# On the topology of the joined point-pairs of an algebraic variety. 

Memoria di R. H. F. Denniston (a Ibadan, Nigeria).

Sunto. - Data una varieta complessa non singolare $V$, si puo definire una coppia congiunta di punti di $V$. Nel caso ove $V$ è una varist̀̀ razionale, di un tipo molto ristretto (s 2), si considerano le proprietà topologiche dell'insieme di coppie congiunte. Questo $\dot{e}$ uno spazio fibrato, il che rende possibile la determinazione dei suoi gruppi di omologia. Si costruisce esplicitamente una base per questi gruppi.

1. An ordered point-pair, in a given $n$-dimensional complex projective space $S$, consists of a pair of points taken in a definite order: a joined point-pair consists of an ordered point-pair ( $P, Q$ ), together with a line $R$ which goes through $P$ and through $Q$. To any joined pair corresponds just one ordered pair: but the converse is true only if the two points do not coincide.

An irreducible, non-singular, algebraic variety $V$ being given in $S$, it is possible to define a joined point-pair of $V$. This is a joined pair $(P, Q, R)$ in $S$, subject to the restrictions that:
(a) $P$ and $Q$ must be on $V$; and
(b) If $P$ and $Q$ coincide, $R$ must be a tangent line to $V$ at $P$.

I use, for the set of joined pairs of $V$, the symbol $V * V$, which resembles the symbol $V \times V$ for the set of ordered pairs. The set $S * S$ of. joined pairs of $S$ is a particular case.

Van der Waerden [6] has given some account of the joined pairs (verbundene Punktepaare) of $S$ : the more general concept has hardly ever been stated explicitly. But, implicitly, it plays a large part in Sohubert's enumerative geometry: thus, his Strahlenpaare ([3]. § 15) are essentially joined point-pairs of the Klein quadric. Again, it is implicit in B. Segre's recent discoveries ([5], pp. 31, 91) that the study of $V * V$ can throw light on the properties of the variety $V$ itself. In such a study, the present topological investigation may be helpful.

In § 2, severe restrictions are imposed on the variety $V$. But these restrictions cover quadric varieties, Grassmannians, and other types whose topology has been studied; so that greater generality would not have much practical importance. However, some of the propositions established below could be proved more generally.
2. The variety $V$ is supposed to have all the following properties:
(a) $\nabla$ is an irreducible, non-singular, $m$-dimensional algebraic variety in the $n$-dimensional projective space $S$. It follows that, topologically, $V$ can be regarded as an oriented manifold of $2 m$ «real» dimensions. It is supposed that this manifold is simply connected.
(b) $V$ is rational : moreover, it can be birationally projected from an ( $n-m-1$ )-space $T$ onto an $m$-space $S^{\prime}$, the correspondence being one-to-one as between points of $V$ and $S^{\prime}$ not lying in a prime $S_{0}$. ( $S_{0}$ will contain $T$.) Given any two points $A, B$ on $V$, the projection can be so chosen that neither $A$ nor $B$ is on $S_{0}$.
(c) We can choose on $V$ varieties $A_{1}, A_{2}, \ldots, A_{v} ; ' A_{1},{ }^{\prime} A_{2}, \ldots, ' A_{v}$, with the following properties: The homology classes determined by $A_{1}, \ldots, A_{v}$ form a basis for the homology groups of $V$ in all dimensions. $A_{i}$ and ' $A_{j}$ have no common point if $i<j$ : but (for $i=1, \ldots, v$ ) $A_{i}$ and ' $A_{i}$ have one common point, at which they intersect simply on $V$. These varieties are not uniquely determined by the properties stated: they can still be chosen, even when they are required to be in general position (on $V$ ) with respect to one another, and also with respect to a finite number of varieties given on $V$. The variety $A_{1}$ will be a single point.

By way of example, suppose that $V$ is a non-singular quadric surface. Here $m=2, n=3$, and the conditions ( $a$ ) and (b) are known to be satisfied. To verify (c), we have only to take $A_{1}$ and ' $A_{4}$ to be distinct points of the surface; $A_{2}$ and ' $A_{3}$, distinct generators of one system; $A_{3}$ and ' $A_{2}$, distinct generators of the other system; and $A_{4}$ and ' $A_{1}$ each consisting of the whole surface: care being taken that neither of the two points lies on any of the four generators.
3. $V * V$ is an irreducible, non-singular, $2 m$-dimensional algebraic variety. This follows ([4], p. 15) if we regard $V * V$ as obtained by dilating $V \times V$, the base being the variety of elements $(P, P)$. Another way of proving it is to set up a system of parameters, allowable in the neighbourhood of an arbitrary point of $V * V$.

