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S u n t o .  - Data una variet~ complessa non si~golare V, si pub definire una coppia congiunta 
di punti di V. Nel ca~o ove V ~ una vwri6~& razionale, di un tipo molto ristretto (.~ ~), 
si eonsiderano le propriet~ topologiche dell'insieme di topple eongiunto. Questo ~ u#o 
spazio fibra$o, il the rondo possibile la determinazione dei suet gruppi di omologia. 
Si costruisce esplicitamente una base per questi gruppi. 

1. An ordered po in t -pa i r ,  in a given n-dimensional  complex projective 
space S, consists of a pair of points taken in a definite order:  a j o ined  

p o i n t - p a i r  consists of an ordered point-pair  (P, Q), together with a line R 
which goes through P and through Q. To any joined pair corresponds jus t  
one ordered pair :  but the converse is true only if the two points do not 
coincide. 

An irreducible, non-singular,  aIgebraic variety V being given in S, it is 
possible to define a j o ined  p o i n t - p a i r  o f  V. This is a joined pair (P, Q, R} 
in S, subject to the restrictions that :  

(a) P and Q must  be on V; and 
(b) If P and Q coincide, R must be a tangent line to V a t  P. 

I use, for the set of joined pairs of V, the symbol V • V, which resembles 
the symbol V X  V for the set of ordered pairs. The set S .  S of. joined pairs 
of S is a part icular  case. 

VAN" DER WAERDEI~ [6] has given some account of the joined pairs 
(verbundene Punk tepaare )  of S :  the more general concept has hardly ever 
been stated explicitly. But, implicitly, it plays a large part in SCHUBERT'S 
enumerative geometry:  thus, his S t rah lenpaare  t[3]. § 15) are essentially 
joined point-pairs  of the KLEI~ quadrie. Again, it is implicit in B. SEGRE'S 
recent discoveries ([5], pp. 31, 91) that the study of V ,  V can throw light 
on the properties of the variety V itself. In  such a study, the present topo- 
logical investigation may be helpful. 

In  § 2, severe restrictions are imposed on the variety IT. But these 
restrictions cover quadric varieties, Grassmannians, and other types whose 
topology has been s tudied;  so that greater generality would not have much 
practical importance. However, some of the propositions established below 
could be proved more generally. 
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2. T h e  variety V is supposed to have all the following propert ies :  
(a) F is an irreducible,  non-singular ,  m-dimensional  algebraic variety 

in the n-d imensional  projective space S. It  follows that, topologically, V can 
be regarded as an oriented manifold of 2m ¢ real >> dimensions. It is supposed 
that this manifold is simply connected. 

(b) V is ra t ional :  moreover, it can be birationally projected from an 
(n - - m  - -  1)-space T onto an m-space  S', the correspondence being one- to-one 
as be tween  points of V and S' not lying in a prime So. (So will contain T.) 
Given any two points A, B on Y, the projection can be so chosen that 
nei ther  A nor B is on So. 

(c) We can choose on V varieties Ai,  A. , . . . ,  Av; 'Ai, 'As,.. .  , 'Av, 
with the following propert ies:  The homology classes determined by Al,  ..., A,, 
form a basis for the homology groups of V in all dimensions. Ai and 'Ai 
have no common point if i < j :  but ( f o r / : =  1,...,  v) Ai and 'Ai have one 
common point, at which they intersect  simply on V. These varieties are not 
uniquely  determined by the properties s tated:  they can still be chosen, even 
when they are required to be in general  position (on V} with respect to one 
another,  and also with respect to a finite number  of varieties given on V. 
The variety A, will be a single point. 

By way of example, suppose that V is a noB-singular  quadric surface. 
Here  m = 2, n - - -3 ,  and the conditions (a) and (b) are known to be satisfied. 
To verify (c), we have only to take At and 'A 4 to be distinct points of the 
sur face ;  A~ and 'As, distinct generators of one sys tem;  A s and 'A2, distinct 
generators of the other sys tem;  and A4 and 'A~ each consisting of the whole 
sur face :  care being taken that nei ther  of the two points lies on any of the 
four generators.  

