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Summary . .  A main  problem ,in the geometry of numbers is the evaluation of the so-called 
determinant of various regions. The author, derives a new estimate for the determinant 
of a certain two-dimensional region bounded by two hyperbolas and applies his result 
to a problem in the theory of automorphic star bodies. 

1. In t roduc t ion .  
Let ~, y be the Cartesian coordinates of a point in the plane. For given 

positive numbers  a and b let K~,b denote the domain, de termined by 

Ka, b " --  a ~ ~y ~_ b. 

The main object of this note is to derive a new upper bound for the deter.  
minant  of this domain. 

We begin by recall ing some of the usual  definitions. Let  M be an 
arbi t rary domain in R .  and let A be any lattice in R , ,  the de terminant  of 
which  may be denoted by d(A). The lattice A is called M-admissible,  if no 
point of A, except for the origin, is an inner  point of M. And the deter- 
minant  of M, denoted by 5(M), is defined as follows. 

1% if there exist M-admissible  lattices, then A(M; is the lower bound 
of d(A), taken over all M-admissible  lattices. 

2 °. if no such lattice exists, then A(M)--_ ¢~. 
The determinant  of the two-dimensional  domain K~,b will be denoted 

by 5(a, b). For  reasons of symmetry  and homogeneity one has the obvious 
relations 
(t) h(a, b ) =  a(b, a), 

hies, cb)--c'A(a, b) i f  o > 0. 

Consequently, in order to evaluate or to estimate A(a, b), it is sufficient 
to consider the case 

12} a = 1, b ~ 1. 

In  the following we always~suppose that (2) holds. 
In  the case b - - 1  one has the classical result  

(3) ll=V . 
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It  is the meri t  of B. SEG-RE to have first considered the more general ,  
asymmetr ic  case (~). In  the case (2) his resul t  takes the fol lowing form. 

THEOREM 1. - I f  b ~ 1, then 

(4) a(1, b ) ~  Vb~ + 4 b ;  

furthermore in (4) the equality sign holds i f  and only i f  b is a positive integer. 
We shall  prove here  that  the inequal i ty  (4) can be sharpened  as follows. 
THEORE~ 2. - Suppose b ~ 1. Let ~ be the smallest positive integer ~ b 

and let a denote the fraotion b/[b]. Then we have 

(51 h(1, b) ~ min { V~ ~ -t- 4b, ~ V ~  + 4b~ I. 

The quest ion whe the r  or not the equal i ty  sign holds in (5 )admi t s  the fol- 
lowing answer.  

TI~EORE~ 3. - Let ~ and ~ be defined as in theorem 2. Then in the rela. 
tion (5) the equality sign holds i f  and only i f  either b satisfies the relation 

V b '~ + 4b~ ~ V ~2 -t- 4b 

or the fraotion (~-~-2)/(~ + 1 -  b) has an integral value. 

We put  ( ~ + 2 ) / ( ~ + l - - b ) = q ,  so that  b - - ~ l - - - l ( ~ + 2 ) .  F o r a f i x e d  
q 

1 
value of  ~ the number  q is res tr ic ted to the interval  ~ ( ~ + 2 ) ~ q ~ + 2 .  

Consequent ly  the condi t ion that  the f ract ion (~ + 2)/(~ + 1 -  b) is integral  is 
equivalent  wi th  the following asser t ion:  

there exist  positive integers ~ and q such tha t  

(6) b - - ~ +  1 - -  (~ + 2), 2(~ + 2) < q ~  ~-I- 2. 

In  par t icu lar  b is of the form (6), if b is a positive integer.  It  is evident  
that  the r ight  hand sides of (4) and (5) are equal  if and only if b is a posi. 
t i re  integer,  and that  theorem 1 is inc luded in theorems 2 and 3. 

For  the proof of theorems 2 and 3 it appears  useful  to consider  a patti.  
cular  set of Kl, b-admissible lattices. L e t  ~ be the boundary  of Kl, b and let 
~ ,  ~ be the parts  of ~ which belong to the first and the second quadran t  
respectively.  Fur the r  l e t  P be the point  ( - -1 ,  1}; clearly P lies on ~2.  Now 
we denote  by iIf~(P) the set of those Kl, b-admissible lattices, which  contain  P 
as a lat t ice point.  The  pr incipal  part  of the proof of theorems 2 and 3 
consists in a proof of the following two lemmas {sections 2 and 3). 

