On the topology of the joined point-pairs
of an algebraic variety.

Memoria di R. H. F. DennisToN (a Ibadan, Nigeria).

Sunto. - Data una varietd complessa non singolare V, si pud definire una coppia congiunta
di punti di V. Nel caso ove V é una varietd razionale, di un tipo mollo ristretio (3 2),
si considerano le proprietd fopologiche dell imsieme di coppie congiunte. Questo é uno
spazio fibrato, il che rende possibile la delerminazione dei suoi gruppi di emologia.
8i costruisce esplicitamente una base per questi gruppt.

1. An ordered point-pair, in a given n-dimensional complex projective
space S, consists of a pair of points taken in a definite order: a joined
point-pair consists of an ordered point-pair (P, @), together with a line R
which goes through P and through @. To any joined pair corresponds just
one ordered pair: but the converse is true only if the two points do not
coincide.

An irreducible, non-singular, algebraic variety V being given in S, it is
possible to define a joined point-pair of V. This is a joined pair (P, @, R)
in S, subject to the restrictions that:

(@) P and Q must be on V; and
() If P and @ coincide, B must be a tangent line to V at P.

I use, for the set of joined pairs of V, the symbol V x V, which resembles
the symbol V> V for the set of ordered pairs. The set S+ S of joined pairs
of § is a particular case.

VAN DER WAERDEN (6] has given some account of the joined pairs
(verbundene Punktepaare) of S: the more general concept has hardly ever
been: stated explicitly. But, implicitly, it plays a large part in SCHUBERT’s
enumerative geomefry: thus, his Sirahlenpaare ([3). § 1b) are essentially
joined point-pairs of the KLEIN quadric. Again, it is implicit in B. SEGRE’s
recent discoveries ([B], pp. 31, 91) that the study of V « V can throw light
on the properties of the variety V itself. In such a study, the present topo-
logical investigation may be helpful.

In § 2, severe restrictions are imposed on the variety V. Buf these
restrictions cover quadric varieties, Grassmannians, and other types whose
topology has been studied; so that greater gemerality would not have much
practical importance. However, some of the propositions established below
could be proved more generally.
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2. The variety V is supposed to have all the following properties :

(@) V is an irreducible, non-singular, m-dimensional algebraic variety
in the n-dimensional projective space S. It follows that, topologically, V can
be regarded as an oriented manifold of 2m « real » dimensions. It is supposed
that this manifold is simply connected.

(b) V is rational : moreover, it can be birationally projected from an
(n —m — 1)-space T onto an m-space S’, the correspondence being one-to—one
as between points of V and S’ not lying in a prime S,. (S, will contain T)
Given any two points 4, B on V, the projection can be so chosen that
neither 4 nor B is on S,.

() We can choose on V varieties 4,, 4,,.., 4,; '4,, '4,,..., '4,,
with the following properties : The homology classes determined by 4,, ..., 4,
form a basis for the homology groups of V in all dimensions. 4; and ‘d4;
have no common point if ¢<j: but (for ¢ =1,.., v) 4; and ’4; have one
common point, at which they intersect simply on V. These varieties are not
uniquely determined by the properties stated: they can still be chosen, even
when they are required to be in general position (on V) with respect to one
another, and also with respect to a finite number of varieties given on V.
The variety A, will be a single point.

By way of example, suppose that V is a nop-singular quadric surface.
Here m = 2, n =3, and the conditions (a) and (b) are known to be satisfied.
To verify (¢), we have only to take A4, and ‘A, fo be distinct points of the
surface; A4, and '4,, distinct generators of one system; A4, and '4,, distinct
generators of the other system; and 4, and ‘4, each consisting of the whole
surface: care being taken that neither of the two points lies on any of the
four gemerators.

8. V* V is an irreducible, non-singular, 2m~dimensional algebraic variety.
This follows ([4], p. 15) if we regard V x V as obtained by dilating VXXV,
the base being the variety of elements (P, P). Another way of proving it is
to set up a system of parameters, allowable in the meighbourhood of an
arbitrary point of Vx V.