To do this, let us take the arbitrary point to be the element $(A, B, G)$; and let us make the arrangements postulated in $\S 2$ (b), neither $A$ nor $B$ being on $S_{0}$. Then, since $T$ and $S^{\prime}$ are skew and $S_{0}$ contains $T$, we may take all these spaces to be faces of the simplex of reference: say,

$$
\begin{array}{ll}
T, & x_{0}=\ldots=x_{m}=0 \\
S^{\prime}, & x_{m+1}=\ldots=x_{n}=0 \\
S_{0}, & x=0
\end{array}
$$

The effect of this is that, if one point is the projection of another from $T$ onto $S^{\prime}$, their coordinates $x_{i}$ are proportional $(i=0, \ldots, m)$ : and that, if one
line is the projection of another, their coordinates $p_{i j}$ are proportional $(i, j=0, \ldots, m)$.

Let projections on $S^{\prime}$ be denoted by dashes; for instance, let $G^{\prime}$ be the projection of $G$. Then $G^{\prime}$ goes through a point $A^{\prime}$ not on $S_{0}$, and therefore meets $S_{0}$ in one point. This point cannot have $x_{1}=\ldots=x_{m}=0$ : so we may suppose, without loss of generality, that it has $x_{1} \neq 0$.

Now let $M$ be the set of all elements ( $P, Q, R$ ) of $V * V$, such that $P$ and $Q$ are not on $S_{0}$, and that $R^{\prime}$ meets $S_{0}$ in a point ( $Z^{\prime}$, say) at which $x_{1} \neq 0$. Then $\cdot M$ is a neighbourhood of $(A, B, G)$ on $V * V$. Suppose, for such an element, that

$$
\begin{array}{cl}
P \text { and } P^{\prime} \text { have } & x_{0}: x_{1}: \ldots: x_{m}=1: u_{1}: \ldots: u_{m} ; \\
Q \text { and } Q^{\prime} \text { have } & x_{0}: x_{1}=1: u_{m+1} ; \\
\text { and } Z^{\prime} \text { has } & x_{0}: x_{1}: x_{2}: \ldots: x_{m}=0: 1: u_{m+2}: \ldots: u_{2 m}, \\
\text { so that } R \text { and } R^{\prime} \text { have } & p_{01}: p_{02}: \ldots: p_{0 m}=1: u_{m+2}: \ldots: u_{2 m} .
\end{array}
$$

Then $\left(u_{1}, \ldots, u_{2 m}\right)$ is an allowable system of parameters for $M$. To verify this, we observe first that, for any element of $M, u_{1}, \ldots$ have determinate finite values: we must then prove that any set of finite values for $u_{1}, \ldots$ determines an element of $M$. In fact, such a set determines a point $P^{\prime}$, on $S^{\prime}$ but not on $S_{0}$, and a point $Z^{\prime}$, on $S^{\prime}$ and $S_{0}$ but having $x_{1} \neq 0 . P^{\prime}$ and $Z^{\prime}$, being distinct, have a definite join $R^{\prime}$, which does not meet the face $x_{0}=x_{1}=0$ of the simplex of reference: therefore there is just one point $Q^{\prime}$ on $R^{\prime}$ having $x_{0}: x_{1}=1: u_{m+1}$. And $P^{\prime}$ and $Q^{\prime}$, not being on $S_{0}$, have definite projections $P$ and $Q$ on $V$. If $P$ and $Q$ are distinct, $R$ is their join: if not, $R$ is the unique tangent line to $V$ at $P$ whose projection is $R^{\prime}$.

So it is verified that $V * V$ is an irreducible, non-singular, $2 m$-dimensional variety : accordingly, $V * V$ is a $4 m$-dimensional manifold.
4. The most important topological property of $V * V$ is that it is a fibre-bundle. The rigorous proof of this property occupies $\$ \S 4-8$.

Let $A$ be a fixed point of $V$, and let us make the arrangements of $\S 3$, $A$ not being on $S_{0}$. Let $N, N^{\prime}$ be the sets of all points of $V, S^{\prime}$ which are not on $S_{\mathrm{n}}$. By taking as coordinates the real and imaginary parts of the non-homogeneous coordinates $x_{1} / x_{0}, \ldots, x_{m} / x_{n}$, let us put $N^{\prime}$ in one-one correspondence with a real Euclidean space $N^{\prime \prime}$ of $2 m$ dimensions.

