
St ruc tu re  theorems for g roup-var ie t i e s  ('). 

by  IACOPO BARSOTTI (a Los Angeles ,  Calif., U.S.A..). 

In t rodUct ion and summary .  - In  the present  paper  we present  certain 
results which describe with some detail the s t ructure  of group-variet ies.  
For  comments  on what is not proved here we refer  the reader  to section 7 
of this paper ;  we shall briefly ment ion here the results which are proved. 
First  of all, we deal exclusively with group-variet ies  which are subvarieties 
o~ a projective space;  that this is not a l imitation is proved in a previous 
paper [4] (~); incidentally,  the definitions of the terms and symbolism 
referr ing to group-var ie t ies  are given in such paper. 

Section 2 of the present  paper  contains the obvious extension to 
group-variet ies  of the three << homomorphism theorems • of the theory of 
groups;  the only feature which breaks the analogy with group- theory  is 
the existence of homomorphisms of inseparabil i ty ~ 1 ; a par t icular  case of 
the first homomorphism theorem is contained also in [6]. 

Section 3 deals with commutat ive group-variet ies  (called quasi-abel ian 
varieties in [15]), and the main result  states that any such variety is 
birationally equivalent  (but not necessari ly isomorphic) to the product of an 
abelian variety and a rational group-var ie ty  ; in the language of group-theory,  
any commutat ive group-var ie ty  is the extension or a rational group-var ie ty  
by an abelian variety. This analogy can be carr ied very far, and the extension 
can be described in terms of factor sets. As for the s t ructure  of rational 
commutat ive group-variet ies,  in the case of character is t ic  () this is very 
simply described by stating that any rational commutat ive group-var ie ty  
over a field of characteris t ic  0 is the direct  product of finitely many straight 
lines, each having .either an additive or a multiplicative law Of composit ion;  
this result  seems to be in accordance with the main result  of [15]. If the 
characterist ic  of the ground field is p ~ 0, the s t ructure  of rational commu- 

i 

tative group-vameties  is complicated by the existence of certain group-variet ies  
(the periodic varieties) which are obtained by piecing together additive straight 
lines in a manner  different  f rom the construct ion of their  direct product.  

(*) This paper  was presented in  its present  form (but for a correction submit ted  
Apr i l  16, 1954) to a meet ing  held in P r ince ton  in  honor of S. ]-JEFSCHETZ, on Apr i l  8, 1954. 
Resul t s  which  la rge ly  over lap wi th  sections 1, "2. 3 of this paper  were  announced  at the 
same meet ing  by  M. ROSE~I~ICHT. (This note added August 22, 1954). 

(L) l~umbers  in  brackets  refer  to the b ib l iography at the end  of the paper. 
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The commutat ive group-variet ies ,  which extend a given rational group-var ie ty  
by means of a given abelian variety, form a set which can be turned into a 
group by a suitable law of composit ion;  according to the results of section 4, 
and ~o incomplete results mentioned in section 7, such group is isomorphic 
to the group of the points of a commutat ive group-variety,  at least in the 
case of character is t ic  zero. 

Section 6 deals with noncommutat ive  group-variet ies.  Essentially, the 
noncommutat ivi ty  is due to the existence of group-var ie t ies  which are the 
representat ive varieties of l inear  groups;  we prefer  to call such varieties 
~( V]~ssIoT variet ies ~), since the natural  a l ternate  expression ~ l inear-group 
va r i e t i e s ,  is too easily misinterpreted as (( l inear  group-var ie t ies  *. In  the 
same manner  as the s t ructure  of commutat ive group-var ie t ies  depends on the 
closed invariant  differentials  of the second and third kind, so the s t ructure  
of noucommutat ive group-var ie t ies  depends on certain differentials  which 
are invariant,  but not closed, or, equivalently,  on the noncommutat ivi ty  of 
the invariant  der ivat ions;  while the s t ructure  of the set of the derivations 
(LIE algebra) is known to describe completely the s t ructure  of the group-  
variety in the case of characteris t ic  0, this is not so when the characterist ic  
is p =[=0, and additional information must  be obtained from the s t ructure  of 
the set of the invariant  derivations of higher order ;  this is substantially 
what is done in section 6, al though a more direct  method is used, and 
the derivations play only a minor  role. The main result  of this section 
tTheorem 6.4} gives a considerable amount  of information on the s tructure 
of noncommutat ive group-variet ies ,  but not as much  as would be desirable;  
it is quite evident that this result  could stand improvement.  

The ground field is assumed to be algebraically closed throughout  this 
paper  (with the exception of a few definitions);  our course this assumption 
could be abandoned if one were prepared to extend the ground field 
whenever  necessary, a device of which there are abundant  examples in the 
l i tera ture  (see for instance [16]}. According to our definition of group-var ie ty  [4], 
the existence of group-variet ies  with singular  points is not exc luded ;  almost 
all of the results of this paper  are stated for nonsingular  group-variet ies  
Isee definit ion in section 1}, as this shortens the proofs;  a cursory reading 
will convince the reader  that such hypothesis is not essential. 

1. Definitions and preliminary results.  - The definit ion of a group-  
variety is given in [4]; the terminology adopted throughout  this paper is the 
one used in [1], [2], [3], [4]. A group-var ie ty  G over the field k, with degene- 
ration locus F, shall be called nonsingular if every point of the extension 

of G over the algebraic closure k of k, which does not belong to the 
extension F of F over k, is simple on G; if k is algebraically closed, and G 
is a normal  group-var ie ty  over k, then G is nonsingular,  by Theorem 1 
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of [4]. If k is algebraical ly closed, and P 6 G - -  F, then ap and T~, have the 
meanings stated in Theorem 1 of [4]; if v is a place of G with center  P 
on G, we shall denote tv  also by t~; the automorphism of k(G) over k which 
is related to T~, as tp is to T~o shall be denoted by zv, or %. The rules of 
operation for tip, zp are : 

(~pQ ~ tptQ, "CpQ -'- ~Q~p, ¢;p'CQ ~ "CQtp, 

~ p V  - - "  CYP~v , t ' rpv  ~ { Y v t P  , "CapV ~ "¢v'gP , ~,rpV - - "  "~P'Cv ; 

here v is a place of• G whose center  on G is not on /r. A group-var ie ty  G 
over k is said to be commutative if the law of composition on G is commu. 
tative. From now on, the ground field k shall be algebraically closed unless 
specifically stated otherwise. The point P of G such that t p - - 1  (or zv=~. 1) 
shall be denoted by Es ,  or simply E if this does not generate  confusion, 
and called the identity of G. Let G be a group-var ie ty  over the arbi t rary 
field k, with the degenerat ion locus F ;  a subvariety V of G is a group- 
subvariety of G if (1) no component  of V is a subvariety of /7, (2) each 
component of V is absolutely irreducible,  and (3) if P, Q 6 ~ r _  (~  A F)  (the 
bar denoting extension over the algebraic closure of k), then PQ and P-~  
belong to ~'; V has a component V o which contains the identity of G. 
Let  V,, V 2 be components of V, and let P~ (i = l, 2) b e a p o i n t o f  V - - ( ~ ' N ~ ' )  
such that the only component of ~r containing P~ is V~; t h e n  the smallest 

- -  p - 1  subvariety of G containing all the points Q~ ~ Pj ( j =  1, 2; j ~ i ) ,  when Q~ 
ranges in V~--(V~ A F), is an irreducible sub-var ie ty  of V containing Pj ,  
so that it is a subvariety of Vj. This proves that dim V~---dim Vj, or that 
each component  of V has the same dimension as Vo. But then the same 
construction can be repeated after  abandoning the assumption that P~ be 
contained only in V~, and assuming, instead, P,  = P~ ~ ' ;  this leads to the 
conclusion that  V~ "-'- ~ ,  impossible. Hence  V o is the only component  of -~ 
which contains the identity, and will be called the component of the identity 
in V; two distinct components of V have no point in common ouside ~', and 
if V.., V~ .... , V,. are all the distinct components of V, then V o - - ( V  ~ N F} 
is a group, and the sets V~--(V~ (q ~') are the left and right cosets of this 
group in the group V - - ( ~ r A  E) ;  hence V o - - ( V  o N if) is an invariant  
subgrofip of V - -  (V 7)/7), and the factor group q ~ r  (~  f3 F))/(V 0 -  lr o ~/~))  
has finite order r + 1. Let  ]7, W be group-subvariet ies  of G, and assume W 
to be a subvariety of V; then W is said to he invariant in V if the group 
~ - - -  {W N F)  is invariant  in V - -  (~r ~ ~,). The group-var ie ty  G is said to 
be simple if G has no proper invariant  (in G) group-subvar ie ty  of positive 
dimension. 

Let G, G' be group-var ie t ies  over the arbi t rary  field k, with degeneration 
loci F,  F '  respectively. A homomorphism of G into G is a rational mapping 
of G into G' such that (1) a[P] is a point of G ' - - ~ "  whenever  P 6 G - - ~ ' ,  
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and (2) a[PQ]--(a[P])(a[Q]) if P, Q E G - - F .  The subvariety G" of G' on 
which a operates is an irreducible group-subvariety of G'. The integer ins 
a{G"l is called the inseparability of a, and a is said to be separable if its 
inseparability is 1. If G"-- G', then a is called a hon~v~norphism of G o~to G'. 
If E' is the identity of G', the join of all the components of a[E'] which are 
not subvarieties of F has all the properties of a group-snbvariety of G, 
except possibly the one stating that each of its components is absolutely 
irreducible; such join is called the ]~ernel of a. If V is an irreducible 
subvariety of G, but not of F, and £ - - [ : ¢ ;  V, G"], the subvariety of G" on 
which :¢' operates is irreducible, and is not a subvariety of F'; it will be 
called the image of V in a, and denoted by aV; it has the property that its 
extension over k is the 
when P ranges over V ~  
subvariety of G", but not 
among lhe components of 

smallest subvariety of G containing all the a[P] 
{V A F). On the other hand, if F' is an irreducible 
of F', and a ' - - [ a ;  G, V'], let V,,..., V~ be those, 
the subvariety of G on which £ operates, which 

