proc. Kon. Ned. Akad. v. Wet.»,
51 (1948), 282.285.