Let $A^{\prime \prime}$ be the point of $N^{\prime \prime}$ corresponding to $A^{\prime}$, and $P^{\prime \prime}$ another fixed point of $N^{\prime \prime}$. Corresponding to any point $Q^{\prime \prime}$ of $N^{\prime \prime}$, we define a point $U^{\prime \prime}$ by the following construction:
if $P^{\prime \prime} Q^{\prime \prime} \leq P^{\prime \prime} A^{\prime \prime}$, draw $Q^{\prime \prime} U^{\prime \prime}$ equal and parallel (in the same sense) to $P^{\prime \prime} A^{\prime \prime}$;
if $P^{\prime \prime} A^{\prime \prime} \leq P^{\prime \prime} Q^{\prime \prime}<3 P^{\prime \prime} A^{\prime \prime}$, draw $Q^{\prime \prime} U^{\prime \prime}$ parallel to $P^{\prime \prime} A^{\prime \prime}$, but of length $\frac{1}{2}\left(3 P^{\prime \prime} A^{\prime \prime}-P^{\prime \prime} Q^{\prime \prime}\right) ;$
if $P^{\prime \prime} Q^{\prime \prime} \geq 3 P^{\prime \prime} A^{\prime \prime}$, take $U^{\prime \prime}$ to coincide with $Q^{\prime \prime}$.

Then it is clear that the mapping $Q^{\prime \prime} \rightarrow U^{\prime \prime}$ is a homoeomorphism of $N^{\prime \prime}$ with itself, and has the following properties:
(a) The image of $P^{\prime \prime}$ is $A^{\prime \prime}$;
(b) If $Q^{\prime \prime}$ is sufficiently near $P^{\prime \prime}$, we obtain the coordinates of $U^{\prime \prime}$ by adding constants to the coordinates of $Q^{\prime \prime}$;
(c) If $Q^{\prime \prime}$ is sufficiently far from $P^{\prime \prime}, U^{\prime \prime}$ coincides with $Q^{\prime \prime}$;
(d) If $P^{\prime \prime}$ were allowed to vary, $U^{\prime \prime}$ would depend continuously on $P^{\prime \prime}$ and $Q^{\prime \prime}$, and $Q^{\prime \prime}$ would depend continuously on $P^{\prime \prime}$ and $U^{\prime \prime}$.
5. Let us consider the images in $N^{\prime}$ of the points of $N^{\prime \prime}$ discussed in § 4. We have, determined by any fixed point $P^{\prime}$ of $N^{\prime}$, a homoeomorphism $Q^{\prime} \rightarrow U^{\prime}$ of $N^{\prime}$ with itself, having the following properties:
(a) The image of $P^{\prime}$ is $A^{\prime}$;
(b) If $Q^{\prime}$ is in a certain neighbourhood of $P^{\prime}$, we obtain the non-homogeneous coordinates of $U^{\prime}$ by adding constants to those of $Q^{\prime}$;
(c) If $Q^{\prime}$ is in the neighbourhood of $S_{0}, U^{\prime}$ coincides with $Q^{\prime}$;
(d) If $P^{\prime}$ were allowed to vary, $U^{\prime}$ would depend continuously on $P^{\prime}$ and $Q^{\prime}$, and $Q^{\prime}$ would depend continuously on $P^{\prime}$ and $U^{\prime}$.

It is a consequence of property $(b)$ there is a collineation of $S^{\prime}$ (determined by $P^{\prime}$ ) which, for points $Q^{\prime}$ in the neighbourhood of $P^{\prime}$, coincides with the above homoeomorphism. Now this collineation puts the lines $R^{\prime}$ through $P^{\prime}$ in one-one correspondence with the lines $L^{\prime}$ through $A^{\prime}$, in such a way that:
(e) If $Q^{\prime}$ is in the neighbourhood of $P^{\prime}$, the lines $P^{\prime} Q^{\prime}$ and $A^{\prime} U^{\prime}$ correspond;
$(f)$ If $P^{\prime}$ were allowed to vary, $L^{\prime}$ would depend continuously on $P^{\prime}$ and $R^{\prime}$, and $R^{\prime}$ on $P^{\prime}$ and $L^{\prime}$.
6. Let us consider the projections on $N$ of the points of $N^{\prime}$ discussed in $\S 5$. We have, determined by any fixed point $P$ of $N$, a homoeomorphism $Q \rightarrow U$ of $N$ with itself, having the following properties:
(a) The image of $P$ is $A$;
(c) If $Q$ is in the neighbourhood of $S_{0}, U$ coincides with $Q$;
(d) If $P$ were allowed to vary, $U$ would depend continuously on $P$ and $Q$, and $Q$ on $P$ and $U$.

In virtue of property ( $c$ ), we can extend this mapping, by taking $U$ to coincide with $Q$ when $Q$ is in $S_{0}$, and obtain a homoeomorphism of $V$ with itself which has properties $(a)$ and $(d)$. ( $A$ and $P$ must still be points of $N$.)