are not subvarieties of F ;  the join of V~,..., V, will be called the inverse 
image of V' in a, and denoted by a - iV  ' . The meaning of the symbols a ~  
a - iV  ' is extended in an obvious manner to the cases in which V or V' is 
reducible. The degree of ~ is 0 if dim G"• dim G,.and equals ord a{G"I if 
dim G"---- dim G. If there exists a homomorphism of G onto G', then G' is 
said to be a homomorphic image of G. We say that G and G' are isomorphic, 
and write G ~  G', if there exists a homomorphism of G onto G' which is 
also a homomorphism of G' onto G; such homomorphism is then a birational 
correspondence. The product, of homomorphisms (as well as of rational 
mappings) is defined in the usual operatorial manner;  the degree of the 
product of two homomorphisms equals the product of the degrees of the 
factors. An endomorphism of G is a homomorphism of G into a copy G' of G; 
the endomorphisms of degree 1, which are the isomorphisms of G onto itself, 
are called the automorphisms of G; they form a group with respect to the 
law of multiplication. If G has the same meaning as in Corollary 3 to 
Theorem 1 of [4], then an automorphism T of k(G)over k is related to an 
automorphism of G (as automorhisms of k(G) are related to birational mappings 
of G onto itself) if and only if ~,G) , - i - -  G. The group-varieties G, G' over 
the arbitrary field k are said to be isogenous if each is a homomorphic 
image of the other; the relation of being isogenous is clearly reflexive, 
symmetrical and transitive. Let G, A be group-varieties over the arbitrary 
field k, with degeneration loci F, B respectively; the pseudo-variety G X A  
is birationally biregularly equivalent to a variety, which we shall still denote 
by G X A .  If P, P '  are points of G- -~ ' ,  and Q, Q' of . 4 - - ~ ,  set 
( P X  Q)(P'X Q ' ) ' P P ' X  QQ'; this defines a law of composition on G X A ,  
and under such law G>( A is a group-variety with the degeneration locus 
(F)<: A) U (G X B). This group-variety is called the direct product of G and A. 
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Let G be a nonsingular  group-var ie ty  over the arbi t rary field k, with 
degenerat ion locus /7, and let X be an irreducible cycle of G but not of F ;  
let G4, G~, G 3 be copies of G, and let D be the rational mapping of G~XG~ 
onto G 3 which gives the law of composition on G, as specified in section 1 
of [4]; assume k(G~) ( i - - 1 ,  2, 3) to be a subfield of k(D) as prescribed by D;  
then a birational correspondence is established between (G2)kl¢;~) and (G~)k~G,), 
and in such correspondence the modified extension of X~ over k(G,} corresponds 
to exact ly one irreducible cycle l 'x of (G3)~G~) , having the same dimension 
as X ;  this definit ion of Px can be extended, by linearity, to any cycle X 
of G having no component variety on F. We shall also set T x ~  Drx,G~ (see 
section 3 of [1]); this notation is in accordance with the notation used in 
the proof of Theorem 3 of [4], 
paper. We shall now assume, 
algebraically closed; if X has 

and will be used consistently throughout  this 
in order to simplify the notations, k to be 

the previous meaning and is irreducible, and 
if P E G - - F ,  the t ransform of X.2 according to the birational correspendence 
T~ is an irreducible cycle of G~ having the same dimension as X ;  we shall 
denote it b y  (zpX)3 , and this notation will be extended by l ineari ty to the 
case in which X is reducible. The radical of zeX is the smallest subvariety 
of G containing all the points PQ when Q ranges ores rad X - - ( F  t3 tad X). 
Let v be a place of G whose center  on G is P, and let R be a point of 
r ad~pX but not of F ;  then Q ~ P - ' R E r a d X - - ( F N r a d X ) .  Let u be a 
place of G with center  Q on G, compounded with a valuation w of k(G) 
having as center  on G one of the components of rad X, say X', which 
contain Q; then the place [u~, v,) of G,)<G~ (see Step 3 of the proof of 
Theorem 3 of [4] for the definition of this symbol) has on G, )< G~ the center  
P~ X Q.., and therefore has on G 3 the center  R 3. Let w' be the extension of w: 
over k(G,); then (u~, %) is compounded with w' and with a place of K,,,; this, in 
turn, induces a place of k(Tx,) which induces % in k{G,), and which has 
on Ga the center  Rs; as a consequence, R~ E rx[%], and this fact proves that 
every component of (zioX)~ is a component of Px[V,]. These steps can be 
retraced, and the result  is that rx[%] is the join of (zpX)~ and, possibly, of 
a subvariety of /f3; this last one may actually occur only if F N tad X is 
nonempty.  :Now assume X to be irreducible, and consider the birational 
correspondence ~x between (X~)~(G~) and I'x induced by the birational 
cor respondence  DIG,} between (G~)k(G~) and (G.~)k(G~). Then ~x can also be 
considered as an algebraic correspondence between k(G~) and X ~ X  G~; if 
this is done, set B x - -  D~x , o~, and consider  Bx as an algebraic correspondence 
between G~ X X,, and G~. For a point P~ )< Q~ of G, Y< X~ such that P, Q q~ Ii, 
we have that (zpX)3 appears in TxIP, I* with the same multipl ici ty e with 
which the correspondent  component of BxIP~] appears in BxtP~I*. But then 
the mult ipl ici ty of B 8 - - D I P ,  X Q2] in DIP~)< Q~I*-- JBxtP,)< Q~!* is a 
mult iple of e; since such multiplici ty is 1, we conclude that e - - l ,  or that 

A~nali di M a t e ~ a t i e a  11 
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{apX)8 appears  with mult ipl ici ty 1 in Tx{Pl}*. W e  shall make use of these 
resul ts  without  specific re ference  to them. Another result  of f requent  use is 
the following one:  

LE~MX 1.1. - Let K be an algebraic function field over the arbitrary field k; 
let F, V be irreducible varieties over k, and let D be a rational mapping of F 
into V; let P be a rational point  of F~: such that DK[P] is a rational point  Q 
of  IrK; let v be a place of K over k such that Kv-.~k,  and set P ' - -P[v] ,  
Q'--Q[v], so that P', Q' are rational points of  F, V respectively. Then 
Q' E D[P']. 

PROOF. - We  may assume D to be onto V; if k(V) is then considered 
to be a subfield of k(F) as prescr ibed by D, each place of FK with center  P 
o n  /~'g has the center  Q on VK; let u be such a place, and let w be 
compounded with u and with the extension of v to Ku .  Then /)', Q' are the 
centers  of w on F, V respectively,  Q. E. D..  

As a par t icular  consequence of Lemma 1.1 we may consider the following 
case:  let G be a group-var ie ty  over the arbi trary field k, with degenerat ion 
locus F ;  let K be an algebraic function field over k, and let P, Q, R be 
rational simple points of GK but not of FK, such that P Q - - - R ;  let v be a 
place of K over k such that K . - -  k, and assume 1 )' - -  P[v] and Q'--- Q[v] to 
be simple points of G but  not of F, and R ' - -  R[v] to be a simple point of G; 
then R' ~ F,  and R' - -  P'Q'. 

LEM~A 1.2. - Let G be a group-variety over k, and let V be an irreducible 
group-subvariety of  G, simple on G. Then V is a group-variety. 

PROOF. - Let  F be the degenerat ion locus of G, and let G,, G~., G~ be 
copies of G, and V,, V~, V 3 be the corresponding copies of V. If  D is the 
rat ional  mapping of G t X  G2 onto G 3 which gives the law of composition 
on G, then D{V~X V21 * - - h '  exists and is a rational point of (G3)ktv~×v~), 
since V~X V~ is simple on G, X G ~ ;  set D'--Da,,v~×v~; then D' operates 
on V~. Since D' is the only component of D A V, X V~ X G 3 which is not a 
subvar ie ty  of /7' X G 2 X G 3  k) G, X F ~ X G . ~  k) G, X G ~ X F ~ ,  it also can be 
obtained by operating with D{V, X V3}* or DIV2 X Vs}*; hence D' defines a 
normal  law on V, Q. E. D..  

L ~ A  1.3. - Let G be a nonsingular group-variey over k, and let V 
be an irreducible group-subvariety of G. Then V is a nonsingular group- 
variety. 

PROOF. - V is a group-var ie ty  by Lemma 1.2. Let F be the degeneration 
locus of G, and let P be a point of V - - ( V A  F), simple on V; set 
0 - -  Q(P/G), P = P(V/G), p - -  P (~ 0 ; the fact that P is simple on V means 
that O / p  is a regular  geometric domain. If P '  is any point of V - - ( V  A/T), 
and 0 ' ,  P ' ,  p '  are related to P' as O, 1 a, p are to P, we have O'---~--¢JO, 
1 a' ----_- ~1 a - -  P ,  if ~ = ~p,~71 ; hence p '  ---- ap,  and therefore O ' /p '  is isomorphic 
to O/p,  and is consequent ly a regular  geometric domain, Q. E. D. .  
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2. The  h o m o m o r p h i s m  theorems .  - Let ~, ~ be homomorphisms of a 
group-var ie ty  G over k onto group-variet ies  A, B respect ively;  we shall say 
that a, ~ are  equivalent if there exists an isomorphism ~" of A onto B such 
that ~ - - T a ;  the relation of equivalence is reflexive, symmetrical  and transi- 
tive. A_ class of homomorphisms means a class with respect to equivalence. 
Equivalent  homomorphisms have the same kernel,  degree and inseparabi l i ty;  
they will be called respectively the kernel, degree, and inseparability of  their  
class; a separable class is the class of a separable homomorphism. 

THEOR~ 2.1. (FIRST ~OMOMORP~ISM ~Vm~OREM).- Let G be a nonsingular 
group-variety over k, with degeneration locus ~ ; there exists a one-to-one 
correspondence between the set of the invariant group-subvarieties of  G, and 
the set of  the separable classes of homomorphisms of  G onto group-varieties 
over k. The group-subvariety V and the class A correspond to each other i f  
and only i f  V is the kernel of  A;  i f  ~ is a homomorphism of  G onto G' of  
inseparability e and kernel V, and i f  ~ is a homomorphism of G onto B 
belonging to the class A which corresponds to V, there exists a homomorphism T 
of  B onto G', of inseparability e and kernel EB, such that ~ ~ Ta. Finally.  
dim V + d i m G ' = d i m G ,  and the group of the points of B which do not 
belong to the degeneration locus of  B is isomorphic to the group (G --  F ) / ( V - -  
- -  IV n F)). 

If V, A, a, B have the meanings just  stated, then B (which is de termined 
but for an isomorphism) is called the factor variety of V in G, and denoted 
by G/V, while a (which is determined but for equivalence) is called the 
natural homomorphism of G onto B. We shall always select a nonsingular  B. 

