Structure theorems for group-varieties (*).

by Iacorpo Barsortr (a Lios Angeles, Calif.,, U.S.A.).

Introdiiction and summary. - In the present paper we present certain
results which describe with some detail the structure of group-varieties.
For comments on what is nof proved here we refer the reader to section 7
of this paper; we shall briefly mention here the results which are proved.
First of all, we deal exclusively with group-varieties which are subvarieties
of a projective space; that this is not a limitation is proved in a previous
paper [4] ('); incidentally, the definitions of the terms and symbolism
referring to group-variefies are given in such paper.

Section 2 of the present paper contains the obvious extension to
group-varieties of the three « homomorphism theorems» of the theory of
groups; the only feature which breaks the analogy with group-theory is
the existence of homomorphisms of inseparability > 1; a particular case of
the first homomorphism theorem is contained also in [6].

Section 3 deals with commutative group-varieties (called quasi-abelian
varieties in [15]), and the main result states that any such variety is
birationally equivalent (but not necessarily isomorphic) to the product of an
abelian variety and a rational group-variety ; in the language of group-theory,
any commutative group-variety is the extension or a rational group-variety
by an abelian variety. This analogy can be carried very far, and the extension
can be desoribed in terms of factor sets. As for the structure of rational
commutative group-varieties, in the case of characteristic O this is very
simply described by stating that any rational commutative group-variety
over a field of characteristic O is the direct product of finitely many straight
lines, each having either an additive or a multiplicative law of composition ;
this result seems to be in accordance with the main result of [15]. If the
characteristic of the ground field is p > 0, the structure of rational commu.
tative group-varieties is complicated by the existence of certain group-varieties
(the periodic varieties) which are obtained by piecing together additive straight
lines in a manner different from the construction of their direct product.

(*) This paper was presented in its present form (but for a correction submitted
April 16, 1954) to a meeting held in Princeton in honor of 8. IierFscurTz, on April 8, 1954,
Results which largely overlap with sections 1, 2. 8 of this paper were announced at the
same meeting by M. RoseNLicHT. (This note added August 22, 1954).

{!) Numbers in brackets refer to the bibliography at the end of the paper.
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The commutative group-varieties, which extend a given rational group-variety
by means of a given abelian variety, form a set which can be turned into a
group by a suitable law of composition; according to the results of section 4,
and to incomplete results mentioned in section 7, such group is isomorphic
to the group of the points of a commutative group-variety, at least in the
case of characteristic zero.

Section 6 deals with noncommutative group-varieties. Essentially, the
noncommutativity is due to the existence of group-varieties which are the
representative varieties of linear groups; we prefer to call such varieties
« VESSIOT varieties », since the natural alternate expression « linear-group
varieties » is too easily misinterpreted as «linear group-varieties». In the
same manner as the structure of commutative group-varieties depends on the
closed invariant differentials of the second and third kind, so the structure
of noncommutative group-varieties depends on certain differentials which
are invariant, but not closed, or, equivalently, on the noncommuftativity of
the invariant derivations; while the structure of the set of the derivations
(Lie algebra) is known to describe completely the structure of the group-
variety in the case of characteristic O, this is not so when the characteristic
is p4=0, and additional information must be obtained from the structure of
the set of the invariant derivations of higher order; this is substantially
what is done in section 6, although a more direct method is wused, and
the derivations play only a minor role. The main result of this section
{Theorem 6.4} gives a considerable amount of information on the structure
of noncommutative group-varieties, but not as much as would be desirable;
it is quite evident that this result could stand improvement.

The ground field is assumed to be algebraically closed throughout this
paper (with the exception of a few definitions); ouf course this assumption
could be abandoned if one were prepared to extend the ground field
whenever necessary, a device of which there are abundant examples in the
literature (see for instance [16]). According to our definition of group-variety [4],
the existence of group-varieties with singular points is not excluded ; almost
all of the results of this paper are stated for nonsingular group-varieties
(see definition in section 1), as this shortens the proofs; a cursory reading
will convince the reader that such hypothesis is not essential.

1. Definitions and preliminary results. - The definition of a group-
variety is given in [4]; the terminology adopted throughout this paper is the
one used in [1], [2], [3], [4]. A group-variety G over the field ¥, with degene-
ration locus F, shall be called nonsingular if every point of the extension
G of G over the algebraic closure k of %, which does not belong to the
extension F of F' over k, is simple on G; if & is algebraically closed, and @
is a normal group-variety over k, then G is nonsingular, by Theorem 1
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of [4]. If k is algebraically closed, and P€ G — F, then op and Tp have the
meanings stated in Theorem 1 of [4]; if v is a place of G with center P
on G, we shall denote op also by ¢,; the automorphism of %(G) over £ which
is related to T as op is to Tp shall be denoted by tp, or t,. The rules of
operation for op, p are:

Op@ = OpQgq, TP = TQtp, CpTlg = T¢0pP,
c"P”: GpCyp, GTPv = 0,Cp, ‘EGPQ,= ToTP, c'fP”= TPy ;

here v is a place of G whose center on @ is not on F. A group-variety @
over k is said to be commutative if the law of composition on G is commu-
tative. From now on, the ground field k¥ shall be algebraically closed unless
specifically stated otherwise. The point P of G such that cp=1 (or tp=1)
shall be denoted by Eg, or simply E if this does not generate confusion,
and called the identity of G. Let G be a group-variety over the arbitrary
field k, with the degeneration locus F'; a subvariety V of G is a group-
subvariety of G if (1) no component of V is a subvariety of F, (2) each
component of V is absolutely irreducible, and (3) if P, Q€ V — (T’ﬂ F) (the
bar denoting extension over the algebraic closure of %), then PQ and P!
belong to V; V has a component V, which contains the identity of G.
Let V,, V, be components of ¥, and let P; (¢ = 1, 2) be a point of V— (V N F)
such that the on]y component of v contalnmg P; is V;; then the smallest
subvariety of G containing all the points Q;F; Pj (j=1, 2; j==14), when @;
ranges in V;— (V; N F), is an irreducible sub-variety of V containing P,
so that it is a subvariety of V,. This proves that dim V;=dim V,, or that
each component of V has the same dimension as V,. But then the same
construction can be repeated after abandoning the assumption that P; be
contained only in V;, and assuming, instead, P,= P,¢ F'; this leads to the
conclusion that V, = V,, impossible. Hence V, is the only component of V
which contains the identity, and will be called the component of the identity
in V; two distinet components of V have no point in common ouside F, and
if V, V,...., V, are all the distinet components of V, then V,— (V, N F)
is a group, and the sets V;— (Vi N F) are the left and right cosets of this
group in the group V— (VN F); hence V,—(V, N F) is an invariant
subgroup of V— (VN F), and the factor group (V—(V N F){(V,— V, N F))
has finite order r 4+ 1, Let V, W be group-subvarieties of G, and assume W
to be a subvariety of V; then W is said to be énvariant in V if the group
W—(WnN F) is lnvarlant in V— (VN F). The group-variety G is said to
be simple if @ has no proper invariant (in G) group-subvariety of positive
dimension.

Let G, G' be group-varieties over the arbitrary field %k, with degeneration
loci F, F’ respectively. A homomorphism of @ into G is a rational mapping a
of G into G’ such that (1) &[P] is a point of & — F’ whenever P€ G — F,
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and (2) &PQ|=(&P))a[Q) if P, Q€ G— F. The subvariety G’ of G on
which « operates is an irreducible group-subvariety of G'. The integer ins
a}@"} is called the imseparability of «, and o« is said to be separable if its
inseparability is 1. If G" = @, then « is called a homomorphism of G onio G'.
It £’ is the identity of G, the join of all the components of a[E’] which are
not subvarieties of F has all the properties of a group-subvariety of G,
except possibly the ome stating that each of its components is absolutely
irreducble; such join is called the kermel of «. If V is an irreducible
subvariety of G, but not of F, and o' ={[a; V, G'], the subvariety of G’ on
which o' operates is irreducible, and is not a subvariety of F’; it will be
called the iémage of V in a, and denoted by «V; it has the property that its
extension over %k is the smallest subvariety of G containing all the a[P)
when P ranges over V— (V N F). On the other hand, if V' is an irreducible
subvariety of G”, but not of F', and o' = [a; G, V'], let V,,.., V; be those,
among ithe components of the subvariety of G on which &' operates, which
are not subvarieties of F; the join of V,,.., V, will be called the inverse
image of V' in «, and denoted by «~'V'. The meaning of the symbols aV;
a—'V" is extended in an obvious manner to the cases in which V or V' is
reducible. The degree of « is O if dim G’ < dim G, and equals ord «{G"} if
dim @ = dim G. If there exists a homomorphism of G onto G, then @ is
said to be a homomorphic image of G. We say that G and G are isomorphic,
and write @=G’, if there exists a homomorphism of G onto & which is
also a homomorphism of G' onto G; such homomorphism is then a birational
correspondence. The product- of homomorphisms (as well as of rational
mappings) is defined in the usual operatorial manner; the degree of the
product of two homomorphisms equals the product of the degrees of the
factors. An endomorphism of G is a homomorphism of G into a copy G' of G;
the endomorphisms of degree 1, which are the isomorphisms of G onto itself,
are called the automorphisms of G; they form a group with respect to the
law of multiplication. If G has the same meaning as in Corollary 3 to
Theorem 1 of [4], then an automorphism y of k{G) over k is related to an
automorphism of G (as automorhisms of %(G) are related to birational mappings
of G onto itself) if and only if yGy—*= G. The group-varieties @, G over
the arbitrary field k are said to be dsogenous if each is a homomorphic
image of the other; the relation of being isogencus is clearly reflexive,
symmetrical and transitive. Let G, A be group-varieties over the arbitrary
field %, with degeneration loci F, B respectively; the pseudo-variety G 4
is birationally biregularly equivalent to a variety, which we shall still denote
by G>A. If P, P' are points of G—F, and @, @ of A— B, set
(P Q)(P' X @)= PP'> Q@ ; this defines a law of composition on G4,
and under such law G> 4 is a group-variety with the degeneration locus
(F'>< 4) U (@ > B). This group-variety is called the direct product of G- and A.



1. Barsorti: Structure theorems for group-varieties 81

Let G be a nonsingular group-variety over the arbitrary field %, with
degeneration locns F, and let X be an irreducible cycle of G but not of F;
let G, G,, G, be copies of G, and let D be the rational mapping of G, X G,
onto @, which gives the law of composition on G, as specified in section 1
of [4]; assume k(G (=1, 2, 3) to be a subfield of k(D) as prescribed by D;
then a birational correspondence is established between (G, )k, and (Gyxe,,
and in such correspondence the modified extension of X, over k(G,) corresponds
to exactly one irreducible cycle I'x of (G,)i,), baving the same dimension
as X ; this definition of I’y can be extended, by linearity, fo any cycle X
of G having no component variety on F. We shall also set Tx= Dr, ¢, (see
section 3 of [1]); this notation is in accordance with the notation used in
the proof of Theorem 3 of [4], and will be used consistently throughout this
paper. We shall now assume, in order to simplify the notations, k& to be
algebraically closed; if X has the previous meaning and is irreducible, and
if P€ G — F, the transform of X, according to the birational correspondence
T# is an irreducible cycle of @, having the same dimension as X; we shall
denote it by (spX),, and this notation will be extended by linearity to the
case in which X is reducible. The radical of opX is the smallest subvariety
of G containing all the points PQ when ¢ ranges oves rad X — (F N rad X).
Let v be a place of G whose center on G is P, and let B be a point of
rad cpX but not of F; then Q=P *R€rad X — (FNradX). Let u be a
place of G with center @ on @, compounded with a valuation w of XG)
having as center on G one of the components of rad X, say X', which
contain @; then the place (u,, v,) of G, > G, (see Step 3 of the proof of
Theorem 3 of [4] for the definition of this symbol) has on G, X< @, the center
P, < @,, and therefore has on G, the center B,. Let »' be the extension of w,
over k(G,); then (u,, v,) is compounded with #' and with a place of K,,,; this, in
tarn, induces a place of k(7'x/) which induces v, in k(G,), and which has
on @, the center R ; as a consequence, R, €I'x[v,], and this fact proves that
every component of (spX), is a component of I'y[v,]. These steps can be
retraced, and the result is that I'x[v,] is the join of (cpX), and, possibly, of
a subvariety of F,; this lasi one may actually occur only if F N rad X is
nonempty. Now assume X to be irreducible, and consider the birational
correspondence fx between (X )x@) and Ix induced by the birational
correspondence D{G,} between (G,)xe) and (G.)ke,). Then Bx can also be
considered as an algebraic correspondence between k(G,) and X,X @G,; if
this is done, set Bx = Dg,,¢,, and consider Bx as an algebraic correspondence
between @, < X, and G,. For a point P, X @, of G, > X, such that P, Q¢ F,
we have that (cpX), appears in Tx{P{* with the same multiplicity e with
which the correspondent component of Bx[P,] appears in Bx{P,*. But then
the multiplicity of E,= D[P, > @,)] in D{P,X @,}* = Bx{P, > Q,i* is a
multiple of e; since such multiplicity is 1, we conclude that e=1, or that
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(cpX), appears with multiplicity 1 in Tx{P,}*. We shall make use of these
results without specific reference to them. Another result of frequent unse is
the following one:

Lemma 1.1. - Let K be an algebraic function field over the arbitrary field k;
let F, V be irreducible varieties over k, and let D be a rational mapping of F
into V; let P be a rational point of Fx such that Dg[P] is a rational point Q
of Vi; let v be a place of K over k such that K,=k, and set P'= P[v),
@ = Q[v], so that P, @ are rational points of F, V respectively. Then
Q' € D[P'].

ProoF. - We may assume D to be onto V; if %(V) is then considered
to be a subfield of k(F) as prescribed by D, each place of Fx with center P
on Fx has the center @ on Vgk; let # be such a place, and let w be
compounded with # and with the extemsion of v to K, . Then P’, ¢ are the
centers of w on F, V respectively, Q. K. D..

As a particular consequence of Lemma 1.1 we may consider the following
case: let G be a group-variety over the arbitrary field %, with degeneration
locus F'; let K be an algebraic function field over k, and let P, @, R be
rational simple points of Gx but not of Fx, such that PQ=E; let v be a
place of K over % such that K,==%, and assume P’'= P[v] and @ = @[v] to
be simple points of G but not of ¥, and R’ = R[v] to be a simple point of G;
then B ¢ F, and R = P'Q".

LemMMA 1.2. - Let G be a group-variely over k, and let V be an irreducible
group-subvariety of G, simple on G. Then V is a group-variety.

Proor. - Let F be the degeneration locus of G, and let G,, G,, G, be
copies of G, and V,, V,, V, be the corresponding copies of V. If D is the
rational mapping of G,> G, onto G, which gives the law of composition
on @ then D{V, X V,}* = A’ exists and is a rational point of (G,)rwvix<vy,
since V, X V, is simple on G,X G,; set D' = Dy, vxv,; then IV operates
on V,. Since D' is the only component of D N ¥, X V, X G, which is not a
subvariety of F, X G,>X G, U G, X F,X G, U G, X G,X F,, it also can be
obtained by operating with D{V, X V,}* or D{V,> V. }*; hence I defines a
normal law on V, Q. E. D..

LeMMA 1.8. - Let G be a nonsingular group-variey over k, and let V
be an irreducible group-subvariety of G. Then V is a nonsingular group-
variety.

Proor. - V is a gronp-variety by Lemma 1.2. Let F be the degeneration
locus of @G, and let P be a point of V— (VN F), simple on V; set
0=209Q(P/G), P=P(V/G), p=P N O; the fact that P is simple on V means
that O/p is a regular geometric domain. If P’ is any point of V— (VN F),
and O, P, p’ are related to P’ as O, P, p are to P, we have O’ = d0,
P =oP =P, if 6=0pcp ; hence p’ = op, and therefore O'/p’ is isomorphic
to O/p, and is consequently a regular geometric domain, Q. E. D..
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2. The homomorphism theorems. - Let «, 3 be homomorphisms of a
group-variety G over k onto group-varieties 4, B respectively; we shall say
that «, B ave equivalent if there exists an isomorphism y of 4 onto B such
that B =ya; the relation of equivalence is reflexive, symmetrical and transi-
tive. A class of homomorphisms means a class with respect to equivalence.
Equivalent homomorphisms have the same kernel, degree and inseparability ;
they will be called respectively the kernel, degree, and inseparability of their
class ; a separable cluss is the class of a separable homomorphism.

