# On the determinant of an asymmetric hyperbolic region. 

by C. G. Lekierkerker (a Utrecht, Olanda).

dedicated to Prof. B. Segre.


#### Abstract

Summary. - A main problem in the geometry of numbers is the evaluation of the so-called determinant of various regions. The author, derives a new estimate for the determinant of a certain two-dimensional region bounded by two hyperbolas and applies his result to a problem in the theory of automorphic star bodies.


## 1. Introduction.

Let $x, y$ be the Cartesian coordinates of a point in the plane. For given positive numbers $a$ and $b$ let $K_{a, b}$ denote the domain, determined by

$$
K_{a, b}:-a \leqq x y \leq b
$$

The main object of this note is to derive a new upper bound for the determinant of this domain.

We begin by recalling some of the usual definitions. Let $M$ be an arbitrary domain in $R_{n}$ and let $\wedge$ be any lattice in $R_{n}$, the determinant of which may be denoted by $d(\wedge)$. The lattice $\wedge$ is called $M$-admissible, if no point of $\wedge$, except for the origin, is an inner point of $M$. And the determinant of $M$, denoted by $\Delta(M)$, is defined as follows.
$1^{0}$. if there exist $M$-admissible lattices, then $\Delta(M)$ is the lower bound of $d(\wedge)$, taken over all $M$-admissible lattices.
$2^{\circ}$. if no such lattice exists, then $\Delta(M)=\infty$.
The determinant of the two-dimensional domain $K_{a, b}$ will be denoted by $\Delta(a, b)$. For reasons of symmetry and homogeneity one has the obvious relations

$$
\begin{equation*}
\Delta(a, b)=\Delta(b, a) \tag{1}
\end{equation*}
$$

$$
\Delta(c a, c b)=c^{2} \Delta(a, b) \text { if } \quad c>0 .
$$

Consequently, in order to evaluate or to estimate $\Delta(a, b)$, it is sufficient to consider the case

$$
\begin{equation*}
a=1, \quad b \geqq 1 . \tag{2}
\end{equation*}
$$

In the following we alwaysisuppose that (2) holds.
In the case $b=1$ one has the classical result

$$
\begin{equation*}
\Delta(1,1)=\sqrt{\overline{5}} . \tag{3}
\end{equation*}
$$

It is the merit of B. Segre to have first considered the more general, asymmetric case ( ${ }^{1}$ ). In the case (2) his result takes the following form.

Theorem 1. - If $b \geqq 1$, then

$$
\begin{equation*}
\Delta(1, b) \geqq \sqrt{\overline{b^{2}+4 b}} ; \tag{4}
\end{equation*}
$$

furthermore in (4) the equality sign holds if and only if $b$ is a positive integer.
We shall prove here that the inequality (4) can be sharpened as follows.
Theorem 2. - Suppose $b \geqq 1$. Let $\beta$ be the smallest positive integer $\geqq b$ and let $\sigma$ denote the fraction $b[b]$. Then we have

$$
\begin{equation*}
\Delta(1, b) \geqq \min \left\{\sqrt{\overline{\beta^{2}}+4 b}, \sigma \sqrt{b^{2}+4 b \sigma}\right\} \tag{5}
\end{equation*}
$$

The question whether or not the equality sign holds in (5) admits the following answer.

Theorem 3. - Let $\beta$ and $\sigma$ be defined as in theorem 2. Then in the rela. tion (5) the equality sign holds if and only if either $b$ satisfies the relation

$$
\sigma V \overline{b^{2}+4 b \sigma} \leqq V \overline{\beta^{2}+4 b}
$$

or the fraction $(\beta+2) /(\beta+1-b)$ has an integral value.
We put $(\beta+2) /(\beta+1-b)=q$, so that $b=\beta+1-\frac{1}{q}(\beta+2)$. For a fixed value of $\beta$ the number $q$ is restricted to the interval $\frac{1}{2}(\beta+2)<q \leqq \beta+2$. Consequently the condition that the fraction $(\beta+2) /(\beta+1-b)$ is integral is equivalent with the following assertion:
there exist positive integers $\beta$ and $q$ such that

$$
\begin{equation*}
b=\beta+1-\frac{1}{q}(\beta+2), \quad \frac{1}{2}(\beta+2)<q \leqq \beta+2 . \tag{6}
\end{equation*}
$$

In particular $b$ is of the form (6), if $b$ is a positive integer. It is evident that the right hand sides of (4) and (5) are equal if and only if $b$ is a positive integer, and that theorem 1 is included in theorems 2 and 3.