To do this, let us take the arbitrary point to be the element (4, B, G);
and let us make the arrangements postulated in § 2 (b), neither 4 nor B
being on S,. Then, since T and S’ are skew and §, contains T, we may
take all these spaces to be faces of the simplex of reference: say,

T, By == v0o =Ly, = 0

i Lt = 00 = Tn = 0;

S,, x=0.
The effect of this is that, if one point is the projection of another from T
onto §’, their coordinates u; are proportional (=0, ..., m): and that, if one
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line is the projection of another, their coordinates p;; are proportional
¢ j=0,.., m).

Let projections on §” be denoted by dashes; for instance, let G’ be the
projection of G. Then G goes through a point A4’ not on S,, and therefore
meets S, in one point. This point cannot have », = ... =x,, = 0: s0o we may
suppose, without loss of generality, that it has x, 5= 0.

Now let M be the set of all elements (P, ¢, B} of V » V, such that P
and @ are not on §,, and that R meets S, in a point (Z’, say) at which
2,30. Then M is a neighbourhood of (4, B, G) on V » V. Suppose, for such
an element, that

P and P’ have By 2, Lo i =100, 0 e DUy

@ and ¢ have Ty w,=1%p,y;

and Z' has By i, i %yt e Ly =010 000l Mgy,
so that B and R’ have Doy iPossov i Pom =11 Uanyg? o I Ugpm.

Then u,, ..., #;,,) is an allowable system of parameters for M. To verify
this, we observe first that, for any element of M, u,,.. have determinate
finite values: we must then prove that any set of finite values for u,, ...
determines an element of M. In fact, such a set determines a point P/, on S’
but not on §,, and a point Z’, on S’ and S, but having x,3=0. P’ and Z',
being distinct, have a definite join ', which does not meet the face x,=x, =0
of the simplex of reference: therefore there is just one point ¢ on R’ haying
®, %, =1:%py,,. And P’ and ¢, not being on S,, have definite projections P
and @ on V. If P and @ are distinet, R is their join: if not, R is the unique
tangent line to V at P whose projection is K.

So it is verified that ¥V  V is an irreducible, non-singular, 2m-dimensional
variety : accordingly, V * V is a 4m~dimensional manifold.

4. The most important topological property of V« V is that it is a
fibre-bundle. The rigorous proof of this property occupies §§ 4-8.

Let A be a fixed point of V, and let us make the arrangements of § 3,
4 not being on §,. Let N, N' be the sets of all points of V, S’ which are
not on §,. By taking as coordinates the real and imaginary parts of the
non-homogeneous coordinates «,/%,,.., ®,/x,, let us put N’ in one-ome
correspondence with a real Euclidean space N” of 2m dimensions.

Let A" be the point of N” corresponding to 4’, and P” another fixed
point of N”. Corresponding to any point @ of N”, we define a point U" by
the following construction:

if P"Q"<<P"4", draw @"U" equal and parallel (in the same sense) to P"4";
if P’A" < P'Q" <3P"4", draw Q'U" parallel to P”4”, but of length

1 " AN " i
5 BP"4" — P"Q");
it P"Q"=3P"4", take U" to coincide with §".
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Then it is clear that the mapping @ — U” is a homoeomorphism of N”

with itself, and has the following properties:

(@) The image of P” is .4”;

(0 If @' is sufficiently near P”, we obtain the coordinates of U” by
adding constants to the coordinates of @”;

(c) It Q" is sufficiently far from P”, U” coincides with @";

(d) If P"” were allowed to vary, U” would depend continuously on P”
and @, and @’ would depend continuously on P” and U".

5. Let us consider the images in N’ of the points of N” discussed in § 4.
We have, determined by any fixed point P’ of N, a homoeomorphism ¢ — U’
of N' with itself, having the following properties :

(@) The image of P’ is A';

(b) It @ is in a certain neighbourhood of P’, we obfain the non-~homo-
geneous coordinates of U’ by adding constants to those of Q';

(¢) It @ is in the neighbourhood of S,, U’ coincides with &';

(d) It P’ were allowed to vary, U’ would depend continuously on P’
and @, and @ would depend continuously on P’ and U'.