THEOREM 2.1. (FIRST HOMOMORPHISM THEOREM). - Let G be o nonsingular
group-variety over k, with degeneration locus F'; there exists a one-fo-one
correspondence between the set of the invariant group-subvarieties of G, and
the set of the separable classes of homomorphisms of G onio group-varieties
over k. The group-subvariety V and the class A correspond lo each other if
and only if V is the kernel of A; if B is o homomorphism of G onfo G of
inseparability e and kernel V, and if o is a homomorphism of G onto B
belonging to the class A which corresponds to V, there exists a homomorphism v
of B onfo G, of inseparability e and kernel Eg, such that § —=yo. Finally.
dim V+dim @ =dim G, and the group of the poinis of B which do wnot
belong to the degeneration locus of B is isomorphic to the group (G — F)/(V —
— (VN ).

It V, 4, «, B have the meanings just stated, then B (which is determined
but for an isomorphism) is called the factor variety of V in G, and denoted
by G/V, while « (which is determined but for equivalence) is called the
natural homomorphism of G onto B. We shall always select a nonsingular B.

Proor. ~ Let V be given; let @, G,, G, be copies of G, and let D be
the rational mapping of G, XX G, onto G, which gives the law of composition
on G. Set L, = Gy, (see the definition preceding Theorem 4.1 of {1] for the
symbol Gr,), so that k(L) is a subfield of %(G,); we assume L,, L, to be
copies of L, related to G,, G, respectively as L, is to G,. Let A, be the
irreducible algebraic correspondence between %(L,) and G, generated by the
embedding of (L} in k(@,). Let »,, w, be nondegenerate places of G, which
induce in k(L,) the same place wu,; then I'y[v,]=Ty¢[w,], and therefore
6y V=0.V; in particular, o,Eq€0,V, so that the center of w on G belongs
to o,V. This proves that the components of A,[u,] which are not subvarieties
of F, are necessarily subvarieties of (5,V),. On the other hand, let v be a
nondegenerate place of @ whose center on G is generic, and let # be induced
by v in k(L); let w be a nondegenerate place of G whose center on @ is on
o,V; then ¢,V=0,V. But in this case, (6o V), = I'v{v,}*, and therefore v,
has on L, the same center as v,. This proves that if the center of u, on L,
is generic, then A [u,] has, outside F,, the same components as (s, V),. Now,
each component variety of I'v has inseparability 1, and therefore Ty is the
modified extension, over k(@,), of a cycle I' of (Gy)xz,, and each component
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variety of T has inseparability 1; if T'=Dp,r,, we have that a generic
P, € G, belongs to exactly one (s,V),, so that T'[P,] is a point of L, . As a
consequence, I' is’ irreducible, and X%(T) is a purely inseparable finite
extension of %(G,); on the other hand, if X is any component of V, k(T%x)
contains %(7"), and ins (%(Tx):k@,) =1, hence k(T") is separable over k(@,),
or K(T') =k(@G,), and k(L) C k@G,). It now follows, from ins I'=1, that ins
(k(T") : K(L,)) =1, so that also ins (k(G,): k(L)) =1. We now consider %G,
kL) (¢=1, 2, 3) as subfields of k(D). Let w be a place of D with centers
P, Q,, R, P/, Q/, R/ on,respectively, G,, G,, G,, L,, L,, L,, and assume
P, < @, to be generic on @, < G,. Set Z; =D, ,1,; then P, € Z[P/| = (opV),,
Q.€Z,[0,1=(0qV),, R, €Z[R,/]=(0rV),; but, since V is invariant, cgV=0poqV
depends only on opV and o¢V; hence R’ depends only on P', ¢, a fact
which shows that each element of k(L,) is purely inseparable over kL, X L,);
since ins (B(G, X< G,):k(L, X L,)) =1, this implies that K(L,) < kL, > L,).
Similar results can be obtained for any permutation of the indices 1, 2, 3;
hence the embedding of %(L;) into k(D) generates a rational mapping D’ of
L;> L; onto L,, for any permutation (s, j, b} of {1, 2, 3), and it is quite
easily seen that D' gives a normal law on L. According to Theorem 3 of [4],
L is birationally equivalent to a variety B which is a group-variety, with a
degeneration locus C, under the law Y induced by D'

Let « be the rational mapping of G onto B generated by the embedding
of k(B) into %(G). We contend that « is a homomorphism with kernel V.
First of all, if P€G—F and P’ €q[P], let v be a place of G with centers
P, P’ on G, B respectively; if ¢' is the extension of v, over %(@,), then ¢' is
a valuation of %(D) which induces the trivial valuation in X(@G,), hence in
k(B,), a fact which proves that P’¢ C; in addition, cp.induces op, in Kk(B),
and this shows that P’ = «[P]. Moreover, if Q€ G — F and € = o[@], we have
that opg=opog induces op/ogy = opg in k(B), so that o[PQ] == («[P])(=[Q]), as
requested. Finally, P ¢ F belongs to the kernel of « if and only if op induces
the identical automorphism in %(B), or in k(L); and this is so if and only if,
for a generic @ of G, opogV =0V, that is, if and only if PEV —(V N F).
Hence V is the kernel of «.

Now let B and @ be given as in the statement of the theorem. Let P’
be a generic point of @, so that B[P’} has no component on F; if P, @
belong to B[P’] but not to F, then f[P—Q]= Eg/, so that @ €cpV. Viceversa,
it Q€opV — (F N opV), then B[Q]= P'. Hence B[P’] = opV. This proves that
the algebraic system of the (8{@'}){u}, when u ranges over the places of &,
coincides with the set of the multiples, according to a fixed integer, of the
elements of the algebraic system of the («{B})lv}, when v ranges over the
places of B; hence there exists an algebraic correspondence y between @
and B such that kfy) is a purely inseparable finite extension of %(G') and
k(B), and such that if P’ is a generic point of G, then y[P'] is the point P
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of B such that B[P']= «[P]. Now, BX @ is birationally biregularly equivalent
to a variety, which will still be denoted by B> G'; then y is an irreducible
subvariety of B> G. Consider «{G} and 3{G} as rational points of Byg)),
@'viq) Tespectively, so that «{G} X B{G} is a rational point X of (BX G)xg.
For a place v of G, with generic center P on @, we have X[v]=a[P]X[P]€Y;
conversely, we have seen that a generic point of y is of the type X[v]
Hence y is the subvariety of B> G' on which X operates, so that we can
assume k(y) & k(G). As no element of k(@) is purely inseparable over k(B),
we conclude that %(y) =%(B), and that %(B) is a purely inseparable extension
of k(@). Moreover, [k(B): k(@) = ins (k(G): k(@) =e. Now it is clear that y
is a homomorphism of B onto G, of inseparability e and kernel Ep, and
that yz =f3. The one-to-one correspondence V — A4 (where 4 is the class
of «) is obtained by setting e=1, Q. E. D..

A particular case of this result forms the object of [6]. From the previous
proof, it is easily seen that if o is a homomorphism of the group-variety G
over k onto the group-variety &, and V' is an irreducible subvariety of @,
but not of its degeneration locus, then ¥V =«—'V’ is the smallest subvariety
of G which contains all the P€ G — F (F being the degeneration locus of G)
such that «[P]€ V’; moreover, any P€a~'V' — (FNa~'V') is such that
a[PlE V.

LeMMA 2.1. - Let @ be a group-variety over k, with degeneration locus F,
and let V be an invariant group-subvariety of G; let H = kiG/V) be considered
as a subfield of K =FKk(G) as prescribed by the natural homomorphism of G
onto G/V. Then H 1is the set of the elements x € K such that apx =< for
every PE€V — (VN F). And if ops=1w for each x € H, then P€ V — (V N F).

Proor. - We may assume G to be nonsingular. Let « be the natural
homomorphism of G onto B= G/V; let P€ G — F, and set P = a[P]. We
have seen in the course of the proof of Theorem 2.1 that sp induces op/
in H; hence opw = for each x € H if and only if op. =1, i. e. if and only
it PEV. Let now x €K be such that cpw =12 for each PEV — (VN F),
and set H' == H(x). Let B’ be a model of H' over %k, and let @ be a generic
point of B; let Z be the rational mapping of B onto B generated by the
embedding of H into H’. There exists a nondegenerate place v' of K over k
with cenier @ on B; let @ be the center of v on B’; let @’ be another
point of B’ obtained from ¢ by means of another nondegenerate place v".
Then ¢, @' €Z[Q], and there exist points P, P’ of G — F such that ¢,
Q" correspond to P’, P" respectively in the rational mapping T of G onto B’
generated by the embedding of H' into K. As @ is generic, we may select P’
to be such that @ = T[P’]; since o[ Pl = a[P"] = @, we have P’ = spP” for
a PEV—(VNF); hence opv” has the center P’ on G, and the center Q'
on B'. But opv” and v” induce the same valuation in H'; therefore ¢ = Q".
This proves that for a generic @ of B, Z[Q] is a point of B, a fact which
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indicates that H’ is a purely inseparable extension of H. Since ins (K : H)= 1,
we conclude that H' =H, x€ H, Q. E. D..

LeMMA 2.2, - Let G, A be group-varielies over k, with degeneration loci
I, B respectively, and let « be a homomorphism of G onto A. Assume H = k(4)
to be a subfield of K = k(G) as prescribed by «. Then, for any P€ G — F, we
have cpH = H, and op induces in H the automorphism cp:, if P’ = a[P].

PrROOF. - We may assume G to be mnonsingular. Let G,, G,, G, be
copies of G, and let D be the rational mapping of G,> G, onto G, which
gives the law of composition on G. Consider %(G;) as a subfield of k(D) as
prescribed by D; let A;, o; be copies of 4, a respeciively, and let %(4;} be
considered as a subfield of k{G;) as prescriaed by a; (i =1, 2, 3). Then the
smallest subfield of k(D) containing %(4,) and k(4,) also contains %(4,), and
the embedding of %(4;) in such a field generates a rational mapping D' of
A4,>< A, onto A, which gives the law of composition on 4. If v is a
nondegenerate place of G, and w is induced in k(4) by v, let ¢/, #' be the
extensions of v, , w, over k(@,), k(4,) respectively, so that v’ induces #' in
kD). It x€k(4), we have x, — (o, 'z), € Py, and also x, — (c,';lw)z €EPw & Py,
8o that (o;'® — oy @), € Py N E(G,), or o; e =0y 2, Q E. D..

LemMa 23. - Let G, A be nonsingular group-varieties over k, with
degeneration loci F, B respectively; let « be a rational mapping of G info A
such that o[PQ) = («[P]))([@Q]) for a generic pair of points P, @ of G. Then o
is a homomorphism of G info A.

Proor. - Let 4,, 4,, 4, be copies of 4, and let D be the rational
mapping of A4, >< 4, onto A, which gives the law of composition on 4; let
G,, G,, G,, D' be similarly related to G; consider %(@;) to be a subfield of
k(D) as prescribed by D' (¢ =1, 2, 3). The rational mapping &' =a{G} is a
rational point of Ax@); we shall consider the copies a of o on (4ixe,
(i=1, 2, 3), and the modified extensions «; of «; over k(D). Our assumption
implies that if D* is the modified extension of D over FK(I), then
D¥a, X a,] = @, ; Lemma 1.1 yields that if w is a place of I, and u,, v,, 2,
are the places induced by w in k(G), k(G,), K G,) respectively, we have
(«#)), € D(a'[w)), X («v]),]. The set of the centers on G of the places v such
that «[v]€ B is a proper subvariery C of G; if CS[=F, it is possible to
select #w in such a manner that the centers of # and 2z on G are not on
C U F, while the center of v on G is on C but not on F; the previous
relation implies, however, that af¢]€ B if au]¢ B and «[v]€ B (for nondege-
nerate u, v, #); as this is a contradiction, we conclude that C & F. But
then we can state, more precisely, that «z]= («u)}(Tv)) if », v, # are
nondegenerate. Now, the fundamental locus of « on G is also a proper
subvariety C' of G; if C'S|=F, if is possible to select w in such a manner
that the centers P, @ of, respectively, u, v on G are not on C'U F, while
the center R of z on @ is on C’ but not on ¥F; this contradicts the previous
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relation, since such relation implies that «z] depends only on P and 0,
hence only on the center B = PQ of z. Therefore ¢’ S F, Q. E. D..

THEOREM 2.2. (SECOND HOMOMURPHISM THEOREM). - Lef G be a mnonsin-
gular group-variety over k, with degeneration locus F, and let V, W be
invariant group-subvarieties of G, such that WS V; set B= G/W, and let a
be the natural homomorphism of G onlo B; set A—=aV. Then A is an inva-
riant group-subvariety of B; set C = B/4, and let § be the natural homomor-
phism of B..onto C; let v be the natural homomorphism of G onto G/V; then Y
i8 equivalent fo Ba.

Proor. - We may assume k(B) & k(G) as prescribed by «; the fact that 4
is an invariant group-subvariety of B is a consequence of group-theoretical
considerations. We can further assume %(C) < k(B) as prescribed by f. Then
Lemma 2.1 shows that %(C) is the set of the elements of %(G) which are
invariant under all the op for PE€V— (VN F), so that C is birationally
equivalent to G|V, and the inseparability of fa is 1. But then, since y and B«
have the same kernel V, Theorem 2.1 implies that y is equivalent to Ba,
Q. E.D..

Let 4, B be irreducible subvarieties of a group-variety G over k, but
not of the degeneration locus F of G. Let G,, G,, G, be copies of G, and
let D be the rational mapping of G,>< G, onto G, which gives the law of
composition on G The irreducible subvariety C of G such that C, is the
subvariety of @, on which [D; 4, B,, G,] operates will be denoted by
(4, B); we have (4, B)S|—F, and (4, B) is the smallest subvariety of G
containing all the points PQ, when P ranges over 4 — (4 N F) and Q ranges
over B— (BN F). If 4, B are not irreducible, but none of their components
is a subvariety of F, (4, B) can be defined by means of an obvious
generalization of the previous definition. If A4, B are group-subvarieties
of G, then (4, B) is a group-subvariety of G if and only if (4, B)= (B, A).
The symbol (4, B, C,...) is the natural generalization of (4, B).

THEOREM 2.3. (THIRD HOMOMORPHISM THEOREM). — Let G be a nonsingular
group-variety over k, with degeneration locus F; let A, B be irreducible group-
subvarieties of G such that (4, B) is a group-variety of which B is an invariant
group-subvariely - (this being the case, in particular, if B is invariant in G).
Let C bé the join of those components of A N\ B which are not subvarieties of F.
Then there exisis an integer e such thalt eC is part of the intersection
(4 N B, (4, B)); C is an invariant group-subvariety of A, and there exists a
homowmorphism 8 of A/C onfo (4, B)/B) whose kernel is the identity, and whose
degree is e.

Proor. - By Lemma 1.3, we may assume (4, B)= G. The fact that C
is an invariant group-subvariety of 4 is proved by an elementary group-
theoretical argument. Let ¢ be the natural homomorphism of G onto @' = G/B;
then &' =[a; 4, ] is a homomorphism of 4 onto @, whose kernel is
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evidently C. Therefore C has the pure dimension dim 4 — dim @ =dim 4 +
+ dim B — dim @, so that, if ¢’ is any component of C, the intersection
multiplicity 4(C’, 4 N B, G) exists and is a positive integer, by Theorem 5.11
of [3]. By Theorem 2.1, there exists a homomorphism § of 4'=A4/C onto &
whose kernel is the identity; then the degree of B equals e=insa'{G'}.
Let A* be the modified extension of 14 over k(G'); then, by the definition
preceding Lemma 1.2 of [3], «'{G'} is the only part of (x{G'} N A% Gy@n
which operates on the whole 4; and since no point of 4— (AN F) is
fundamental for o, we also have that if rad «{G'} N rad A* has components
which do not operate on the whole A4, then each one of them must operate
on a subvariety of 4 N F. If v is a place of G whose center on G is Eg .
we have seen that (x{G'}){v}* coincides, but for component varieties on F,
with B, so that the law of the conservation of the number (Theorem 5.7
of [3]) implies that («'{G'){v|* coincides, but for component varieties on F,
with (4 N B, G); therefore (A N B, G)=e(0, but for component varieties
on F, Q. E. D..

COROLLARY. - Let G be a nonsingular group-variety over k, with degene-
ration locus F, and let A, B be irreducible group-subvarieties of G such that
G = (4, B), and that PQ = QP whenever P, Q are points of A, B respectively,
but not of F. Assume (A N\ B, G) = Eg; then G=2A X B.