For the proof of theorems 2 and 3 it appears useful to consider a parti. cular set of $K_{1, b}$-admissible lattices. Let $\mathfrak{B}$ be the boundary of $K_{1, b}$ and let $\mathscr{B}_{1}, \mathscr{B}_{2}$ be the parts of $\mathfrak{B}$ which belong to the first and the second quadrant respectively. Further let $P$ be the point $(-1,1)$; clearly $P$ lies on $\mathscr{B}_{2}$. Now we denote by $\mathscr{H}_{0}(P)$ the set of those $K_{1, b}$-admissible lattices, which contain $P$ as a lattice point. The principal part of the proof of theorems 2 and 3 consists in a proof of the following two lemmas (sections 2 and 3).
(1) B. Segre, Lattice points in infinite domains and asymmetric aliophantine approximations, © Duke Mathem. Journal », 12 (1945), 337.365.

Lemma 1. - Let $b \geqq 1$ be arbitrary. If $\wedge$ is a lattice of the set $\mathscr{H}_{b}(P)$, then

$$
\begin{equation*}
d(\Lambda) \geqq \sqrt{\beta^{2}+4 \bar{b}} . \tag{7}
\end{equation*}
$$

Lemma 2. - The set $\mathcal{H}_{b}(P)$ contains a lattice $\wedge_{0}$ with

$$
d\left(\wedge_{0}\right)=\sqrt{\beta^{2}+4 b},
$$

if and only if the fraction $(\beta+2) /(\beta+1-b)$ has an integral value.
The method of proof of lemma 1 is similar to a reasoning of K. Olle. renshaw and C. A. Rogers given in the symmetrical case $b=1\left({ }^{2}\right)$. We note that lemma 1 does not imply that the set $\mathscr{H}_{b}(P)$ is not empty. Bat this fact, which, by the way, is wellknown, is an immediate consequence of lemma 2. For this lemma implies that the set $\mathcal{H}_{2}(P)$ is not empty for some values of $b$, for instance all positive integral values. Now the set $\mathcal{H}_{b_{1}}(P)$ contains the set $\mathscr{H}_{b}(P)$ if $b$ and $b_{1}$ are any positive numbers with $1 \leqq b \leqq b_{1}$. Hence $\mathscr{H}_{b}(P)$ is not empty for any value of $b \geqq 1$ whatsoever.

Section 4 brings two further simple lemmas, whereafter in section 5 the proof of our theorems is given. In the last section we give an application to a problem in the theory of automorphic star bodies.

## 2. Proof of lemma 1.

Let $\Lambda$ be an arbitrary lattice of the set $\mathscr{H}_{b}(P)$. The straight line through $O=(0,0)$ and $P=(-1,1)$ contains an infinity of lattice points with mutual distances $\sqrt{ } \overline{2}$. Consider the straight lines, which are parallel to this line and pass through a lattice point. Exactly one of these lines passes through the first quadrant and has a minimal distance to $O$. Call this line $L$. For any two points $P_{1}$ and $P_{2}$ of $L$ we shall denote by $\delta\left(P_{1}, P_{2}\right)$ the difference between the alscissae of $P_{1}$ and $P_{2}$. For points of $L$, which also belong to $\wedge$, this quantity takes all integral values.

Let $y=\lambda-x$ be the equation of $L$ and let $S$ and $T$ be the points of intersection of $L$ and the hyperbola $x y=-1$ (see fig. 1). Clearly $\delta(S, T)>2$. Hence, by the above remark, the interior of the line-segment $S T$ contains at least two points of $\wedge$. Now, since $\wedge$ is $K_{1, b}$-admissible, these points do not belong to the interior of $K_{1, b}$. As a consequence, $L$ intersects the hyperbola $x y=b$, in two different points, $Q$ and $R$ say (see fig. 1). Furthermore the line segment $\overline{Q R}$ contains at least two lattice points. So we have

$$
\begin{equation*}
\delta(Q, R) \geqq 1 \tag{8}
\end{equation*}
$$

( ${ }^{2}$ ) Kathleen Ollerenshaw, On the minima of indefinite quadratic forms, . Journal London Math. Soc. », 23 (1948), 148.153.

Solving for $x$ and $y$ the pair of equations

$$
x y=-1, \quad y=\lambda-x,
$$

and also the pair of equations


Fig. 1.
we find for the coordinates of the points $S, T, Q, R$

$$
\begin{align*}
& x_{S}=y_{T}=\frac{1}{2} \lambda+\frac{1}{2} \sqrt{\lambda^{2}+4}, y_{S}=x_{T}=\frac{1}{2} \lambda-\frac{1}{2} \sqrt{\lambda^{2}+4},  \tag{9}\\
& x_{Q}=y_{R}=\frac{1}{2} \lambda+\frac{1}{2} \sqrt{\lambda^{2}-4 b}, y_{Q}=x_{R}=\frac{1}{2} \lambda-\frac{1}{2} \sqrt{\lambda^{2}-4},
\end{align*}
$$

with obvious notations. Consequently

$$
\begin{align*}
& \delta(S, T)\rangle=\sqrt{\lambda^{2}+4}  \tag{11}\\
& \delta(Q, R)=\sqrt{\lambda^{2}-4 b} . \tag{12}
\end{align*}
$$

Let us now suppose that $k$ is a positive integer with the following properties:
$1^{0} 1 \leqq k<\beta$
$2^{\circ} \delta(Q, R) \geqq k$.