3. V* V is an irreducible, non-s ingular  , 2m-dimensional  algebraic variety. 
This follows ([4], p. 15) if we regard V ,  V as obtained by dilating V X  V, 
the base being the variety of elements (P, P). Another  way of proving it is 
to set up a system of parameters,  allowable in the neighbourhood of an 
arbi t rary point of V ,  V. 

To do this, let us take the arbi t rary point to be the element (,4, B, G); 
and let us make the ar rangements  postulated in § 2 (b), nei ther  A nor B 
being on S o . Then, since T and S' are skew and S o contains T, we may 
take all these spaces to be faces of the simplex of re fe rence :  say, 

T, ~o . . . . .  ~ - ' 0 ;  
S', a~m+L --- ... -~- x,, - -  0 ; 

So, a~= O. 

The effect of this is that, if one point is the projection of another  from T 
onto S', their  coordinates ~ are proportional ( i - - 0 ,  ..., m): and that, if one 
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line is the projection of another, their  coordinates PO are proportional 
(i, j = O, ..., m). 

Let projections on S' be denoted by dashes;  for instance, let O' be the 
projection of G. Then G' goes through a point A' not on So, and therefore 
meets So in one point. This point cannot have x~ ~ ... ~ w,n --" 0 :  so we may 
suppose, without  loss of generality,  that it has a~, =~=0. 

Now let M be the set of all elements (P, Q, R) of V .  IT, such that P 
and Q are not on S o , and that R' meets S o in a point (Z', say) at which 
~ :~=0. Then .:M is a neighbourhood of (A, B, G) on V .  V. Suppose, for such 
an element, that  

LP and P '  have 
Q and Q' have 
and Z '  has 

so that R and R' have 

~o : 0vt - -  1 : Urn+l ; 
Z o : " ~ l : ~ * : ' " : ~ m ~ 0 :  l : u m + , : . . . : U 2 m ,  
Po~ :Po~ : "'" :P,m ~--- 1 : ~,,*+t " "'" " U,m. 

Then iu~,..., u~,,) is an allowable system of parameters  for M. To verify 
this, we observe first that, for any element of M, u~,.., have determinate 
finite values:  we must  then prove that any set of finite values for u i , . . .  
determines an element of M. In fact, such a set determines a point P ' ,  on S'  
but not on So, and a point Z', on S'  and So but having x t:4:0. P '  and Z', 
being distinct, have a definite join R', which does not meet the face x, ----- xl ----- 0 
of the simplex of reference : therefore there is jus t  one point Q' on R' having 
x 0 : x 4 --- l : um+t.  And P '  and Q', not being on So, have definite projections P 
and Q on V. If P and Q are distinct, R is their  j o i n :  if not, R is the unique 
tangent line to V at P whose projection is R'. 

So it is verified that V ,  V is an irreducible, non-singular, .  2m-dimensional  
var ie ty :  accordingly, V .  V'is  a 4m-dimensional  manifold. 

4. The most important  topological property of V .  V is that it is a 
f ibre-bundle.  The rigorous proof of this property occupies §§ 4-8. 

Let  A be a fixed point of V, and let us make the arrangements  of § 3, 
A not being on S O . Let N, N' be the sets of all points of V, S' which are 
not on S, .  By taking as coordinates the real and imaginary parts of the 
non-homogeneous coordinates xJxo, ..., x,~/~o, let us put N'  in one-one 
correspondence with a real Eucl idean space N" of 2m dimensions. 

Let A" be the point of N" corresponding to A', and P "  another fixed 
point of N". Corresponding to any point Q" of N", we define a point U" by 
the following construct ion:  

if P"Q"~P"A",  draw Q"U" equal and parallel  (in the same sense) to P"A"; 
if P " A " ~  P"Q" ~ 3P"A", draw Q"U" parallel to P"A", but of length 

_1 (3P"A" --  P " ¢ ' )  ; 
2 

if P " Q " ~  3P"A", take U" to coincide with Q". 
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Then it is clear that the mapping Q" ~ U" is a homoeomorphism of .N" 
with itself, and has the following propert ies:  

(a) The imago of P"  is A";  
(b) If Q" is sufficiently near P",  we obtain the coordinates of U" by 

adding constants to the coordinates of Q"; 
Ic) If Q" is sufficiently far from P", U" coincides with Q"; 
(d) If P"  were allowed to vary, U" would depend continuously on P"  

and Q", and Q" would depend continuously on P"  and U". 