Proor. - Set 4'= G/B, and let « be the natural homomorphism of G
onto A'; from Theorem 2.3 and its proof, and under the present conditions,
we obtain that 4’2 A4/Eg2 4, and that o induces an isomorphism between
A and 4’; in like manner the natural homomorphism § of G onto B = G/4
induces an isomorphism between B and B. Set o =a{G}, B =BiGi,
Y=o X8, y=Dy,e, so that v is a homomorphism of G onto the direct
product A’ > B, with kernel Eg. We shall consider %(4'> B) to be a
subfield of k(G) as prescribed by y. Since « and B are separable, we have
that ins (k(G): k(4') = ins (k(G) : k(B))=1; the definition of inseparability
(section 1 of [2])), and the faet that the smallest perfect extension of
k{4’ > B) is the quotient field of the direct product, over %, of the smallest
perfect extensions of k(4'), k(B’), imply then that ins(k(G):k(4' X B))=1,
or that y is an isomorphism, Q. E. D..

3. Commutative group-varieties. - Let G be an n-dimensional projective
space over the arbitrary field %k, with n. h.g.p. {2,,.., 2,}, and let us
define a law of composition on G by means of the rational mapping D of
G, @, onto G, given by (x,), = (®), + (@), (¢==1,..., n). Then G becomes
a commutative group-variety, with the hyperplane at infinity (for {x}) as
degeneration locus; such group-variety, or any one isomorphic to it, is
called an n-dimensional weclor variety; if m > 0, it is isomorphic to the
direct product of » 1-dimensional vector varieties. If D is defined by
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(x,); = (x;),(x;),, G becomes a commutative group-variety, whose degeneration
locus consists of the hyperplane aft infinity, and of the » hyperplanes ;=0
such group-variety, or any isomorphic to it, is called a logarithmic variely,
and is isomorphic, if % >0, to the direct product of # 1-dimensional
logarithmic varieties.

Lemma 3.1. - Let G be a simple commuiative group-variety over k, of
dimension > 1; then G is an abelian variely.

PrOOF. ~ We may assume ( to be nonsingular. Let F, n be, respectively,
the degeneration locus and the dimension of G; we shall assume %> 1,
and F to be nonempty, and prove that G cannot be simple. Let G,, G,, G,
be copies of G, and let D be the rational mapping of G, X G, onto @G, which
gives the law of composition on G. Let X be an {n — 1)-dimensional unmixed
effective (integral) cycle on G, none of whose component varieties is a
subvariety of F, and set (Hx), = Gr, (see section 1). Let V be the set of all
the P€ G — F such that 0pX = X; then V is a group, and the smallest
subvariety Vx of G containing V is a group-subvariety of G, and has the
property that Vx — VC F. Since G is commutative, Vx is invariant in G,
so that Bx=— G/Vx exists. The embedding of %(Bx) and %(Hx) into X(G)
generates an algebraic correspondence I’ between Bx and Hx. Given a
generic P € Hx, there exists a Q€ G— F such that the nondegenerate
places v of G whese center on Hx is P are all and only those for which
(6uX); = I'x[v,] = (0¢X),; such v’s are also all and only those for which
o{,’lQE Vx, hence also all and only those for which ¢,Vx==0¢Vx, and finally
all and only those which have on Bx a certain fixed center. The argument
can be retraced, and proves that D'[P] is a point whenever P is a generic
point of either Hx or Bx. Hence the smallest subfield of %k(G) which contains
k(Bx) and E(Hx) is a purely inseparable extension of k(Bx) and k(Hx). But
ins (¥(G) : B(Bx)) =1 by Theorem 2.1, so that %(Bx) is a purely inseparable
extension of k(Hx). These notations will be maintained in the rest of this
proof. Assume now G to be simple; then for each (n— 1)-dimensional
effective cycle X of G, with no component variety on F, Vx is zero-dimen-
sional. Let X be such a cycle, and suppose that there exists a degenerate
place v of G such that Ix{v|* has component varieties which are not
subvarieties of F'; let, for instance, I'xjv,}* = 2i_; a,(X;), + Zj_; b,(X/),, where
no X, is a subvariety of F, while each.X, is a subvariety of ¥, hence a
component of F. Set ¥ = I, a X, ; for any nondegenerate place u of G, there
exists an automorphism p, of k(D) over %(@,) which induces (s,),, (,), in
k(G,), Kl(G,) respectively. Then, if the center of # on G is generic, we have

(1) Px{(0u0),* = Ixlpuv,}* = pu 2; 0,(X3), +
+ (eycle of F.} =(0,Y}), + {eycle of F,j=
= I'y{u,{* + (cycle of F,).

Annali di Matematica 12
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Let G' be a normal model of k(G), and let Tx, Ty be the algebraic
correspondences between G, and @, induced by, respectively, T'x and Ty;
let G' be selected in such a way that Tx' and Ty have no fundamental point
on @, (see Theorem 4.3 of {1]); let likewise G” be a normal model of %(G),
let D” be the rational mapping of G, G,” onto @, induced by D, and
select G” in such a way that D’ has no fundamental point on G,”. Let @
be the center of v on G”, and let I be the only component of D"[@Q,] which
operates on the whole G,' (see Theorem 1 of [4]. Then for a place # whose
center on @ is a generic P, the center of (o,v), on G, is T[P], and this is
a generlc point R, of the proper subvariety F,’ of G, on which T operates.
Hence for such % we have I'xi(o,v),}* = I'X{R,\* and Tyiu,}*= Ty{P}*
so that formula (1) implies that Tx{B!*= TY{P}*4 (cycle of F,). It
T =\{Tx; F,, GJ* (see section 1 of [2]), this can be written T"{R}*=
= T¥{P}* + (cycle of F,). This indicates that a generic element of the
algebraic system whose elements are the T”{E}* is the sum of Ty'{P,}* and
of the cycle denoted by (cycle of F,), which can vary among finitely many
cycles only. Hence (cycle of F,) is fixed, and the algebraic system formed
by the T¥{P,}* has dimension < dim F' <n, so that dim By <mn, and
dim Vy > 0. This contradicts the assumption that G be simple, and we must
conclude that if G is simple, for each (n — 1)-dimensional unmixed effective
cycle X of G, with no component variety on F, and for each degenerate place
v of G, every component of I'x[v,] is a component of F,; this also shows that
dim F=#n — 1. According to the proof of Theorem 3 of [4] it is possible fo
select X in such a way that Hx is a model of k(G), and is a group-variety
isomorphic to @ under the law of composition induced by D, in which case
we can select Bx = Hx2 G. A place v of Hx is such that its center P on Hx
belongs to the degeneration locus of Hx if and only if I'x[v,] is a join of
components of F,; since this may happen only for finitely many points P,
we conclude that the degeneration locus of Hx is zero-dimensional. But Hx is
simple, so that is degeneration locus must be (n — 1)-dimensional, as previously
shown. Since n > 1, this contradietion proves that G is not simple, Q. E. D..

The folloving result, and its proof, are generalizations of Proposition 25
of [16] and its proof:

THEOREM 3.1. - Let G be a nonsingulor group-variety over k, and let A
be an abelian group-subvariety of G; then there exists a homomorphism o
of G onto A;: if B is the component of the identity in the kernel of o, then
dim (4 N B) =0, and G =(4, B).

PROOF. - Set w=dim G, r =dim 4, and assume 0 <r <n (otherwise
the result would be trivial). Let F be the degeneration locus of G, and let P
be a fixed (simple) point of 4. Since P is simple on G, it is possible to
find an (n — r)-dimensional irreducible cycle X of G, containing P, and
such that 4P, AN X, G)=1. Let G,, G,, G, be copies of G, and let D be
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the rational mapping of G, > G, onto G, which gives the law of composition
on G. Set = Eg = E,; because of the properfies of T'x, [Tx; G,, 4,] has
exactly one component 7" such that the subvariety of @, on which it operates
is not a subvariety of F,; we have dim I"=dim Ty —n +r=mn; and
T'[BR,], for R€ A4, coincides, bhut for components on F,, with T'x[R,]. There-
fore, if W, is the subvariety of G, on which I” operates, we have E € W,,
and P, is a component of T'[E,]. If n'=dim W, each component of T'[E|]
has dimension =dim 7" —w =n — #'; since P, is one of such components,
we conclude that #' =, i.e. that 7’ operates on the whole G,. But then
A=T{G} =Tx N (4;)x@y. Since A is a simple point of (G,)x@,), We conclude
that A" = (I'x N (4y)r@y, (G ey exists and is a multiple of A. The condition
(P, AN X, G)=1, and the law of the conservation of the number (Theorem
5.7 of [3]), imply then that A” = A, and that insA=1; as a consequence,
there exists a normal separable extension K of %(@,) such that the extension
A" of A over K has the form A’'=2;A;, each A, being a rational simple
point of (G,)x, not on (F,)x. Set 8 =1II, A, (the order in which the product
is performed being immaterial since A,€(4,}x); then, by Corollary 3 to
Theorem 1 of [4], 0" is a rational point of (4,)x; but any automorphism of K
over k(G,) simply interchanges the A;, so that it leaves 6 invariant; hence ¢
is the extension over K of a rational point 6 of (4 )xg,), that is, a rational
mapping of k(@,) into 4,. But then, by the remarks opening No 19 of [16],
there exist a homomorphism o« of @, into 4,, and a point @, of 4,, such
that 6 = (Q,)x)*{G@,}. For a place v of G whose center B on G is generic,
{6,X N 4, G), exists and coincides with Afv ¥, while 8jv,}* =11, A v'}*, if o
is any place of K over k which induces v, in k(G ); since the A,jo'}* are all
the intersections of ¢,X and 4, we conclude that, for any -point S of 4, we
have 8{(osv),}* =(5%),0{v,}*, if d = ord A. This means that Q,«'S,R,]=28,%Q,a[R,];
then o«fS R )= 8,%a[R,], or (af[S,))(2[R,]) = S,%[R,], and ofS,] = S,% Therefore
a is a homomorphism onto A4, (see Proposition 24 of [16]). If B, is the
component of the identity in the kernel of «, for each S, of B, N 4, we
have afS,] = E,, hence S, =E,, so that S, also belongs to the zero-dimen-
sional kernel of the homomorphism § of A4, onto 4, such that §[S,]=35,%;
therefore B, N A, is zero-dimensional, Q. K. D. .

Let @, G be nonsingular commutative group-varieties over k, with the
deaenaratlon loci F, F' respectively. Let G,, G, be copies of G, and let v
be a rational mapping of @ > G, into @, operating on a subvariety
of G but not of F'; we say that v is a factor set of G into @ it
(1P, < Q. B9, < By)) = ([P, < BHP, @) and 1[P, @] = 1[Q, < P,
for a generic set | P, O, B} of points of G, and if, in addition, y[Eg > Eg,]
is a point of G'— F'. By setting P==Eqs We obtain that y[Eg > Q,] is
independent of @ if @ is generic. If y, Yy are two factor sets of G into @,
set A= (7{G X G,I{Y'{G,>< G,!), and &= Dy gx¢,; li.emma 1.1 implies then
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that & is a factor set of G into G, which we shall call the product of v
and Y, and denote by yy'; in like manner the dnverse y—* of v is defined.
It thns appears that the factor sets of G into G form a group, isomorphic
to a subgroup of G'rx,xe) — F'riaixey; such group will be denoted by I(G, G'}.
Let G, be another copy of @, and let D be the rational mapping of G, X G,
onto G, which gives the law of composition on G; consider k(G,) as a subfield
of k(D)=1kKG, < G,) as presoribed by D. Let p be a rational mapping of G
into G such that p[Eg] is a point not on F'; denote by p; (¢=1, 2, 3) the
modified extension over k(D) of the copy of p{G} which maps k(@) into G';
set ¥ =p,p,p,~!, and y =Dy exa,- Then y is clearly a factor set; all the
factor sets of this type form a subgroup of I'(G, &), which we shall denote
by Ty(G, @). It v, Y €I(G, @), we shall say that they are associate (fo each
other) if Yy~ €I'\(G, @).

Let A, G, G Dbe nonsingular commutative group-varieties over k, with
degeneration loci B, F, F' respeciively; we say that 4 is a crossed product
of G and @ (in this order) if: (1) there exists a separable homomorphism «
of A onto G, with a kernel V which is isomorphic to G’ in an isomorphism §;
(2) there exists a rational mapping X of G into 4, such that «[A[P]]= P for
a generic P€ @, and that A\[Eg] is a point not on B. Let G,, G,, G, be copies
of G, and let D be the rational mapping of G, < G, onto G, which gives the
law of composition on G; consider %(G,) as a subfield of k(D) =1£k(G X G,)
as prescribed by D, and let A; be the modified extension over (D) of the
copy of MG} on Agey; set I'=AA A, v, = Dr, axe,- For a generic point
P, @, of @ X G, we have aft[P,> @] = d(M[P)AQ)APQ)] =
= PQ(PQ)~* = Eg; therefore y, operates on a subvariety of V. It is easily
seen that y, is a factor set of G into V, so that y, corresponds, according
to B, to a factor set y of G into G'; we shall somefimes denote y by y;, in
order to indicate its dependence on A. There exists a rational mapping &,
of A onto V such that, for a generic P€ 4, we bave 3[P]= P(A[«[P])~";
we shall denote by 3 the corresponding rational mapping of 4 onto G (that
is, 5 =p3,). Let k(@) and k(@) be considered as subfields of k(4) as prescribed
by a«, 5 respectively; for gemeric points P, P' of G, G respectively, the
point @ = (A[P])(B[P’]) exists, and is such that o[@] = P, 3[@] = P’. Hence the
smallest subfield of %k(4) which contains %(G) and k@) is kG X G); bus
the same relation also shows that k(4)==k(G > @), since ins (k(4) : ¥{G))=1;
therefore A is birationally equivalent to G >< G&'. The birational mapping of
k(@G> @) onto A thus established is A*B*, where X* f* are the modified
extensions over k(G > @) of, respectively, A{G} and B{G'{; the (inverse)
birational mapping of k{4) onto GX G is a{4} <X &{4}.

Conversely, let the nonsingular commutative group-varieties G, G' over k,
with degeneration loci F, F’ respectively, and y€I(G, @) be given, and
define a law of composition L' on G > G' (not a direct product!), as a rational
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mapping of G, X< G/'X G,>X G, onto G,> G, in the following manner: let
D, D' be the laws on @, G respectively, and let A, A’ be the modified
extensions, over K=1FKG, X G/ X G,XG,), of DG, X< G}, D{G X G}
respectively; let y, be the copy of y in I(G, G)), and let T' be the
modified extension of v,{G,>< G,} over K. Then L’ is defined by setting
LG X< G XX G,>X< @} = AXAT. It is readily seen that L’ is a normal law
on G X @, so that, by Theorem 3 of [4], G > G’ is birationally equivalent,
in a birational correspondence f, to a nonsingular commutative group-
variety 4, with a degeneration locus B, whose law of composition L is
induced by L'; such group-variety, defined but for an isomorphism, will be
denoted by {G, @, yl. For any point P’ of G'— F', L[Eg X P,'] has as a
component the birational correspondence between G, G, and G, X @G,/
which gives, as a correspondent of a generic point @, > @,” of G, G,/, the
point @, P,'Q.'v,[Es, < Q,]; therefore Eg> P’ is not fundamental for §';
moreover, L[Eq >} P'l3=L[E¢, X R/] if PR €G —F'; hence f is
biregular at each point of Eg>< @, not on Eg> F’, and induces a birational
correspondence f3* between G and an irreducible subvariety V of 4;
such correspondence is biregular outside F'. If P’ Q' € — F, we have
(B1Ee X P)B[Ea>< @) = f[Ee X P'QY[Ee, X Eg,)]€ V. We shall accordingly
denote by f§ the isomorphism between @ and V such that B[P]=
= B P'(y[Eg, <X Hg,))"!] for PP€ @ — F'. Let o be the rational mapping of 4
onto G generated by the embeddiug of %(@G) into %(d4); then, for generic
P, Q€ 4, we have of[PQ] = (2[P))(2[@]) ; Lemma 2.3 implies then that a is a
separable homomorphism of 4 onto G. For a generic point P of &, we have
that L'[P, > Eg,] has as a component the birational correspondence between
G,>< G, and G,> G,/ which gives, as a correspondent of a generic point
2, @, of G,>< G, the point P,Q,>< Q,v.[P, <X @,]; hence F[P>X Eg] is a
point of 4 — B, and therefore [§'; G>< Eg:, A} is a rational mapping A of G
into 4, and we have, for a generic P of G: «[A[P]]=«[f[P X E¢]|=P;
finally, A[Eg] © f'[Eg X Eg)=p*E¢]=B[y[Ee, X Fs,], and this is a point
of V, not on B, so thai the same is true of A[Eg). It thus appears that 4 is a
crossed product of G and @, and that B, X play the same role as in the
definition of a crossed product. It is readily verified that v=1;.