Then it follows from (12) that we have

$$
\lambda^{2} \leqq k^{2}+4 b
$$

From the definition of $\beta$ and the requirement $1^{\circ}$ we learn that:

$$
k<b
$$

hence, using (11), we deduce

$$
\delta(S, T) \geqq \sqrt{k^{2}+4 b+4}>\sqrt{k^{2}+4 k+4}
$$

and so

$$
\delta(S, T)>k+2
$$

Consequently, the interior of the line-segment $\overline{S T}$ contains at least $k+2$ points of $\wedge$. Since $\wedge$ is $K_{1, b}$-admissible, these points must all belong to the segment $\overline{Q R}$.

This leads to

$$
\delta(Q, R) \geqq k+1
$$

Clearly, in virtue of (8), the requirements $1^{\circ}$ and $2^{\circ}$ are fulfilled with $k=1$, unless $b=1$. So, by a repeated application of the above reasoning, we conclude that:

$$
\begin{equation*}
\delta(Q, R) \geqq \beta \tag{13}
\end{equation*}
$$

the closed line-segment $\overline{Q R}$ containing at least $\beta+1$ lattice points. In view of ( 12 ), the last formula is equivalent with

$$
\begin{equation*}
\lambda \geqq \sqrt{\beta^{2}+4 b} \tag{14}
\end{equation*}
$$

The determinant $d(\wedge)$ is easily found to be equal to $\lambda$. So, finally, (14) is equivalent with (7). This proves lemma 1.

## 3. Proof of lemma 2.

We begin with some preliminary remarks. Let $\lambda$ be determined by

$$
\begin{equation*}
\lambda=\sqrt{\beta^{2}+4 b} \tag{15}
\end{equation*}
$$

and let $L$ be the line with equation $y=\lambda-x$. Denote by $S, T$ and $Q, R$ the points of intersection of $L$ and the hyperbola $x y=-1, x y=b$ respecti. vely (see fig. 2). Further let $P^{*}$ be the point (1, -1), which is the reflection of $P$ in the origin and also lies on $\mathfrak{B}$. As in the proof of lemma 1 , the coordinates of the points $S, T, Q, R$ are given by (9) and (10), with $\lambda$ given by (15). In particular we have

$$
\begin{aligned}
& 0<x_{R}=\frac{1}{2} \sqrt{\beta^{2}+4 b}-\frac{1}{2} \beta \\
& <\frac{1}{2} \sqrt{\beta^{2}+4 \beta+4}-\frac{1}{2} \beta=1
\end{aligned}
$$

hence

$$
0<x_{R}<x_{P^{*}}
$$

Consequently, the straight line through $P$ and $R, M$ say, intersects $\mathscr{B}_{1}$ in one further point and $\mathfrak{B}_{2}$ in exactly one point; call these points $R_{4}$ and $T_{\text {, }}$ successively (see fig. 2).


Fig. 2.
We wish to determine these points $R_{1}$ and $T_{1}$. An arbitrary point $Z$ of the line $M$ can be written as

$$
\begin{equation*}
Z=P^{*}+t\left(R-P^{*}\right) \tag{16}
\end{equation*}
$$

where $t$ runs through all real numbers. This point lies on the hyperbola $x y=b$, if and only if $t$ satisfies the equation

$$
\left\{1+t\left(x_{R}-1\right)\right\} \cdot\left\{-1+t\left(y_{R}+1\right)\right\}=b
$$

On account of (10) and (15) this relation reduces to

$$
\left\{1+t\left(\frac{1}{2} \sqrt{\beta^{2}+4 b}-\frac{1}{2} \beta-1\right)\right\} \cdot\left\{-1+t\left(\frac{1}{2} \sqrt{\overline{\beta^{2}}+4 b}+\frac{1}{2} \beta+1\right)\right\}=b
$$

i. e.

$$
(\beta+1-b) t^{2}-(\beta+2) t+(b+1)=0 .
$$

One solution of this equation is given by $t=1$, corresponding with the point $P^{*}+\left(R-P^{*}\right)=R$; the other solution is

$$
t=(b+1) /(\beta+1-b)
$$

Clearly this number is greater than 1 . We find that $R_{1}$ is given by

$$
\begin{equation*}
R_{1}=P^{*}+\frac{b+1}{\beta+1-b} \cdot\left(R-P^{*}\right) \tag{17}
\end{equation*}
$$

and that $R_{4}$ and $P^{*}$ lie on opposite sides of $R$.
As a fact of elementary geometry, the line-segments $\overline{P R}$ and $\overline{R_{1} T_{1}}$, cut off from the line $M$ by the hyperbolas $x y=-1$ and $x y=b$, have equal lengths. Hence we find

$$
\begin{equation*}
T_{1}=R_{1}+\left(R-P^{*}\right)=P^{*}+\frac{\beta+2}{\beta+1-b} \cdot\left(R-P^{*}\right) \tag{18}
\end{equation*}
$$