5. Let us consider the images in /V' of the points of _N" discussed in § 4. 
We have, determined by any fixed point P '  of 2W, a homoeomorphism Q'--* U' 
of 2V' with  itself, having, the following propert ies:  

(a) The image of P '  is A';  
(b) If Q' is in a certain ncighbourhood of P', we obtain the non-homo- 

geneous coordinates of U' by adding constants to those of Q'; 
(c) If Q' is in the neighbourhood of So, U' coincides with Q'; 
(d} If P '  were allowed to vary, U' would depend continuously on P' 

and Q', and Q' would depend continuously on P '  and U'. 
It  is a consequence of property (b) there is a eollineation of S' (determined 

by P') which, for points Q' in the neighbourhood of P' ,  coincides with the 
above homoeomorphism. Now this eollineation puts the lines R' through P '  
in one-one correspondence with the lines L' through A', in such a way that :  

(e) If Q' is in the neighbourhood of P' ,  the lines P'Q' and A'U' correspond; 
(ft If P '  were allowed to vary, L' would depend continuously on P '  

and R', and R' on P '  and L'. 

6. Let us consider the projections on N of the points of N' discussed 
in § 5. We have, determined by any fixed point P of 2~, a homoeomorphism 
Q --* U of N with itself, having the following properties:  

(a) The imago o[ P is A;  
(c) If Q is in the noighbourhood of So, U coincides with Q; 
(d) If P were allowed to vary, U would depend continuously on P 

and Q, and Q on P and U. 
In virtue of property {c}, we can extend this mapping, by taking U to 

coincide with Q when Q is in So, and obtain a homoeomorphism of V with 
itself which has properties (a) and (d). (A and P must still be points of _hr.) 

Further,  we can set up (by projection from the correspondence R' ~ L') 
a projeetivity between tangent lines R to V at P and tangent lines L to V 
at A, with the following propert ies:  

(e) If Q tends to P in any manner,  the limiting positions of the lines 
PQ and A U are tangent lines corresponding in the projectivity; 

(f) If P were allowed to vary, /~ would depend Continuously on P 
and R, and R on P and L. 
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7. If  E, F are two sets of points on V, we may denote by E , F  the set 
of all elements (1) , Q, R) of V~ V s u c h  that 1) is in E and Q i n  F.  V b e i n g  
fixed, there is no danger of ambiguity. 

W e  are now able to set up, for any f ixed point P of N, a mapping 
(1), Q, R).-~ (A, U, L) of 1) ,  V onto A ,  V, l~amely, if (1), Q, R) is an element 
of 1 ) ,  V, we  take U to be the image of Q in the homoeomorphism of § 6. 
If  Q is distinct from 1), then U is distinct from A, and L can only be the 
join of A and U: if Q coincides wi th  1), then we take L to be that tangent 
line to V at A"which  corresponds to R in the project ivi ty of § 6. 

It  follows from § 6 that this mapping is a homoeomorphism be tween  
1 ) ,  V and A • V, and tha t ,  if P is a l lowed to vary, (A, U, L) depends  conti- 
nuously  on 1) and (P, Q, R), and (1), Q, R) depends cont inuously on P 
and (A, U, L~. 

This is as much as to say that the mapping 

(P, Q, R ) ~ ( P ,  (A, U, L)) 

is a homoeomorphism be tween  N ~  V a n d  N X ( A  • V), in which the image 
of 1) • V always coincides with 1)>4 (A • V). 

8. Now let us take a fixed point 0 of V, and al low A to vary. W e  may 
suppose that, for each position of the point A on V, the process of §§ 4-7 
has been gone through, the appara tus  being a lways so chosen that O, as 
wel l  as A, lies in N. 