We have thus seen that y €I'(G, G') determines, but for an isomorphism,
a crossed product 4=1G, G, v}, and that any such crossed product,
determined by means of G, @, «, and X, determines a y, €I(G, G). We have
a mapping v — {@&, @, y{, and the natural question is: what is the necessary
and sufficient condition in order that {G, @, Y| {6, G v}, for Y €ET(G, G)?
We may seleet {G, @, vl =iG, @, '} = A4, so thai there are two rational
mapping A, A’ of @ into 4 with the following properties: (1) «[A[P]]=«[A[P]]=P
for a generic P € @, (2) A\[Eg] and A[Eg] are points of 4 — B, and (3) y =,
Y= t». Let p be the rational mapping of @ into G such  that
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N[P] = (A[P}p[P) for a generic P € G; then it is easily verified that y and y’
are associate to each other, and that p has the role which the same symbol
has in the definition of associate factor sets. The argument can be refraced,
and shows that there is a omne-lo-one correspondence between the set of the
(classes of) crossed products of G and G, and the factor group I'(G, @)/T |G, @),
the correspondence being given by {G, G, y} — y. This, of course, establishes
a group structure in the set of the classes of crossed products of G and @,
but we shall not enter into details on this topic, as it is not needed for the
purpose of this paper.

LeMMA 3.2. - Let G be a nonsingular commutative group-variety over k,
and let 'V be a rational irreducible l-dimensional group-subvariety of G;
then G is a crossed product of G/V and V.

ProoF. - Set A=G/V; let G,, G,, G, be copies of G, and let D be the
rational mapping of G, X G, onto G, which gives the law of composition
on G. Let V; be the copy of V which is a snbvariety of G;; if « is the
natural homomorphism of @ onto 4, consider k(4,) to be a subfield of k(G,)
as prescribed by the copy «, of «. Since V, is a simple subvariety of G,,
there exists a valuation w, of k(G,), whose center on @, is V,, and such
that K, ==kV,); set A= D|{G,}. Then A{w,}* has a component variety T
which operates on the whole @, and the whole G,, and appears in Ajw,|*
with multiplicity 1; moreover, T’ = Dr v, has the following property: if P,
© are generic points of, respectively, G and V, then I"{P, X< @,1* is a point
of (cpV),. Let u be a degenerate place of V, and let v be the degenerate
place of G compounded with w and »; then A{v,}* has a unique component
variety S which operates on the whole G,, and S appears in Ajw,|* with
multiplicity 1 (Theorem 1 of [4]). As a consequence, S is a component
variety of T{u,}*, and appears in Tiu,}* with multiplicity 1; moreover, for
a generic point P of @, S{P}* is a point of (spV),, necessarily on the
degeneration locus of F, of G,, by Theorem 1 of [4]. Since cpV is not a
subvariety of F, it follows that SiP {*= S}(P@){* it @ is a generic point
of V. Set §'=28|G,{, W= Gs, H=k(W), so that H S ¥(G); the last result
proves that SiP,i* depends only on «,P, when this is generic, and that
therefore the smallest subfield of %(G,) containing H and %k(4,) is a purely
inseparable extension of k(4,). Since «, is separable, it follows that H & k(4,),
and that consequently S’ is the modified extension over k(G,) of a rational
point 8" of (@)kwy. If now a is considered as operating between 4, and G,,
we have also seen that for a generic P€4,, and for any place #z of 4,
whose center on 4, is P, S"[2] belongs to «—'P, so that S§” is a rational
point of @i t. It is thus proved that «{4,| contains a rational point.

Now, the proof of Theorem 2.1 shows that the modified extension of
a{A,] over Kk(G) is birationally equivalent to the modified extension of V,
over k(G,), and is therefore a rational curve, hence a curve of genus zero.
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Since the genus remains the same under the separable extension k(4,) — k(@,),
we conclude that a{4,} is also a curve of genus zero; as it contains a rational
point, it follows that «!{4,} is a rational curve. We shall now identify 4,
with 4, G, with G, so that «}4} is a rational curve; it is therefore possible
to select a rational point A" of «}d}l, not on Fy), and such that, after setting
A =D, 4, ANE4 is a point not on F. Then ) is a rational mapping of 4
into @, such that A[E,] is a point not on F, and that 2[A[P}]]=P for a
generic P& A; the existence of A with these properties proves that G is a
crossed product of 4 and V, Q. E. D..

LeuMMa 3.3. - Let G, ..., G™, A*,.., A" be commulative group-varieties
over k, and set G= G'X..X G" A=A4'"X..X<XA"; then (G, A))T (G, 4)
is isomorphic to the direct prodict of all the I'(GY/A4%)/T (G, 4%).

Proor. - If Yy €I(G, 4), then v{G, X G, =1v,/>X..X ¥, Where v,/ is a
rational point of (4Y)raxay; quite clearly, y; = Dy/, axe, belongs to I'(G, 4,
and the mapping y — y; is a homomorphism of TI'(G@, 4) onto I(G, 4%);
moreover, the set |y,,.., v, | determines y, so that such homomorphism
induces an isomorphism between .I'(G, 4) and the direct product of the
I'(G, 4%); finally, y €T',(G, A) if and only if y, €T (G, 4Y) for each ¢. There-
fore it is sufficient to prove that, for any 4, I'(G, 49/T (G, 4" is isomorphic
to the direct product of the I'(G4, 4Y)/T(G/, A'); we shall denote A! simply
by 4. It y€I(G, 4), set y;=[y; GIX G, A4]; this belongs to [(G7, A4)
since Y{Hg, > Eg,] is a point not on the degeneration locus of 4. The mapping
Y —- v; is a homomorphism B;; now, given a quite arbitrary vy, in each
I(GY, A), set v/ =171, (the direct product of all G 7> G, for j==14), so that
v/ €T(G, 4), and set Y =y,y, .7 n; then y€I(G, 4), and B,y =1y,; this
proves that the mapping y — By =|B,7,..; Bmy! is a homomorphism of
I'(G, 4) onto the direct product of the I'(GY, 4); if y €T (G, 4), then By
belongs to the direct product of the I',(GY, 4); viceversa, if y; €[ (G, 4) for
each 4, then v, ...v,, €T (G, 4). The lemma will thus be proved if we show
that the kermel of § is a subgroup of TI'((G, 4). The proof of this fact will
be achieved by induction on the number m.

The assertion is true for m =1; set G'= G*><... > G™; if the assertion
is true for m =2, then I'(G, 4)/T (G, 4)=(I(G, 4)/T (G, 4))>(I(G*, 4)/T (G, 4)};
but, for‘ our induction assumption, the first factor of this direct product is
isomorphic to the direet product of the I(GY, 4)T (G, 4), for i=2,.., m,
and this proves the result for the given value of m. We have thus seen that
it is sunfficient to give the proof for the case m==2. In this case, let
Y €T(G, 4) be such that 8,y =1y, and B,y=y, coincide with the identities
EsX GiXX G, E4X GF X< G2 respectively. Let p be the rational mapping of
G' > G* into A such that, for a generic pair of points P, @ of G, G*
respectively, we have p[P>< @] =v[(P, > Eg3) X (E1 < @,)]; then p[Ee X Eg]
is a point of 4, but not of its degeneration locus. From the definition of
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factor set we have, for a generic set of points P, Q€ G', R, S€ G*.
(Y[P, < 8,) XX (9, X B[ @>X}X B]) = (v[(P, XX S B,) XX (@, X Eg)) X (v[(P, ><8,)<
X (Egy>X B,))); on the other hand, from the same definition we also have
(P, X< 8,B,) < (@, < Egy)s[P > SR = (WPQ>< SE)(1,[P,< Q,)); the last
factor is E4 by assumption, so that this reduces to y[(P, XS, E,) X< (@, < Egg)] =
= (WP > S)Q X B))p[P > SE)~*. In like manner we have (y[(P, < S,)>
X (Boy>< B)NRIPX S) = ([P SE))1,[S, < B.]), or Y{(P,<5,) (Eey>< B,)] =
= (P> SR)(MP> S)~* ; hence 1[(P, > S,)>< (9, By = (P> )@ X
X R))([P > S)~4(1[@>< R)~*, which proves that.y €T,(G, 4), Q. E. D..

LeMMA 3.4. - Let G be a nonsingulor commuiative group-variety over k
which is not abelian ; then G hav some positive dimensional irreducible rational
group-subvariety.

Proor. ~ If dim G =1, this is a consequence of Proposition 14 of [16};
we shall prove the lemma by induction on dim G; assume the lemma to be
true if dim G < n, and let us counsider the case in which dim G = . Since G
is not abelian, by Lemma 3.1 it contains a proper positive dimensional
irreducible group-subvariety A. Should the lemma be false for G, 4 would
not contain any positive dimensional irreducible rational group-subvariety,
and therefore A would be abelian, since dim 4 < n. Theorem 3.1 then implies
the existence of an irreducible proper group-subvariety B of G, of positive
dimension, such that G = (4, B); B would also be abelian, and consequently G
would be abelian, a contradiction, Q. E. D..

LeMMA 3.5. - Let G be a nonsingular commutative group-variely over k ; (a) if
V is an irreducible rational group-subvariety of G, then G is a crossed product of
GV and V; (b) G contains an irreducible rational group-subvariety B containing
all the irreducible rational group-subvarieties of G ; moreover, G/B is abelian.

The group-subvariety B will be called the maximal rational group-
subvariety of G.

ProoF. - We shall denote by S, (for any nonnegative integer =) the
following statement: statement (a) of the lemma is true, for any G, when
dim V<-n. We shall denote by S,’ the following statement: G being as in
the statement of the lemma, let B be an irreducible rational group-subvariety
of G which is not properly contained in any irreducible rational group-sub-
variety of G; if dim B<<n, then G/B is abelian. We shall prove that S,
implies S,’, and that S,/ and S, (for »=>1) imply S,.,,. Since §, and S/
are trivially true, and S, is true by Lemma 3.2, this will prove S, and S.’
for each n, and will therefore prove assertion (a) of the lemma, and also’
the last statement of assertion (b), under the condition that B be as specified
in S,’. But then, if B is an irreducible rational group-subvariety of G,
and « is the natural homomorphism of G onto the abelian variety 4 = G/B,
«B is a point by the Corollary to Theorem 8 of [16]; since Eg€ B/, we must
have aB = E,4, or B'C B, which completes the proof of (b).
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‘We shall now prove that S, implies S, for n>1. Let B be as stated
in §,’, and assume dim B=<_n; set 4= G/B, and let C be a positive
dimensional irreducible rational group-subvariety of 4, if any exists; let «
be the natural homomorphism of G onto 4. Set C* =« 'C; then = C*/B,
so that, by S,, C* is a crossed product of C and B; as a consequence, C*
is birationally equivalent to C>X B, and is therefore rational. Since B C C*,
this is a contradiction, and we conclude that 4 has no positive. dimensional
irreducible rational group-subvariety, and is therefore abelian by Lemma 3.4.
Thus S, is true. We shall now prove that §,” and S, imply S,,,, for
n=>=>1. Let G, V be as in §,,,, and assume dim V=n -+ 1. V contains no
positive dimensional abelian group-subvariety, as this, by Theorem 3.1, would
contradict the Corollary to Theorem 8 of [16]; hence Lemma 3.1, applied to V
and to its proper irreducible group-subvarieties, implies that V contains a
1-dimensional irreducible rational group-subvariety W. Set G'= G/W, and
let o be the natural homomorphism of G onto G'; set also V'=aV=V/W.
Let B be an irreducible rational group-subvariety of V' which is not
properly contained in any irreducible rational group-subvariety of V’; since
B<dim V'=mn, we have that V'/B is abelian by S8,’. If B is the natural
homomorphism of V' onto V'/B, then fa induces a homomorphism of V onto
V'/B. The Corollary to Theorem 8 of [16] implies that dim V'/B = 0, and this
proves that V' = B is rational. If 4= '/V'= G/V, 8§, implies that G’ is a
crossed produnct of 4 and V. We shall denote by o« the natural homomor-
phism of G’ onto 4, and by A’ the rational mapping of 4 into G' which
appears in the definition of crossed producis; the choice of X' is not unique,
and we shall seleet it in such a manper that R’[EA]=_EG,. On the other
hand, G is a crossed product of ' and W by Lemma 3.2, so that there
exists a rational mapping X of ' intoe G such that «[A{P]] = P for a generic
P € (. But thewn AA' 1s a rational mapping of 4 into G, such that a'«[AX[P]]= P
for a generic P€ 4, and that AXN[E4]= A[Eq/] is a point of G, but not of its
degeneration locus. This proves that G is a crossed product of 4 and V, so
that S, ., is true, Q. E. D..

Lemma 3.5 can now be stated in the following form:

THEOREM 3.2. — Let G be a nonsingular commutative group~variety over Ik,
and let B be the maximal rational group-subvariety of G; set A= G/B. Then
A is abelian, and G is a crossed product of A and B. Conversely, given an
abelian variety A and o rational commuialive group-variely B, both over k
and both nonsingular, any crossed product of A and B has a maximal ratio-
nal group-subvariely isomorphic to B.

We shall now devote our attention to the structure of rational commu-
tative group-varieties. If G is any nonsingular commutative group-variety
over k, there exists an irreducible vector group-subvariety V of G which is
not properly contained in any irreducible vector group-subvariety of G: any
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such V we shall call a maximal vector subvariety of G; we shall see later
that V is unique, but for the moment we do not need this result.

A group-variety G over k, with degeneration locus F, is said to be
periodic if there exists a positive integer e such that P¢=Eg for any
P€ @G — F; the smallest such e is called the period of G. Let G be periodic,
positive dimensional, and commutative; then, by Theorem 3.2, and by
Proposition 24 of [16], G is rational; as a consequence, and by Lemma 3.1,
(G has proper irreducible group-subvarieties of positive dimension, and any
of these is periodic; the argument can be iterated, and shows that G has
some irreducible 1-dimensional periodic group-subvariety. This is possible
only if the characteristic p of k is 4=0, in which case any such subvariety
is a vector variety; this fact shows that any maximal vector subvariety V
of @ is positive dimensional. By induction, from G/V to G, we obtain that
the period of G is a power of p, with positive integral exponent. This being
established, we can prove the following result:

ILeMMa 3.6. - Let G be a commutative nonsingular positive dimensional
periodic group-variety over the (algebraically closed) field k of characteristic p ;
then p == 0, the period of G is p® for some positive inleger e, and G is rational.
Let G; be the smallest subvariety of G conlaining all the poinis P of G, but
not of its degeneration locus F, such that PP =EHg (i=1, 2,..., ¢); then G,
is a periodic group-variety of period p', and G;/G._,, G, (=2,.., ) are
positive dimensional vector varielies.