Now suppose that there exists a lattice $\wedge_{0}$ in the set $\mathcal{H}_{b}(P)$, for which ( $7^{\prime}$ ) holds. Then, on account of (15) and ( $7^{\prime}$ ), this lattice is generated by $P$ and some point of $L$. The lattice points on $L$ have mutual distances $\sqrt{2}$. For the points $Q, R, S, T$ we have, on account of (9), (10) and (15),

$$
\delta(Q, R)=\beta, \quad \delta(S, T)=\mathrm{V} \overline{\beta^{2}+4 b+4}>\beta+1
$$

By the same argument as used in the proof of lemma 1, it follows that the closed line-segment $\overline{Q R}$ contains at least $\beta+1$ lattice points. Consequently $Q$ and $R$ are lattice points. Now, turning our attention to the line $M$, we first remark that the open line-segments $\overline{P R}$ and $\overline{R_{1} T_{1}}$ belong entirely to the interior of $K_{1, b}$ and so are free from lattice points. But $P$ and $R$ belong to $\Lambda_{0}$. It follows that a point $Z$ of the form (16) belongs to $\Lambda_{0}$ if (and only if) $t$ is integral. From this we infer, taking into account the first half of the relation (18), that $R_{1}$ and $T_{1}$ are points of $\wedge_{0}$. Henceforth, by (18), the fraction $(\beta+2) /(\beta+1-b)$ has an integral value.

Conversely suppose that $q=(\beta+2) /(\beta+1-b)$ is integral. Consider the lattice $\Lambda_{0}$, generated by $P$ and $R$. We shall prove that $\Lambda_{0}$ is $K_{1, b}$-admissible.

Since $\beta$ is integral, from $\delta(Q, R)=\beta$ it follows that $Q$ is a point of $\Lambda_{0}$. On account of (17) and (18) also $R_{1}$ and $T_{1}$ are points of $\Lambda_{0}$. Further $P^{*}$ is a point of $\Lambda_{0}$. Now we have

$$
\delta(S, T)=\sqrt{\beta^{2}+4 b+4} \leqq \sqrt{\beta^{2}+4 \beta+4}=\beta+2
$$

hence

$$
\varepsilon(R, T)=\frac{1}{2}\{\delta(S, T)-\delta(Q, R)\} \leqq 1 ;
$$

so $T$ does not belong to the interior of $K_{1, b}$.
Let $\Sigma_{0}, \Sigma_{1}$ be the closed line-segments $\overline{P Q}, \overline{R_{1} T_{1}}$ respectively, and denote by $\mathscr{K}_{0}$ the closed part of $K_{1, b}$ contained between $\Sigma_{0}$ and $\Sigma_{1}$. We split $\mathscr{K}_{0}$ into two parts, viz. the intersections of $\mathscr{O}{ }_{0}$ and the triangles $P Q T$ and $T R T_{4}$ respectively. Since the pair of points $R, P$ and likewise the pair $R, P^{*}$ constitute a basis for $\Lambda_{0}$, it is clear that the interior of each of these strips is free from lattice points. The points of $\Lambda_{0}$ which lie on the boundary of one of these strips are easily identified. One arrives at the conclusion that the only lattice points which belong to $\Lambda_{0}$ are lying on the boundary $\mathfrak{B}$ of $K_{1, b}$.

Next, let $t$ be the ordinate of $T_{1}$ and let $\mathcal{Q}$ be the affine transformation determined by

$$
\begin{equation*}
\Omega: x^{\prime}=t^{-1} x, \quad y^{\prime}=t y \tag{19}
\end{equation*}
$$

The domain $K_{1, b}$ is left invariant under this transformation, as well as the boundary $\mathfrak{b}$. We further have

$$
\Omega P=T_{1}
$$

We denote for a moment by $R_{1}^{*}, T_{1}^{*}, M^{*}$ the reflections into the line $y=x$ of $R_{1}, T_{1}, M$ respectively. Clearly $\Omega^{-1} P^{*}=T_{1}^{*}$, i. e. $\Omega T_{1}^{*}=P^{*}$. Hence te line $M^{*}$ is transformed into $M$ by the transformation $\Omega$. Then the same is true for the points of intersection of these lines and the hyperbola $x y=b$. In particular, we find

$$
\Omega Q=R_{1} .
$$

As a consequence the line-segment $\Sigma_{0}$ is transformed by $\Omega$ into $\Sigma_{1}$. We now put

$$
\mathfrak{K}_{m}=\mathbf{\Omega}^{m} \not \mathfrak{K}_{0}
$$

where $m$ runs through all integers and the right hand side is defined in an obvious way. Clearly the union of all domains $\mathscr{J}_{m}$ coincides with the part of $K_{1, b}$ above the $x$-axis.