It  will  then be clear from § 7 that there is a lways  a homoeomorphism 
be tween  0 ,  V and A ,  V, and another be tween N ,  V and N X ( A ,  V); 
combining these, we can construct  a homoeomorphism be tween  N ,  V and 
N X  ( 0 ,  V). We  are thus in a position to asser t :  

Let 0 be a fixed point of V, and A be any point of V. Then A ,  V is 
homoeomorphic with 0 ,  V: and we can find a neighbourhood N of A on V, 
and a homoeomorphism between N ~  V and N X ( O ,  V), in which, for any 
point P of N, the image of P • V must coincide with P X (0 • V). 

This is as much as to say that V* V is a fibre-bundle, with base-space V 
and fibre 0 ,  V: the projection of the bundle onto the base-space is given 
by (1), Q, 1). 

9. Now 0 ,  V is an irreducible,  non-singular ,  m-dimensional  algebraic 
variety (being obtained by dilating V with 0 as basel. I t  is, accordingly, an 
orientable manifold of 2m dimensions. 

The correspondence (0, Q, R ) ~  Q is a cont inuous mapping of O ,  V 
onto V; the whole set 0 • 0 maps on the point  0, but  elsewhere the mapping 
takes the form of a homoeomorphism. 

Since V is a 2m-manifold,  there is a neighbourhood E of 0 on V which  
is a 2m-cell,  and whose frontier D is a (2m --  1)-sphere. Let  F be the closure 
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and G the complement  of E in V: let E', D', F', G' be the respective inverse 
images in 0 ,  V of E, D, F, G. 

O ,  0 is homoeomorphic with the set of tangent  lines to V at O, and 
therefore with complex projective ( m - - 1 ) - s p a c e ;  so that its p ' th  homology 
group, H~(O • 0), is free cyclic for p - -  0, 2, 4, ..., 2 m  - -  2, and null  for other 
values of p. The relative homology group H~(F', 0 , 0 ) ,  being isomorphic 
wi th  H~(F, 0), is null for every p :  therefore I-I~(F'), for every p, is isomor- 
phic with H~(O. 0). 

Again, H~(G', D') is isomorphic (for every p) with H~(V, F), and therefore 
(p:¢:o) with 

l~ow tt~(D') is null  for p----1, 2, ..., 2 m -  2. Therefore,  for p -  2, 3, ..., 
2m -- 2, H~(F', D') is isomorphic wi th  H~(F'), and Hp(O • V) with tt~(0 • V, D'). 
But the set 0 • V - -  D' is the union of the disjoint sets F '  - -  D' and G' - -  D' : 
therefore H#(O, V, D') is (for every p) the direct  sum of H~(.F', D') and 
H~(G', D'). And so, for p---2,  3, ..., 2m - 2, H~(O , V) is the direct  sum of 
H~( V) and H~( O , 0). 

Again, H~,~_I(O * O) and H2,,-I(O * V, 0 • O) are null, and H~,,(O • V, 0 • O) 
free cycl ic :  therefore H2,~_i(O, V) is null, and H~,,(O, V) free cyclic. 

It  follows by duali ty that Ho(O, V) is free cyclic, and H~(O, V) null. 
Combining these results, we conclude that 0 ,  V has no torsion, and 

that its BE~TI numbers  are given by 

Rv(O. V) ----- Rt(V) -I- 1 ( p  - -  2, 4 ,  6,  .... 2m - -  2 ) ;  

Rr(O,  V)--R~(V)  (all other p). 

The sum of the B~,~I numbers  of V is v (§ 2): therefore the sum of 
those of O ,  V i s  v - t - m - - 1 .  

I0. Thus V ,  V is a f ibre-bundle,  and the homology groups of the base-  
space V and the fibre 0 ,  V are known. From a theorem of KuDo [2] we 
know that the homology groups of V ,  V will be isomorphic wi th  those of 
V X (0 * V~, if the following conditions are sat isf ied:  

Is) The base-space is a finite complex;  
tb) The fibre is an orientable manifold;  
It) The group of transformations of the fibre is connected;  
(d) The injection homomorphisms of the homology groups of the fibre 

into those of the bundle arc  isomorphisms into. 
Now conditions Is) and (b) are, in fact, satisfied, and (c) must be because 

the base-space is simply connected. To verify (d~ it will suffice {the fibre 
having no torsion) to construct  a collection of l inearly independent  homology 
classes of V ,  IT, all containing cycles on O ,  V, the number  of classes being 
the sum of the B E ~ I  numbers  of 0 ,  V. 
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We shall, in fact, construct  such a collection of homology classes:  but 
it will be only a part  of another  collection, which will  be large enough to 
serve as a basis for the homology groups of V ,  V. 