Proo¥. - The first three statements have already been proved. G; has
period p¥, with ¢ <i, and G,/G._, (=2, ..., ¢) is either zero-dimensional,
or is positive dimensional and has period p, the first possibility occurring
when and only when & <. The variety G, is positive dimensional, since it
contains any maximal vector subvariety of G, and has therefore period p.
Let j be the largest value of ¢ such that & <¢; then j <e, and for any P
of G;4,, but not of F, we have P?€ (G, hence P”"'=Eg, so that the
period of Gy, is <§ +1 <j+1, a contradiction; hence ¢ = ¢ for each .
The lemma will therefore be completely proved if we prove that any com-
mutative group-variety over k, of period p, is a vector variety. Where it not
so, there would exist a group-variety G over k of period p, and such that,
if V is a maximal vector subvariety of G, G/V is a vector variety of dimension
<dim G and >0. Lemma 3.3, applied to the y€I(G/V, V) such that
G=1{G/V, V, v|, implies the existence of a variety G having the described
properties, and such that, in addition, dim V=dim G/V=1. We shall now
disprove the existence of such a variety. Set 4= G/V, andlet G2 4, V,v};
let @, ¥ be n. h. g. p. of V, 4 respectively such that the laws of composition
on V, A are given, respectively, by x, = +x,, y,=y, +y,. We shall
identify 4 with 4,, and consider a copy # of y in k(4,). The rational mapping
v of A, > 4, into V operates on the whole V, since by assumption y ¢ T'(4, V);
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hence y prescribes an embedding of k(x) into k(y, #), which we shall express
by writing x = x(y, #) in the functional notation. The fact that y is a factor
set implies that x(0, 0) exists (i. e. that x € P(Egxe,/G, X G,), and coincides
with a(y, 0) and «(0, ), and that, for an indeterminate ¢, a(y, z + &) + x(z, ) =
= w(y + 2, {) + x(y, #); moreover, x(y, ) = x(z, y). Upon derivating the pre-
ceding formula with respect to ¢, and setting ¢ = 0, one finds that the equality
dxly, 2) _ [ow(y + e, t)] __[oxlz, ¥)
oz _[ ot t=0 ot
¢(2) = [dx(2, #)/3tl—o, We have Jx(y, #)/9z = ¢y + 2) — @(z). Now, ¢(2) can be
decomposed in partial fractions, in the form ¢(z) = Zi_o a,2* + (sum of fractions
with numerator in %, and denominator of the form (z —a)* a€k, h a posi-
tive integer), where a,€k. If b/(z—a)* is one of the fractions, then
Py 4 2) — ¢(2) contains (b/(z +y — a)*) — (b/(z — @)*); this shows, first of all,
that @ 3=0; since «x(y, 2) can also be decomposed in partial fractions as an
element of K(2), K being the algebraic closure of k(y), it follows that A=z1
(mod p) ; as a consequence, &' ==x(y, &)+ bh — 1)~y +-2 —a)' " — (z —a)—" —
—{y — a)*~*] defines a factor set associate to y, and has the property that
the ¢ obtained from «' equals the ¢ obtained from wx, except for the fact
that the former does not confain b(z — a)~". Since this can be repeated for
each fraction, we conclude that, by replacing y with an associate factor set,
we may assume ¢(2) =3j_pa'. In this expression, consider a ferm a.;2* with
izf=—1 (modp); the polynomial ¢(y + 2)— ¢(z) contains a,(y + 2)! — a2 ;
hence « =y, 2) — ai + 1)7'[(y + 2)t+* — y*** — 2¢+!] defines a factor set
associate to y, and such that the corresponding ¢ equals the ¢ obtained
from x, except for the fact that, in the former, the coefficient of 2 vanishes.
We conclude that, after replacing y with an associate factor set, we may
assume ¢ to have the form ¢(z) =27 c2?~'. The coefficient of 2z/»—* in

} is meaningful and ftrue; hence, if
t=0

oly + 2) — @(#) is then 2 ;¢ (;z : ;) Y42, and this must be zero in the

expression of dw(y, #)/3z; hence ¢, =0 for ¢=2, 3,.., r, and o¢f¢) = ce?,
where ¢=c¢,. But then, since x(y, 2z) is symmetrical in y, 2 it follows
that «(y, 2) =cf(y, 2 +x(y, ), where « €kly, ), ¥ =y?, & =27, and
fly, 2) =225 (— )t—'y'z»—. Now, fly, #) defines a factor set of 4 into V, so
that #'(y,,#) must have the same property; the same analysis can thus be
repeated on ®(y, #), and so on finitely many times; the final result will
be the existence of a set of elements ¢,, ¢,,..., ¢, of %, such that the factor
set determined by wx(y, 2) == Zisci(f(y, 2))* is associate to the givem y. As
Y ¢Ty(4, V), we also have ¢;=5=0 for at least omne value of 4. A direct
computation now shows that if the correspondent on VX 4 of a point P
of G has the co-ordinates x=2¢§, y =1, then the point P? corresponds. on
V< 4, to the point having the co-ordinates x = Zi_oem?*", y=0; hence
P? 4 Hg for a generic P; this is the contradiction, Q. E. D..
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The preceding proof, and Lemma 3.3, furnish the explicit construction of
all the commutative periodic variefies of period p*; explicit consfructions of
periodic commutative varieties of period p¢, with e > 2, are more complicated,
and we shall not give them here.

In the notation of Lemma 3.6, we see that any maximal vector subvariety
of G is contained in G,, and that G, is itself a vector subvariety of G;
hence @, is the only maximal vector subvariety of G.

LeMMA 3.7. - Let G be a positive dimensional nonsingular commutalive
group-variely over k, with degeneration locus F; let V, L be irreducible
group-subvarieties of G, such that G = (V, L), and that V N L has, oulside F,
the only component Eg; assume V fo be either a veclor variely or a periodic
variety, ond L to be a 1-dimensional logarithmic variety. Then G2 VX L.

Proor. - Let V', L' be copies of V, L respectively, and set ¢' = V' X L'
(direct product); let F' be the degeneration locus of G'. Let v, A be the
identical isomorphisms between V', L’ and, respectively, V, L; let v/, X" be
the modified extensions over k(@) of, respectively, viV'i, AiL'}. Then v, X
are rational points of, respectively, Vie¢,, Lx@); hence they are rational
simple points of Gy). and their product o' = V1’ exists and is a rational
point of Gy@n, by Corollary 3 to Theorem 1 of [4]. Set & = D,, ¢, so that «
is a homomorphism of G’ onto G. The co-ordinates of v/, X, o’ are elements
of %(@'), which generate, over k, subfields of %(G') isomorphic to, respectively,
E(V), E(L), ¥(G); we shall identify such fields with %(V), k{L), k(G) respectively.
Moreover, k(V)==Fk(V’), k(L) = k(L'). The co-ordinates of any of the points v,
X, o are elements of the field over %k generated by the co-ordinates of the
other two points; this shows, in particular, that if k(L)=Fk(y) (where
y €K(L)), then K(V') S k(G)(y), so that k(G)y)=FkG). Since the kernel of «
is Egq/, we have that k(G') is purely inseparable over k(G); this is sufficient
to prove the contention if the characteristic of k& is 0. We shall assume £ to
have characteristic p==0, but shall treat first the case in which V is a
vector variety. Let {@,,.., 2.} be a n. h.g. p. of V such that the law of
composition on V is given by (x,), = (x,), + (®:),; as for y, we shall select it
in such a way that the law of composition on L’ be given by y,= 9,4,.
Let e be the smallest power of p such that y°€Xk(G); if e=1, we have
k(G) = k(@) as claimed; we shall accordingly assume e > 1. Then, for each 4,
there are elements a;; €%(G) (§ =0, ..., e — 1), uniquely determined, such that
w; =320 ayy’ (i =1,.., r). Since a;; €K(G), we shall express it as a rational
function of ..., @,, ¥ . @y =aylx, y). If P is a point of G'— F’ we have
op'w, = x; + E;, op'y =ny, where £, n €k are the co-ordinates of P; bence
o + & = B ayle + & iy, or &+ Ijau, gl = e+ nym'y;
therefore, by Lemma 2.2, & - a:(®, y) = ai(® -+ &, 1y). These relations being
true for arbitrary values £, , ..., §,., and for any % 3= 0, they remain true if §, v
are considered as indeterminates. We can then denote &, n by x;, ¥
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respectively, and replace x,, ¥ by values ;, v in %k at which the denominators
of the a,, do not vanish. We thus obtain a,,( v)+ x; = a;,(® + &, 7ny). This
relation implies that x, €%(G); but y is contained in %(G)(x), hence y € &(G),
e=1, G=2G.

We shall now prove the lemma for the case in which V is periodic, by
means of an induction on the period e of V; e —=yp, the contenfion is true;
assume it to be true when the period of V is e¢/p, and consider the case in
which such period is e. Let V* be the maximal vector subvariety of V, and
set ¢'=G/V*; let « be the natural homomorphism of G onto G, and set
V'=aV, L' =aL. Then G'=(V’', L'), and Eg is the only component of
V' N L’ outside the degeneration locus F’ of G'; moreover, the period of V’
is e/l by Lemma 3.6, so that G'=2 V"> L by our recurrence assumption.
Now, by Lemma 3.5, G2t &, V* v1{, where y €I'(G, V¥*); by Lemma 3.3 and
its proof, v is associate to a factor set of the type (y,><XL,/><L,)y,><X VX V,)),
where y, €L(V', V*), y, €T(L, V*. Set A=\L, V¥ y,{, and consider the
endomorphism B of A such that §[P]= P? for any P of 4, but not of its
degeneration locus F,. Let & be the natural homomorphism of 4 onto L,
and let L* be the group-subvariety of 4 on which § operates. If P€ V* N L*,
but P ¢ Fy, then P == @° for some Q€4 — F,, and 3Q? = H;,, or (3¢Q)* = Er.,
8¢ = Er/, Q€ V* P=Ey. It follows that V* N L* has, outside ¥4, the only
component E4. Since the kernel of § is V¥, we have dim L* = 1, 4 = (L*, V¥;
also, 8L* =L/, so that L* is a logarithmic variety. Hence the first part of
this proof applies, and yields 4 02 V*>X L* = V*X L/, so that y, €T (L, V*#).
But then y is associate to v,>X<UZL,/XUL,/, and G={V, V¥ vy, i X L'
2V, V¥ v, 1 XX L. If @ is identified with |{ V', V¥, y,}> L, then | V', V¥ v, 1
and V have in common the property of being the smallest subvariety of G
which contains all the P€ G — F of period e; hence V=1{ V', V* v,}, and
G2 VXL, Q E. D..

LemMua 38. - Let G be o nonsingular commutative group-variety over
the (algebraically closed) field k of characteristic p; let V be an iérreducible
group-subvariety of G, and set A= G|V; assume that each one of the iwo
varieties V, A is either a vector variety, or o logarithmic variety, or a periodic
variety ; then :

(1)if V and A are both periodic varieties, so is G ;
(2) in all other cases, G 22 VXX A (direct product).

Proor. - Assertion (1) is self-evident. In order to prove assertion (2),
we shall consider first the particular cases in which either V, or 4 (but not
both) is a periodic variety, in which case p==0, and the other variety is a
logarithmic variety. If V is periodic of period e, and 4 is logarithmic, by
Lemmas 3.6, 35, G=14, V, v for some y€I(4, V); we are requested to
prove that y€T' (4, V); by Lemma 3.3, this is true for any value of dim A
if it is true when dim 4 =1. Accordingly, assume dim 4 =1, and consider
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the endomorphism B of G such that 3P = P¢ for any point P of G, but not
of its degeneration locus F'; the same argument used in the last part of the
proof of Lemma 3.7 proves that G contains a 1-dimensional logarithmic
group-subvariety A’ such that G=(V, 4'), and that VN 4’ has, outside F, the
only component Eg. Then Lemma 3.7 applies, and yields G2 VX 4’2V 4,
as desired. We shall now consider the case in which V is logarithmic and 4
is periodic of period e. Also in this case we may assume dim V=1, If §
has the same meaning as before, let 4’ be the component of the identity in
the kernel of B; since BG = V, and since no element of V has period e, we
now have that the only component of V N A’ ouiside F is E.; the same
argument previously used proves that G2 V>< 4'; hence 4’2 G/V=A4, so
that, again, G VXX 4.

There remains to be proved the main part of case (2), i. e. the case in
which either p=4=0, and V, 4 are logarithmic varieties, or p==0, and each
one of the varieties V, 4 is a vector or a logarithmic variety. Lemma 3.5
implies, in each case, that Ge2{ 4, V, y!| for some y€I(4, V); our aim is
thus to prove that y €Ty(4, V); by Lemma 3.3, this is true if it is true in
the particular case in which dim V=dim 4 =1; we shall accordingly limit
our discussion to this case. Let « be a n. h. g. p. of V such that the law of
composition on V is given by x, =«, +x,, or «x;=xx,, depending on
whether V is a vector or a logarithmic variety; let y have a similar role
for 4; we shall identify A with 4,, and shall consider a copy # of y in k(4,).
Then y prescribes an embedding of k(x) into k(y, #) (unless y operates on a
point of V, in which case there is nothing to be proved), so that we can
write x=uw(y, 2) €Ky, #). Since y is a factor set, we have, for an indeter-
minate #, one of the following four relations:

(2) «(y, 2+t +xlz, {) =wxly +2 f)+x(y, 2, if V. 4 are vector varieties,

(3) «(y, # + Yxlz, {) =wxly + 2, tlx(y, 2), if V is a logarithmic variety, 4 a
vector variefy,

(4) w(y, #t) 4z, 1) = x(yz, t) + xly, 2), it V is a vector variety, 4 a loga-
rithmic variety,

(B) «(y, #h)x(z, Y = x(yz, Hxly, 2) if V, A are logarithmic varieties.
By derivating (2) with respect to ¢, and then setting =0, we obtain
(6) dxfy, 2)/9z = ¢y + #) — 9(2), where o(2) € kfz);

operating in like manner on (3), (4), (3) (but setting =1 in cases (4) and (5)),
we obtain respectively :

(7)  (x(y, 2) 'y, 2)/9z = p(y + 2l — ¢(2),
(8) #dux(y, 2)/oz = (y2) — @(2),
9 2(x(y, 2)"'%(y, 2)/0z = 9(yz) — ¢(2).
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Case (5) and (9) is the only possible case if p==0, and we shall discuss it
in detail. Decompose ¢(2) in partial fractions, in the form ¢(z) = P(2)-+
+ 3; Ay(z — a,)* + (sum of fractions whose denominator is either nonlinear,
or =2), where P(z)€kiz], 4;, a;€k, a,40. Then 2—*(p(y2) — ¢(2)) = (P(yz) —
— Pt + 2, Ao e —ay )t — Z, 407 e — a)t + (sum of fractions
whose denominator is nonlinear). On the other hand, if K denotes the
algebraic closure of k(y), we have that (x(y, 2))~'9x(y, #)/9z is a sum of
fractions with numerators in the prime field of %k, and denominators in KJ[#],
linear and monic in z; as a consequence, a,3=1 for each 4, and z—'(p(yz) — ¢(2))
reduces to the expression X, 4.0,7 "2 — ay~ )" — Z; Aja, s — a,)~!, so that
each 4,0,7' =e,/ belongs to the prime field of k. If © has characteristic O,
set e,—¢;; if &k has characteristic p3=0, denote by e; a rational integer
(to be determined more precisely later on) which represents e, (mod p). Then
2y, 2) = xly, 2)1I, (yz — a,) "%y — a)%(# — a,)%; defines a factor set associate
to v, and has the property that the corresponding ¢(z) vanishes. Since «x'(y, 2)
is symmetrical in y, 2, we conclude that x'(y, 2) €k(y, #), where y = yP»,
2 =2 (or that «'(y, 21€k if k has characteristic 0). If p =0, this means
that y €T (4, V), as claimed. Otherwise, we have shown that when « is
expressed as a product of powers of linear monic polynomials in K[z, times
a factor in K, the product of those powers which appear with an exponent
not divisible by p differs from an element of K(#) by the factor
IL; (yz2 — a) %y — a,)% — a,)%. Therefore it is possible to select the rational
integers e, in such a manner that «'(y, 2) does not contain any of the factors
yz—a,. If «'(y, 2) ¢k, the process can be repeated, and so on; after a finite
number of times, one obtains an x"(y, z) which determines a factor set,
and which is the product of an element of %(y) and an element of k().
Such o™ necessarily belongs to %, a fact which proves that y €T (4, V)
also if p=0.

Similar reductions can be carried on in each of the cases (2), (3), (4),
with the advantage that p =10 in each of these cases; we shall not give the
elementary details here, and will only add that in each case one takes
advantage of the fact that dx(y, 2)/92, when decomposed in partial fractions
as an element of K(2), contains no fraction whose denominator is linear,
while (x(y, 2))~'ox(y, #i/3z contains only fractions whose denominator is linear.
This completes the proof, Q. E. D..

The following statements are immediate consequences of Lemma 3.8:
let G be a nonsingular commutative group-variety over the field % of
characteristic p; if p==0, the smallest group-subvariety V of G containing
all the irreduncible periodic group-subvarieties of G is itself periodic; it will
be called the mawximal periodic subvariety of G. The maximal vector
subvariety of 1 is then also the only maximal vector subvariety of G. If
p=0, let V be a maximal vector subvariety of G; then G/V contains no
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positive dimensional vector group-subvariety, because if A were such a
subvariety, the inverse image of A on G would be, by Lemma 3.8, a vector
group-subvariety of G properly containing V. As a consequence, V is the
only maximal vector subvariety of . Similar results are true for a maximal
logarithmic subvariety of G (for any value of p), this being defined as a
logarithmic group-subvariety L of G which is not properly contained in any
logarithmic group-subvariety of &; in fact, G/L contains no logarithmic
group-subvariety of positive dimension, since otherwise the inverse image
on G of any such subvariety would be, by Lemma 3.8, a logarithmic group-
subvariety of G properly containing L. As a consequence, L is the only
maximal logarithmic subvariety of G. We are now prepared to prove the
following result :

THEOREM 3.3. - Let G be a nonsingular rational commuiative group-variety
over the (algebraically closed) field k of characteristic p; let L be the mawximal
logarithmic subvariety of G, and let V be (a) the mawimal veclor subvariely
of G if p=20, or (b) the maximal periodic subvariety of G if p=0. Then
Ge=2L XX V.