(l) B. SE(~RE~ Lattice points in infi~tite domains and asymmetric diophantine approxi. 
~ation$, • Duke Mathom. 5ournal *, 12 (19~5)~ 337.365. 
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L~.MMA 1. - Let b ~ 1 be arbitrary. I f  /~ is a lattice of  the set ~fb{P), then 

{7) d{A) ~_~ V~ 3 -~ 4b. 

LEMMA 2. - The set 7~(P) contains a lattice Ao with 

(7 ') d( A 0) - -  V~ ~ + 4b, 

i f  and only i f  the fraction (~ -t- 2)/(~-t- 1 - -  b) has an integral value. 
The method of proof of lemma 1 is similar to a reasoning of K. OLT.E- 

RE~SEAW and C. A. I~O(}ERS given in the symmetrical case b - - 1  (3). We 
note that lemma 1 does not imply that the set ~a(P) is not empty. But this 
fact, which, by the way, is wellknown, is an immediate consequence of 
lemma 2. For this lemma implies that the set ~b(P) is not empty for some 
values of b, for instance all positive integral values. Now the set ~a~(P) 
contains the set ~b(P) if b and b~ are any positive numbers with 1 ~ b_~ b~. 
Hence :~a(P) is not empty for any value of b ~_ 1 whatsoever. 

Section 4 brings two fur ther  simple lemmas, whereafter  in section 5 the 
proof of our theorems is given. In  the last section we give an application 
to a problem in the theory of automorphic star bodies. 

2. Proof  o f  lemma 1. 
Let /~ be an arbitrary lattice of the set ~ ( P ) .  The straight line through 

0 - -  (0, 0) and P--.-- (-- 1, 1) contains an infinity of lattice points with mutual  
distances V2. Consider the straight lines~ which are parallel to this line and 
pass through a lattice point. Exactly one of these lines passes through the 
first quadrant  and has a minimal distance to O. Call th is  line L. For any 
two points Pl  and P2 of L we shall denote by 8(Pl, P3) the difference 
between the al~scissae of Pl  and £v 3 . For points of L, which also belong 
to A, this quanti ty takes all integral values. 

Let y - - - ) , - - x  be the equation of L and let S and T be the points of 
intersection of L and the hyperbola xy ~ - -  1 (see fig. 1). Clear]y ~(S, T) ~ 2. 
Hence, by the above remark~ the interior of the l ine-segment  S T  contains 
at least two points of A. Now, since /~ is Kl, b-admissible, these points do 
not belong to the interior of Kl, b. As a consequence, L intersects the 
hyperbola x y  ~ b, in two different points, Q and R say (see fig. 1). Further- 
more the line segment QR contains at least two lattice points. So we have 

(8) 8( Q, R) ~ 1. 

(2) KATnLBEN OLL~R~NS~AW, On the m i n i m a  of  in.definite quadratic forms, • Journal  
London Math. Soe. ,, 23 (1948), 148.153. 
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Solving for ~a and y the pair  of equations 

x y - - -  - - 1 ,  y ' - -  X - -  ~, 

and also the pair  of equations 

x.y --- b, y = )` -- ~¢, 

C 

Fig. 1. 

T R 

S 

we find for the coordinates of the points S, T, Q, R 

1 1 1 1 )2 
~9) ~s = y r  = ~ )` + ~ V~'~ + 4, y s  = x r  -~ 2 ~ - - ~  \' +4, 

1 1 1 ) ` _ ~  
(10) ~q - -"  Y R  = ~ ), + ~ V l'~ - -  4b, yQ = X~R - -  2 VI~ - - 4 5 '  

with obvious notations. Consequently 

(11) 

(12) 

Let us 
propert ies : 

now suppose 

1 ° l ~ k < ~  
20 8(Q, R) >: k. 

8(8, T)]= VP + 4 

8(Q, R) = V).*" - -  4b. 

that k is a positive integer with the following 
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Then it follows from (12) that we have 

)2 ~_< k ~ + 4b. 

From the definition of ~ and the requirement 1 o we learn that:  

k < b ;  

hence, using (11), we deduce 

~(S, T ) ~ V k  ~ + 4 5 + 4 ~ V k ' + 4 k + 4 ,  

and so 
T) > k + 2. 