PROOF. - Let  V be given;  let G~, G~, G.~ be copies of G, and let D be 
the rational mapping of G~ X G~ onto G a which gives the law of composition 
on G. Set L~ = Grv (see the definit ion preceding Theorem 4.1 of [1] for the 
symbol Grv), so that k(L,) is a subfield of k(G~); we assume. L~, L a to be 
copies of L~, related to G~, G 3 respectively as L~ is to G~. Let A~ be the 
irreducible algebraic correspondence between k(L~) and G~ generated by the 
embedding of k(L,) in k(G~). Let %, re~ be nondegenerate  places of G~ which 
induce in k(L~) the same place u,;  then rv[v~]--r~.[re~], and therefore 
~ V - - ~ . . V ;  in particular,  ~,~E~ E v~V, so that the center  of re on G belongs 
to a~V. This proves that the components of h~[u~] which are  not subvarieties 
of F~ are necessari ly subvarieties of (~V)~. On the other hand, let v be a 
nondegenerate  place of G whose center  on G is generic, and let u be induced 
by v in k(L); let re be a nondegenerate  place (if G whose center  on G is on 
~ V ;  then ~ V ~ - - ~ F .  But in this case, (~,V)3-----rvtv~l* , and therefore re! 
has on L~ the same center  as v~. This proves that if the center  of u |  on L~ 
is generic, then A~[u~] has, outside F~, the same components as (a~V h.  Now, 
each component variety of l~v has inseparabil i ty 1, and therefore Fv is the 
modified extension, over k(G~), of a cycle F of (G3)k(L,) , and each component 
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variety of r has inseparabil i ty 1; if T ' - ' D p ,  L1, we have that a generic 
P:,E G s belongs to exact ly one (a,V)s , so that T'[P3] is a point of L , .  As a 
consequence, F i s  irreducible, and k(T') is a purely inseparable finite 
extension of k((/s); on the other hand, if X is any component of V, k(Tx) 
contains k(T'), and ins (k(Tx):k(Gs)) ~ 1; hence k(T') is separable over k(Gs) , 
or k(T') = k(G3), and k(Ll) C k(G3). It  now follows, from ins F - -  1, that ins 
(k(T') : k(L,)) - -  1, so that also ins (k(G,) : k(L~)) --- 1. We now consider k(G~), 
k(L~) (i--" 1, 2, 3) as subfields of k(D). Let w be a place of D with centers  
P t ,  Q~, Rs, Pt', Q~-', Rs' on, respectively, G,, G~, G s, L I, L.2, Ls, and assume 
P, X Q~ to be generic on G t X G2. Set Zi --- DA~, L~ ; then Pi 6 Z~[P(] - -  ((:pV)~, 
Q2 E Z.~[Q2' ] -"  (aQV)~, R 3 6 Z3[Rs' ] - -  (aRV)~ ; but, since V is invariant,  (~RV-- ap~QV 
depends only on ¢;pV and ~QV; hence R' depends only on P' ,  Q', a fact 
which shows that each e iement 'of  k(L~) is purely  inseparable over k(L~ X L~); 
since ins (k(G~ X G~) : k(L~ X L2)) = 1, this implies that k(L3) C_ k(L~ X L~). 
Similar  results can be obtained for any permutat ion of the indices 1, 2, 3 ;  
hence the embedding of k(L~) into k(D) generates a rat ional  mapping D' of 
L i X L i  onto L~, for any permutat ion (/, j,  h) of (1, 2, 3), and it is quite 
easily seen that D' gives a normal law on L. According to Theorem 3 of [4], 
L is birat ionally equivalent  to a variety B which is a group-variety,  with a 
degenerat ion locus C, under  the law Y induced by D'. 

Let  a be the rat ional  mapping of G onto B generated by the embedding 
of k(B) into k(G). We contend that ~ is a homomorphism with kernel  IT. 
First  of all, if P E G - - / P  and P'E:c[P],  let v be a place of G with centers 
P, P '  on G, B respect ively;  if v' is the extension of v, over k(G2) , then v' is 
a valuation of k(D) which induces the trivial valuation in k(G.~), hence in 
k(B3) , a fact which proves that P ' q  C; in addition, ~ p  induces up, in k(B), 
and this shows that P '  = alP]. Moreover, if Q E G - -  F and Q' - -  a[Q], w e  have 
that (;pQ-----al,(~Q induces ~p,a~,-----¢;p,Q, in k(B), so t h a t  a[PQ]--(a[P])(a[Q]), as 
requested. Finally, P ~ F belongs to the kernel  of a if and only if ¢;p induces 
the identical  automorphism in k(B), or in k(L); and this is so if and only if, 
for a generic Q of G, (~paQV--(:QV, that is, if and only if P 6 V - - ( V  A/7'). 
Hence  V is the kernel  of a. 

l~ow let ~ and G; be given as in the statement of the theorem. Let P '  
be a generic point of G', so that ~[P'] has no component on /~; if P, Q 
belong to ~[P'] but not to F, then ~[P-~Q]-- 'Ew, so that Q 6 <;pV. Viceversa, 
if Q 6 ¢~pV-- (F (~ apV), then ~[Q] = P' .  Hence  ~[P'] -"  apV. T h i s p r o v e s  that 
the algebraic system of the (~tG'l){ul, when u ranges over the places of G', 
coincides with the set of the multiples,  according to a fixed integer, of the 
elements of the algebraic system of the (~{BI)lvt, when v ranges over the 
places of B ;  hence there exists an algebraic correspondence ~, between G' 
and B such that k('f) is a purely  inseparable finite extension of k(G') and 
k(B), and such that if P '  is a generic point of G', then y[P'] is the point P 
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of B such that ~[P'] - -  ~[P]. Now, B X G' is birat ional ly b i regular ly  equivalent  
to a variety, which will still be denoted by B X G'; then ~' is an i rreducible 
subvar ie ty  of B~'x~ G'. Gonsider ~IG] and ~{G I as rational points of Bk(G~, 
G'~[~j respectively,  so that ~¢IG~ X~IG} is a rat ional  point  X of ( B X  G')~(~. 
For  a place v of G, with generic center  P on G, we have X[v] - -  alP] X ~[P] E T ; 
conversely, we have seen that a generic point of T is of the type X[v]. 
Hence  T is the subvar ie ty  of B X  G' on which X operates, so that we can 
assume k(~ 0 ~ k(G}. As no element of k(G~ is pure ly  inseparable over k(B), 
we conclude that k{l")---k(B), and that k(B) is a purely  inseparable  extension 
of k(G'). Moreover, [k(B) : k(G')] - -  ins (k(G) : k(G')) - -  e. Now it is clear that y 
is a homomorphism of B onto G', of inseparabil i ty e and kernel  E s ,  and 
that ~'a ~ ~. The one- to-one  correspondence V ~ A (where A is the class 
of a) is obtained by setting e ~ 1, Q. E. D. .  

A part icular  case of this result  forms the object of [6]. From the previous 
proof, i t  is easily seen that if a is a homomorphism of the group-var ie ty  G 
over k onto the group-var ie ty  G', and V' is an i rreducible subvar ie ty  of G', 
but  not of its degenerat ion locus, then V--- :¢- iW is the smallest  subvar ie ty  
of G which contains all the P E G - -  F (F being the degenerat ion locus of G) 
such that a [ P ] E V ' ;  moreover, any P E a - ~ V ' - - ( F ( ~ a - ~ V  '} i s  such that 

c v'. 

LEI~MA 2.1. - Let G be a group-variety  over k, wi th  degeneration locus F, 
and let V be an invar iant  group-subvariety of  G; let H - -  k(G/IT) be considered 
as a subfield of  K--~ k(G} as prescribed by the natural  homomorphism of G 
onto G/V. Then H is the set o f  the elements x E K  such that a p x , ~ . x  for 
every t ) E V - -  ( V 71 F). A nd  i f  ~p~ --- ~ for each w E H, then P E V - -  ( V 71 F). 

PROOF. - We  may assume G to be nonsingular.  Let  a be the natural  
homomorphism of G onto B ' - - G / V ;  let P E G - - _ F ,  and set P ' ~ - a [ P ] .  We  
have seen in the course of the proof of Theorem 2.1 that ¢~p induces up, 
in H ;  hence a p x - - ~  for each x E H  if and only if ~ p , - -  1, i. e. if and only 
if P EV. Let  now x E K  be such that ~pw--~w for each P E V - - ( V ( S F } ,  
and set H ' : H ( w ) .  Let  B' be a model of H' over k, and let Q be a generic 
point of B ;  let Z be the rat ional  mapping of B' onto B generated by the 
embedding of H into H' .  There exists a nondegenerate  place v' of K over k 
with center  Q on B ;  let Q' be the center  of v' on B ' ;  let Q" be another 
point  of B' obtained from Q by means of another nondegenerate  place v". 
Then Q', Q"EZ[Q], and there exist points P ' ,  P "  of G - - / P  such that Q', 
Q" correspond to P' ,  P "  respect ively in the rat ional  mapping T of G onto B'  
generated by the embedding of H '  into K. As Q is generic, we may select P '  
to be such that Q ' ~  T[P ' ] ;  since alP']  ~ :¢[P'~] = Q, we have P'-----apP" for 
a P E V - - ( V N F ) ;  hence opv" has the center  P '  on G, and the center  Q' 
on B'. But  cev" and v" induce the same valuation in H ' ;  therefore Q'- -Q" .  
This proves that for a generic Q of B, Z[Q] is a point of B', a fact which 
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indicates that H '  is a pure ly  inseparable extension of H. Since ins (K" H)  - -  1, 
we conclude that H' -~ H, ~ E H, Q. E. D. . 

LEM~,~ 2.2. - Let G, A be group-varieties over k, with degeneration loci 
F, B respectively, and let a be a homomorphis,~ of G onto A. Assume H ~ k(A} 
to be a subfield of K--~ k(G) as prescribed by a. Then, for any P E G --  F, we 
have ~ , H ~  H, and ~p induces in H the automorphism ~p,, i f  P ' - -a[P] .  

PROOF. - W e  may assume O to be nonsingular.  Let  Oi, G~, O 3 be 
copies of G, and let D be the rational mapping of G~X G2 onto Ga which 
gives the law of composition on O. Consider kIOt } as a subfield of k(D) as 
prescribed by D;  let As, at be copies of A, a respectively,  and let k(A~) be 
considered as a subfield of k(O~) as prescr iaed by at ( i---1,  2, 3). Then the 
smallest subfield of k(D) containing k(A,) and k(A2) also contains k(A3) , and 
the embedding of k(A~) in such a field generates  a rational mapping D' of 
A ~ x A ~  onto A 3 which gives the law of composit ion on A. If  v is a 
nondegenerate place of G, and w is induced in k(A) by v, let v', w' be the 
extensions of v~, w~ over k(G2), k(A2) respectively,  so that v' induces w' in 

--1 k(D'). If a~ E k(A~, we have x 3 - -  (~-l~v). 2 E P~,, and also x~ ~ (~,~ ~)~ E P~, ~ P~,, 
so that (¢~-1x - -  ~ x ) ~  E P~, ('/k(G~), or ~-tx  ~ ~- lx ,  Q. E. D . .  

LEPTA 2.3. - Let G, A be nonsingular group-varieties over k, with 
degeneration loci F, B respectively; let a be a rational mapping of G into A 
such that a[PQ]---(:¢[P])(a[Q]) for a generic pair of points P, Q of G. Then c¢ 
is a homomorphism of G into A. 

P R o o F . -  Let  A~, A. ,  A 3 be copies of A, and let D be the rational 
mapping of A~)<A~ onto A s which gives the law of composit ion on A ;  let 
G~, G~, G3, D' be similarly related to G; consider k(Gt) to be a subfield of 
k(D'} as prescr ibed by D' ( i - - 1 ,  2, 3). The rat ional  mapping £ - - : ¢ t G t  is a 
rat ional  point of A~(~); we shall consider the copies at' of :¢' on (A~)~(G) 
(i-----1, 2, 3), and the modified extensions at of a~' over k(D'). Our assumption 
implies that if D* is the modified extension of D over k(D'), then 
D*[a~ ~ a~] ~ %;  Lemma 1.1 yields that if w is a place of D', and u~, v. ,  z~ 
are the places induced by w in k(G~), k(G..), k(Ga) respectively,  we have 
(~¢'[~])~ E D[(£[u])~ X (£[v])~]. The set of the centers  on G of the places v such 
that a'[v]EB is a proper  subvar iery  C of G; if C_~]-F, it is possible to 
select w in such a manner  that the centers  of u and z on G are not on 
C U F ,  while the center  of v on G is on C but  not on F ;  the previous 
relat ion implies, however,  that a'[z] E B if £[u] ~ B and £[v] E B (for nondege- 
nerate  u, v, z); as this is a contradiction, we conclude that C ~  F. But  
then we can state, more precisely, that £[z]---(£[u])(£[v]) if u, v, z are 
nondegenerate.  Now, the fundamental  locus of a on G is also a proper  
subvar ie ty  C' of G; if C '~ I - -F ,  it is possible to select w in such a manner  
that the centers P,  Q of, respectively,  u, v on G are not on C ' (2  F, while 
the center  R of z on G is on C' but  not on F ;  this contradicts the previous 
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relation: since such relat ion implies that of[z] depends  only on P and Q, 
hence only on the center  R :  PQ of z. Therefore  C'C_ F, Q. E. D..  