The pair of points $P, R$, as well as the pair of points $P, Q$, constitutes a basis for $\Lambda_{0}$. The same is true for the pair of points $\Omega P=T_{1}, \Omega Q=R_{1}$ of $\Lambda_{0}$. For, on account of (18) and the definition of the positive integer $q$, we have

$$
\begin{gathered}
-T_{1}+q\left(T_{1}-R_{4}\right)=-T_{1}+q\left(R-P^{*}\right)=-P^{*}=P, \\
T_{1}-(q-1)\left(T_{1}-R_{1}\right)=T_{1}-(q-1)\left(R-P^{*}\right)=P^{*}+\left(R-P^{*}\right)=R .
\end{gathered}
$$

Consequently, not only the domain $K_{1, b}$ and its boundary $\mathfrak{B}$, but also the lattice $\wedge_{0}$, is left invariant under the transformation $\Omega$. Hence, since
the lattice points, which belong to $\mathscr{K}_{0}$, are lying on $\mathfrak{B}$, the same is true for each domain $\mathscr{J}_{m}$. Hence the region bounded by $\mathscr{B}_{1}, \mathscr{B}_{z}$ and the $x$-axis is free from lattice points.

Finally we remark that $K_{1, b}$ as well as $\Lambda_{0}$ are symmetric with respect to the origin and also with respect to the line $y=x$. It follows that the origin is the only point of $\Lambda_{0}$ interior to $K_{1, b}$, i. e. that $\wedge_{0}$ is $K_{1, b}$-admissible.

This completes the proof of lemma 2.

## 4. Some further lemmas.

 even the set $\mathscr{H}_{b}(P)$ is not empty. It follows from the general theory of star bodies that there exists a so-called critical lattice of $K_{1, b}$, i. e. a $K_{1, b}-$ admissible lattice $\Lambda^{\prime}$ with determinant $d\left(\Lambda^{\prime}\right)=\Delta(1, b)\left({ }^{3}\right)$. An analogous property holds for certain subsets of the set of $K_{1, b}$-admissible lattices. In fact we shall prove the following

Lemma 3. - Let $\mathcal{H}_{b}\left(\mathcal{B}_{2}\right)$ be the set of $K_{1, b}$-admissible lattices $\wedge$ with

$$
\inf _{x y<0,(x, y) \varepsilon \wedge}|x y|=1
$$

Put

$$
\begin{equation*}
\Delta^{*}(1, b)=\inf _{\wedge \varepsilon \mathcal{H}_{b}\left(\mathscr{B}_{2}\right)} d(\Lambda) . \tag{20}
\end{equation*}
$$

Then there exists a $K_{1, b}$-admissible lattice $\wedge_{0}$ with

$$
P=(1,1) \in \wedge_{0}, \quad d\left(\wedge_{0}\right)=\Delta^{*}(1, b)
$$

Remark. - Clearly a lattice $\wedge_{0}$ with the above property belongs to the set $\mathcal{H}_{b}\left(\mathscr{B}_{2}\right)$. In general, however, a lattice of this set may not contain any point of the curve $\mathfrak{B}_{2}$.

Proof. - Each transformation $\Omega$ of the type (19) leaves $K_{1, b}$ invariant and so transforms any $K_{1, b}$-admissible lattice into another $K_{1, b}$-admissible lattice. By suitable choice of $t$ we can obtain that an arbitrarily chosen point $S \mid-X$ of any lattice $\wedge$ is transformed by $\Omega$ into some point of the line $y=-x$. So, on account of the definitions of the quantity $\Delta^{*}(1, b)$ and the set $\mathcal{H}_{b}\left(\mathscr{B}_{2}\right)$, it is clear that there exist a sequence of lattices $\Lambda_{n}$ and a sequence of positive numbers $a_{n}(n=1,2, \ldots)$ such that:
a) $\wedge_{n} \in \mathscr{H}_{b}\left(\mathfrak{B}_{2}\right)$ for $n=1,2, \ldots$ and $d\left(\wedge_{n}\right) \rightarrow \Delta^{*}(1, b)$ as $n \rightarrow \infty$,
b) $a_{n} \geqq 1$ for $n=1,2, \ldots$ and $a_{n} \rightarrow 1$ as $n \rightarrow \infty$,
c) $A_{n}=\left(-a_{n}, a_{n}\right) \in \wedge_{n}$.

For each $n=1,2, \ldots$ there certainly exists a point $B_{n}$ in the first quadrant, such that $B_{n}$ is a point of $A_{n}$ and furthermore $A_{n}$ and $B_{n}$ constitute a basis of $A_{n}$. The sequence of points $B_{n}$ is restricted to some bounded part of the plane. Hence we can select a subsequence $\left\{B_{n_{k}}\right\}$ which converges to some point $B$. On the other hand, the points $A_{n}$ tend to the point $P=(-1,1)$.