It is a consequence of property (b) there is a collineation of S’ (determined
by P’) which, for points @ in the neighbourhood of P’, coincides with the
above homoeomorphism. Now this collineation puts the lines R’ through P’
in one-one correspondence with the lines L’ through A4’, in such a way that:

(¢) If € is in the neighbourhood of P’ the lines P'¢f and 4'U’ correspond ;
(/) If P’ were allowed to vary, L' would depend continuously on P’
and R, and B on P’ and L.

6. Lot us consider the projections on N of the points of N’ discussed
in § 5. We have, determined by any fixed point P of N, a homoeomorphism
Q — U of N with itself, having the following properties:

{(a) The image of P is A4;

¢} If @ is in the neighbourhood of §,, U coincides with @;

(d) If P were allowed to vary, U would depend continaously on P
and @, and @ on P and U.

In virtue of property (c), we can extend this mapping, by taking U to
coincide with Q when Q is in S,, and obtain a homoeomorphism of V with
itself which has properties (a) and (d). (4 and P must still be points of N.)

Further, we can set up (by projection from the correspondence R — L)
a projectivity between tangent lines R to V at P and tangent lines L to V
at A, with the following properties:

(¢) If Q tends to P in any manner, the limiting positions of the lines
PQ and AU are tangent lines corresponding in the projectivity ;

(f) If P were allowed to vary, L would depend continuously on P
and B, and B on P and L.
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7. If E, F are two sets of points on V, we may denote by E x F the set
of all elements (P, @, B) of V * V such that P is in E and @ in F. V being
fixed, there is no danger of ambiguity.

We are now able to set up, for any fixed point P of N, a mapping
(P, @, R)— (A, U, L) of PxV onto 4+ V, Namely, if (P, Q, R) is an element
of Px V, we take U to be the image of @ in the homoeomorphism of § 6.
If Q is distinct from P, then U is distinct from A, and L can only be the
join of 4 and U: if Q coincides with P, then we take L to be that tangent
line to V at A--which corresponds to R in the projectivity of § 6.

It follows from § 6 that this mapping is a homoeomorphism between
Px Vand 4V, and that, if P is allowed to vary, (4, I7, L) depends conti-
nuously on P and (P, Q R), and (P, @ RE) depends continuously on P
and (4, U, L).

This is as much as to say that the mapping

(P) Q’ R) - (P; (A; U: L»

is a homoeomorphism between N * V and N><(4 * V), in which the image
of P« V always coincides with P> (4 = V).

8. Now let us take a fixed point O of V, and allow A4 to vary. We may
suppose that, for each position of the point A on V, the process of §§ 4-7
has been gome through, the apparatus being always so chosen that O, as
well as 4, lies in N.

It will then be clear from § 7 that there is always a homoeomorphism
between O« V and A4« V, and another between N x ¥V and NX (4 * V);
combining these, we can construct a homoeomorphism between N x V and
N> (0= V). We are thus in a position to assert:

Let O be a fixed point of V, and A be any point of V. Then A + V is
homoeomorphic with O« V: and we can find a neighbourhood N of A on V,
and a homoeomorphism belween N+ V and N X (0 V), in which, for any
point P of N, the image of P » V must coincide with P> (0 * V).

This is as much as to say that V=« V is a fibre-bundle, with base-space V
and fibre O x V: the projection of the bundle onto the base-space is given
by (P, Q, R)—~ P.

9. Now O« V is an irreducible, non-singular, m-dimensional algebraic
variety (being obtained by dilating V with O as base). It is, accordingly, an
orientable manifold of 2m dimensions.

The correspondence (0, Q, R) — @ is a continuous mapping of O x V
onto V; the whole set O x O maps on the point O, but elsewhere the mapping
takes the form of a homoeomorphism.

Since V is a 2m-manifold, there is a neighbourhood E of O on V which
is a 2m~cell, and whose frontier D is a (2m — 1)~sphere. Let F be the closure
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and G the complement of E in V: let E', I, F', @ be the respective inverse
images in O x V of E, D, F, G.

O » O is homoeomorphic with the set of tangent lines to V at O, and
therefore with complex projective (m — 1)-space; so that its p’th homology
group, Hy(O = 0), is free cyclic for p=0, 2, 4,..., 2m — 2, and null for other
values of p. The relative homology group H,(F', O x 0), being isomorphic
with H,(F, 0), is null for every p: therefore H,(F’), for every p, is isomor-
phic with H,(0 » O).