Further, we can set up (by projection from the correspondence $R^{\prime} \rightarrow L^{\prime}$ ) a projectivity between tangent lines $R$ to $V$ at $P$ and tangent lines $L$ to $V$ at $A$, with the following properties:
(e) If $Q$ tends to $P$ in any manner, the limiting positions of the lines $P Q$ and $A U$ are tangent lines corresponding in the projectivity;
$(f)$ If $P$ were allowed to vary, $L$ would depend continuously on $P$ and $R$, and $R$ on $P$ and $L$.
7. If $E, F$ are two sets of points on $V$, we may denote by $E * F$ the set of all elements $(P, Q, R)$ of $V * V$ such that $P$ is in $E$ and $Q$ in $F$. $V$ being fixed, there is no danger of ambiguity.

We are now able to set up, for any fixed point $P$ of $N$, a mapping $(P, Q, R) \rightarrow(A, U, L)$ of $P * V$ onto $A * V$, Namely, if $(P, Q, R)$ is an element of $P * V$, we take $U$ to be the image of $Q$ in the homoeomorphism of $\S 6$. If $Q$ is distinct from $P$, then $U$ is distinct from $A$, and $L$ can only be the join of $A$ and $U$ : if $Q$ coincides with $P$, then we take $L$ to be that tangent line to $V$ at $A \cdot$ which corresponds to $R$ in the projectivity of $\S 6$.

It follows from § 6 that this mapping is a homoeomorphism between $P * V$ and $A * V$, and that, if $P$ is allowed to vary, $(A, I, L)$ depends continuously on $P$ and ( $P, Q, R$ ), and ( $P, Q, R$ ) depends continuously on $P$ and $(A, U, L)$.

This is as much as to say that the mapping

$$
(P, Q, R) \rightarrow(P,(A, U, L))
$$

is a homoeomorphism between $N * V$ and $N \times(A * V)$, in which the image of $P * V$ always coincides with $P \times(A * V)$.
8. Now let us take a fixed point $O$ of $V$, and allow $A$ to vary. We may suppose that, for each position of the point $A$ on $V$, the process of §§ 4-7 has been gone through, the apparatus being always so chosen that $O$, as well as $A$, lies in $N$.

It will then be clear from § 7 that there is always a homoeomorphism between $O * V$ and $A * V$, and another between $N * V$ and $N \times(A * V)$; combining these, we can constract a homoeomorphism between $N * V$ and $N \times(O * V)$. We are thus in a position to assert:

Let $O$ be a fixed point of $V$, and $A$ be any point of $V$. Then $A * V$ is homoeomorphic with $0 * V$ : and we can find a neighbourhood $N$ of $A$ on $V$, and a homoeomorphism between $N * V$ and $N \times(0 * V)$, in which, for any point $P$ of $N$, the image of $P * V$ must coincide with $P \times(O * V)$.

This is as much as to say that $V * V$ is a fibre-bundle, with base-space $V$ and fibre $O * V$ : the projection of the bundle onto the base-space is given by $(P, Q, R) \rightarrow P$.
9. Now $O * V$ is an irreducible, non-singular, $m$-dimensional algebraic variety (being obtained by dilating $V$ with $O$ as base). It is, accordingly, an orientable manifold of $2 m$ dimensions.

The correspondence $(O, Q, R) \rightarrow Q$ is a continuous mapping of $O * V$ onto $V$; the whole set $O * O$ maps on the point $O$, but elsewhere the mapping takes the form of a homoeomorphism.

Since $V$ is a $2 m$-manifold, there is a neighbourhood $E$ of $O$ on $V$ which is a $2 m$-cell, and whose frontier $D$ is a ( $2 m-1$ )-sphere. Let $F$ be the closure
and $G$ the complement of $E$ in $V$ : let $E^{\prime}, D^{\prime}, F^{\prime \prime}, G^{\prime}$ be the respective inverse images in $O * V$ of $E, D, F, G$.
$O * O$ is homoeomorphic with the set of tangent lines to $V$ at $O$, and therefore with complex projective ( $m-1$ )-space; so that its $p$ 'th homology group, $H_{p}(O * O)$, is free cyclic for $p=0,2,4, \ldots, 2 m-2$, and null for other values of $p$. The relative homology group $H_{p}\left(F^{\prime}, O * O\right)$, being isomorphic with $H_{p}(F, O)$, is null for every $p$ : therefore $H_{p}\left(F^{\prime}\right)$, for every $p$, is isomorphic with $H_{p}(O * O)$.