Consequently, the interior of the line-segment S T  contains at least k + 2 
points of A. Since A is Kl, b-admissible, these points must all belong to the 
segment QR. 

This leads to 
R ) > k +  1. 

Clearly, in virtue of (8), the requirements 1 ° and 2 ° are fulfilled with 
k =  1, unless b =  1. So, by a repeated application of the above reasoning, 
we conclude that: 
(13)  IQ, R ) >  

the closed line-segment QR containing at least ~ + 1 lattice points. In view 
of (12), the last formula is equivalent with 

(14) ). >_~ V~" + 4b. 

The determinant d(/~) is easily found to be equal to ),. So, finally, (14) 
is equivalent with (7). This proves lemma 1. 

3. Proof of lemma 2. 
We begin with some preliminary remarks. Let ), be determined by 

(15) k = V~* + 4b, 

and let L be the line with equation y = ) , - - ~ .  Denote by S, T and  Q, R 
the points of intersection of L and the hyperbola x y - - - - -  1, ~y---b respecti. 
rely (see fig. 2). Further let P* be the point (1, --1) ,  which is the reflection 
of P in the origin and also lies on ~.  As in the proof of lemma 1, the  
coordinates of the points S, T, Q, R are given by (9) and (10), with ), given 
by (15). In particular we have 

1 1 

< 1, 

A n n a l i  di  Mate~nati¢~ 33 
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hence 

Consequently, the straight line through P and R, M say, intersects ~3, in 
one further point and ~ in exactly one point; call these points R, and 2', 
successively (see fig. 2). 

r, 

R~ 

t. 

Fig. 2. 

We wish to determine these points R, and T,. An arbitrary point Z of 
the line M can be written as 

(16) Z - -  P *  + t ( B  - -  P*), 

where t runs through all real numbers. This point lies on the hyperbola 
x y - - b ,  if and only if t satisfies the equation 

1 + t i e r  - 1) } .  I - 1 + t{~R + 1) I - -  b. 
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i .  e .  

On account  of (10) and (15) this relat ion reduces  to 

+l)!-b, 
+ 1 - b)t - -  + 2}t  + (b + 1) = 0 .  

One solut ion of  this equat ion is given by t--~ 1, cor responding  wi th  the 
point  P* + (R -- P*) - -  R ; the other  solution is 

t - -  (b + 1)/(~ + 1 - -  b). 

Clearly this number  is grea ter  than 1. We find that  R~ is g iven by 

b + l  
(17) R~ - -  P*  + ~ -I-- I - -  b" (R - -  P*) 

and that  R I and P* lie on opposite sides of R. 
As a fact of e lementary  geometry,  the l ine - segments  P R and R, TI, cut 

off f rom the l ine M by the hyperbolas  w y - - ' - - 1  and a~y--b, have equal  
lengths.  Hence  we find 

(18) T, "-- R, + (R - -  P*) = P* + ~ +l~+2--b . ( R - - P * ) .  

l~ow suppose that  there exists a lat t ice A ,  in the set ~ ( P ) ,  for which  
(7') holds. Then, on account  of (15) and (7'), this lat t ice is genera ted  by P 
and some point of L. The  latt ice points  on L have mutua l  dis tances  V2. 
For  the points  Q, R, S, T we have, on account  of (9), (10) and (15), 

~(Q, R ) - ' ~ ,  ~(S, T)---- ~ - l - 4 b - t - 4 > ~ +  1. 

By the same a rgument  as used in the proof of l emma  1, it follows that  the 
closed l ine - segment  QR contains  at least ~ + 1 lat t ice points. Consequent ly  
O and R are latt ice points. Now, tu rn ing  our a t tent ion to the l ine M, we 
first  r emark  that  the open l ine - segments  P R and R, Ti belong ent i rely to 
the inter ior  of K~,a and so are free f rom lattice points.  But  P and R belong 
to A0. It  follows that  a point  Z of the form (16) belongs to /ko if (and on ly  
if} t is integral.  F rom this we infer,  tak ing into account  the first  half of 
the relat ion (18), that  R t and T~ are points  of A0. Hencefor th ,  by (18), the 
fract ion (~-4-2)/(~ + 1 -  b) has an integral  value. 