Tn'EORE~ 2.2. (SEconD ~OMO~ORPHIS~ ~HV, ORE~I). - Let G be a nonsin. 
gular group-variety over k, with degeneration locus F, and let V, W be 
invariant group-subvarieties of  G, such that W C_ V; set B---- G/W, and let a 
be the natural homomorphism of G onto B;  set A - - a V .  Then A is an inva- 
riant  group-subvariety of B;  set C =: B/A, and let ~ be the natural homomor. 
phism of B..onto C; let ? be the natural homomorphism of G onto G~ V; then y 
is equiralent to ~a. 

PROOF. - We  may assume k(B) C_ k(G} as prescr ibed by a ; the fact that A 
is an invariant  g roup-subvar ie ty  of B is a consequence of group-theoret ical  
considerations.  W e  can fur ther  assume k(C)c_ k(B) as prescr ibed by ~. Then 
L e m m a  2.1 shows that k(C) is the set of the elements of k(G) which are 
invariant  under  all the vp for P E V - - ( V ( ~ F ) ,  so that C is birat ionally 
equivalent  to G/V, and the inseparabi l i ty  of ~a is 1. But  then, since y and ~ 
have the same kernel  V, Theorem 2.1 implies that ), is equivalent  to ~a, 
Q . E . D . .  

Let  A, B be i rreducible subvariet ies  of a group-var ie ty  G over k, but  
not of the degenerat ion locus F of G. Let  G 4, G~, G~ be copies of G, and 
let D be the rational mapping of G~ X G~ onto G~ which gives the law of 
composit ion on G. The irreducible subvar ie ty  C of G such that C~ is the 
subvar ie ty  of G 3 on which [D; A ~ X B ~ ,  G3] operates will be denoted by 
{A, B); we have {A, B) c_I-F , and (A, B) is the smallest  subvar ie ty  of G 
containing all the points PQ, when P ranges ever A - -  (A t~ F) and Q ranges 
over B - - ( B  t~ F). If  A, B are not irreducible,  but  none of their components  
is a subvar ie ty  of F, (A, B) can be defined by means of an obvious 
generalization of the previous definition. If  A, B are group-subvar ie t ies  
of G, then (A, B) is a g roup-subvar ie ty  of G if a n d  only if IA, B ) - - ( B ,  AI. 
The symbol (A, B, C, ...) is the natural  generalization of (A, B). 

THEO~V,M 2.3. (T~IRD HOYmMORP~ISM ~n]~ORF,~i). - Let G be a nonsingular 
group-variety over k, with degeneration locus F;  let A, B be irreducible group- 
subvarieties of  G such that (A, B) is a group-variety of  which B is an invariant 
group-subvariety (this being the case, in particular, i f  B is invariant in G). 
Let C bd the join of  those components of  A (~ B which are not subvarieties of  F. 
Then there exists an integer e such that eC is part  of  the intersection 
(A N B, {A, B)) ; C is an invariant group-subvariety of  A, and there exists a 
homomo~Thism ~ of  A/C onto (A, B)/B) whose kernel is the identity, and whose 
degree is e. 

PROOF. - By Lemma 1.3, we may assume (A, B ) ~  G. The fact that C 
is an invariant  g roup-subvar ie ty  of A is proved by an e lementary group-  
theoretical argument.  Let  a be the natural  homomorphism of G onto G' "-- G/B ; 
then of--[0¢; A, G'] is a homomorphism of A onto G', whose kernel  is 
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evidently C. Therefore  C has the pure dimension dim A - -  dim G' = d im A 4- 

- t - c l i m B - - d i m  G, so that, if C' is any component of C, the intersection 
mult ipl ici ty i(C', .4 N B, G) exists and is a positive integer, by Theorem 5.11 
of [3]. By Theorem 2.1, there exists a homomorphism ~ of A ' = A / C  onto G' 
whose kernel  is the ident i ty ;  then the degree of ~ equals e - - ins~ ' [G '} .  
Let  A* be the modified extension of 1A over k(G't; then, by the definit ion 
preceding Lemma 1.2 of [3], ~'IG'I is the only part  of (~IG'I n A*, G~{G,)} 
which operates on the whole A ;  and since no point of A - - ( A  n F) is 
fundamenta l  for ~', we also have that if rad ~{.G' t n r adA*  has components 
which do not operate on the whole A, then each one of them must  operate 
on a subvariety of A A F .  I f  v is a place of G' whose center  on G' is EG,. 
we have seen that (~l~'ll[vl* coincides, but for component varieties on F, 
with B, so that the law of the conservation of the number  {Theorem 5.7 
of [3]) implies that (~'lG'l)lvl* coincides, but for component varieties on F, 
with (A n B, G); therefore (A n B, G)--eC,  but for component varieties 
ou F, Q . E . D . .  

COROLLARY. - Let G be a nonsingular group-variety over k, with degene- 
ration locus F, and let .4, B be irreducible group-subvarieties of G such that 
G - - ( A ,  B), and that P Q - - Q P  whenever P, Q are points of A , B  respectively, 
but not of F. Assume ( A n  B, G) --- EG ; then G ~ A ~(, B. 

PRool~.-  Set A ' - - G / B ,  and let ~ be the natura l  homomorphism of G 
onto A';  from Theorem 2.3 and its proof, and under  the present  conditions, 
we obtain that A ' ~ A / E G ~ . 4 ,  and that ~ induces an isomorphism between 
A and A'; in like manner  the na tura l  homomorphism ~ of G onto B ' - - G / A  
induces an isomorphism between B and B'. Set a ' - - ~ t G l ,  ~'--~IG}, 
7 ' - - ~ ' X ~ ' ,  ?-----Dr,,G , so that 7 is a homomorphism of G onto the direct 
product A ' X B ' ,  with kernel  E~. We shall consider k ( A ' X B ' )  to be a 
subfield of k(G) as prescribed by 7. Since a and ~ are separable, we have 
that ins (k(G) : k(A')) : ins (k(G) : k(B'))--- 1 ; the definition of inseparabili ty 
(section 1 of [2])' and the fact that the smallest perfect  extension of 
k ( A ' X B ' )  is the quotient field of the direct  product, over k, of the smallest 
perfect  extensions of k(A'), k(B'), imply then that ins (k(G) : k(A' X B')) - -  1, 
or that ? is an isomorphism, Q. E. D..  

3. Commutat ive  group-var ie t ies .  - Let  G be an n-dimensional  projective 
space over the arbi t rary  field k, with n. h. g .p .  {x~,.. . ,  x ,  I, and let us 
define a law of composition on G by means of the rational mapping D of 
Gi X G2 o n t o  G 3 given by (x,) 8 = (xl)~ -I- (x~)~ (i "--- 1, ..., n). Then G becomes 
a commutat ive group-var ie ty ,  wi th  the hyperplane at infinity {for Ix}} as 
degenerat ion locus;  such group-variety,  or any one isomorphic to it, is 
called an n-dimensional  vector variety; if n >  0, it is isomorphic to the 
direct  product of n 1-dimensional vector varieties. If  D is defined by 
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(wi)8--(x~)j(x,)~, G becomes a commutat ive group-var ie ty ,  whose degenerat ion 
locus consists of the hyperplane  at infinity, and of the n hyperplanes  x,---  0 ; 
such group-var ie ty:  or any isomorphic to it, is called a logarithmic variety, 
and is isomorphic, if n H 0, to the direct product  of n 1-dimensional  
logarithmic varieties. 

LE~MA 3 . 1 . -  Let G be a simple com~nutative group-variety over k, of 
dimension H 1; then G is an abelian variety. 

PROOF..-. W e  may assume G to be nonsingular.  Let /7 ,  n be, respectively,  
the degenerat ion locus and the dimension of G; we shall assume n ~  1, 
and F to be nonempty,  and prove that G cannot be simple. Let  G~, G,, G 3 
be copies of G, and let D be the rational mapping of G~ )< G~ onto G:~ which 
gives the law of composit ion on G. Let  X be an ( n - -  1)-dimensional unmixed 
effect ive (integral) cycle on G, none of whose component  varieties is a 
subvar ie ty  of F, and set (Hi) , --Grx (see section 1). Let  V be the set of all 
the P E G - - F  such that ~ p X = X ;  then V is a group, and the smallest 
subvar ie ty  Vx of G containing V is a g ronp-subvar ie ty  of G, and has the 
property that Vx - -  V c_/7. Since G is commutative,  Vx is invariant  in G, 
so that  B x = G / V x  exists. The embedding of k(Bx) and k(Hx) into k(GJ 
generates an algebraic correspondence D' between Bx and Hx. Given a 
generic P EHx, there exists a Q E G - - F  such that the nondegenerate  
places v of G whese center  on Hx is P are all and only those for which 
((:~vX)s---FX[Vt]---((yQX)o ; such v ' s  are also all and only those for which 
~IQE Vx, hence also all and only those for which ~,Vx--~QVx, and finally 
all and only those which have on Bx a certain fixed center. The argument  
can be retraced, and proves that D'[P] is a point whenever  P is a generic 
point  of either H i  or Bx. Hence  the smallest  subfield of k(G) which contains 
k(Bz) and k(Hz) is a purely  inseparable extension of k(Bx) and k(Hx). But 
ins (k(G) " k(Bx))"- 1 by Theorem 2.1, so that k(Bx) is a purely inseparable 
extension of k(Hx). These notations will  be maintained in the rest of this 
proof. Assume now G to be s imple;  then for each (n - -1 ) -d imens iona l  
effective cycle X of G, with no component  variety on /7, Vx is zero-dimen- 
sional. Let  X be such a cycle, and suppose that there exists a degenerate 
place v of G such that rx~V,}* has component  varieties which are not 
subvariet ies  of F ;  let, for instance, Fx{v~l*---Zi=1 a,(X~):~ + ~y=1 bj(X~)3, where  
no X~ is a subvar ie ty  of /7, while e a c h  X /  is a subvar ie ty  of F, hence a 
component  of F .  Set :Y ~ Z, a,Xi ; for any nondegenerate place u of G, there 
exists an automorphism ~, of k(D) over k(G~) which induces (~u)~, (au)3 in 
k(G~), kIGa) respectively.  Then, if the center  of u on G is generic, we have 

• * r x I ~ v , l *  - -  p~ Y,~ a , ( X &  + (1) I x{(~,~v),} - -  

- { -  (cycle of /73) --'-- ((',~ Y)3 -{" (cycle of /Ts) = 

= 17y{u,}* -~- (cycle of /73)" 