Again, H, (@, D) is isomorphic (for every p) with H,(V, F), and therefore
(p=3=0) with H,(V). ‘

Now H,(D') is null for p=1, 2,..., 2m — 2. Therefore, for p=2, 3, ...,
2m — 2, H,(F', I)) is isomorphic with H,(F'), and H,(0 * V) with Hy(0 + V, D).
But the set O x V— D' is the union of the disjoint sets 7' — D' and G’ — D':
therefore H,(O x V, D) is (for every p) the direct sum of H,(F', D') and
H, @, D). And so, for p=2, 3,..., 2m — 2, H,(O » V) is the direct sum of
H,(V) and H,(O * 0).

Again, H,,,_,(O*0) and H,,,_(0O=*V, Ox0) are null, and H,,,(0*V, Ox0)
free cyclic: therefore H,,,_,(O * V) is null, and H,,,(0 » V) free cyclic.

It follows by duality that H,(O x V) is free cyclic, and H,(O » V) null

Combining these results, we conclude that O x V has no torsion, and
that its BETTI numbers are given by

R (O+»V)=R,V)+1 (p=24,6,.., 2m—2);
B0 x V)=R,(V) (all other p).

The sum of the BeErr numbers of V is » (§ 2): therefore the sum of
those of O x V is v +m — 1.

10. Thus V « V is a fibre-bundle, and the homology groups of the base~
space V and the fibre O x V are known. From a theorem of Kupo [2] we
know that the homology groups of V x V will be isomorphic with those of
V>< (0 * V), if the following conditions are satisfied :

(@) The base-space is a finite complex;

(6) The fibre is an orientable manifold ;

(c) The group of transformations of the fibre is connected ;

(d) The injection homomorphisms of the homology groups of the fibre
into those of the bundle are isomorphisms into.

Now conditions (@) and (b) are, in fact, satisfied, and (c) must be because
the base-space is simply connected. To verify (d) it will suffice (the fibre
having no torsion) to construct a collection of linearly independent homology
classes of Vs V, all containing cycles on O + V, the number of classes being

?
the sum of the BETTI numbers of O x V.
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We shail, in fact, construct such a collection of homology eclasses: but
it will be only a part of another collection, which will be large enough fo
serve as a basis for the homology groups of Vs« V.

11. Let us begin by making fhe arrangements of § 2(¢) — and, in fact,
by making them twice over. That is, let there be varieties A4,,..., Ay;’4,, .., 4,
on V, with the properties of § 2: and let there be other varieties, named
respectively B ,..., B,; 'B,, .., '‘B,, with corresponding properties. Let the
whole collection of 4v varieties be in general position among themselves: let
no three of them have a common point if the sum of their dimensions is
less than 2.

Let us likewise choose, for £ =1, 2, ..., m— 1, linear spaces Sp and 'Sy
in §: the dimension of S; is to be n—m -k, and that of 'Sg to be n—1—Ek.
These spaces are all required to be in general position in S.

The point O of § 8 was arbitrary; let us suppose, for convenience of
statement, that O is the single point of which the variety A4, consists.

12. Let us define, by means of the varieties of § 11, various sets of
elements (P, Q, E) of V'« V.

Let P;, 'P; i=1, 2,.., v) be defined by the property that P lies on
4A;, 4; respectively. Let Q;, 'Q; (j=1,..., v) be defined by the property that Q
lies on B; or 'B; respectively. Let Ry, ‘Rx (k=1,..., m — 1) be defined by
the property that B meets Sy or 'Sy respectively. And let C be defined by
the property that P and Q coincide.

All these are subvarieties of Vs V. If the dimensions of 4;, 4; are g, h,
those of P;, 'P;, Q;, 'Q; are m +g, 2m —g, m +h, 2m — h: and the dimen-
gsions of Rx, 'R, C are m+k+ 1, 2m —Ek, 2m — 1. (These statements are
fairly obvious, and will be verified in §§ 15, 16, where the varieties will be
represented by equations involving local parameters.)

According to the supposition made at the end of § 11, P, is the same
set that we have been calling O x V.