11. Let  us begin by making the ar rangements  of 8 2(c) - -  and, in fact, 
by making them twice over. That  is, let there be varieties A~,..., Av; IAi,. . . ,  'A~ 
on V, with the properties of 8 2:  and let there be o the r  varieties, named 
respectively B , , . . . ,  By; 'B~, ..., 'By, wi th  corresponding properties. Let  the 
whole collection of 4v varieties be in general  position among themselves:  let 
no three of them have a common point if the sum of their  dimensions is 
less than 2m. 

Let  us l ikewise choose, for k ~--1, 2, ..., m - - 1 ,  l inear  spaces S~: and 'S~ 
in S :  the dimension of Sk is to be n - - m ~ - k ,  and that of 'S~: to be n - - l - - k .  
These spaces are all required to be in general  position in S. 

The point 0 of 8 8 was arbi t rary;  let us suppose, for convenience of 
statement,  that O is the single point of which the variety A~ consists. 

12. Let  us define, by means of the varieties of 8 11, various sets of 
elements  (P, Q, R) of V ,  V. 

Let Pi, 'Pi ( i =  1, 2, .... v) be defined by the property that P lies on 
Ai, At respectively. Let  Qj, 'Qj ( j = l , . . . ,  v) be defined by the property that O 
lies on Bj or 'B] respectively. Let Rk, 'R, ( k - -  1,..., m - -  1) be defined by 
the property that R meets Sk or 'S~: respectively. And let C be defined by 
the property that P and Q coincide. 

All these are subvarieties of V ,  V. If the dimensions of At, Aj are g, h, 
those of P,, 'Pi, Qj, 'Qj are r e + g ,  2 m - - g ,  r e + h ,  2 m - - h :  and the dimen- 
sions of Rk, 'R~, C are  m + k + l ,  2 m - - k ,  2 m - - 1 .  (These statements are 
fairly obvious, and will be verified in 88 15, 16, where  the varieties will be 
represented by equations involving local parameters.) 

According to the supposition made at the end of 8 11, Pt  is the same 
set that we have been calling 0 ,  V. 

13. Each of the varieties of 8 12 defines a homology class Iof twice as 
many dimensions) of the 4m-dimensional  oriented manifold V ,  V: this class 
may be repl;esented by the same symbol as the variety, only wi th  a lower-case  
let ter  instead of the capital. 

By taking the intersections of classes so determined,  we define other 
homology classes of V ,  V as follows: 

'dij - -  'pi . 'qj 
e i k  ~ p i  ° r k  • G 

~ e i k  ----- ~Pi • ' r k  

(i, j = 1, 2, . . . ,  v); 

( i , j = l ,  2,...,  v); 

( i - -  1,..., v; k = l , . . . ,  m - - l ) ;  

(i~-~ 1,..., v; k - -  1,..., m - -  1). 
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The dimensions of these classes are respect ively 2(g ÷ h), 2 ( 2 m - - g - - h ) ,  
2(g + k), 2(2m ~ g - - k } ,  where  g and h are the dimensions of At and Aj. 

Also, for j ~ 1, ..., v; k----1, ..., m -  1, the class dlj or el~: must  contain 
cycles of 0 .  V. 

14. It  has to be proved that the homology classes dtj, elk of § 13 are all 
l inearly independent.  In order to do this, we  determine some of their inter- 
section numbers  with the classes 'dtj, 'e~k. 

If  d~ and d~t are classes of the same dimension, and i < s, then the 
intersection number d~i. 'dst is zero. 

For  A~ and 'A~ have no common point ;  therefore Pt  and 'Ps have no 
common element;  therefore P t " P s  is a zero homology class;  therefore the 
intersection number  Pt" qj" 'Ps" 'qt is zero, which  was  to be proved. 

I f  eta: and est are of the same dimension, and i < s, then et~. 'est is zero, 
for similar reasons. 

I f  dr1 and dst are of the same dimension, and j < t, then dr1 • 'd~t is zero, 
for similar  reasons (relating to Q). 