A n n a { i  d~ M G t e ~ a t i c a  12 
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Let G' be a normal  model of k(G), and let T:~, Tr'  bo the algebraic 
correspondences between G~' and G 8 induced by, respectively, Tx and Ty; 
let G' be selected in such a way that Tx' and Tr'  have no fundamenta l  point 
on G l' (see Theorem 4.3 of [1]}; let likewise G" be a normal  model of kIG), 
let D" be the rat ional  mapping of G t ' X  G.~" onto G 3' induced by D, and 
select G" in such a way that D" has no fundamenta l  point on Go". Let Q 
be the center  of v on  G", and let T be the only component  of D"[Q~] which 
operates on the whole G,' (see Theorem 1 of [4]). Then for a place u whose 
center  on G' is a generic P, the center  of (%v)3 on G 3' is T[P,], and this is 
a generlc point R 3 of the proper subvariety F 3' of G.~' on which T operates. 
Hence  for such u we have rxl(~,v),l*--Tz[{R,I*, and Prlu,}*---T~{P~I*, 
so that formula (1) implies that T:~lR,}*--T~IP,  l*-b-{cycle of F~). If 
T " - - { T x ' ;  F,', G3}* {see section 1 of [2]), this can be wri t ten T"~R~I*-~- 
= T~/!P~I*-I-(cycle of F,). This indicates that a generic element  of the 
algebraic system whose elements are the T"{R,}* is the sum of TY'{P,I* and 
of the cycle denoted by Icycle of F~), which can vary among finitely many 
cycles only. Hence  (cycle of Fs) is fixed, and the algebraic system formed 
by the T~{P~I* has dimension ~ d i m F ' < n ,  so that d i m B r < n ,  and 
dim Vr > 0. This contradicts the assumption that G be simple, and we must 
conclude that i f  G is simple, for each ( n -  1)-diniensional unmixed effective 
cycle X of G, with no component variety on F, and for each degenerate place 
v of G, every component of rx[V,] is a component of F~; this also shows that 
dim F - ~ n - - 1 .  According to the proof of Theorem 3 of [4]. it is possible to 
select X in such a way that H x  is a model of k(G), and is a group-var ie ty  
isomorphic to G under  the law of composition induced by D, in which case 
we can select B x  ~ H x ~  G. A place v of H x  is such that its center  P on Hx 
belongs to the degenerat ion locus of H x  if and only if Fx[V,] is a join of 
components  of F3; since this may happen only for finitely many points P, 
we conclude that the degenerat ion locus of H x  is zero-dimensional.  But H x  is 
simple, so that is degenerat ion locus must  be ( n -  1)-dimensional, as previously 
shown. Since n > 1, this contradiction proves that G is not simple, Q. E. D..  

The folloving result, and its proof, are generalizations of Proposition 25 
of [16] and its proof:  

THEOREM 31. - Let G be a nonsingular group-variety over k, and let A 
be an abelian group-subvariely of G; then there ex~ists a homomorphism 
of G onto A ; i f  B is the component of the identity in the kernel of ~, then 
dim (A A B) - -  O, and G --  (A, B). 

P}~ooF. - Set n - - d i m G ,  r - - d i m A ,  and assume 0 < r < n  (otherwise 
the result  would be trivial). Let F be the degenerat ion locus of G, and let /) 
be a f ixed (simple) point of A. Since P is simple on G, it is possible to 
find an (n - -  r)-dimensional  i rreducible cycle X of G, containing P, and 
such that i(P, A (] X, G)-~-I. Let  G~, G~, G 3 be copies of G, and let D be 
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the rat ional  mapping of G~ X G.~ onto Ga which gives the law of composition 
on G. Set E = E a - = E A ;  because of the properties of Tx, [Tx; G,, A3] has 
exact ly one component T' such that the subvariety of G t on which it operates 
is not a subvariety of F l; we have d i m T ' - - d i m T x - - n - b r - - n ;  and 
T'[Rs] , for R E A, coincides, but for components on F t ,  with Tx[R~]. There- 
fore, if Wl is the subvariety of G l on which T' operates, we have E~ E Wt, 
and Ps is a component of T'[E~]. If n'----dim W, each component of T'[EI] 
has dimension ~ dim T ' - -n ' - -~  n - - n ' ;  since P~ is one of such components, 
we conelude"that  n'----n, i . e .  that T' operates on the whole G l . But then 
h = T'IGI} - -  ilx (~ (As)k(G1). Since A is a simple point of (Ga)~(~l), we conclude 
that A" = (Fx (~ (As)k(sl), (G:~)k(G1)) exists and is a multiple of A. The condition 
i(P, A (~ X, G) = 1, and the law of the conservation of the number  (Theorem 
5.7 of [3]), imply then that A " = A ,  and that ins A =  1; as a consequence, 
there exists a normal separable extension K of k(G~) such that the extension 
A' of A over K has the form A ' - -E , :A i ,  each A~ being a rational simple 
point of (G~)K, not on (Fa)K. Set 0'-----H~A t (the order in which the produe~ 
is performed being immater ia l  since A~ E(As)g); then, by Corollary 3 to 
Theorem 1 of [4], 0' is a tat'tonal point of (As)g ; but any automorphism of K 
over k(G~) simply interchanges the A~, so that it leaves 0' invariant  ; hence 0' 
is the extension over K of a rat ional  point 0 of (A3)k(G~) , that is, a rat ional  
mapping of k(G~) into A s . But then, by the remarks  opening No 19 of [16], 
there exist a homomorphism a of G, into A3, and a point Q3 of A:,, such 
that 0 = (Qs)k(o,)aIGi}. For a place v of G whose center  R on G is generic, 
{avX (~ A, G)~ exists and coincides with A{v~t*, while Olv~}* ~- II i Ai{v'}*, if v' 
is any place of K over k which induces v~ in k(G,); since the A~lv'l* are all 
the intersections of ~vX and A~ we conclude that~ for any point  S of A, we 
have 0{(~sv)~}*--- (S~)aOIv~l *, if d - -  ord A. This means that Q3a'S~R~]--S~Q~a[R,]; 
then a[SLR,]----S3C~a[R,], or (a[S4])(a[R~]) ---S~[R~], and ~[S~]--S~ a. Therefore 
a is a homomorphism onto A~ (see Proposition 24 of [16]}. If B~ is the 
component of the identity in the kernel  of a, for each S~ of B, ~ A~ we 
have a [ S , ] - - E s ,  hence S~g--- ~ E ~ ,  so that S~ also belongs to the zero-dimen- 
sional kernel  of the homomorphism ~ of A~ onto A s such that ~[S~]- - 'S~;  
therefore B~ ~ Al is zero-dimensional ,  Q. E. D. .  

Let G, G' be nonsingular  commutat ive group-variet ies  over k, with the 
degenerat ion loci F, F' respectively. Let G~, G.~ be copies of G, and let ? 
be a rational mapping of Gt X G~ into G', operating on a subvariety 
of G' but not of F ' ;  we say that ~ is a factor set of G into G' if 
(V[P, X Q~R~])(~[Q, ~ R~]) - -  (y[P, Qi X R~])(?[P, X Q~]) and ?[P, ~ Q~] = y[Q, X P~] 
for a generic set I P~ Q, .R} of points of G, and if, in addition, ? [ E ~ E ~ j  
is a point of G' - -F ' .  By setting P==Ea we obtain that y[Ev, X Q,] is 
independent  of Q if Q is generic. If ?, T' are two factor sets of G into G', 
set ~--(T{G~ X G~})(?'IG~ X G~I), and 8 - - D a , ~ x ~ ;  Lemma 1.1 implies then 
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that 8 is a factor set of G into G', which we shall call the product of ¥ 
and y', and denote by ~'~"; in like manner  the inverse y-~ of y is defined. 
It thus appears that  ~he factor sets of G into G' form a group, isomorphic 
to a subgroup of G'k((;,×G~)- F't:(G,×G~); such group will be denoted by F(G, G'). 
Let G 3 be another  copy of G, and let D be the rational mapping of G l X G~ 
onto G~ which gives the law of composition on G ; consider k(G:+) as a subfield 
of k(D)~k(G, X G:) as prescribed by D. Let  ~ be a rational mapping of G 
into .G' such that ~[EG] is a point not on F ' ;  denote by I~, ( i -~  1, 2, 3) the 
modified extension over k(D) of the copy of ~I.G} which maps k(G~) into G'; 
set y ' - - ~ , I ~ 2 ~ - ' ,  and ~?--D~,,G,xG:. Then y is clearly a factor set ;  all the 
factor sets of this type form a subgroup of F(G, G'), which ,re shall denote 
by P0(G, G'). If  y, y'E F(G, G'), we shall say that they are associate (to each 
other) if y-~y'E Fo(G , G'). 

Let  A, G, G' be nonsingular  commutat ive group-variet ies  over k, with 
degenerat ion loci B, F, F '  respect ively;  we say that A is a crossed product 
of G and G' (in this order) if :  (1) there exists a separable homomorphism 
of A onto G, with a kernel  V which is isomorphic to G' in an isomorphism ~ ; 
(2) there exists a rational mapping ), of G into A, such that a[),[P]]----P for 
a generic P E  G, and that ).[EG] is a point not on B. Let G,, G.,, G~ be copies 
of G, and let D be the rational mapping of G~ >~ G~ onto G~ which gives the 
law of composition on G; consider k(G3) as a subfield of k(D)---k(G, >< G.2) 
as prescribed by D, and let A~ be the modified extension over k(D) of the 
copy of ),~G} on Ak(s~); set r__. h,h.~h3 -~, ?0-----Dr, G~×a,. For a generic point 
P,  ~,~ Q~ of G~ X G2, we have a[~,o[/)~ X Q~]] - -  a[(),[P])(),[Q})(),[PQ]) -~] - -  
- - - P Q ( P Q ) - ~ - - E s ;  therefore Yo operates on a subvariety of V. It is easily 
seen that Y0 is a factor set of G into V, so that Yo corresponds, according 
to ~, to a factor set $ of G into G'; we shall sometimes denote y by Yx, in 
order to indicate its dependence on ),. There  exists a rational mapping 8~ 
of A onto V such that, for  a generic PEA,  we have 8o[P ] -- /~() ,[a[P]])- ' ;  
we shall denote by 8 the corresponding rational mapping of A onto G' (that 
is, 8--~8o)- Let  k(G) and k(G ~) be considered as subfields of k(A) as prescribed 
by a, 8 respect ively;  for generic points P, P' of G, G' respectively, the 
point Q--(),[P])(~[P']) exists, and is such that :¢[Q]--P, ~[Q]-----P'. Hence the 
smallest subfield of k(A) which contains k(G} and k(G') is k(GX G'); but 
the same relation also shows that k(A)-- 'k{GX G'), since ins (k(A)'k(G))--1; 
therefore A is birat ionally equivalent  to G>< G'. The birational mapping of 
k(GX G') onto A thus established is ),*~*, where  ),*, ~* are the modified 
extensions over k ( G X G ' )  of, respectively, XIG I and ~tG'I; the (inverse) 
birational mapping of k(A) onto G ) 4  G' is a{AI X 81AI. 