ProoF. - Set A=G/V; then 4 has no positive dimensional vector or
periodic group-subvariety, otherwise ¥V would not be maximal. We shall
presently prove that A is logarithmic; let L* be the maximal logarithmic
subvariety of 4, and set B= AJL* Since @ is rational, so are A and B; if
dim B> 0, B has a 1-dimensional irreducible group-subvariety C, by Lemmas
34 and 3.1; C is rational, and is not a vector variety, or else its inverse
image on 4 would contain a positive dimensional vector group-subvariety
by Lemma 3.8. Hence C is logarithmic, and this contradicts the fact that L*
is maximal. This proves that dim B=10, and that 4 = L* so that G2 V> 4
by Lemma 3.8. Now let « be the natural homomorphism of G onto V= G/A;
if aL 2= Ev, aL contains periodic points s Ey, with periods prime to p if
p=+0; but this contradicts the relation «L & V, and we conclude that
ol =Ey, L2 4, Q. E. D..

A number of elementary properties of vector and logarithmic varieties
can be deduced from Theorems 3.2 and 8.3 and Lemma 3.8. The <« elementary »
proofs of such properties are obvious in the case of characteristic zero, but,
to the author’ s knowledge, far from trivial, and apparently not to be found
in the literature, for the case of positive characteristic. The most embracing
of these properties is perhaps the one expressed in the following result,
whose proof is left to the reader; for sake of generality we include periodic
varieties :

COROLLARY. — Let V be either a vector or a periodic variety over k, and
let I be a logarithmic variety over k; let G be a nonsingular group-variely

over k, isomorphic lo V> L. Then:
(1) Let @ be an irreducible growp-subvariely of G; then G' N V and
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G' N L have, outside the degeneration locus of "G, exactly one component V',
L' respectively; V' is a wvector or periodic variety, and L' is a logarithmic
variety ; moreover, @ = V' > L';

(2) Let a be a homomorphism of G onto a nonsingular group-variety G
over k; set V' =0aV, L' =o0aL; then V' is a vector or a periodic variety, and
L’ is a logarithwmic variely ; moreover, G =2 L' XX V.

(In the previous statement, V and L have been identified with their
images on G)...

4. The group of algebraic equivalence on abelian varieties. - Let G be
an abelian variety of positive dimension » over %k; let G' be a normal
1-dimensional vector or logarithmic variety over k, and let y be a factor set
of @ into &, operating on @, < G,, where G,, G, are copies of G; we say
that y is a constant set if 7|G, > G,} is the modified extension over k(G, >< G,)
of a point of @, or, equivalently, if y[P,>< @,] does not depend on P, @
when P, @ are generic points of ¢. We shall write I', ') in place of T'(@, @),
I'\(G, &) respectively, and ‘shall denote by I'n=T,(G, @) the group of the
constant sets; then I''CC T, &I, and T, is isomorphic to either the additive
group of the elements of %k, or to the multiplicative group of the nonzero
elements of k. We shall denote by oo the relation of linear equivalence (on
a variety which shall be specified, or tacitly understood, each time), and by
= the equivalence of (1 — 1)-dimensional cycles of @ defined in section 57
of [16]. If O denotes the zero cycle, we shall denote by £, the group of the
cycles Xco0 of @ such that Eg¢rad X, and by &, the group of the cycles
X =0 of @ such that Eg¢rad X, so that £, is a subgroup of &,. We have:

THEOREM 4.1. - Maintain the previous mnotations, and assume G fo be o
logarithmic variety; then I'|T', s isomorphic to &,, and in this isomorphism
I',/Te corresponds to £,.

ProoF. - Let @ be a n.h. g p. of @ such that the law of composition
on ¢ is given by x,=x,x,; let us denote by O the point of & at which
® == 0, and by co the point at infinity (for x) of ¢ ; then the degeneration locus
of ¢ is the join of O and co. It is readily seen that the multiplicative
notation for the law of composition on @ can be extended to the cases
Poo=oc, ‘P0=0 if P is a point of @&, not 0 or oo; the associative and
commutative properties remain frue when meaningful. If y operates on the
whole @, we shall assame k(x) C (@, <X G,) as prescribed y. Let H, and Ho,
be, respectively, the « numerator > and the «denominator>» of the divisor
of  on G, X G,; this means, by Theorem 3.1 of [2], that H,= y|0/%
Hy = ylooi*. Let @, be another copy of G, and assume k(G,) C k(G, < G), in
such a manner that this embedding generates the rational mapping of G, X G,
onto G, which gives the law of composition on G. For any (n — 1)-dimensional
cycle Z of G, denote by Tz the cycle of @, >< G, obtained from Z, as Ty is

Annali di Matemalica 14
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from Z,. The relation

(10) (1[P, X @R,)I¥[Q, X RB,]) = (1[P, 9, X B,)(v[P, X &,))

will now have a meaning and be valid when (1) none of the points P, X @,R,,
Q, <X R,, PQ XR,, P,>X@Q, belongs to C=rad H, N rad Hy (this being
the fundamental locus of y on @, < @,), and (2) one factor at least an each
side is neither H nor oo. Let H be a component variety of H, + H, which
operates on the whole ¢, and the whole G,; we contend that there exists a
component variety of H,+ H, of the type Y, < @,, where Y is an (» — 1)-
dimensional irreducible subvariety of ¢, such that H=1T1'y. For if it
were not so, it would be possible to find points P, @, B of G such that
P, < Q,€eH—(CN H), while P,Q X R,, P,x<X@FE, and @, X R, do not
belong to rad (H, + Hy); but this would contradict formula (10). Conversely,
let Y be an (n — 1)-dimensional irreducible subvariety of @ such that Y, > G,
is a component variety of H, + Hy, but assume I"y not to be a component
variety of H, -+ Hy. Then again it is possible to find points P, @, B of @
such that P,Q, < R, €rad (H, + Hy,) — C, while P, <X @,, P, XX Q,R,, @, X E,
do not belong to. rad (H, + Hy); this would also contradict (10). Hence, since
Y[P, > Q,] is symmetrical in P, @, we conclude that there are distinet
(n — 1)~dimensional irreducible subvarieties Z,, Z,,.., Z, of G, none of
which contains Eg, and nonzero integers a,, @,,..., &,, b., b,,.., b,, such
that H, — Ho = (Z; 0:Z:), X G, + (2; @:Z,), X G, + Z;b,T",. Hence the divisor
of & on (Gy)r(a i8 (2:a:Z:),* + 2,0, T2 )G 1, where * denotes modified exten-
sion over k(@,). From the definition of y it appears that y[Eg > P,] is a
point of &, not 0 or oo, independent of P when P is a generic point of G;
therefore « is a unit of Q(Eg X< G,/G, < G,); if ©n denotes reduction of this
ring modulo the prime of its nonunits, we have that m is a nonzero element
of %k, so that its divisor on @G, is the zero cycle. But it is well known, and
easily seen, that such divisor is H,|Eg,|*— HolBgl* = (2;0,Z,),+ X0, Tz | Eg,* =
= (¥;0.Z), + (2:0:Z,),. Consequently b;,=— a;; by setting Z=2,0a,7,, we
conclude that Hy— Ho=Z, X G, + G, X Z,— T'z. Hence Z,* co T'ziG\l, and
therefore Z€ &,. The correspondence y ~ Z clearly establishes a homo-
morphism of I' into &,, if we agree to map on Z=0 any y operating on
only one point of @ ; the kernel of this homomorphism is then I'.. In order
to prove that such homomorphism is onto &,, we select a Z€d,; if Z=0,
any element of I, corresponds to it; if Z=0, we have Z,*co T'7G,t by
assumption ; hence Z, G, — I"z is linearly equivalent, on G,X< &,, to a
cycle of the type Z,'><@,; but then — T’z G, is linearly equivalent, on
(@)r@y, to the modified extension of Z,' over k(@,); since also — T'ziG,} co
— (modified extemsion of Z, over k(@,)), we conclude that Z, X &, + Z,X
X G, coT';. Let ¢ be an element of kG, X G,) whose divisor on G, X G, is
Z, X G, -+ Z,X G — T'z, and let y be the rational mapping of ¢, X G, onto
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G obtained by setting o =14¢. The operation of interchanging &, with @G,
transforms ¢ into h#, for a nonzero element %4 of k; application of the same
operation again shows that 2 —=-k1, so that {co-ordinate of y[P X @,))=
=+ (co-ordinate of y[@ > P,]) for generic points P, @ of G; but y[P, X P,]
is a point of &, neither O nor oo, for a gemeric P€ G; hence [P, X @,] =
=v[@, > P,}; the point Eg X Hg, is not fundamental for y, since it does
not belong to rad (Z, X @, + Z,>< G, + T’z ; therefore y[Eg X Eg,| is a point
of @&, not 0 or co. Fora P€ @, let op,, op, be the automorphism of k@, > @,)
over, respectively, k(G,) and k(@,), which induce (sp),, (op), in k(G), kG,
respectively ; if P, @ € G, denote by «(P,, @,) the element of k to which «
is congruent mod P(P, X< 9,/G, X &,), if x€ Q(P, X @,/G, >X G,). Then x(P,, @,)
is the co-ordinate of [P, X @,]; denote also by «(P,), «(P,) the elements
of, respectively, k(G,), k(G@,) to which « is congruent modulo, respectively,
PP, X< &,/G,X4,), PG X P,/G, <X G,); the same notation will be used for
any element of k(G,>< @,) other than x. We have that the divisor of op X
on (@r(ay is Z,* — on T'21G,| = Z,* — T'o-;lz!Gii, while the divisor of op, is
(67'Z),* — T’GEIZ{GJ; hence the divisor of (o7 @)/(cpa) is Z* — (65 %)%
which is the modified extension over k(G,) of Z, — (67'Z), ; this, in turn, is
also the divisor of x(P,); we conclude that there exists an element y of k(@,)
such that yopa = (opw)e(P). If P is generic, the elements (o5 a)(Eas,),
(o7, @)(Es,), ((P,))(Eq,) exist, and equal respectively (o7),(®(Ea)), #(P,), 2(P, , Ea,)-
But x(Eg) €k, and therefore it coincides with ®(P,, Eg,). Hence y = x(P,),
so that I(cﬁllw)ac(Pz) = (opx)x(P,) for a generic P€G. If 1Q, Rl is a generic
pair of ponts of & we have therefore [(6mz)(Q,, R)x(Q,, P,) =
= [(G;:w)(Ql ’ Rz)][w(Pu Rz)]) or (Y[P, Q@ XR,)(y[@ XP,)) = (Y[QAXP2R-2])(Y[P1><R2]);
which is precisely relation (10). Hence y is a factor set of G into &, as
claimed, defined but for an element of I',. Finally, it is quite clear that
y €T, if and only if Z€¢,, Q. E. D..

We shall now denote by & the group of the X =0 of G, and by £ the
gronp of the Xoc0 of G. Since each element of & is linearly equivalent to
an element of &,, we have the following corollary:

COROLLARY. - Notations as in Theorem 4.1; then I'|I'| is isomorphic to E/S

REMARK. - Let @G, & be commutative group-varieties over %, with
degeneration loci F, F' respectively; we shall write the endomorphisms of @
in the exponential form: if P€G@ — F, and « is an endomorphism of G, we
shall write P =aP; then a+ =y if P2P®=Pv for any P€G — F, and
af =7y if (P?)» = Pr for P€ G — F. The set of the endomorphisms of @ thus
becomes a ring. If y €[(G, &), and « is an endomorhism of @, denote by 7y,
the element of I'(@, @) such that y,[P, < @,] = 7[P{ > @3] for a generic pair
of points 1P, @/ of @ Then (yg),=1vp,; if vET (G, &), then v, €[ (G, &);
more precisely, if [P, X @,] = (\[P@)(p[P)"(p[@)~" (r being a rational
mapping of @ into @), we have 1.P,> Q)= ([PQNIP) (eI,
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where p, is defined by setting p,[P]= u[P*] for a generic P of G. We
contend that y,iz is associate to y,yz; in fact, let p be the rational mapping
of @ into @ such that, for a generic P€ @, we have p[P]= v[P{ > @3). Then
(Yore[ P>} Q)R ON(RIP]) = ([PEPIX Q3 QR (v[QF < ) (y[PT>< PE) = (y[P{ @ Pi<
> QAIPEPE >< QE)(IPY < PE) = (IPTQPE > QH)(r[P% >< PFQANYIPE >< Q) =
= (1[P7Q? > PEQE)YIPE > QE)WIPE X @3) = (1a[P, XX Q.)1elP, > Q.)(1LPQ),
which shows that Ya_JrBy;iyE‘GI‘O(G, ). As a consequence, I'(@, G')I'\(G &)
can be considered as an abelian group having the ring of endomorphisms
of G as ring of operators. In particular, if ¢ is the identical endomorphism
of G, then fy,, is associate to y", for each nonnegative integer %. The rela-
tionship of this fact to the content of § XI of [16], in particular Proposi-
tion 32, is quite obvious.

5. The invariant derivations. - Let K be an algebraic function field
over the arbitrary field k; a derivation in K over k is a mapping D of K
into itself which maps %k into O, and such that D(x + y)= Dx + Dy,
D(xy) = 2Dy +yDx for x, y€ K. It is well known that if » = transc K/k
and ins (K :%) =1, the derivations of K over k form a free K-module of
order n. If ®,,..., ®, are elements of K such that K is a finite separable
extension of k(x), then a derivation D of K over k is uniquely determined
by assigning (arbitrarily) the elements Dx; of K. It V is’ an irreducible
variety over k, of inseparability 1, the derivations in A(V) over k will also
be called the derivations on V.

Let G be a nonsingular group-variety over (the algebraically closed
tield) k, with degéneration locus F. A derivation D on G is said to be
left-invariant (respectively righi-invariant) if opDx = Dopx (respectivey
tpDx = Dtpx) for each x€k(G) and each P€G — F. If D is left-invariant
and right-invariant, it will simply be called invariani. Let &, , G,, G, be
copies of @, and let B be the rational mapping of G, X G, onto &, which
gives the law of composition on G. Let (@, ..., #,! be a n. h. g. p. of G such
that #;=0 at Eg; we shall identify &, with @, and shall denote by iy!,
12| the copies of j®} in k(G,), k(G,) respectively. Consider k(G,) as a subfield
of k(B)=k@&, < @,) as prescribed by B, and let O be the quotient ring of
the identity of (G,)x(ey; then O is a regular geometric domain; let P be the
ideal of its nonunits. If #» = dim @, it is possible to select # linear combina-
tions of #,,.., ¥m, With coefficients in %k, which form a regular set of
parameters of O; after a projective transformation of co-ordinates, we may
assume that these are lg,,.., ¥al; then k(G,) is a separable extension of
k@, , ., ). Since z; € O, there are elements w,; €k{G,) such that

for j=1,.., n Since the set |z, —wx,,.., & — .| is a regular set of
parameters of O, we have det (w;;) 3=0; hence there are n uniquely determined
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independent derivations D,, ..., D, on G, = G such that D,x; = w;;; we intend
to prove that each D; is left-invariant. In fact, for any P€ G — F, there is
an automorphism o} of A(B) over k(G,) which induces (sp),. (9s), in, respecti-
vely, k(G,), ¥(@,). Hence s30 = O, P = P, and therefore

(12) oPz; = opay + Ty (5Bwy,)y; (mod P?).

Now, cpw;y==0pw; == cpDx;; on the other hand, if 3/3x; denotes the deriva-
tion on @ such that 3u;/w; —8,; (KRONECKER symbol) (i, j =1, ..., n), it is
well known (see for instance [8] or [9)) that (op),2; = opx; + I, (Jopx;/0w,)(2; — %)
(mod P?), since P = P(I/G, > G,), I being the identical correspondence
between @, and G,. On replacing for z; —; the expression given by (11),
we obtain ¢pz; = opx; + Iy (90px;/9%)w,,y, (mod P?). This, compared with (12),
gives opw,; = X; (dopx;/d2;)Dpa; = Dypopr;, or apDpx; = Dyopx;, as claimed.
A set of » independent right-invariant derivations A; would be defined by
g;=y; + 3 (Ayy)e; (mod P?), where P’ = P((Eg)e@,)/(G\)r(ey) The lefi-
invariant derivations on G form a free k-module of order s.
LemMmA 5.1. - Let G be a nonsingular group-variety over k, and set
= Q(Eg/@), p =P(Eg/G); let D be any left-invariant derivation on G; then
Dico if t€0, and Dit€cp™* if tep”, r=1.