Conversely suppose that  q---  t~ ~1- 2)/(~ + 1 --  b) is integral .  Consider  the 
latt ice /k0, genera ted  by P and R. We shall  prove that  A,  is KJ.b-admissible.  

Since ~ is integral ,  f rom ~(Q, R ) - - ~  it follows that  Q is a point  of /~o. 
On account  of (17) and (18 t also R, and T~ are points  of /k , .  Fu r th e r  P *  
is a point  of A , .  Now we have 

8(8, T ) ~ V ~ ' + 4 b + 4 ~ V ~  ~ + 4 ~ + 4 - ~ + 2 ,  
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hence  
1 

~(R, T) --  ~ 8(S, T ) - -  8(Q, R) } H 1 ; 

so T does not belong to the interior  of Kl, b. 
Let ~'0, ~l be the close 4 l ine-segments  PQ, RITi respectively, and denote 

by go  the closed part  of Kl, b contained between Z, and E I. We split ~ ,  
into two parts, viz. the intersections of ~o and the triangles PQT and TRT~ 
respectively, Since the pair of points R, P and likewise the pair  R, P* 
constitute a basis for A0, it is clear that the interior of each of these strips 
is free from lattice points. The points of /k, which  lie on the boundary  of 
one of these strips are easily identified. One arrives at the conclusion that 
the only latt ice points which belong to A,  are lying on the boundary  $3 
of /~1, b • 

Next, let t be the ordinate of T, and let ~ be the affine t ransformation 
determined by 
(19) ~! : x' - -  t-~x, y' - -  ty. 

The domain K1,a is left invariant  under  this t ransformation,  as well as the 
boundary @3. We fur ther  have 

• P =  T,. 

We denote for a moment  by R*, T~, M* the reflections into the line 
y - - a~  of Ri,  T~, M respectively. Clearly ~ - ~ P * - - T I * ,  i. e. Q T I * - - P * .  
Hence  te line M* is t ransformed into M by the transformation Q. Then the 
same is true for the points of intersection of these lines and the hyperbola 
xy  = b. In  part icular ,  we find 

g~Q-- R , .  

As a consequence the l ine-segment  ~. is t ransformed by ~ into ~ .  
We now put 

gC,, - -  Q " ~ 0 ,  

where  m runs  through all integers and the right hand side is defined in an 
obvious way. Clearly the union of all domains g;,, coincides with the part  
of Kl,b above the ,~-axis. 

The pair of points P, R, as well  as the pair of points P, Q, constitutes 
a basis for A0. The same is true for the pair  of points Q P - - T , ,  ~Q-=R,  
of /ko. For, on account of ([8) and the definition of the positive integer q, 

we have 
-- T, + q(T, -- R,) : -- T, + qiR -- P*) ----- -- P* : P, 

T, - -  (q - -  1)(T, - -  R,) = T l - -  (q - -  1)(R - -  P*) - -  P*  + (R --  P*) -= R. 

Consequently, not only the domain K1,b and its boundary @~, but also 
the lattice /%0, is left invariant  under  the transformation ~. Hence, since 
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the lattice points, which belong to g0 ,  are lying on ~ ,  the same is t rue for 
each domain g ,~ .  Hence  the region bounded by ~ ,  ~.z and the x-axis  is 
free from lattice points. 

Final ly  we remark  that K1,b as well as A0 are symmetr ic  with respect  
to the origin and also with respect  to the line y - - x .  It  follows that the 
origin is the only point of A0 interior to Kt.b,  i. e. that /k, is Kl,b-admissible. 

This completes the proof of lemma 2. 

4. Some f u r t h e r  lemmas.  
The set of K~,b-admissible lattices is not empty, as we have proved that 

even the set ~o(P) is not empty. It  follows from the general  theory of star 
bodies that there exists a so-cal led crit ical latt ice of Kl, b, i. e. a Kl,  b- 
admissible latt ice /k' with determinant  d( / \ ' } - - -A(1 ,  b) (3). An analogous 
property holds for certain subsets of the set of K~,a-admissible lattices. In  
fact we shall prove the following 

LEM~A 3. - Let  ~ ( ~ )  be the set of  K~, b-admissible lattices /k wi th  

inf I xy I =  1. 
xy<o, (~, y)~ A 

P u t  

A*(1, b)---- inf d(A ). 

Then  there exists  a K~,b-admissible lattice A o wi th  

P----- (1, 1) E A , ,  d(Ao) ~ A*(1, b). 