Again, $H_{p}\left(G^{\prime}, D^{\prime}\right)$ is isomorphic (for every $p$ ) with $H_{p}(V, F)$, and therefore $(p \neq 0)$ with $H_{p}(V)$.

Now $H_{p}\left(D^{\prime}\right)$ is null for $p=1,2, \ldots, 2 m-2$. Therefore, for $p=2,3, \ldots$, $2 m-2, H_{p}\left(F^{\prime}, D^{\prime}\right)$ is isomorphic with $H_{p}\left(F^{\prime}\right)$, and $H_{p}(O * V)$ with $H_{p}\left(O * V, D^{\prime}\right)$. But the set $O * V-D^{\prime}$ is the union of the disjoint sets $F^{\prime}-D^{\prime}$ and $G^{\prime}-D^{\prime}$ : therefore $H_{p}\left(O * V, D^{\prime}\right)$ is (for every $p$ ) the direct sum of $H_{p}\left(F^{\prime \prime}, D^{\prime}\right)$ and $H_{p}\left(G^{\prime}, D^{\prime}\right)$. And so, for $p=2,3, \ldots, 2 m-2, H_{p}(O * V)$ is the direct sum of $H_{p}(V)$ and $H_{p}(O * O)$.

Again, $H_{2 m-1}(O * O)$ and $H_{2 m-1}(O * V, O * O)$ are null, and $H_{2 m}(O * V, O * O)$ free cyclic: therefore $H_{2 m-1}(O * V)$ is null, and $H_{2 m}(O * V)$ free cyclic.

It follows by duality that $H_{0}(O * V)$ is free cyclic, and $H_{1}(O * V)$ null.
Combining these results, we conclude that $O * V$ has no torsion, and that its Betri numbers are given by

$$
\begin{array}{rr}
R_{p}(O * V)=R_{p}(V)+1 & (p=2,4,6, \ldots, 2 m-2) ; \\
R_{p}(O * V)=R_{p}(V) & \quad \text { (all other } p)
\end{array}
$$

The sum of the Benti numbers of $V$ is $v(\$ 2)$ : therefore the sum of those of $O * V$ is $v+m-1$.
10. Thus $V * V$ is a fibre-bundle, and the homology groups of the basespace $V$ and the fibre $O * V$ are known. From a theorem of Kudo [2] we know that the homology groups of $V * V$ will be isomorphic with those of $V \times(O * V)$, if the following conditions are satisfied:
(a) The base-space is a finite complex;
(b) The fibre is an orientable manifold;
(c) The group of transformations of the fibre is connected;
(d) The injection homomorphisms of the homology groups of the fibre into those of the bundle are isomorphisms into.

Now conditions ( $a$ ) and (b) are, in fact, satisfied, and (c) must be because the base-space is simply connected. To verify $(d)$ it will suffice (the fibre having no torsion) to construct a collection of linearly independent homology classes of $V * V$, all containing cycles on $O * V$, the namber of classes being the sum of the BETTI numbers of $O * V$.

We shail, in fact, construct such a collection of homology classes: but it will be only a part of another collection, which will be large enough to serve as a basis for the homology groups of $V * V$.
11. Let us begin by making the arrangements of § $2(c)$ - and, in fact, by making them twice over. That is, let there be varieties $A_{1}, \ldots, A_{v} ;{ }^{\prime} A_{1}, \ldots,{ }^{\prime} A_{v}$ on $V$, with the properties of § 2: and let there be other varieties, named respectively $B_{1}, \ldots, B_{v} ;{ }^{\prime} B_{1}, \ldots, ' B_{v}$, with corresponding properties. Let the whole collection of $4 v$ varieties be in general position among themselves: let no three of them have a common point if the sum of their dimensions is less than $2 m$.

Let us likewise choose, for $k=1,2, \ldots, m-1$, linear spaces $S_{k}$ and ' $S_{k}$ in $S$ : the dimension of $S_{k}$ is to be $n-m+k$, and that of ' $S_{k}$ to be $n-1-k$. These spaces are all required to be in general position in $S$.

The point 0 of $\S 8$ was arbitrary; let us suppose, for convenience of statement, that $O$ is the single point of which the variety $A_{1}$ consists.
12. Let us define, by means of the varieties of $\S 11$, various sets of elements $(P, Q, R)$ of $V * V$.

Let $P_{i},{ }^{\prime} P_{i}(i=1,2, \ldots, v)$ be defined by the property that $P$ lies on $A_{i}, A_{i}$ respectively. Let $Q_{j}, Q_{j}(j=1, \ldots, v)$ be defined by the property that $Q$ lies on $B_{j}$ or ' $B_{j}$ respectively. Let $R_{k},{ }^{\prime} R_{k}(k=1, \ldots, m-1)$ be defined by the property that $R$ meets $S_{k}$ or ${ }^{\prime} S_{k}$ respectively. And let $C$ be defined by the property that $P$ and $Q$ coincide.