13. Hach of the varieties of § 12 defines a homology class (of twice as
many dimensions) of the 4m-dimensional oriented manifold V « V: this class
may be represented by the same symbol as the variety, only with a lower-case
letter instead of the capital.

By taking the intersections of classes so determined, we define other
homology classes of V x V as follows:

d;,-:p;-qj (’&,j: 1, 2, seey U);
‘dij ="pi + 'q; G i=1, 2,.., v);
ex=pi-rc-¢ ([E=1.,v;k=1,..,m—1);
‘i ="pi+ 1 (E=1,.., v; k=17"'7m'_1)’
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The dimensions of these classes are respectively 2(g - k), 2(2m — g — h),
2(g + k), 2(2m — g — k), where g and h are the dimensions of A; and 4;.

Also, for j=1,.., v; k=1,.., m — 1, the class dy; or e;; must contain
cycles of O = V.

14. It has to be proved that the homology classes d;;, e;x of § 13 are all
linearly independent. In order to do this, we determine some of their inter-
section numbers with the classes 'dy;, ‘ex.

If d;; and d,, are classes of the same dimension, and i <s, then the
intersection number di;-'d,, is zero.

For 4; and ‘A, have no common point; therefore P; and 'P, have no
common element; therefore p;-’p, is a zero homology class; therefere the
intersection number p; « g;+ 'p, - ‘q; is zero, which was to be proved.

If ex amd ey are of the same dimension, and i < s, then ey «'e,, is zero,
for similar reasons.

If di; and d,, are of the same dimension, and j < i, then d;-'d, is zero,
for similar reasons (relating to Q).

If e, and d,, are of the same dimension, then ex -'d,; is zero.

For, if 4;, A,, A, have dimensions f, g, » (and accordingly ‘4,, 'B, have
dimensions m — g, m — k), we have

f+k=g-+h, E>0,
and so
f+(m—g)+ (m—h) <2m;
therefore (§ 11) 4;, 'A,, ‘B; have no common point: but a common element
of P;, C,'P,, 'P, would have P and Q coinciding at such a common point.

15. For any i, j, the intersection number d;;-'d;; is + 1.

In fact, 4; and 'd; have one common point., X say: and B; and 'B; have
one common point, Y say, distinet from X. Thus P;, 'P;, Q;, 'Q; have one
common element (X, Y, XY).

Let (¢,, t,,..., {,,) be an allowable system of parameters, representing V
in the neighbourhood o# X: and let (f,,44,..., fsm) be such a system for the
neighbourbood of Y. Then there is a neighbourhood of (X, ¥, XY) on Vx V
(not containing any elements of C) in which (¢ ,..., 4,) is an allowable
system of parameters representing V « V. (Namely, ¢,,.., {,, determine a
point P; &4y, ..., ts determine a distinct point @; and E is the join PQ).

In the neighbourhood of X, the varieties 4; and 'A; are determined by
equations in the parameters # ,..., {,,: there are altogether m of these equa-
tions, and their Jacobian in the m parameters is not zero at X. (This is
implicit in the postulate of § 2 that 4; and 'A; intersect simply on V.) The
same equations (regarded as equations in ¢,,.., £, in Which Z,,,, .., lem
happen not to appear) determine P; and “P; in the neighbourhood of (X. Y, XY).
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After applying similar reasoning to B; and 'B;, we conclude that, in
the neighbourhood of (X, Y, XY), the varieties P;, 'P;, Q;, 'Q; are determined
by equations in the parameters ¢ ,..., {,,,: there are altogether 2m of these
equations, and their Jacobian in the 2m parameters is not zero at (X, Y, XY).

Therefore [1] the intersection number p;-'p;- q;-'q; is + 1, which was fo
be proved.

16. For any i, k, the inlersection number ey « ‘e is 4 1.

In fact, ‘A; and 'A; have one common point, X say: let U be the tangent
m-space to V at X. Then U meets S and 'Sy in spaces, of dimensions %k and
m — k — 1 respectively, which are in general position in U; so that there is
one fransversal line, W say, from X in U to these spaces. We see that
(X, X, W) is the only common element of the varieties P;, Ry, C, 'P;, 'Rx.

It is required to prove that the five varieties intersect simply at this
point. This amounts to proving that some determinant does not vanish, Sk
and 'Sy being supposed general: and it will suffice to prove that the deter-
minant does not vanish when S; and ‘S; have some special position.