Conversely, let the nonsingular  commutat ive group-variet ies  G, G' over k, 
with degenerat ion loci F, F '  respectively, and y Er(G, G') be given, and 
define a law of composition L' on G X G' (not a direct  product !), as a rational 
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mapp ing  of G, X G{ 'X  G2 X G~' onto G 3 X G 3' in the fol lowing m a n n e r  : let 
D, D" be the laws on G, G' respectively,  and let A h' be the modif ied 
extensions,  over K---k(G, X G , ' X  G~ X G/), of DIG, X G.~I, D'IGI'X G~;~ 
respect ive ly ;  let $3 be the copy of ~' in P(G, G3'), and let P be the 
modif ied extension of ~'s1GIX G~I over K. Then  L' is defined by set t ing 

L'IG,X G,'X G.zX G~'I- -hxh 'r .  It  is readily seen that  L' is a normal  law 
on G X  G', so that, by Theorem 3 of [4], G X  G' is birat ional ly equivalent ,  
in a bira t ional  correspondence  ~', to a nons ingula r  commuta t ive  g roup-  
variety A , "wi th  a degenera t ion  locus B, whose law of composit ion L is 
induced  by L ' ;  such group-var ie ty ,  def ined but  for an isomorphism, will  be 
denoted by 1G, G', Y/. For  any point  P '  of G ' - - F ' ,  L ' [EG1XP/ ]  has as a 
component  the birat ional  correspondence  be tween G., X G~' and G.~X G s' 
which  gives, as a correspondent  of a generic  point  Q~ X Q. /o f  G.2 > G~', the 
point  Q3 >( P.~'Q3'$~[EG, X Q~] ; therefore Es >,( P' is not fundamenta l  for ~' ; 
moreover,  L'[E~, X P,'] =~= L'[E~, X R,'] if P '  :4= R' E G' - -  F '  ; hence ~' is 
b i regular  at each point  of E~ >< G', not on Ea  X F ' ,  and induces  a birat ional  
cor respondence  ~* be tween G' and an i r reducible  subvariety V of A;  
such correspondence  is b i regular  outside F ' .  If P '  Q'E G' ~ / ~ ' ,  we have 
(~'[EG X P'])(~'[EG X Q']) = ~'[E~ X P'Q'y[Eo, X Eo~]] E V. We shall  accordingly 
denote by ~ the i somorphism be tween  G' and V such that  ~[P']--- 
--~*[P'(~'[EG, X Es~]) -~] for P ' E  G ' - - F ' .  Let  a be the ra t ional  mapp ing  of A 
onto G genera ted  by the embeddiug  of k(G)into k(A); then, for generic  
P, QE.4, we have a[PQ]--(a[P])(a[Q]); L e m m a  2.3 implies  then that  a is a 
separable  homomorph i sm of A onto G. For  a generic  point  P of G, we have 
that  L'[P~ X Eo,,] has as a component  the birat ional  correspondence  between 
G~ X G~' and G3)4 G 3' which  gives, as a cor respondent  of a generic point  
Q~X Q./of G.~X G/, the point  P3QsX Q.(~'~[P~ X Q~]; hence  ~'[P~Ev,] is a 
point  of A - - B ,  and therefore  [~'; G X Ew,  A] is a ra t ional  mapp ing  ), of G 
into A, and we have, for a generic  P of G: a [ ) , [P ] ]~ - -a [~ ' [PXEa , ] ]~z° ;  
finally, ),[E~] ~ ~'[E~ X Es,] - -  ~*[E~,] - -  ~[~,[g~, >( E~.~]], and this is a point  
of V, not on B, so that  the same is t rue of ),[Es]. I t  thus  appears  that  A is a 
crossed product  of G and G', and that  ~, )~ play the same role as in the 
def ini t ion of a crossed product .  I t  is readily verified that  ~,--~'~. 

We h a v e  thus seen that  y E r(G, G') determines,  but  for an isomorphism, 
a crossed product  A - - I G ,  G', y}, and that  any such crossed product ,  
de te rmined  by means  of G, G', % and ),, de te rmines  a ~,~ E F(G, G'). We have 
a mapp ing  ~, ~ I G, G', YI, and the na tura l  ques'tion is :  what  is the necessary 
and sufficient  condit ion in order  that  ~G, G', Y'I ~ IG, G' YI, for ~ '~ P(G, G')? 
We may seleet IG, G', y}--~G, G', y ' l~A ,  so that  there  are two rat ional  
mapp ing  ),, ),' of G into A with  the fol lowing proper t ies :  (1) a [ ) , [P] ] -  a[), '[P]]---P 
for a generic P E G, {2) ).[E~] and ),'[E~] are points  of A -  B, and (3) " ( -  Tx, 
Y' - -  Yx,. Let  I~ be the ra t ional  mapp ing  of G into G' such t h a t  
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),'[P] - -  (),[P])(t~[P]) for a generic P E G; then it is easily verified that V and y' 
a.re associate to each other, and that t~ has the role which the same symbol 
has in the definit ion of associate factor sets. The argument  can be retraced,  
and shows that there is a one-to-one correspondence between the set of the 
(classes of) crossed products of G and G', and the factor group F(G, G'~/rolG, G'~, 
the correspondence being given by I G, G', Y1 ~ Y. This, of course, establishes 
a group s t ructure  in the set of the classes of crossed products  of G and G', 
but we shall not enter  into details on this topic, as it is not needed for the 
purpose of this paper. 

L E p t A  3.2. - Let G be a nonsingular com thietative group-variety over k, 
and let V be a rational irreducible 1-di,~ensional group-subvariety of G; 
then G is a crossed product of G/V and V. 

PROOF. - Set A-- -G/V;  let G,, G~, G 3 be copies of G, and let D be the 
rational mapping of G l X G2 onto G 3 which gives the law o f  composit ion 
on G. Let  V~ be the copy of V w h i c h  is a subvar ie ty  of G~; if :¢ is the 
natural  homomorphism of G onto A, consider k(Ai) to be a subfield of k(G~) 
as prescr ibed by the copy a~ of a. Since V~ is a simple subvar ie ty  of G.~, 
there exists a valuat ion w 2 of k(G.,t, whose center  on G.z is V., and such 
that K~,~---k(V~); set h--DIG21. Then h/w2f* has a component  variety T 
which operates on the whole G, and the whole Gs, and appears  in hlw~l* 
with mult ipl ici ty 1; moreover, T ' - -DT,  v~ has the following proper ty :  if P, 
Q are generic points of, respectively,  G and V, then T'~P, X Q~t* is a point 
of (~FV)s. Let  u be a degenerate  place of V, and let v be the degenerate  
place of G compounded with w and u ;  then hIv.~l* has a unique component  
variety S which operates on the whole G,, and S appears  in hlv.~l* with 
mult ipl ici ty 1 (Theorem 1 of [4]). As a consequence,  S is a component  
variety of Ttu~l*, and appears in Tlu~l* with multiplici ty 1; moreover, for 
a generic point P of G, SIP~I* is a point of (~PV}s, necessari ly on the 
degenerat ion locus of F~ of Gs, by Theorem 1 of [4]. Since ~pV is not a 
subvar ie ty  of F, it follows that SI/~t*--~ - SI(_PQ)~I* if Q is a generic point 
of ]7. Set S ' - -S IG~I ,  W--Gs , ,  H ~ k ( W } ,  so that H ~  k(G,); the last result  
proves that SIP~i* depends only on :¢~P~ when this is generic, and that 
therefore the smallest  subfield of k(G~) containing H and k(A~¿ is a purely  
inseparable extension of k(A~). Since a~ is separable,  it follows that H C_ k{A~), 
and that consequent ly  S '  is the modified extension over k(G~) of a rational 
point S"  of (G~)k(.4~). If  now :¢ is considered as operating between A~ and G3, 
we have also seen that for a generic P EA~, and for any place z of A~ 
whose center  on A, i s ' P ,  S"[z] belongs to a-~P, so that S" is a rational 
point of  alA~l. It is thus proved that alA~l contains a rational point. 

Now, the proof of Theorem 2.1 shows that the modified extension of 
atA~} over k(G,) is birat ionally equivalent  to the modified extension of V 3 
over k(G~), and is therefore a rational curve, hence a curve of genus zero. 
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Since the genus remains the same under  the separable extension k(Aj) ~ k(G~), 
we conclude that alA,} is also a curve of genus zero ; as it contains a rational 
point, it follows that alA,} is a rat ional  curve. We shall now identify A, 
with A, G~ with G, so that alAI is a rat ional  curve ;  it is therefore possible 
to select a rat ional  point ),' of alAl, not on Fk(~), and 'such that, after  setting 
k---Dx,,.4, )~[EA] is a point not on F. Then ~ is a rational mapping of A 
into G, such that k[EA] is a point not on F, and that a[k[P]]----P for a 
generic P.E A;  the existence of )~ with these properties proves that G is a 
crossed product  of A and V, Q. E. D..  

LE~MA 3.3. - Let G t, ..., G "~, A' ,  .. , A" be vommutative group-varieties 
over k, and set G - - G  ~ X . . . X  G m, A - - - A  ~ X . . . X A  n; then F(G, A)/Fo(G , A) 
is isomorphic to the direct prodi~ct of  all the F(G~/A~)/Fo(G ~, AJ). 

P~oo:~. - If  ~" E F(G, A), then ?{ G, X G~I - -  ~',' X ... X ~',,', where T,' is a 
rational point of (A~)~(c~×o.~); quite clearly, y , - - D ~ / ,  G~×s, belongs to F(G, A'), 
and the mapping y ~ T, is a homomorphism of r(G, A) onto F(G, A'); 
moreover, the set ITs, ..., $,, ~ determines ~', so that such homomorphism 
induces an isomorphism between .F(G, A) and the direct  product of the 
F(G, A~); finally, T E F0(G, A) if and only if T~ E FoiG , A ~) for each i. There- 
fore it is sufficient to prove that, for any i, F(G, A')/Fo(G , A ~) is isomorphic 
to the direct  product of the F(G~, A~)/Fo(G ~, AI); we shall denote A'  simply 
by A. If TEF(G, A), set TJ----[~'; G / X G / ,  A]; this belongs to F(GJ, A) 
since y[EG~ >< E~] is a point not on the degenerat ion locus of A. The mapping 
"~"-" T~ is a homomorphism ~j; now, given a quite arbi t rary T~ in each 
F(G ~, A), set y,'---T~ X (the direct product  of all G, ~ X G /  for j ~t= i), so that 
T/EF(G, A), and set T- - 'Y , 'T( . . . $ ' , , ;  then yEI~(G, A), a n d  ~ T : ~ ' ~ ;  this 
proves that the mapping ~, ~ ~ ' - - ' 1  ~tT,..., ~,~'1 is a homomorphism of 
F(G, A) onto the direct  product  of the F(G', .4); if ~'Er~(G, A), then ~" 
belongs to the direct product of the Fo(G ~, A); viceversa, if ~,~ E r,(G ~, A) for 
each i, then T/ . . .  ~"m E l~0(G, A). The lemma will thus be proved if we show 
that the kernel  of ~ is a subgroup of F0(G~ A}. The proof of this fact will 
be achieved by induction on the number  m. 