Proor. - It is enough to prove the lemma when D is any of the D,
previously defined; in the notation of (11), we shall first prove that o;€ o.
And in fact, set O* = Q(Eg, X< Eg,/G, <X G,), and let P* be the ideal of the
nonunits of O*; then |x,,.., ®,, ¥,,..., 4.} is a regular set of parameters
of O%* and z; € P*; hence there are forms o¢;€kx,,.., ©u, ¥, -, Y] of
degree 4, for i=1, 2,.., such that, for each integer r =1, z; =3 ;
(mod P*"**); now, set P.*=PNO*; for each ¢, write p; = s + Zp_Xin¥n + Vi,
where: $; €k[x,, ..., ,] is a form af degree é; ym €k[®,,.., 2,] is a form
of degree i —1; v €kx,,.., ®., ¥,, .., Y¥n] belongs to p,*. Then
zj = 31 (ji + Sh=1 Yjinyn) (mod p.;“g + P*Hi}. We shall now denote by 0
the completion of O* by p the topological closure of Pp,* in O (which
coincides with p,*0), by o the topological closure of 0 in O, and shall set
Q= Op, q = p,*Q = pQ. Then there are elements by = 32, $ii, X ,h_..., X jin
of O, and the previous relation implies 2, =; + Z5_; yayn (mod p?), or
also (mod q°). On the other hand, Q contains O = O7%s, and PQ = p,*Q=q,
so that (11) can be written #; = a; + Zh—t wpyn (mod q?); therefore
(b — 2;) + k=1 (X — on)yn € q°. Now, Q is a regular local ring, with the
regular set of parameters |y,,.., y,!, and contains as a subring the gnotient
field of o to which ¢;—x; and y; — ws; belong. Hence §, — w; = y;n — wp; = 0,
or W =xm€0 N kG) = o, ar claimed. Now, defme a derivation })j in the
quotient field of o (over k) by setting D, 2%,g; = Zh_y (Dses) 220 3gi/oxs,
whenever g; €kx,,..., x,] are forms of degree 4. It is readily seen that f)j
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induces D; in k(@), and that, since Dx, €0, we have Dji€o it t€o0, and
Digepr if t€p”, Q. E.D..

LemMma 5.2. - Nofations as in Lemma 5.1. Let D, ,.., D, be the lefi-
invariant derivations on G defined by (11); then Dg; = 9; (mod p), where 8
ts Kroneckers’ s symbol.

Proor. - According to the proof of Lemma 5.1, we have Dux,;€0; let
ai; €k be such that Dg, = a; (mod Pp); then z,—ax; — Sk aiyi € p,*° +
+ pFp,* C P¥, it p*=p,0* = pO* Operating with the corresponding
right-invariant derivations 4;, one would find elements b; €k such that
Bi—Yi— Z‘.Z‘=1 b,-,-m,- € P*i. Hence il}j——yj—i— E?_.,._]_ (a.-,-yi—'-bi,-w.:) € P*z, or 2,‘ (5;7 - b,-,-)w,-—
— (S;j—a,-,-)yiél’*’; since | &, .., o, Y, .., Ya! is a regular set of para-
meters of O% this implies 3;; — b;; =8&; — a;; =0, Q. E. D..

6. Noncommutative group-varieties.

LeMMA 6.1. - Let G be a group-variely over k, with the degeneration
locus F'; let S be a set of points of G. Then there exists a group-subvariety V
of G such that the points of V— (VN F) are all and only the poinis P
of @ — F which satisfy the relation PQ= QP for each Q€S — (SN F).

PROOF. - Given a Q€ G — F, there exists a rational mapping a of @
into a copy @, of @ such that, for any P€ @ — F, we have o[P]=(PQP~),;
set Vo =10[Q,]; then P€ Vg — (Vo N F) if and only if PQ = @QP. Let V' be the
intersection of all the Vo when @ ranges over S— (SN F), and let V be
the join of all the components of V' which are not subvarieties of F; then V
has the required property, Q. E. D..

It, in particular, S=@, V is called the cenler of G; we say that G is
ceniral if the center of G is Eg.

LEMMA 6.2. - Let V be an n-dimensional nonsingular vector wvariely
over k, and let V,, V, be copies of V; then there exisi a nonsingular group-
variely G over k, with degeneration locus F, and an algebraic correspondence D
between G and V, <X V,, such that:

(1) dim G = #*;

(2) when P ranges over G — F, D[P] has exaclly one component Sp
outside the degeneration locus of V,>X V,, and Sp ranges over all the isomor-
phisms between V, and V,;

(8) if sp is the aulomorphism of K(V) over k which is related to Sp
(as automorphisms of Kk(V) are related to.isomorphisms of V), then ithe cor-
spondence P — sp is a group-isomorphism ;

(4) D\G} and DIV, <X V,! are absolutely irreducible.

The grouwp-variety G is unique, but for isomorphisms.

PROOF. - We may assume V to have a n. h.g. p. {2, .., x, | such that
the law of composition on V is given by (xi), = (®:), + (25),. Denote by X
the one-column matrix (x,,.., «,), and by X,, X, the copies of X related
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to, respectively, V, and V,. Let G be an wn’-dimensional projective space
over k, with n. h. g.p. (g1 (6, j=1,..., n), and let Y be the matrix (y;);
define a law of composition on G by setting Y,=1Y,Y, (matrix-product).
Then G becomes a group-variety whose degeneration locus F is the radical
of the divisor of detY on G. For a P€G— F, denote by Y(P) the matrix
obtained by mapping the elements of Y into %, mod P(P/G). Let D be the
algebraic correspondence between G and V,>X V, such that a basis of the
ideal §2(D/k[(x),, (x),, y)) is formed by the elements of the matrix X, — YX,.
Then, for any P€G— F, the only component of D[P} which is not a
subvariety of the degeneration locus of V, X V, is the Sp such that
§(Sp/k[(x),, (x),]) has as a basis the set of the elements of the matrix
X, — Y(P)X,; clearly, Sp is an isomorphism of V¥, onto V,. Conversely, if S
is an isomorphism of V, onto V,, it is readily seen that there exist elements
Mi; of k such that det(n;;)3=0, and that a basis of §O(S/k[(x),, (x),]) is given
by the set of the (x;), — Z; nylxy), (=1, ..., n); if P is the point of @ whose
co-ordinates are the 7%;;, then §= Sp. Statements (3) and (4) are easily
verified, and the uniqueness of G is a consequence of the fact that @ is the
representative variety of a certain algebraic system of cycles on V, X V,,
Q. E. D..

Any group-variety isomorphic to an irreducible group-subvariety of the
group-variety G (for some value of n) of Lemma 6.2 will be called a Vessiot
variety. The nature of the degeneration locus of the group-variety G shows
that no VEssior variety of positive dimension is an abelian variety. The
direct product of two VESSIOT varieties is a VESSIOT variety; vector varieties
and logarithmic varieties are VESsIOT varieties.

Let G be a nonsingular group-variety over %k, with degeneration
locus F'; set 0= Q(Es/G), p=P(Es/G); let G, be a copy of G, and set
0 =0Q(Ee, X< GG, XG), P=P(Eg, X G/G,XG).If n=4dim G, let {y,, ..., Y|
be a n. h. g. p. of G, such that y;€p,, and that |y,,.., ¥y, is a regular set
of parameters of 0,; for any positive integer r, let v, be the homomorphic
mapping of 0, onto o,/p,"** whose kernel is p,***'; if o,/p, is identified
with k, it is well known that v,p, = p,/p,”+! is a k-module isomorphic to
the direct sum of the k-modules p,//p,*' (i=1, 2,..., r); for each positive
integer 4, let |gi,..., yin,| be a k-basis for the forms of Kly,,.., y,] of
degree 4, and take in pérticular wi=y; (j=1,.., n); then a k-basis for
v, P, is the set of the v,y;; for i=1, 2, ..., , and for all the possible values
of j. We shall now introduce the operator pp==cptp', defined whenever Op,
tp have a meaning; we have ppg=prpg. Let [zl be a copy of iy} in k(G),
and let X be the point of (G )k Wwhose co-ordinates are z,,..., #,,; then,
for 4==1,.., n, we have pxy; € P, hence pxyi; € P. Now, O/P"+* can be
identified with the extension of o,/p,”*' over k(G); we shall accordingly
extend v, to the homomorphic mapping of O onto O/P"™' whose kernel
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is Pr+!, Write
(13) VP xYij == Sn1 bijnd, Yni,

where Z,; is extended over the values 1, 2,.., r of h, and over all the
possible values of I; we have by € k(G). We remark that a change in the
choice of the y;; (including a different choice of n. h. g. p.) does not affect
the ring X[..., bijni,...]. The matrix (bjs;), where ¢ and j remain fixed on each
column, has a nonzero determinant, since the elements v,pxy;; form a basis
for v,P. Let P€G — F; then there exist elements by of k such that

(14) VP Y = St Dijto s Yni-

Let mp denote the homomorphic mapping of @Q(P/G) onto k whose kernel is
q=P(PG). Set @ =P(PX<GE,/G><@E,), and consider a third copy G, of G,
with n. h. g. p. {2l = lpxy!; the embedding of k(@,) into %(G < @,) generates
a rational mapping D of G>< @G, onto G,, such that if P> @, is a generic
point of G G,, we have D[PX @,]=(P~'@P),. As a consequence, this
relation is true whenever P, Q are points of G — F. But then, for P€G — F,
we have 2;—pp#i€4qQ', or pxyi —eryi€q. Let PEG — F be such that
and bim belong to O = Q(PX Eg/GX G,) for ¢, h=1,..., r; let P* be the
ideal of the nonunits of O*; then ppryi; — px¥i; € 0* N @' = q* = qO* and
(14) gives ppyij — Zwm binym € P¥', while (13) gives pxyij — Zws bimtym €

ePr+t N O*C P*r+‘ s hence Zhl lbnhl -— btjhl)yhl -+ (PPlyz] - Pqu) P*r—"i, or
Snt (bigm — biym € A* +P*™*'; hence Iy (wpbijm — bijuym € ©pP* i e is
naturally extended to a homomorphlc mapping of O* onto 0, with kernel
q* But 17.‘pP =P, and © P*r+ =P, r+1 hence th (Ttpb”hz—- bth)yhl € P, ”H
a fact which proves that mpbim = b,,hl if P is generie.

Denote by X(P) the point of (G )re Whose co-ordinates are op 2, .,
07 @,y ; the element ox(pyi; is obtained by applying to pxy:; the automorphism
of k(G @G,) over k(G,) which induces 67" in k(G); such automorphism we
shall denote by ¢3. On the other hand, px(pyi; is also obtained by applying
to i the automorphism of %(G>< @,) over k(@) given by pxmpx' = exx—*;
now, X(P)X—'=P,, so that pX(P)pX =pp,. Accordingly, o}ex¥ij = prPx¥ij,
or, by (13) pAY) (GP b”m)ym = ._41,,1 b,,pqpplypq (mod P"'H), and by (14) :
EM (O‘;lbijm)ym=zhz Zipg bz]pqﬂpb qhlYnl (mod Pr—t—l)’ if P is generic; this means
that op bijut = Zpq bijpg™rbpgui- This implies that the matrix (wpbpgm), where
p, ¢ remain constant in each column, has a nonvanishing determinant.

Let B be the Vmssior variety with n. h. g. p. 1Bym! (4 h=1,..,r; j, {
compatibe with these), where the B are indeterminates, with the law of
composition given by (Bin), = Zpq (Bpgn),(Bijpg): ; 16t @, be the rational point
of By at which Bjj has the value bym, and set a,=D,,s. Then the
previous formula indicates that, for a generic pair of points {P, @ of G, we
have (2, [P]){«,[Q) = «,[PQ]. Hence, by Lemma 2.3, a is a homomorphism



1. Barsorri: Structure theorems for group-varieties 113

of G into B, and operates on a VEssioT variety B, ; this shows also that
bijni = npbim for any P € G — F. Since k(B,) < k(B,,.,), there exists a positive
integer s such that %(B,)=k(B,) if r = s, but not if r < s. If C is the kernel
of a,, we have, from (14), that ppw;;= a;; for all 4, j, and for a PEG@— F,
if and only if P€ C; hence C is the center of . We shall express these
. results in the following theorem :

THEOREM 6.1. — Let @ be a nonsingular group-variely over k, and let C
be the center of G; then there exists a homomorphism o of G onio a Vessiol
variety B, such that the kernel of « is C.

We remark that if 2 has characteristic 0, then B=2 @/C; otherwise, this
is not necessarily true; however, a particular B and a particular « satisfying
Theorem 6.1, and uniquely determined but for, respectively, isomorphism and
equivalence, have been constructed in the course of the previous analysis;
they will be called, respectively, the stem and the stem-homomorphism of G.
The method of construction of the variety B, denoted by B, in the preceding
proof, gives some further information: in the previous mnotation, and for
i=1, 2,.., we shall define »; by recurrence in the following manner:

r, is the mteoer such that dim B, > 0, but dim Br =0 if r,>1; r;, for
¢ > 1, is the integer such that k(B _) = k(B ._,)Ck(B ) if such r; exists;
the largest existing »;, say r, is s. If G is not commutatlve there is a finite
sequence {7, 7y,.., ry=281} of integers, which we call the first, second ..
v=th index of G; if @ is commutative, we shall define oo to be the
only index of G; the integer v will be called the rank of @, and we set
v=0 by definition if G is commutative. If 1< <v, the embedding of
k(B,) into k(B, ) generates a rational mapping Bi,, of-B, .y onto B, ;
Biss 'is clearly a homomorphism such that @, =fi, %, ; the kernel Vigs
of B;,, is the join of the components, outside the degeneration locus of B, 4
of the subvariety of B, + given by the equations by = 3,13, (KRONECKER 8
symbols) for p, h=1,..., r;;, — 1, and for all the possible values of j, L
If P is a point of G — F such that «, , 4P is the identity, equation (14),
because of the meaning of the g,;, indicates also that wpbyu equals: O if
p=ry, and k<ri,; 3 if p=h=r;,,. Therefore the matrix M = (by)
(for p, h=1, ..., ri,,), Where h, I remain constant on each row, acquires at P
the form M(P)= (_MI(—B
(rectangular) matrix whose elements are all 0, and M'(P) is the value at P
of a rectangular matrix M’; if ¢ is another point of G — F such that
_1Q is the identity, we have M(P)M(Q) =-(M_,(P)%w(_@ %}, a fact
which indicates that the component of the identity in V;,, is a vector variefy
(see the Corollary to Theorem 3.3). The same argument shows that B, is a
vector variety if », > 1.

T)’ where I designates any identical matrix, O any

o
T4

A i di Mat 111 15
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THEOREM 6.2, - Let G be a mnonsingular noncommutative group-variety
over the (algebraically closed) field k of characteristic p; if p =0, then the
rank dnd lhe index of G both equal 1; if p==0, then each index of G 1is
divisible by p.