Let us, accordingly, make the arrangements of § 3, X having x,30
and W having p,, &= 0; thus the parameters u,, ..., #s,,, (§ 3) will be allowable
for V* V in the neighbourhood of (X, X, W). Let us then specialise Sk to be

Xy =L, =y = .. = Lyyp =0
and 'Sy to be

Ty = Lkt = Lop—ppz == oo = Lpy = 0.
This means that a line (p;) having p,, =0 will meet Sy if ‘and only if

Doz = e = Po, m—k == O;

and 'Sy if and only if
Do, m—ktt = oo = Py = 0.

Now x,/x, (r =1, ..., m) will be an allowable system of parameters for V
in the neighbourhood of X. And it will follow, as in § 15, that P; and 'P%
are repregented, in the neighbourhood of (X, X, W), by equations in the
parameters %, , ..., %,,: these equations will be m in number altogether, with
a non-vanishing Jacobian at (X, X, W).

The other three varieties are represented (in the same neighbourhood)
by the following equations : .

C, Umsy — %, =0
Ry, Ungr == oo = Ugpp = 03

’
Ry, Upn— ket == oo == Ugyy == 0.
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These. m equations, with the equations of P; and 'P;, make up a set of 2m
equations in the 2m parameters, with a Jacobian which is obviously not zero.
Therefore, in the case where Sk, ‘Si are general, we must likewise have 2m
equations with a non-zero Jacobian.

Therefore the intersection number

p‘..'p‘v.c.rk.’rk_—_-_!.l’

which was o be proved.

17. In order to state more briefly the results of §§ 14-16, let us take,
from the set of all the homology classes d;;, e, all those of dimension s
(s being an arbitrary integer). Let ms arrange these in a definite order, as
follows : First the classes ¢, in ascending order of the suffix ¢ (there cannot
be two of dimension s with equal 7); then the classes d;;, in ascending
order of the suffix ¢, and (for equal 7) in ascending order of the suffix j.
For convenience of statement, let us give to these classes new names f,,
f., .., the suffixes running in the order described: and let the corresponding
classes ‘di;, ‘ex (which are all of dimension 4m — s) have new names 'f,,
'fy, ... respectively.

Then we conclude from §§ 14-16 that the inlersection number fi«'f; is
zero if © <j, and unily if i =j.

It follows immediately that all the classes di;, e; are linearly independent.

In particular, the classes dy;, ex (j=1,.., v; k=1,.., m—1) are
linearly independent: but the number of these classes, v +m — 1, is the
sum of the BETTI numbers of O x V (§ 9), and each of them contains cycles
of O« V (§ 13).

Therefore the conditions of § 10 are satisfied; and we conclude that
VxV and V(0 + V) have isomorphic homology groups. That is, Vs V
has no forsion, and the sum of its Belli numbers is v(v + m — 1).

18. But, in fact, we have v(v-+-m — 1) linearly independent homology
classes d;, €. Therefore, for any dimension s, the number of the classes
f., fss.. must be the g'th BErTI number of Vs V. It follows, these classes
being linearly independent, that any s-dimensional integral homology class h
can be expressed in the form

h==t,f, + b,f, + e,

where £,, ¢,, .. are rational numbers.

‘We then see, moreover, that {,, ¢,, ... are all integers. Suppose, in fact, that
some coefficients, of which the last one is 4, are not integers. Then, according
to § 17, the integral classes & and 'f; will have a non-integral intersection
number : which is impossible.
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Therefore the classes dij, ex (i, j =1,.., v; k=1,.., m—1) form a
basis for the integral homology groups of V + V in all dimensions.

(An alternative basis is formed by the classes ‘d;;, ‘ex: this may be
similarly proved.)

Consider; by way of example, the case of the quadric surface (§ 2), in
which m =2, v=4, and 4,, 4,, 4,, A, have dimensions 0, 1, 1, 2. There
are 20 basic homology classes:

a,, of dimension 0
eil’ dlE) d!3’ d?i’ dsu 2
eM’ 6343 d“’ d22’ dss’ dau dBSJ d4l
€ dzu dsu du’ d43
d44

B S o
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