R E ~ A R K .  - Clearly a lattice A0 with the above property belongs to the 
set ~b(~2). in  general, however, a lattice of this set may not contain any 
point of the curve ~ .  

P r o o f . -  Each transformation ~ of the type (19) leaves K1,b invariant  
and so transforms any Kl, b-admissible lattice into another  K~,b-admissible 
lattice. By suitable choice of t we can obtain that an arbi t rar i ly  chosen point 
S I - - I X  of any lattice /~ is t ransformed by ~2 into some point of the line 
y - - - - x .  So, on account of the definitions of the quant i ty  A*(1, b) and the 
set ~b(~.~), it is cle, ar that there exist a sequence of lattices A ,  and a 
sequence of positive numbers a,, ( n - - 1 ,  2, ...) such that :  

a) A,, ~ ~b(~) for n - ~  1, 2, ... and  d( A,,) --~ h*(1, b) as n--~ ~ ,  
b) a,, :> 1 for n ~ 1, 2, ... and a,, ~ 1 as n -~ c~, 
c) A,, = ( - - a , , ,  a,,)E A , , .  

For each n = 1, 2,... there certainly exists a point Bn in the first quadrant ,  
such that B,, is a point of A,, and fur thermore  A,~ and B ,  consti tute a 
basis of / \ , , .  The sequence of points B,, is restricted to some bounded part  
of the plane. Hence we can select a subsequence I B,,kl which converges to 
some point B. On the other hand, the points A,, tend to the point P ~ (--  1, !). 
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Let  /k0 be the lattice generated by P and B. It follows from a *vellknown 
theorem of ~AKr,Ea ( '~) that  Ao is Kl.a-admissible, whereas we have 
d(~0 ) - -  Iim d(/k,~). The lattice A0 possesses therefore the desired properties. 

n ,---~ O 0  

It  may be remarked  that lemma 3 can easily be generalized in the 
following way. 

LEMMA 3'. - Let S be a n-dimensional automorphic star body and let r 
be its group of  automorphisms. Let ~* be a closed part of  its boundary, which 
is left invariant under the transformations of 1'. Further let ~(~*} be the set 
of S-admissible lattices which have points arbitrarily near to ~J* and suppose 
that ~(~*) is not empty. Then there exists a lattice A o with 

d ( A o ) =  inf d(A), 
h s ~(~*) 

which is S-admissible and contains a point of  ~*. 
We conclude this section with the following 
L E ~ X  4 . -  Let b be a real number ~ 1 .  For z ;> O denote by ~(z) the 

least positive integer ~ z. Then in the interval 1 ~_x ~ b  the function f(~c), 

defined by 
f(x) - -  x~V { ~b(b/x) t 2 + 4b/x, 

takes its minimal  value in  one or both points x ' - 1 ,  x - -b /[b]  and not 
elsewhere. 

Proof. - Let x~, x~,... ,  o~h be the points of the interval 1 ~ x ~ b ,  
where b/x is integral.  The function f(x) is positive in the whole interval 
1 ~ x_~ b and continuous and monotoneously increasing in each point x ~= w~ 
(v ~ 1, 2, ..., k). In  each point x --- x~ it undergoes a negative jump and there 
takes as value the right hand limit in that point. Fur thermore ,  if k>_2  
and x~ ~ we, we have 

f(x~) "2 - -  x ~ • (b ~ + 4bx~) 
v 

x ~ • (b ~ + 4bx~) --- f(x~) ~, 

hence f(x~) > f(x~). 
It follows that f{x) attains its lower bound in one or both points x ~ 1, 

x--b/[b], and not elsewhere. 
We remark  that, if we put b/[b]--a and denote by ~ the least positive 

integer ~_ b, the values f(1) and f(b/[b]) are given by 

i f(1) : V~ '~ + 4b 
(21) ~ f(b/[b]) - -  (b/[b])'~/~ 2 + 4[b] = ~Vb" + 4b¢~. 