The assertion is true for m - - l ;  set G'----G ~ X . . . X G  "~; if the assertion 
is true for m--- 2, then I'(G, Ai/Po{G, A ) :  (I'(G', A)/Fo(G', A))X~F(G', A)/Fo(G', ̀ 4)); 
but, foV our induction assumption, the first factor of this direct product is 
isomorphic to the direct product of the r(G', A)/Fo(G ~, A), for i----2,. . . ,  m, 
and this proves the result  for the given value of m. We have thus seen that 
it is sufficient to give the proof for the case m-- -2 .  In  this case, let 
~, E r(G, A) be such that ~'---~ ~,~ and ~,---~,~ coincide with the identities 
EA X G~ X G~, EA ~ G ~  G~ respectively. Let ~ be the rational mapping of 
G ~ X G  ~ into A such that, for a generic pair  of points t ) , Q of G', G ~ 
respectively, we have ~t[P X Q] - -  T[(P, X E~)  X (E~ i X Q.z)] ; then I~[Eu~ X Es~] 
is a point of A, but not of its degenerat ion locus. From the definition of 
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factor  set we have, for a generic set of points P, QE G l, R, S E G~: 
(y[P, X S,) X(Q~ X R~)])(I~[Q X R]) - -  (y[(P~ X S~R,) X (Q~ X EG~)])X (y[(P, X S~)X 
X (Eel. X R~)]); on the other hand, from the same definition we also have 
(y[(P, X S , R , ) X  (Q2 X EG~)])(~t[PX SR]) = (~[PQ X SR])(%[P, X Q~]} ; the last 
factor is EA by assumption, so that this reduces to Y[(Pt x S i R ~ )  X (Q.~ X Eol)] ---- 
"-- ( [ t [ (Px  S)(Q X R)])([t[PX SR])-'. In  like manner  we have (y[(P, X Sl) X 
X (Ee,~ X R,)])(I~[PX S]) - -  { I~[PX SR])(y,[S, X R.,]), or y[(P, X S,) X (Eo~ X R,)] - -  
---~ (~t[PX S-R])(I~[PX S])- '  ; hence y[(P, X S , ) X  (Q, X R~)] - -  (l~[tPX S)(Q X 
X R)])(I~[P X S])--~(I~[Q X R])-',  which proves that .y E £o(G, A), Q. E. D..  

L]~MMA 3.4. - Let G be a nonsingular commutative group-variety over k 
which is not abelian ; then G hay some positive dimensional irreducible rational 
group-subvariety. 

P~tooF. - If  dim G - -  1, this is a consequence of Proposition 14 of [16]; 
we shall prove the lemma by induction on dim G; assume the lemma to be 
true if dim G <: n, and let us consider the case in which dim G --- n. Since G 
is not abelian, by Lemma 3.1 it contains a proper positive dimensional  
i rreducible group-subvar ie ty  A. Should the lemma be false for G, A would 
not contain any positive dimensional  irreducible rational group-subvariety,  
and therefore A would be abelian, since dim A <: n. Theorem 3.1 then implies 
the existence of an irreducible proper group-subvar ie ty  B of G, of positive 
dimension, such that G --" (A, B) ; B would also be abelian, and consequently G 
would be abelian, a contradiction, Q. E. D..  

LEMMA 3.5. - Let G be a nonsingular commutative group-variety over k ; (a) i f  
V is an irreducible rational group-subvariety of  G, then G is a crossed product of  
G~ V and V; (b) G contains an irreducible rational group-subvariety B containing 
all the irreducible rational group-subvarieties of  G; moreover, G/B is abelian. 

The group-subvar ie ty  B will be called the maximal rational group- 

subvariety of  G. 
PROOF.-  We shall denote by S,, (for any nonnegative integer n) the 

following s ta tement :  statement (a) of  the lemma is true, for any G, when 
dim V ~ n .  We shall denote by S , '  the following s ta tement :  G being as in 
the statement of  the lemma, let B be an irreducible rational group-subvariety 
of G which is not properly contained in any irreducible rational group-sub- 
variety of G; i f  dim B ~ n ,  then G/B is abelian. We shall prove that S,, 
implies S, ' ,  and that S,,' and S,, (for n ~  1) imply S,,+~. Since S O and S O ' 
are trivially true, and S{ is true by Lemma 3.2, this will prove S .  and S . '  
for each n~ and will therefore prove assertion (a) of the lemma, and also' 
the last s tatement of assertion (b), under  the condition that B be as specified 
in S.' .  But then, if B' is an irreducible rational group-subvar ie ty  of G, 
and a is the natural  homomorphism of G onto the abelian variety A - -  G/B, 
~B' is a point by the Corollary to Theorem 8 of [16]; since EG E B', we must 
have a B ' = E A ,  or B'c_ B, which completes the proof of (b). 
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W e  shall now prove that S ,  implies S,~' for n ~  1. Let  B be as stated 
in S, ' ,  and assume d i m B ~ n ;  set A - - G / B ,  and let C be a positive 
dimensional  i r reducible rat ional  g roup-subvar ie ty  of ,4, if any exis ts ;  let 
be the natural  homomorphism of G o~to ,4. Set C * ' - ~ - ~ C ;  then C - - C * / B ,  
so that, by S,,, C* is a crossed product  of C and B ;  as a consequence,  C* 
is birat ional ly equivalent  to C X B, and is therefore rational.  Since B C C*, 
this is a contradiction, and we conclude that A has no pos i t ive  dimensional  
i r reducible ra t ional  group-subvar ie ty ,  and is therefole  abelian by Lemma 3.4. 
Thus  S,,' is true. W e  shall now prove that S,,' and S ,  imply S,,+l, for 
n ~ l .  Let  G, V be as in S,,+l, and assume dim V - - n - ~ - l .  V contains no 
positive dimensional  abelian group-subvar ie ty ,  as this, by Theorem 3.1, would 
contradict  the Corollary to Theorem 8 of [16]; hence Lemma 3.1, applied to V 
and to its proper  i rreducible group-subvar ie t ies ,  implies that V contains a 
1-dimensional  i r reducible rational g roup-subvar ie ty  W. Set G ' ~  G/W, and 
let ~ be the natura l  homomorphism of G onto G'; set also V ' - - ~ V - - "  V/W. 
Let  B be an irreducible rational g roup-subvar ie ty  of V' which is not 
proper ly  contained in any irreducible rational g roup-subvar ie ty  of V';  since 
B ~  dim V ' - - n ,  we have that V'/B is abelian by S,,'. I f  ~ is the natura l  
homomorphism of V' onto V'/B, then ~ induces a homomorphism of V onto 
V'/B. The Corollary to Theorem 8 of [16] implies that dim V'/B ~ O, and this 
proves that V"- - -B is rational. If A ~ G' /V'-"  G/V, S,, implies that G' is a 
crossed product  of .4 and V'. We  shall denote by c¢' the natural  homomor. 
phism of G' onto ,4, and by ).' the rational mapping of .4 into G' which 
appears in the definition of crossed produc ts ;  the choice of ;~' is not unique, 
and we shall select it in such a manner  that ),'[EA]--Eo,. On the other 
hand, G is a crossed pi:oduct of G' and W by Lemma 3.2, so that there 
exists a rational mapping k of G' into G such that ~[~ , [P] ] - -P  for a generic 
P E G'. But  the~ ),k' is a rational mapping of A into G, such that a'a[),),'[P]] - -  P 
for a generic P E.4, and that ),~.'[EA]~ ~.[EG,] is a point of G, but  not of its 
degenerat ion locus. This proves that G is a crossed product  of A and V, so 
that S,,+l is true, Q. E. D. .  

Lemma 3.5 can now be stated in the following form: 

THEORE~ 3.2. - Let G be a nonsingular commutative group-variety over k, 
and let B be the maximal  rational group-subvariety of G; set . 4 - -  G/B. Then 
A is abelian, and G is a crossed product of  A and B. Conversely, given an 
abelian variety A and a rational commutative ~group-variety B, both over k 
and both nonsi~gular, any crossed product of  .4 and B has a maxinzal ratio. 
hal group-subvariety isomorphic to B. 

We shall now devote our attention to the s t ructure  of rational commu. 
ratine group-variet ies .  If  G is any nonsingular  commutat ive group-var ie ty  
over k, there exists an irreducible vector  g roup-subvar ie ty  V of G which is 
not properly contained in any irreducible vector  g roup-subvar ie ty  of G: any 
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such V we shall call a maximal vector subvariely of G; we shall see later  
that V is unique, but  for the moment  we do not need this result. 

A group-var ie ty  G over k, with degenerat ion locus /7, is said to be 
periodic if there exists a positive integer e such that P e - - E e  for any 
P E G - - F ;  the smallest such e is called the period of G. Let G be periodic, 
positive dimensional,  and commuta t ive ;  then, by Theorem 3.2, and by 
Proposition 24 of [16], G is ra t ional ;  as a consequence, and by Lemma 3.1, 
G has proper irreducible group-subvariet ies  of positive dimension, and any 
of these is periodic;  the argument  can be iterated, and shows that G has 
some irreducible 1-dimensional  periodic group-subvariety.  This is possible 
only if the characteris t ic  p of k is =[= 0, in which ease any such subvariety 
is a vector var ie ty;  this fact shows that any maximal  vector subvariety V 
of G is positive dimensional.  By induction, from G/V to G, we obtain that 
the period of G is a power of p, with positive integral exponent.  This being 
established, we can prove the following resul t :  

L]~MMA 3.6. - Let G be a commutative nonsingular positive dimei~sional 
periodic group-variety over the (algebraically closed) field k of characteristic p;  
then p =# O, the period of G is pe for some positive integer e, and G is rational. 
Let G~ be the smallest subvariety of G containing all the potfuls P of G, but 
not of its degeneration locus F, such that P ~ =  Eo "(i---1, 2, ..., e) ; then G~ 
is a periodic group-variety of period p~, and GdG~_~ , G~ ( i :  2,..., e) (rre 
positive dimensional vector varieties. 

PROOF. - The first three statements have already been proved. G~ has 
period pV, with i' ~ i, and GdG~-~ ( i =  2, ..., e) is ei ther zero-dimensional,  
or is positive dimensional  and has  period p, the first possibility occurr ing 
when  and only when i ' ~  i. The variety G~ is positive dimensional,  since it 
contains any maximal  vector subvariety of G, and has therefore period p. 
Let  j be the largest value of i such that i ' < i ;  t h e n j ~ e ,  and for any P 
of Gj÷~, but not of F, we have P ~ E G j ,  hence -P~J'+'--'EG, so that the 
period of Gj+~ is ~ j ' + l < ] + l ,  a contradict ion;  hence i ' = i  for each i. 
The lemma will therefore be completely proved if we prove that any e o m  
mutat ive group-var ie ty  over k, of period p, is a vector variety. Where  it not 
so, there would exist a group-var ie ty  G over k of period p, and such that, 
if V is a maximal  vector subvariety of G, G~ V is a vector variety of dimension 
< d i m G  and > 0 .  Lemma 3.3, applied to the y EF(G/V, V} such that 
G ~  1 G/V, V, "f I, implies the existence of a variety G having the described 
properties, and such that, in addition, dim V - - d i m  G / V =  1. We shall now 
disprove the existence of such a variety. Set A --- G~ F, and let G ~ ~ A, V, ~' I ; 
let 0¢, y be n. h. g. p. of V, A respectively such that the laws of composition 
on V, A are given, respectively, by x 3 - - 0 ¢ , + x . ,  Y 3 - - Y t + Y ~ .  We shall 
identify A with A~, and consider a copy z of y in k(A~). The rational mapping 
y of A~ >( A~ into V operates on the whole V, since by assumption ~' ~ Fo(A , V) ; 
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hence  y prescr ibes  an  embedd ing  of k(w) into k(y, z), which  we shal l  express  
by wr i t ing  x. ~ x(y, z) in the func t iona l  nota t ion.  The  fact  that  y is a fac tor  
set impl ies  chat w(0, 0) exis ts  (i. e. tha t  w E P(EGI×GJG~ X G~), and coincides  
wi th  x(y, 0) and  x(0, y), and  that ,  for an i n d e t e r mi n a t e  t, x(y,  z -~ tl -~- x(z, t) --= 
--~ xIy  + z, t) + ~(y, z) ; moreover ,  w(y, z) ~ x(z, y). Upon der iva t ing  the pre.  
ced ing  fo rmula  wi th  respect  to t, and  se t t ing  t --- 0, one f inds  that  the equa l i ty  