I f  e~ and dst are of the same dimension, then et~ • 'dst is zero. 
For, if At, As, At have dimensions f, g, h {and accordingly 'As, 'Bt have 

dimensions m ~ g ;  m -  h), we have 

f ÷ k - - g + h ,  k~>0,  
and so 

f + (m - -  g) + (m - -  h) < 2m ; 

therefore (§ 11) At, 'As, 'Bt have no common point': but  a common element 
of Pt, C, 'Ps, 'Pt would  have P and Q Coinciding at such a common point. 

15. For  any i, j, the intersection number dr1. 'dr1 is + 1. 
In  fact, At and 'At have one common point. X say:  and B i and 'Bj have 

one common point, Y say, distinct from X. Thus  Pt, 'Pt, Qi, 'Qi have one 
common element (X, Y, XY) .  

Let  (t,, t~,... ,  t~) be an al lowable  system of parameters ,  represent ing V 
in the neighbourhood o~ X :  and let It,,+,, ..., t~m) be such a system for the 
neighbourhood of Y. Then there is a neighbourhood of (X, :Y, X Y )  on V.  V 
(not containing any elements of C) in which (ti, ..., t2m) is an al lowable 
system of parameters  represent ing V ~ V. (Namely, t~,..., t,, determine a 
point P ;  t,n+~ .... , t2m determine a distinct point Q; and R is the jo in  PQ). 

In  the neighbourhood of X, the varieties At and 'At are determined by 
equat ions in the parameters  t j , . . . ,  t,, : there are altogether m of these equa- 
tions, and their Jacobian  in the m parameters  is not zero at X. (This is 
implicit  in the postulate of § 2 that At and 'At intersect  simply on V.) The 
same equat ions (regarded as equations in t , ,  ..., t2m, in which t , ,+, ,  ..., t2,, 
happen not to appear) determine Pi  and 'Pt in the neighbourhood of (X. Y, XY} .  
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After  applying similar reasoning to B 1 and 'Bj,  we conclude tha t , - in  
the neighbourhood of (X, Y, X Y ) ,  the varieties P~, 'P~, Qi, 'QI are determined 
by equations in the parameters  t , , . . . ,  tzm : there are al together 2m of these 
equations, and their  Jacobian in the 2m parameters  is not zero at (X, Y, XY} .  

Therefore [1] the intersection number  p~ • 'p~ • q1 " 'qi is + 1, which was  to 
be proved. 

16. For any  i, k, the intersection number e ~ .  'e¢~ is -t-1. 
In  fact, ~1~ and 'A~ have one common point, X say : let U be the tangent  

m-space  to V at X. Then U meets S~ and 'S~ in spaces, of dimensions k and 
m - - k - - 1  respectively, which  are in general  position in U; so that there is 
one transversal  line, W say, from X in U to these spaces. We see that 
(X, X, W) is the only common element of the varieties Pi,  Rk ,  C, 'Pi, 'R~. 

It  is required to prove tha t  the five varieties intersect  simply at this 
point. This amounts to proving that some determinant  does not vanish, S~ 
and 'Sk being supposed genera l :  and it will  suffice to prove that the deter- 
minan~ does not vanish when S~ and 'S~ have some special position. 

Let  us, accordingly, make the ar rangements  of § 3, X having zo =~=0 
and W having P0f =4 = 0 ; thus the parameters  us, ..., U2m (§ 3) wil l  be allowable 
for V .  V in the neighbourhood of (X, X,  WD. Let us then specialise Sk to be 

and 'S~ to be 

~ o  ~ ~ ~ ~ s  . . . . .  O~m_ k - -  0 

~o --- ~ m - - h 4 - t  - - -  ~ m - - h - l - 2  . . . . .  ~ m  - - "  O .  

This means that a line tP~t) having Poi :4 = 0 will  meet Sk if a n d  only if 

Po~ - -  - - P o ,  m - h  ~ O, 

and 'S~ if and only if 

~ 0 ,  m - - h 4 - t  - - -  . . -  " - - ' ~ o m  - - - 0 .  