(~) K. ~IAHLEa, On lattice points in n-dimensional star bodies I. Existence theorems, 
• Prec. Royal Soc. ,, A, 187 0946), 151-187, ill particular theorem 8, p. 159 und theorem 19, 
p. 178. 
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5. Proof of  theorems 2 and 3. 
We begin with a p re l iminary  considerat ion.  Let  A be a Kl ,b-admissible  

attice. Pu t  

a - -  inf I xY  t" 
xy<O, (x, y) ~ A 

Clearly a ~ 1. 
Firs t  suppose a _~ b. By the t ransformat ion  

~' ~ a-~x,  y' - -  ay  

A is t ransformed into a latt ice A'  with  the fol lowing proper t i es :  
a) A'  is admissible  for the domain  K1,a/,, 
b) inf I a~y I --- 1, 

~) d(A') ---- a - ' d (A) .  
Hence  A' belongs to the set ~fb/a(~), defined with respect  to the domain  
Kl, b/a. In  vir tue of l emma 3, there exists a K~,b/a-admissible latt ice A ,  
which contains  P - - - ( - - 1 ,  1) and has de te rminan t  d( A o) - -  5"(1, b/a), hence 
d(A0) _--< d(A'). To the lat t ice A0 we can apply l emma 1. So we get, recal l ing 
the defini t ions of ~(z) and f(z), 

d(A , )  ~ V I ¢(b/a) I ~ + 4b/a, 

hence 

(22) d(A)  - -  a 'd (h ' )  ~ a~V I ~(b/a) i S + 4b/a - -  f(a). 

Next s u p p o s e ' a ~  b. Then  A is also Kb, b-admissible. 5Tow by (3)(which 
resul t  could be obtained with the help  of lemmas  1 and 2) we have 
h(1, 1)=~V5. So by (1) we have 

a(b, b ) -  b a(1, 1) = bW5, 
hence 

(23) 

Theorem 2 now follows at once. For, consider  any Kl, b-admissible 
lattice A, and define a as above. In  the case a ~ b ,  on account  of (22) and 
lemma 4, the n u m b e r  d(A) can be minorized as fol lows:  

d(A) >_-- 5(b, b) _> baV5 ~ aVb ~ + 4b~. 

hence,  from (21), 

d(A) ~ min  ~ f(1), f(b/[b])l; 

d ( A ) ~ m i n  I V~ ~ + 4 b ,  ~Vb ~ + 4ba l .  

Clearly, on account  of (23), the last re lat ion also holds in the case a ~ b. 
The same est imate holds for h(1, b), A being arbitrary.  This  proves theorem 2. 
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In  order to prove theorem 3, we first treat  the case 

(24) ~Vb ~ -+- 4b~ G V ~' + 4b. 

Since b/~ is integral, by lemma 2 there cer tainly exists a Kl,bl~-admissible 
lat t ice A0 with de terminant  d i A 0 ) - - V ( b / ~ ) " +  4b/a. Hence  there exists a 
K~,b-admissible lattice A'  with determinant  d(A')--a~V(b/a)~q-4b/a--aVb~+4b~. 
This lattice is also Kl, b-admissible. It follows from theorem 2 that, in the 
actual  case, theorem 3 is valid. 

Next we consider the case 

(25) ~Vb ~ -~- 4b~ > V ~* + 4b. 

This implies, on account of lemma 4 and the relations (21), 

f(~) > f(1) if w > 1. 

Assume that in (5) the equali ty sign holds, and consider a cri t ical  
latt ice A of K1,b. Let a be defined as in the beginning of this section. If 
we had a ~ b ,  then we might apply (23); so by (25) we should have 
d ( A ) ~  V~q--4b,  contrary to our assumption. Hence we have a ~ b  and 
we may apply (22}. Hence  d ( A ) ~ f ( a ) .  But, by assumption, we have 
d ( A ) - - ¥ ~  ~ + 4 b - - f ( 1 ) .  Hence, in virtue of the above remark,  a is equal 
to 1. Then lemma 3 learns us that there even exists a Kl,b-admissible 
lattice A0 with 

P - - ( - - 1 ,  1)e A0, d (Ao) - -h (1 ,  b ) - - -V~ 'q -4b .  

Applying lemma 2 we conclude that the fraction (~ + 2)/(~ q- 1 - -  b) is integral.  
Conversely, assume that this fraction is integral. Then by lemma 2 there 

exists a certain K~,b-admissible lattice A with de terminant  d(A) = V~ ~ -t- 4b. 
Hence in (5) the equali ty sign holds. 

This completes the proof of theorem 3. 