All these are subvarieties of $V * V$. If the dimensions of $A_{i}, A_{j}$ are $g, h$, those of $P_{i},{ }^{\prime} P_{i}, Q_{j},{ }^{\prime} Q_{j}$ are $m+g, 2 m-g, m+h, 2 m-h$ : and the dimensions of $R_{k},{ }^{\prime} R_{k}, C$ are $m+k+1,2 m-k, 2 m-1$. (These statements are fairly obvious, and will be verified in $\S \S 15,16$, where the varieties will be represented by equations involving local parameters.)

According to the supposition made at the end of § $11, P_{1}$ is the same set that we have been calling $O * V$.
13. Each of the varieties of § 12 defines a homology class (of twice as many dimensions) of the $4 m$-dimensional oriented manifold $V * V$ : this class may be repeesented by the same symbol as the variety, only with a lower-case letter instead of the capital.

By taking the intersections of classes so determined, we define other homology classes of $V * V$ as follows:

$$
\begin{array}{lr}
d_{i j}=p_{i} \cdot q_{j} & (i, j=1,2, \ldots, v) ; \\
' d_{i j}='^{\prime} p_{i} \cdot q_{j} & (i, j=1,2, \ldots, v) ; \\
e_{i k}=p_{i} \cdot r_{k} \cdot c & (i=1, \ldots, v ; k=1, \ldots, m-1) ; \\
{ }^{\prime} e_{i k}={ }^{\prime} p_{i} \cdot r_{k} & (i=1, \ldots, v ; k=1, \ldots, m-1) .
\end{array}
$$

The dimensions of these classes are respectively $2(g+h), 2(2 m-g-h)$, $2(g+k), 2(2 m-g-k)$, where $g$ and $h$ are the dimensions of $A_{i}$ and $A_{j}$.

Also, for $j=1, \ldots, v ; k=1, \ldots, m-1$, the class $d_{1 j}$ or $e_{1 k}$ must contain cycles of $O * V$.
14. It has to be proved that the homology classes $d_{i j}, e_{i k}$ of $\S 13$ are all linearly independent. In order to do this, we determine some of their intersection numbers with the classes ' $d_{i j}$, ' $e_{i k}$.

If $d_{i j}$ and $d_{s t}$ are classes of the same dimension, and $i<s$, then the intersection number $d_{i j} \cdot ' d_{s t}$ is zero.

For $A_{i}$ and ' $A_{s}$ have no common point; therefore $P_{i}$ and ' $P_{s}$ have no common element; therefore $p_{i} \cdot{ }^{\prime} p_{s}$ is a zero homology class; therefore the intersection number $p_{i} \cdot q_{j} \cdot{ }^{\prime} p_{s} \cdot{ }^{\prime} q_{t}$ is zero, which was to be proved.

If $e_{i k}$ and $e_{s t}$ are of the same dimension, and $i<s$, then $e_{i k} \cdot$ ' $e_{s t}$ is zero, for similar reasons.

If $d_{i j}$ and $d_{s t}$ are of the same dimension, and $j<t$, then $d_{i j} \cdot ' d_{s t}$ is zero, for similar reasons (relating to $Q$ ).

If $e_{i k}$ and $d_{s t}$ are of the same dimension, then $e_{i k} \cdot$ ' $d_{s t}$ is zero.
For, if $A_{i}, A_{s}, A_{t}$ have dimensions $f, g, h$ (and accordingly ' $A_{s}$, ' $B_{t}$ have dimensions $m-g ; m-h$ ), we have

$$
f+k=g+h, \quad k>0
$$

and so

$$
f+(m-g)+(m-h)<2 m
$$

therefore (§ 11) $A_{i},{ }^{\prime} A_{s},{ }^{\prime} B_{t}$ have no common point: but a common element of $P_{i}, C,{ }^{\prime} P_{s},{ }^{\prime} P_{t}$ would have $P$ and $Q$ coinciding at such a common point.
15. For any $i, j$, the intersection number $d_{i j} \cdot{ }^{\prime} d_{i j}$ is +1 .

In fact, $A_{i}$ and ' $A_{i}$ have one common point. $X$ say: and $B_{j}$ and ' $B_{j}$ have one common point, $Y$ say, distinct from $X$. Thus $P_{i},{ }^{\prime} P_{i}, Q_{j},{ }^{\prime} Q_{j}$ have one common element ( $X, Y, X Y$ ).