Let $\Lambda_{0}$ be the lattice generated by $P$ and $B$. It follows from a wellknown theorem of Mahler ( ${ }^{3}$ ) that $\Lambda_{0}$ is $K_{1, b}$-admissible, whereas we have $d\left(\Lambda_{0}\right)=\lim _{n \rightarrow \infty} d\left(\Lambda_{n}\right)$. The lattice $\Lambda_{0}$ possesses therefore the desired properties.

It may be remarked that lemma 3 can easily be generalized in the following way.

Lemma 3', - Let $S$ be a n-dimensional automorphic star body and let $\Gamma$ be its group of automorphisms. Let $\mathfrak{B}^{*}$ be a closed part of its boundary, which is left invariant under the transformations of $\Gamma$. Further let $\mathcal{H}_{\left(\mathfrak{B}^{*}\right)}$ be the set of S-admissible lattices which have points arbitrarily near to $\mathfrak{B b}^{*}$ and suppose that $H\left(B_{B}^{*}\right)$ is not empty. Then there exists a lattice $\Lambda_{0}$ with

$$
d\left(\wedge_{0}\right)=\inf _{\wedge \varepsilon \mathcal{H}\left(\mathscr{B ^ { * }}\right)} d(\wedge)
$$

which is $S$-admissible and contains a point of $\mathfrak{B}^{*}$.
We conclude this section with the following
Lemma 4. - Let b be a real number $\geqq 1$. For $z>0$ denote by $\psi(z)$ the least positive integer $\geqq z$. Then in the interval $1 \leqq x \leqq b$ the function $f(x)$, defined by

$$
f(x)=x^{2} \sqrt{\{\psi(b / x)\}^{2}+4 b / x},
$$

takes its minimal value in one or both points $x=1, x=b /[b]$ and not elsewhere.

Proof. - Let $x_{1}, x_{2}, \ldots, x_{k}$ be the points of the interval $1 \leqq x \leqq b$, where $b / x$ is integral. The function $f(x)$ is positive in the whole interval $1 \leqq x \leqq b$ and continuous and monotoneously increasing in each point $x \neq x_{v}$ ( $v=1,2, \ldots, k)$. In each point $x=x_{v}$ it undergoes a negative jump and there takes as value the right hand limit in that point. Furthermore, if $k \geqq 2$ and $x_{\nu}>x_{\mu}$, we have

$$
\begin{aligned}
f\left(x_{\nu}\right)^{2} & =x_{\nu}^{2} \cdot\left(b^{2}+4 b x_{\nu}\right) \\
& >x_{\mu}^{2} \cdot\left(b^{2}+4 b x_{\mu}\right)=f\left(x_{\mu}\right)^{2},
\end{aligned}
$$

hence $f\left(x_{v}\right)>f\left(x_{\mathrm{p}}\right)$.
It follows that $f(x)$ attains its lower bound in one or both points $x=1$, $x=b /[b]$, and not elsewhere.

We remark that, if we put $b[b]=\sigma$ and denote by $\beta$ the least positive integer $\geqq b$, the values $f(1)$ and $f(b /[b])$ are given by

$$
\left\{\begin{array}{l}
f(1)=\sqrt{\beta^{2}+4 b}  \tag{21}\\
f(b /[b])=(b \cdot[b])^{2} \sqrt{[b]^{2}+4[b]}=\sigma \sqrt{b^{2}+4 b \sigma}
\end{array}\right.
$$

(3) K. Mahler, On lattice points in n-dimensional star bodies I. Existence theorems, - Proc. Royal Soc. >, A, 187 (1946), 151-187, in particular theorem 8, p. 159 and theorem 19, p. 173.

## 5. Proof of theorems 2 and 3.

We begin with a preliminary consideration. Let $\wedge$ be a $K_{1, b}$-admissible attice. Put

$$
a=\inf _{x y<0,(x, y) \varepsilon \wedge}|x y| .
$$

Clearly $a \geqq 1$.
First suppose $a \leqq b$. By the transformation

$$
x^{\prime}=a^{-1} x, \quad y^{\prime}=a y
$$

$\Lambda$ is transformed into a lattice $\Lambda^{\prime}$ with the following properties:
a) $\Lambda^{\prime}$ is admissible for the domain $K_{1, b / a}$,
b) $\inf _{x y<0,(x, y) \subset \Lambda^{\prime}}|x y|=1$,
c) $d\left(\Lambda^{\prime}\right)=a^{-8} d\left(\wedge^{\prime}\right)$.