6. Application to a problem of Mahler. 
Let r be the group of the affine t ransformations ~ of the type (17). Let 

us denote by IX] the distance of any point X from the origin. The group P 
has the following propert ies:  

a) Kl,b is left invariant  under  each transformation ~ in F; 
b) if X is any point of the domain Kl,b, then there exists a transfor- 

mation ~ in P such that 1~2X] is smaller  than a fixed number  c (for instance 
c~---b); 

c) if d is any positive number  and X is any point of Kl,b, then there 
exists a t ransformation ~2 in P with ] Q X I ~  d. 
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With  the usual  terminology, we can therefore say that Kl,b is a full 
automorphic star body ('). 

We  consider now the set of numbers  b with 

{26) 1 < b < 2, ~Vb ~ + 4bz < ¥ ~ + 4b. 

Since in this case we have a - - b ,  ~ : 2, the last inequali ty reduces to 
b ~ ¥ 5 ~ 2 ¥ 1  + b .  Consequently, the above set is the interval 1 ~ b < b , ,  
where  b, is determined by 

{27) b°' - -  5 (1 --b b,), b, > 1. 

Fur the r  let s be any positive number  and ' le t  K~,b be the set of points X with 

X E K I ,  b, I X l ~ s .  

Let us consider a crit ical latt ice A and let a be defined as in section 5. 
From theorem 3 and (26) it follows that we have d ( A ) - - - a ~ / ~  ÷ 4 b a : b ' V b .  
Suppose a > b. Then we have d(/k)~>_ h{a, b), hence, on account  of the rela- 
tions (1), d{A):>b~h(1, a/b). Here a/b is > 1. Now the r ight  hand side of 
the inequali ty (5) is a strictly increasing function of b. Consequently we have 
d{/k} > b~h(1, 1)--- b~Vb. This is a contradiction, and so we must have a<_b. 
Then we can apply the relation (22). This gives d(/k)>_~f{a~. On account of 
lemma 4 and the relations (21) and (26) the function f(~), defined in lemma 4, 
takes its minimal  va)ue in the interval  1 _< ~ _< b in the point ~ - =  b/[b] and 
not elsewhere. Since in our case [b] - -1 ,  it follows a - - b .  Th i s  result  may 
be stated in the following equivalent fo rm:  

I f  1 ~ b ~ be, then each critical lattice of K~,b is also a critical lattice 
of  Kb, b. 

In  part icular ,  the part  ~.~ of the boundary  of Kl, b does not contain a 
point of any crit ical latt ice of Kl, b. Consequently, for each crit ical lattice 
of Kl, b and each value of s ~. 0 there exist lattices with a smaller  determi- 
nant  which are infinitely near  to it and are admissible for the domain K~,b. 
In part icular ,  we see tha t :  

I f  l < b ~ b,, then 
A(K~, b) ~ A(K1, b) - -"  A(1, b) for each s > O. 

Using the appropriate terminology, we can say that Kl,b is boundedly 
irreducible if 1 < b < b0. So we have found a star body, which at the same 
time is full automorphic and boundedly irreducible.  Thus is answered one 
of the problems raised by MAHLER (5). 

(4) T-l'. DAVENPORT-C. A. ROGERS, Diophantine inequalities with an infinity of solutions, 
• Phil .  Transac t ions  Royal  Soc. London  ,,  242 (1950), 311.344. 

(5) I~. ~AHLER, Lattice points in n-dimensional star bodies II. Reducibility theoreM, 
Prec.  Ken .  Ned. Akad.  v. Wet .  , ,  49 (1946), in par t icu lar  p. 629. 
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We remark  that another  example of a star  body of the above type is 
given by J. W. S. CASSELS (6). CASSELS also states in a footnote of the paper  
cited tlIat ROGERS-DAVENPORT have answered the problem, considering the 
domain Kl, b for positive irrat ional  b (for b ' - b o ,  however, Kl, b is boundedly 
reducible, as is immediately  deduced from our considerations). 

One could easily establish an analogous result  for other  b-intervals.  
But, since out knowledge of the quant i ty  h(1, b) is yet  imperfect ,  we can 
not determine them all and so we content  ourselves with the result  given 
above. 

(6) J. W. S. CASSELS, On ~vo problems of Mahler, • Prec. Ken. Ned. Akad. v. Wet. ,, 
51 (1948), 282-285. 