Let $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ be an allowable system of parameters, representing $V$ in the neighbourhood of $X$ : and let $\left(t_{m+1}, \ldots, t_{2 m}\right)$ be such a system for the neighbourhood of $Y$. Then there is a neighbourhood of $(X, Y, X Y$ ) on $V * V$ (not containing any elements of $C$ ) in which ( $t_{1}, \ldots, t_{2 m}$ ) is an allowable system of parameters representing $V * V$. (Namely, $t_{1}, \ldots, t_{m}$ determine a point $P ; t_{m+1}, \ldots, t_{2 m}$ determine a distinct point $Q$; and $R$ is the join $P Q$ ).

In the neighbourhood of $X$, the varieties $A_{i}$ and ' $A_{i}$ are determined by equations in the parameters $t_{1}, \ldots, t_{m}$ : there are altogether $m$ of these equations, and their Jacobian in the $m$ parameters is not zero at $X$. (This is implicit in the pustulate of $\S 2$ that $A_{i}$ and ' $A_{i}$ intersect simply on $V$.) The same equations (regarded as equations in $t_{1}, \ldots, t_{2 m}$, in which $t_{m+1}, \ldots, t_{2 m}$ happen not to appear) determine $P_{i}$ and ' $P_{i}$ in the neighbourhood of ( $X, Y, X Y$ ).

After applying similar reasoning to $B_{j}$ and ${ }^{\prime} B_{j}$, we conclude that, in the neighbourhood of ( $X, Y, X Y$ ), the varieties $P_{i},{ }^{\prime} P_{i}, Q_{j},{ }^{\prime} Q_{j}$ are determined by equations in the parameters $t_{1}, \ldots, t_{2 m}$ : there are altogether $2 m$ of these equations, and their Jacobian in the $2 m$ parameters is not zero at ( $X, Y, X Y$ ).

Therefore [1] the intersection number $p_{i} \cdot{ }^{\prime} p_{i} \cdot q_{j} \cdot{ }^{\prime} q_{j}$ is +1 , which was to be proved.
16. For any $i, k$, the intersection number $e_{i k} \cdot{ }^{\prime} e_{i k}$ is +1 .

In fact, ' $A_{i}$ and ' $A_{i}$ have one common point, $X$ say: let $U$ be the tangent $m$-space to $V$ at $X$. Then $U$ meets $S_{k}$ and ' $S_{k}$ in spaces, of dimensions $k$ and $m-k-1$ respectively, which are in general position in $U$; so that there is one transversal line, $W$ say, from $X$ in $U$ to these spaces. We see that $(X, X, W)$ is the only common element of the varieties $P_{i}, R_{k}, C,{ }^{\prime} P_{i},{ }^{\prime} R_{k}$.

It is required to prove that the five varieties intersect simply at this point. This amounts to proving that some determinant does not vanish, $\boldsymbol{S}_{k}$ and ' $S_{k}$ being supposed general : and it will suffice to prove that the determinant does not vanish when $S_{k}$ and ' $S_{k}$ have some special position.

Let us, accordingly, make the arrangements of $\S 3, X$ having $x_{0} \neq 0$ and $W$ having $p_{01} \neq 0$; thus the parameters $u_{1}, \ldots, u_{2 m}(\S 3)$ will be allowable for $V * V$ in the neighbourhood of $(X, X, W)$. Let us then specialise $S_{k}$ to be

$$
x_{0}=x_{2}=x_{3}=\ldots=x_{m-k}=0
$$

and ' $S_{k}$ to be

$$
x_{0}=x_{m-k+1}=x_{m-k+2}=\ldots=x_{m}=0 .
$$

This means that a line $\left(p_{i j}\right)$ having $p_{01} \neq 0$ will meet $S_{k}$ if and only if

$$
p_{02}=\ldots=p_{0, m-k}=0
$$

and ' $S_{k}$ if and only if

$$
p_{0, m-k+1}=\ldots=p_{0 m}=0
$$

Now $x_{r} / x_{0}(r=1, \ldots, m)$ will be an allowable system of parameters for $V$ in the neighbourhood of $X$. And it will follow, as in $\S 15$, that $P_{i}$ and ${ }^{\prime} P^{i}$ are repreşented, in the neighbourhood of $(X, X, W)$, by equations in the parameters $u_{1}, \ldots, u_{m}$ : these equations will be $m$ in number altogether, with a non-vanishing Jacobian at $(X, X, W)$.