Hence $\Lambda^{\prime}$ belongs to the set $\mathscr{H}_{b / a}\left(\tilde{O}_{2}\right)$, defined with respect to the domain $K_{1, b / a}$. In virtue of lemma 3, there exists a $K_{1, b / a}$-admissible lattice $\wedge_{0}$ which contains $P=(-1,1)$ and has determinant $d\left(\wedge_{0}\right)=\Delta^{*}(1, b / a)$, hence $d\left(\wedge_{0}\right) \leqq d\left(\wedge^{\prime}\right)$. To the lattice $\wedge_{0}$ we can apply lemma 1 . So we get, recalling the definitions of $\psi(z)$ and $f(z)$,

$$
d\left(\wedge_{0}\right) \geqq \sqrt{\{\psi(b / a)\}^{2}+4 b / a},
$$

hence

$$
\begin{equation*}
d(\wedge)=a^{2} d\left(\wedge^{\prime}\right) \geqq a^{2} \sqrt{\{\psi(b / a)\}^{2}+4 b / a}=f(a) . \tag{22}
\end{equation*}
$$

Next suppose" $a>b$. Then $\wedge$ is also $K_{b, b}$-admissible. Now by (3) (which result could be obtained with the help of lemmas 1 and 2) we have $\Delta(1,1)=\sqrt{5} \overline{5}$. So by (1) we have

$$
\Delta(b, b)=b^{2} \Delta(1,1)=b^{2} \sqrt{\overline{5}}
$$

hence

$$
\begin{equation*}
d(\wedge) \geqq \Delta(b, b) \geqq b \sigma \sqrt{\overline{5}} \geqq \sigma \sqrt{b^{2}+4 b \sigma} \tag{23}
\end{equation*}
$$

Theorem 2 now follows at once. For, consider any $K_{1, b}$-admissible lattice $\wedge$, and define $a$ as above. In the case $a \leqq b$, on account of (22) and lemma 4, the number $d(\wedge)$ can be minorized as follows:

$$
d(\wedge) \geqq \min \{f(1), f(b /[b])\} ;
$$

hence, from (21),

$$
d(\wedge) \geqq \min \left\{\sqrt{\overline{\beta^{2}+4 b}}, \sigma \sqrt{\overline{b^{2}}+4 b \sigma}\right\}
$$

Clearly, on account of (23), the last relation also holds in the case $a>b$. The same estimate holds for $\Delta(1, b), \wedge$ being arbitrary. This proves theorem 2.

In order to prove theorem 3, we first treat the case

$$
\begin{equation*}
\sigma \sqrt{\overline{b^{2}}+4 b \sigma} \leqq \sqrt{\beta^{2}+4 b} . \tag{24}
\end{equation*}
$$

Since $b / \sigma$ is integral, by lemma 2 there certainly exists a $K_{1, b / \sigma}$-admissible lattice $\Lambda_{0}$ with determinant $d\left(\Lambda_{0}\right)=\sqrt{(b / \sigma)^{2}+4 b / \sigma}$. Hence there exists a $K_{\sigma, b}$-admissible lattice $\wedge^{\prime}$ with determinant $d\left(\wedge^{\prime}\right)=\sigma^{2} \sqrt{(b / \sigma)^{2}+4 b / \sigma}=\sigma \sqrt{b^{2}+4 b \sigma}$. This lattice is also $K_{1, b}$-admissible. It follows from theorem 2 that, in the actual case, theorem 3 is valid.

Next we consider the case

$$
\begin{equation*}
\sigma \sqrt{\overline{b^{2}}+4 b \sigma}>\sqrt{\beta^{2}+4 \vec{b}} . \tag{25}
\end{equation*}
$$

This implies, on account of lemma 4 and the relations (21),

$$
f(x)>f(1) \quad \text { if } \quad x>1
$$

Assume that in (5) the equality sign holds, and consider a critical lattice $\wedge$ of $K_{1, b}$. Let $a$ be defined as in the beginning of this section. If we had $a>b$, then we might apply (23); so by (25) we should have $d(\wedge)>\sqrt{\beta^{2}+4} \vec{b}$, contrary to our assumption. Hence we have $a \leqq b$ and we may apply (22). Hence $d(\wedge) \geqq f(a)$. But, by assumption, we have $d(\wedge)=\sqrt{\frac{\beta^{2}}{}+4 b}=f(1)$. Hence, in virtue of the above remark, $a$ is equal to 1 . Then lemma 3 learns us that there even exists a $K_{1, b}$-admissible lattice $\wedge_{0}$ with

$$
P=(-1,1) \in \wedge_{0}, \quad d\left(\wedge_{0}\right)=\Delta(1, b)=\sqrt{\beta^{2}+4 b}
$$

Applying lemma 2 we conclude that the fraction $(\beta+2) /(\beta+1-b)$ is integral.
Conversely, assume that this fraction is integral. Then by lemma 2 there exists a certain $K_{1, b}$-admissible lattice $\wedge$ with determinant $d(\wedge)=\sqrt{\beta^{2}+4 b}$. Hence in (5) the equality sign holds.

This completes the proof of theorem 3.