Proor. - We maintain the previous notation, and write ay for by,
(4 j=1, .., n). If X has the same meaning as in the symbol px, the ele-
ment z; of formula (11) coincides with ox'y;, so that (11) can be written

(15) ox Yy = @y -+ Z; (D)l (mod P%);

on the other hand, a basis {A,.., A,} for the right-invariant derivations
on G is obtained by setting

(16) X Yy = %5 + B (Awey)ys (mod ) ;

by applying ox to (15) we obtain y; = @; + 3;(Dix;)oxy; (mod (oxP)’), and by
applying tx' to this: tx'y; = x; + I (Dx)exy; (mod P?), or, by (16):
3 (Diegys = i (Dizgdexy: (mod P?); this, by (13) for r =1, becomes
% (Awe))yi = Din (D j)aanyn , or Ap = I amDi, a fact which proves that the matrix
(a;;) transforms the k-module of left-invariant derivations on @ into the
k-module of the right-invariant derivations on G. If we assume the first
index of G to be r,>1, it follows that each left-invariant derivation is
invariant. Let then D/, .., D, be copies of D,,.., D, on G, and let the
same symbols denote also their extensions over k(G). Formula (13) gives

(17) ex¥i =Y+ @ (mod P71+,

where ©; €k[y,, ..., ¥»] is a form of degree r,, and ¢;=3=0 for at least ome
value of i. Application of D, to this congruence yields, by Lemma 5.1:
oxD/y; = Djy; -+ D/9; (mod P™). Now, by Lemma 5.2, we have D¢ = 9¢i/dy;
(mod Pn), so that pxDjy; = D;y; + 3pifdy; (mod P7). If p=0, or if p=0
but », is not divisible by p, we have that 3p;/dy, =0 for at least one value
of 4, §, so that pxD;y; — D,y;¢ P, On the other hand, set Djy;=t, so that,
by Lemma b.1, t€0; then {=f(y) (mod P"), where f(y)€Ry,,..., y] is a
polynomial of degree <7, ; from (17) we obtain pxf(y) = f(y) (mod P™), so
that pxt— t€Pn, a contradiction. We conclude that r =1 it p=0, and
that », is divisible by p if p==0. Now, assume p=0, and let r, be the
second index of @, if it exists. We have seen that An=2;anD;, so that
Anx; = 2 aipDix;, and therefore, for P€G— F, c}lAnoaj= 05‘ Z; apDixy =
=X; (c'ila;h)(Dic’Elmj). Now, in the discussion which led to Theorem 6.1 we
proved that op @i = s aismptts; if P belongs to the kernel of a,, we have
therefore o7y = i , so that c}ilAhw,- =3 a,-hD,-c?w,- = Ahs}?lm,- ; hence
ppAnx; = Ayppw; for such P. Formula (14) gives, for such P:

(18) ppi; = o; -+ P;p (mod p*=+),
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where ¢;p is obtained from a form ¢ €k(@)y,, .., ¥.], of degree r,, by first
replacing each coefficient with its image according to mp (which exists), and
then replacing {y,,.., y.! with |2 ,.., ©,}; moreover, the fact that r, is
the second index of @ indicates that ¢;»4=0 for at least one P¢ F of the
kernel of «,. Since ppAux; = Apppx;, We can operate on the last congruence
as we did on (17), with the result that ppAux; — Ape; ¢ p™ for at least one
value of h. Set again {=A,x;€0, and write {= fix) (mod p™), where
flx) € R[z,, ..., x,] has degree < r,; then (18) implies that ppf — f € p™, hence
ppt — L€ P™, a contradiction. This proves that the second index of @ does
not exist, or that G has rank 1.

Finally, assume p=0, and assume the s-th index r, of G to exist: we
shall prove by recurrence on # that #; is divisible by p. This is true for
t=1; assume it to be true for i=1, 2,..., s —1; then a formula similar
to (18), with r, replaced by r,, is true, and the relation ppdsx; = Anppx; is
true for any P¢F of the kernel of «, . Then the same type of proof
previously applied would lead to a contradiction unless 7, is a multiple of p,
Q, E. D..

We shall now give two examples in order to illustrate the substantial
difference between the two cases of Theorem 6.2. Assume p==0, 2, and let G
be the 3-dimensional projective space over % with n. h. g.p. {x,, «,, @, 15
define a law of composition on G by setting (x,, =,, ©)¥,, ¥, ¥,) =
=(@®, + Y, X +Y,, T+ Y, + (€Y, — 2,9, )°); then @ becomes a noncommu-
tative group-variety, with the plane at infinity as degeneration locus. It is
readily seen that pxy, =y,, exy, =¥,, px¥y, = 2%(y,%, — x,%,)?, 80 that the
rank of G is 1, the index is p, and the inseparability of the stem-~homomor-
phism of @ is p*. As another example, consider the 2-dimensional projective
space G over % (of characteristic p==0), with n. h. g. p. {2,, «,}, and define
a law of composition on @ by setting (x,, 2,)v,, ¥,) = (®,¥., 9.2+ 9,);
then G becomes a noncommutative group-variety whose degeneration locus
is the line at infinity, and whose center is the point (1, 0). In the notation
of (13) we have b,,,,=1, b,,,,=0b,,, =0, b,,, = =,?, so that the kernel of «,
is the group-subvariety of G defined by the equation ®, = 1. Therefore @
has the first index =1, but rank > 1.

THEOREM 6.3. - Any abelian group-subvariety of a nonsingular group-
variety G over k is a subvariety of the center of G.

Proor. - If G is not commutative, let B be the stem of G, and let «
be the stem~homomorphism of &. If 4 is an abelian group-subvariety of G,
then a4 is an abelian group-subvariety of B, and is therefore O-dimensional
since B is a VEssior variety. Hence 4 is a subvariety of the kernel of «,
which is the center of G, Q. E. D..

The previous result is a generalization of Theorem 5 of [16], and its
proof depends only on the fact that the degeneration locus of an abelian
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variety is empty. Theorem 6.3 could also be obtained, if it were known a
priori that 4 is an invariant group-subvariety of ¢, by observing that
each pp, for P€G@ — F (F = degeneration locus of @), induces an automor-
phism of A4; as the set of the automorphisms of 4 is discrete, by [16], it
follows that each pp induces the identical automorphism on A4; the same
proof can be used to show that any invariant logarithmic group-subvariety
of G, and any O0-dimensional invariant group-subvariety of G is a subvariely
of the center of G'; we will not develop the proof since no use will be made
of these results in the present work.
Theorems 6.3 and 3.1 give:

COROLLARY. -~ Lef A be an abelian group-subvariety of the nonsimgular
group-variety G over k; then G conlains an invoriant irreducible group-
subvariety B such that G is the homomorphic image, in & homomorhism of
finite degree, of the direct product A > B.

THEOREM 6.4. - Let G be o nonsingular group-variely over k; let C be
the component of the identity in the cenier of G ; lel B be the maximal rational
group-subvariety of C. Then G conlains aninvariant irreducible group-sub-
variety H such that:

(1) G/H is an abelian variety ;

(2) there exists a homomorphism o of H onlo a Vessiot variety, and the
kernel of « is a group-subvariely B of the center of G, such that B is the
component of the identity in B'.

Proor. - If @ is commutative, this is a consequence of Theorems 3.2
and 3.3. If @ is not commutative, let S, 8 be, respectively, the stem and the
stem~homomorphism of G. By Theorem 6.1, C is the component of the identity
in the kernel of B; let y be the natural homomorphism of G onto G/B; then,
by Theorem 2.2, there exists a homomorphism §' of G/B onto S such that
B ==pv. By Theorem 3.2, yC is abelian, so that, by the Corollary to Theo-
rem 6.3, there exists an invariant irreducible group-subvariety H’ of G/B
such that G/B=(yC, H'); since yC is a component of the kernel of {,
we have that §'H' =S, and that o' ==[§'; H', S] has finite degree. Let H be
the component of the identity in y~'H’, and let & be the homomorphism
of G/B onto yC (whose existence is asserted by Theorem 3.1) such that H’
is the component of the identity in.the kernel of 8. Then 8y is a homomor-
phism of @ onto yC, and the component of the identity in the kernel of &y
is H; since yC is abelian, it follows that G/H is also abelian, as asserted.
Now set Yy =[y; H, G/B], so that y' is a homomorphism of H onto H’, and
set «==a'y’; then « is a homomorphism of H onto the VEssior variety S;
on the other hand, we have «={[B; H, S], so that the kernel of « is the
join of the components, outside the degeneration locus of @, of the inter-
gection of H with the center of @ As « has finite degree, one of these
components is B, Q. E. D..
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7. Remarks. - Let G be an n-dimensional abelian variety over %, and
tet & be a 1-dimensional vector variety over k. Let y be a factor set of @
into G'; let G, @, be copies of G, with the n. h. g. p. lxgd, lyil (copies of
each other). As seen in section 4, if y operates on the whole &, it prescribes
an embedding of k(G') into Z(x, y). It ¢ is a n. h. g. p. of @, such that the
law of composition on @ is given by f{, =1{ 4 {,, we can write {={i(x, y)
as a rational function of &, y. We shall assume a; =0 at Eg, so that ;=0
at Eg,. As seen in the proof of Theorem 4.1, formula (10) can be written
tope, y) -+ te, 2) = #(x, o5, 9) + t(, y) if (2! are the co-ordinates of P, or P,.
We can consider iz{ as the n.h.g. p. of a third copy @, of G, and write
op i = gi(z, x) = gi(x, 2), g; being symbol of a rational function with coeffi-
cients in %; then the previous formula becomes

(19) tglz, ), y)+ Y, 2) =iz, glz, y)) + iz, y).

Let {D/,..., D,’|{ be a basis for the invariant derivations on @,, which we
shall consider extended over’ k(y, ), and let D; be the copy of D/ on @,,
which we shall consider extended over k(y), and D;* be the copy of D/ on G,,
which we shall consider extended over k(z). Then [Digily, ®)lx—o= Di;;
therefore, if we apply D/ to formula (19), and then set =0, we obtain
Dit(z, y) + [Di't(x, 2)]z—0 = Di't{x, gz, Y))lu—o, or, after setting [D;¥z, 2)le—o=1i(2):
Dit(z, y) = 9i{9(2, y)) — 9:{#). Therefore D;*Di(z, y)= D;*¢ig(z, y)), and for z =0,
Di*¢ily) = [D*Dil(z, y)):—0; but the previous formula, for y=0, gives
Dypifz) = [Di*oilgle, y)ly=o = [D;*Ditle, y)ly=0 = [DiDs*Hz, Y)ly—o; hence Di*¢iy) =
= [D#Djlly, 2)].—0 = Di*¢;(y). Let d be the differential operator on (G, ,
and let {w,,.., w,} be a k-basis for the invariant differentials on @, (which
are all of the first kind (%)), selected in such a way that 2; w;Djg; =dz;. We
shall write w;(2) in place of w;, so that wiy) has an obvious meaning; then
the previous formula indicates that w2) = 3; i(¢)wyz) is a closed differential,
and we can write di(z, y) = w(g(s, y)) — w(z). If @ were a logarithmic
1-dimensional variety, this formula should be replaced by di(z, y)/tz, y) =
= w(g(z, y)) — o(z). It is not difficult to see that w(2) is a differential of the
second kind if @' is a vector variety, and of the third kind if ¢ is a
logarithmic variety. If we set w =0 when y does not operate on the whole @,
the mapping y — » is a homomorphism of the group I'=I(G, &) into the
group of the differentials of, respectively, the second or the third kind on G,
which are finite at Eg,; the element y €I’ belongs to I'y=T,(@, &) if and
only if the corresponding © is (1) an exact differential, plus a differential
of the first kind, if @ is a vector variety, or (2) of the type daja, for
0+ a € 2(@,), plus a differential of the first kind, if G' is a logarithmic variety.

(2) The word differential is used in any of the equivalent meanings recently appeared
in the literature; see for instance [10] or [12].
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Denote by 9, 9,, 9,, 9., P, the additive groups of, respectively, the
closed differentials on G,, the closed differentials of the second kind, the
differentials of the first kind, the exact differentials, and the differentials of
the type da/a, for OF=a €k(G,). If @ is a logarithmic variety, and % has
characteristic 0, it can be proved, by transcendental means, that the mapping
¥ — o induces an isomorphism between I'/I'; and D/(D, + D,); the algebraic
equivalent of this fact is expressed by Theorem 4.1, and is valid for any
characteristic. If @ is a vector variety, and % has characteristic 0, it can
be proved, by transcendental means, that the mapping y — ® induces an
isomorphism between I/I'; and D ND, + D,); since, in this case, it is also
known that 9,/(D, + 9,) is a free k-module of order =, it follows that I'/T,
has the same structure. There are indications that this result could follow,
without any use of the differentials, from the considerations which close
section 4, but the author has been unable to supply the complete proof; if
the characteristic of % is positive, then each element of I'/l'; is periodic, and
each | G, @&, y! contains a group-subvariety isogenous fo G.

Lemma 3.6 does not give eompleﬁe information on commutative periodie
group-varieties; the type of argument used in its proof can, however, be
extended to yield the complete structure of any such variety, but the result
is unduly complicated; an example of a periodic commutative variety G of
period 8 over a field of characteristic 2 is the following: @ is the 3-dimen-
sional projective space with n. h. g. p. {#, », ¢}, with the law of composition
given by x, =%, +x,, Y=Y, + Y+ 2%y, 2,=25 -+ +YY, + x,%,(y, +
+ 4, + @] + ).

The points of contact of section 6 with the method of LIE algebras are
obvious. It has been known (see for instance [5]) that such a method is highly
unsatisfactory for the case of positive characteristic; as seen in the -proot
of Theorem 6.2, the method of LIk algebras depends on the study of the
module p/p* (in the notation of that proof), and on the effect of the left-
invariant derivations on the field (.., byu,..); its failure in the positive
characteristic case is due to two distinct reasons, namely: (1) p/p”*' may
yield more information for some s> 1 than for r=1; (2) the stem-homo-
morphism may have inseparability > 1. Our method takes care of the first
difficulty, but does not overcome the second; if this second difficulty could
be overcome, a more precise formulation of Theorem 6.4 could be given,
and would probably state that I is a VEssIoT variety.

The investigation of p/p”™** rather than p/p* corresponds, approximately,
to the consideration of invariant derivations of higher order, as defined
in [8] or [9], instead of just those of order 1, as the LIE method does; this,
in turn, is made necessary by the fact that derivations of higher order are
not iterated derivations of the first order when the characteristic is positive.

We close by remarking that our definition of factor sets is tailored to
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the commutative case; some of the results of section 6, and perhaps more
precise results, could be expressed in terms of factor sets, after the defi-
nition of these is generalized in an obvious manner in order to apply to the
noncommutative case. The content of section 6 can also be improved after
learning more about the structure of VEssior varieties. This can be achieved
by methods similar to those of section 3; in fact, a minor modification of
the proof of Lemma 3.1 yields the result: any nonabelian n-dimensional
group-variety over k contains some positive dimensional proper group-subvariety
if n> 1. Application of this result to VESsIOT varieties establishes the
existence of the well known ¢ one-parameter groups». The author plans to
deal with these questions in the future.

BIBLIOGRAPHY

{1] L Barsorri, Algebraic correspondences befween algebraic varieties, « Ann. of Math. », 52,
1950, p. 427, See also Errata, ibid., 53, 1051, p. B8Y.

[2] — — Local properties of algebraic correspondences, « Amer. Math. Soc. Trans. », 71,
1951, p. 349).

[8] ~ ~ Intersection theory for cycles of an algebraic variety, < Pacific Journ. of Math.»,
2, 1952, p. 473, (3).

[4] — — 4 nofe on abelian wvarieties, « Rend. Circ. Mat. di Palermo », 2, 1853, p. 236,

[5] C. CumvarLiey, Théorie des groupes de Lie; 11, Groupes algébriques, « Act. Scien. Ind.»,
No. 1152, Paris, 1951).

[6] W. L. CHOW, On fthe quotient variety of an abelian variety, « Proc. Nat. Acad. Scie.
U.8.A.», 38, 1952, p. 1039).

[7] . Coxrorro, Funzioni abeliane ¢ malrici di Riemann, « Corsi R. Ist. Naz, Alta Mat.»,
Roma, 1942,

[8] H. Hassw and F. K, ScuMibT, Noch eine begriindung der theorie der héheren differential-
guotienten in einem algebraischem funktionenkirper einer unbestimmien, « Journ. Reine
Angew. Math.», 177, 1937, p. 215,

(9] A. JAEGER, Eine algebraische theorie vertauschbarer differentiationen fiir kirper belicbiger
charakleristik, « Journ. Reine Angew, Math. », 190. 1952, p. 1.

[10] 8. Korzumi, On the differential forms of the first kind on algebraic varieties, « Journ.
Math. Soc. Japan », 2, 1951, p. 2738).

[11] E. BR. KovLcHy, Algebraic matric groups ond the Picard-Vessiot theory of homogeneous
linear ordinary differential equations, < Ann. of Math. », 49, 1948, p. 1.

[12] 8. Nakano, On imvariant differential forms on group varieties, «Journ. Math, Soc.
Japan s, 2, 1951, p. 216.

[13] M. RosexricHT, Bquivalence relations on algebraic curves, « Ann. of Math. », 56, 1952, p- 169.

[14] — — Differentials of the second kind for algebreic fumction fields of one variable,
« Ann. of Math.», 57, 1958, p. 517.

[15] F. Severr, Punzioni quasi abeliane, <« Pontif. Acad. Scien. Scripta Varia », 4, 1947.

[16] A. WEIL, Varidtés abéliennes et courbes algébriques, « Act. Scien. Ind.», No. 1064,
Paris, 1948,

(®) On p. 486 of [3] (proof of Lemma 2.8), delete the portion of line 2 from bottom
which follows the word «have ». Also replace m—* by m—? in the 5th line of p. 499.