Now x , / x  o (r ~ 1, ..., m) will  be an allowable system of parameters  for V 
in the neighbourhood of X. And it will follow, as in § 15, that P~ and 'pi 
are represented,  in the neighbourhood of {X, X,  W}, by equations in the 
parameters  u , ,  ..., um: these equations will  be m in number  altogether, with 
a non-vanishing  3acobian at (X, X, W). 

The other three varieties are represented (in the same neighbourhood) 
by t h e  following equat ions:  

C, um+l - -  U, --" 0 ; 

l~k, Um+~ ----- ... ----- U 2 m - h  ~ 0 ; 

' / ~ k ,  U z m _ / t + t  ~ ~ U ~ m  ~---- O .  
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T h e s e  m equations, with the equations of Pi and 'Pi,  make up a set of 2m 
equations in the 2m parameters,  with a Jacobian which is obviously not zero. 
Therefore,  in the ease where  S~, 'Sk are general,  we  must  l ikewise have 2m 
equations wi th  a non-zero Jaeobian. 

Therefore  the intersection number  

p~- 'p~. c- r~ • 'r~ ---- + 1, 

which  was to be proved. 

17. In  order  to state more briefly the results of 99 14-16, let us take, 
from the set of all the homology classes dii, e~,  all those of dimension s 
(s being an arbi t rary  integer). Let  us arrange these in a definite order, as 
fol lows:  First  the classes e,~, in ascending order of the suffix i (there cannot 
be two of dimension s wi th  equal i); then the classes dii, in ascending 
order  of the suffix i, and (for equal i) in ascending order of the suffix ]. 
For  convenience of statement,  let us give to these classes new names f~, 
f~,. . . ,  the suffixes running  in the order descr ibed:  and let the corresponding 
classes 'd~j, 'ea: (which are all of dimension 4 m -  s) have new names 'f~, 
'fz, ... respectively. 

Then we conclude from §9 14-16 that the interseotion number f~. 'f~ is 
zero i f  i < j ,  and  un i ty  i f  i = j .  

It  follows immediately that all the classes d~i, e~k are l inearly independent. 
In  part icular ,  the classes dli,  el~: ( j - - 1 , . . . ,  v;  k~--1, . . . ,  m - - 1 )  are 

l inearly independent :  but the number  of these classes, v - t - m - - 1 ,  is the 
sum of the B E ~ I  numbers  of 0 .  V (9 9), and each of them contains cycles 
of o ,  v (§ 13). 

Therefore  the conditions of 9 10 are satisfied; and we conclude that 
V ,  V and V X ( O *  V) have isomorphic homology groups. That  is, V ,  V 
has no torsion, and the sum of  its Betti  numbers is v(v + m - 1 ) .  

18. But, in fact, we have v(v-4-m ~ i) l inearly independent  homology 
classes d~j, e~k. Therefore,  for any dimension s, the number  of the classes 
f~, f~,.., must  be the s ' t h  B E ~ I  number  of V .  V. It follows, these classes 
being l inearly independent ,  that any s-dimensional  integral  homology class h 
can be expressed in the form 

h - -  t , f ,  + t J 2  4 -  . . . ,  

whore t~, t~, ... are rational numbers.  
We then see, moreover,  that tt ,  t_~,.., are all integers. Suppose, in fact, that 

some coefficients, of which  the last one is t~, are not integers. Then, according 
to 9 17, the integral  classes h and 'f~ will have a non- in tegra l  intersection 
n u m b e r :  which  is impossible. 
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Therefore the classes d~j, e~ (i, j - - l , . . . ,  v;  k - - l , . . . ,  m - - l )  form a 
basis for the integral homology groups of V .  V in all dimensions. 

(An alternative basis is formed by the classes 'd#, 'e~: this may be 
similarly proved.) 

Consider~ by way of example, the case of the quadric surface (§ 2), in 
which m = 2 ,  v = 4 ,  and A~, A2, As, A 4 have dimensions 0, 1, 1, 2. There 
are 20 basic homology classes: 

d~ of dimension 0 

e , ,  d,~, dt~, d~t, ds~ 2 

e2,, e3t , dt4 , d ~ ,  d~8 , d ~ ,  d~3 , d~l 4 

e4~, d~4, d34, d4~, d4a 6 

d44 8. 
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