The other three varieties are represented (in the same neighbourhood) by the following equations:

$$
\begin{array}{ll}
C, & u_{m+1}-u_{i}=0 \\
R_{k}, & u_{m+2}=\ldots=u_{2 m-k}=0 \\
'_{k}, & u_{2 m-k+1}=\ldots=u_{2 m}=0
\end{array}
$$

These $m$ equations, with the equations of $P_{i}$ and ' $P_{i}$, make up a set of $2 m$ equations in the $2 m$ parameters, with a Jacobian which is obviously not zero. Therefore, in the case where $S_{k}$, ' $S_{k}$ are general, we must likewise have $2 m$ equations with a non-zero Jacobian.

Therefore the intersection number

$$
p_{i} \cdot ' p_{i} \cdot c \cdot r_{k} \cdot ' r_{k}=+1
$$

which was to be proved.
17. In order to state more briefly the results of $\S \S 14-16$, let us take, from the set of all the homology classes $d_{i j}, e_{i k}$, all those of dimension $s$ ( $s$ being an arbitrary integer). Let us arrange these in a definite order, as follows: First the classes $e_{i k}$, in ascending order of the suffix $i$ (there cannot be two of dimension $s$ with equal $i$ ); then the classes $d_{i j}$, in ascending order of the suffix $i$, and (for equal $i$ ) in ascending order of the suffix $i$. For convenience of statement, let us give to these classes new names $f_{1}$, $f_{2}, \ldots$, the suffixes running in the order described: and let the corresponding classes ' $d_{i j}$, ' $e_{i k}$ (which are all of dimension $4 m-s$ ) have new names ' $f_{1}$, ' $f_{2}, \ldots$ respectively.

Then we conclude from $\S \S 14-16$ that the intersection number $f_{i} \cdot{ }^{\prime} f_{j}$ is zero if $i<j$, and unity if $i=j$.

It follows immediately that all the classes $d_{i j}, e_{i k}$ are linearly independent.
In particular, the classes $d_{1 j}, e_{1 k}(j=1, \ldots, v ; k=1, \ldots, m-1)$ are linearly independent: but the number of these classes, $v+m-1$, is the sum of the Berri numbers of $0 * V(\S 9)$, and each of them contains cycles of $O * V(\S 13)$.

Therefore the conditions of $\S 10$ are satisfied; and we conclude that $V * V$ and $V \times(0 * V)$ have isomorphic homology groups. That is, $V * V$ has no torsion, and the sum of its Betti numbers is $v(v+m-1)$.
18. But, in fact, we have $v(v+m-1)$ linearly independent homology classes $d_{i j}$, $e_{i k}$. Therefore, for any dimension $s$, the number of the classes $f_{1}, f_{2}, \ldots$ must be the $s^{\prime}$ th Bextri number of $V * V$. It follows, these classes being linearly independent, that any $s$-dimensional integral homology class $h$ can be expressed in the form

$$
h=t_{1} f_{1}+t_{2} f_{2}+\ldots
$$

where $t_{1}, t_{2}, \ldots$ are rational numbers.
We then see, moreover, that $t_{1}, t_{2}, \ldots$ are all integers. Suppose, in fact, that some coefficients, of which the last one is $t_{i}$, are not integers. Then, according to $\S 17$, the integral classes $h$ and ' $f_{i}$ will have a non-integral intersection number: which is impossible.

Therefore the classes $d_{i j}, e_{i k}(i, j=1, \ldots, v ; k=1, \ldots, m-1)$ form a basis for the integral homology groups of $V * V$ in all dimensions.
(An alternative basis is formed by the classes ' $d_{i j}$, ' $e_{i k}$ : this may be similarly proved.)

Consider; by way of example, the case of the quadric surface (§ 2), in which $m=2, v=4$, and $A_{1}, A_{2}, A_{3}, A_{4}$ have dimensions $0,1,1,2$. There are 20 basic homology classes:

\[

\]

## REFERENCES

[1] J. C. H. Gerretsen, Inleiding tot een topologische behandeling van de meetkunde van het aantal, Groningen, 1989, 140.
[2] T. Kudo, Homological properties of fibre bundles, ©Journal Inst. Polytech., Osaka City Univ., Ser. A, Math. s, 1 (1950), 101.114.
[3] H. Schubert, Kalkül der abzühlenden Geometrie, Leipzig, 1879.
[4] B. Segre, Sullo seioglimento delle singolarità delle varietà algebriche, Annali di Mat. *, (4) 33 (1952), 5-48.
[5] B. Segre, Nuovi metodi e risultati nella geometria sulle varietà algebriche, "Annali di Mat. *, (4) 35 (1958), 1-127.
[6] B. L. van der Waerden, Zur algebraischen Geometrie VI... § 8. Die Charakteristiken. formel für verbundene Punltepaare, «Math. Annalen », 110 (1934), 158-160.