## 6. Application to a problem of Mahler.

Let $\Gamma$ be the group of the affine iransformations $\Omega$ of the type (17). Let us denote by $|X|$ the distance of any point $X$ from the origin. The group I' has the following properties:
a) $K_{1, b}$ is left invariant under each transformation $\boldsymbol{\Omega}$ in $\Gamma$;
b) if $X$ is any point of the domain $K_{1, b}$, then there exists a transformation $\Omega$ in $\Gamma$ such that $|\Omega X|$ is smaller than a fixed number $c$ (for instance $c=b$;
c) if $d$ is any positive number and $X$ is any point of $K_{1, b}$, then there exists a transformation $\Omega$ in $\Gamma$ with $|\Omega X|>d$.

With the usual terminology, we can therefore say that $K_{1, b}$ is a full automorphic star body ( ${ }^{4}$ ).

We consider now the set of numbers $b$ with

$$
\begin{equation*}
1<b<2, \quad \sigma \sqrt{b^{2}+4 b \sigma}<\sqrt{\beta^{2}+4 \bar{b}} . \tag{26}
\end{equation*}
$$

Since in this case we have $\sigma=b, \beta=2$, the last inequality reduces to $b^{2} \vee \overline{5}<2 \sqrt{1+b}$. Consequently, the above set is the interval $1<b<b_{0}$, where $b_{0}$ is determined by

$$
\begin{equation*}
b_{0}^{4}=\frac{4}{5}\left(1+b_{0}\right), \quad b_{0}>1 \tag{27}
\end{equation*}
$$

Further let $s$ be any positive number and let $K_{1, b}^{s}$ be the set of points $X$ with

$$
X \in K_{1, b}, \quad|X| \leqq s
$$

Let us consider a critical lattice $\wedge$ and let $a$ be defined as in section 5. From theorem 3 and (26) it follows that we have $d(\wedge)=\sigma \sqrt{b^{2}+4 b \sigma}=b^{2} \sqrt{5}$. Suppose $a>b$. Then we have $d(\wedge) \geqq \Delta(a, b)$, hence, on account of the relations $(1), d(\wedge) \geqq b^{2} \Delta(1, a / b)$. Here $a / b$ is $>1$. Now the right hand side of the inequality (5) is a strictly increasing function of $b$. Consequently we have $d(\wedge)>b^{2} \Delta(1,1)=b^{2} \sqrt{5}$. This is a contradiction, and so we must have $a \leqq b$. Then we can apply the relation (22). This gives $d(\wedge) \geqq f(a)$. On account of lemma 4 and the relations (21) and (26) the function $f(x)$, defined in lemma 4, takes its minimal value in the interval $1 \leqq x \leqq b$ in the point $x=b /[b]$ and not elsewhere. Since in our case $[b]=1$, it follows $a=b$. This result may be stated in the following equivalent form:

If $1<b<b_{0}$, then each critical lattice of $K_{1, b}$ is also a critical lattice of $K_{b, b}$.

In particular, the part $\mathfrak{B}_{2}$ of the boundary of $K_{1, b}$ does not contain a point of any critical lattice of $K_{1, b}$. Consequently, for each critical lattice of $K_{1, b}$ and each value of $s>0$ there exist lattices with a smalier determinant which are infinitely near to it and are admissible for the domain $K_{1, b}^{s}$. In particular, we see that:

$$
\begin{gathered}
\text { If } 1<b<b_{0}, \text { then } \\
\Delta\left(K_{1, b}^{s}\right)<\Delta\left(K_{1, b}\right)=\Delta(1, b) \text { for each } s>0 .
\end{gathered}
$$

Using the appropriate terminology, we can say that $K_{1, b}$ is boundedly irreducible if $1<b<b_{0}$. So we have found a star body, which at the same time is full automorphic and boundedly irreducible. Thus is answered one of the problems raised by Mahler ( ${ }^{5}$ ).
(4) H. Davenport-C. A. Rogers, Diophantine inequalities with an infinity of solutions, - Phil. Transactions Royal Soc. London *, 242 (1950), 311-344.
${ }^{(5)}$ K. Mahler, Lattice points in n-dimensional star bodies II. Reducibility theorems, * Proc. Kon. Ned. Akad. v. Wet. ., 49 (1946), in particular p. 629.

We remark that another example of a star body of the above type is given by J. W. S. Cassels ( ${ }^{6}$ ). Cassels also states in a footnote of the paper cited that Rogers-Davenport have answered the problem, considering the domain $K_{1, b}$ for positive irrational $b$ (for $b=b_{0}$, however, $K_{1, b}$ is boundedly reducible, as is immediately deduced from our considerations).

One could easily establish an analogous result for other $b$-intervals. But, since out knowledge of the quantity $\Delta(1, b)$ is yet imperfect, we can not determine them all and so we content ourselves with the result given above.
(5) J. W. S. Cassels, On two problems of Mahler, © Proc. Kon. Ned. Akad. v. Wet. », 51 (1948), 282.285.