- -  ~t t=0 [ 0t Jr=0 is m e a n i n g f u l  and  t r u e ;  hence,  if 

¢~(z) - -  [~x(v, t)/~t]t=o, we have Ox(y, z)/az - -  ~(y ÷ z) - -  ¢~{~). Now, ¢~(z) can  be 
decomposed in pa r t i a l  f ract ions ,  in  the form ~o(z) ~.z ---- ~-o aiz  ~ 4-  (sum of f rac t ions  
with n u m e r a t o r  in  k, and  denomina to r  of the form ( z - - a )  a, a E k ,  h a posi- 
t ive integer),  where  a~ E k. I f  b / ( z - - a )  u is one of the fract ions,  then  
¢~(y -t- z) ~ ~(z) conta ins  (b/(z 4 -  y - -  a) a) - -  (b/(z - -  a) a) ; this  shows, f i rs t  of all, 
tha t  a :~=0; s ince x{y, z) can also be decomposed  in par t i a l  f rac t ions  as an  
e lement  of K(z),  K being the a lgebraic  c losure  of k(y), it fo l lows tha t  h--l-1 
(mod p) ; as a consequence ,  x' - -  x(y,  z) -~  b(h ~ 1)-'[(y 4- z - -  a) ~-~ -- (z - -  a) ~-h - -  
- - ( y -  a) ~-h] def ines  a fac tor  set associate  to y, and  has  the p roper ty  tha t  
the ¢~ obta ined  f rom a~' equa ls  the ¢~ obta ined  f rom x, except  for the fact  
tha t  the former  does not  con ta in  b ( z ~ a )  -~ .  Since this  can be repea ted  for 
each fract ion,  we conclude  that ,  by r ep lac ing  y wi th  an associa te  fac tor  set, 
we m a y  assume ¢p(z)- E~=0 a,z  l. In  this  express ion,  cons ider  a t e rm aiz  ~ wi th  
i ---I--- - -  1 (modp)  ; the po lynomia l  ¢p(y 4- z) ~ ¢p(z) conta ins  a~(y + z) ~ - -  aiz  ~ ; 
hence  w' --- x~(y, z) - -  a~(i 4-  1)-~[(y -~- z) ~+~ - -  y~+~ - -  z ~+~] def ines  a fac tor  set 
associa te  to $, and such  that  the cor responding  ~ equa ls  the ¢~ obta ined  
f rom x, except  for  the fac t  that ,  in  the former ,  the coef f ic ien t  of z ~ vanishes.  
W e  conclude  that ,  a f te r  r ep lac ing  T wi th  an associa te  fac tor  set, we m a y  
asst!me ¢p to have the form ~(z)~E]~-_lo~z~ ~-~. The  coeff ic ient  of z ~p-~ in 

• ~ [ i p - - l l )  ¢~{y 4- z) ~ ¢~(z) is then  z,~=i+~ c~ ~jp y ( ~ - ~ ,  and  this mus t  be zero in the 

express ion  of ~ { y ,  z)/~z; hence  c~ --  0 for i - - -  2, 3, .. . ,  r, and ~(z) --  cz ~-~, 
where  o~---c~. Bu t  then, s ince x(y,  z) is symmet r i ca l  in  y, z, it  fol lows 
tha t  x(y, z) - -  of(y,  z) 4-  x'{y', z'), where  ~' ~ k(y', z'), y' - -  y~, z' ---- z~, and  
f (y ,  z)--~ ~ - -~  (--)~i-~y~z ~-~. hTow, f (y ,  z) def ines  a fac tor  set of A into V, so 
tha t  w'(y',~z') must  have  the same p r o p e r t y ;  the same analys is  can  thus  be 
repea ted  on (y ,  z'), and  so on f in i te ly  m a n y  t imes ;  the f ina l  resul t  wil l  
be the ex is tence  of a set of e lements  v0, v~,.. . ,  ~ of k, such that  the fac tor  
set de te rmined  by x(y, z)~--Z~=oc~(f(y, ~))~ is associate  to the given ~,. As 
$ ~ Fo(A , V), we also have  c~:4:0 for at  least  one value  of i .  A direct  
computa t ion  now shows tha t  if  the cor responden t  on V X A  of a point  P 
o[ G has the co-ord ina tes  w----~, y - - ~ ,  then  the point  P~ corresponds,  on 
V X A ,  to the point  hav ing  the co-ord ina tes  w E s ~=o c,~ ~+~, y ~ 0 ; hence  
/)P=~: E~ for a gener ic  _P; this is the cont radic t ion ,  Q. E. D. .  
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The preceding proof, and Lemma 3.3, furnish the explicit construction of 
all the commutat ive periodic varieties of period p-~; explici t  constructions of 
periodic commutat ive varieties of period pC, with e > 2, are more complicated, 
and we shall not give them here. 

In  the notation of Lemma 3.6, we see that any maximal  vector subvariety 
of G is contained in G,, and that G, is itself a vector subvariety of G; 
hence G, is the only maximal  vector subvariety of G. 

L E ~ , ,  3 . 7 . -  Let G be a positive dime~'tsional nonsingular commutative 
group-variety over k, with degeneration locus F ;  let V, L be irreducible 
group-subvarieties of G, such that G = (V, L), and that V (~ L has, outside F, 
the only component Eo ; assume V to be either a vector variety or a periodic 
variety, and L to be a 1-dimensional logarithmic variety. Then G ~-- V>< L. 

P R O O F .  - Let V', L' be copies of V, L respectively, and set G ' - - - V ' X  L' 
(direct product);  let F '  be the degenerat ion locus of G'. Let v, ), be the 
identical isomorphisms between V', L' and, respectively, V, L ;  let v', ~,' be 
the modified extensions over k{G') of, respectively, vtV'l, l~L'l. Then v', l' 
are rational points of, respectively, Vk(o,~, Lk(e,,); hence they are rational 
simple points of G~(G,}, and their  product a ' - - -v ' l '  exists and is a rational 
point of Gk(e,), by Corollary 3 to Theorem 1 of [4]. Set a - -D~ , ,  ~,, so that a 
is a homomorphism of G' onto G. The co-ordinates  "of v', ),', £ are elements 
of k(G'), which generate,  over k, subfields of k(G') isomorphic to, respectively, 
k(V), k(L}, k(G); we shall identify such fields with k(V), k{L), k(G) respectively. 
Moreover, k{F)- -k(V ' ) ,  k(L)--k(L ' ) .  The co-ordinates  of any of the points v', 
),', a' are  elements of the field over k generated by the co-ordinates  of the 
other two points ;  this shows, in part icular ,  that if k(L ' ) - -k(y)  (where 
y6k(L')),  then k(V')C_ k(G)(y), so that k( G)(y) - -  k( G'). Since the kernel  of a 
is EG,, we have that k(G') is purely inseparable over k(G); this is sufficient 
to prove the contention if the characteris t ic  of k is 0. We shall assume k to 
have characteris t ic  p@:0 ,  but shall treat first the ease in which V is a 
vector variety. Let  I x , , . . . ,  x,.I be a n .  h. g. p. of V such that the law of 
composition on V is given by (~,)3--(x,)~-I-(w~)~ ; as for y, we shall select it 
in such a way that the law of composition on L' be given by Ys = Y~Y~. 
Let e be the smallest power of p such that ye6k(G}; if e---1,  we have 
k(G)--" k(G') as c la imed;  we shall accordingly assume e > 1. Then, for each i, 
there are elements ait 6 k(G) ( j - - O ,  ..., e -  1), uniquely determined,  such that 
a~ -~- Ej=o aity j (i --~ 1, ..., r). Since ai~ 6 k(G'), we shall express it as a rational 
function of ~, , . . . ,  x,., y : a ~ - ~  a~j(~c, y). If P is a point of G ' - - / 7 '  we have 
a-~lx~ ~ x~ + ~,, aply -.~ Wy, where  ~ ,  ~ 6 ~ are the co-ordinates  of P ;  hence 

x., -t- ~, - -  ~.j a~j(x + ~, ~Y)~W,  or ~, + ~ a,~(x, y)y~ = ~.~ a,~(x + ~, ~Ty)~y ~ ; 
therefore, by Lemma 2.2, ~,-t-a~0(x, y)----a,0(x + ~, WY). These relations being 
true for arbi t rary  values ~ ,  ..., ~,., and for any W :4: 0, they remain true if ~, ~7 
are considered as indeterminates.  We can then denote ~,, ~7 by x , ,  y 
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respectively, and replace a~, y by values ~ ,  ~] in k at which the denominators  
of the a~o do not vanish. We thus obtain a~0(~ , ~ ) +  x , - - a ,0 (~- I -~ ,  ~y). This 
relat ion implies that ~ Ek(G); but y is contained in k(G)(~), hence y E k(G), 
e - - l .  G ~ G ' .  

We shall now prove the lemma for the case in which V is periodic, by 
means of an induction on the period e of V; e - - p ,  the contention is t rue ;  
assume it to be true when  the period of V is e/p, and consider the case in 
which such .period is e. Let  V* be the maximal  vector subvariety of V, and 
set G ' - - G / V * ;  let a be the natura l  homomorphism of G onto G', and set 
V'---aV,  L ' - ~ L .  Then G ' - - ( V ' ,  L'}, and Es, is the only component of 
V' N L' outside the degenerat ion locus F '  of G'; moreover, the period of V' 
is e/1 by Lemma 3.6, so that G ' ~  V ' X L '  by our recur rence  assumption. 
Now, by Lemma 3.5, G ~ I G', V*, 7 I, where  7 E r(G, V*) ; by Lemma 3.3 and 
its proof, 7 is associate to a factor set of the type (7o X L I ' X  L2'}(7~ X V, 'X  V~'}, 
where  7o E F( V', V*}, 7~ E r{L', V*). Set A - -  I L', V*, ~., I, and consider the 
endomorphism ~ of A such that ~[P] - - -P~ for any P of A, but not of its 
degenerat ion locus FA. Let  ~ be the na tura l  homomorphism of A onto L', 
and let L* be the group-subvar ie ty  of A on which ~ operates. If  P E V* ('1 L*, 
but P~F.4 ,  then P - -  QD for some QEA - - F ~ ,  and ~Q~--'EL,, or (~Q)P--EL,, 
~Q--EL, ,  QE V*, P---~Ea. It  follows that V* A L* has, outside FA, the only 
component EA. Since the kernel  of ~ is V*, we have dim L* --- 1, A - -  (L*, V*) ; 
also, ~ L * ' - L ' ,  so that L* is a logari thmic variety. Hence  the first part  of 
this proof applies, and yields A ~ V* >< L* ~ V* X L', so that T, E ro(L' , V*). 
But then y is associate to y o X L / X Z , ' ,  and G ~ I  V', V*, y o t X L ' ~  

IV', V*, To I X L .  If G is identified with I V', V*, ~'o ] X L, then I V', V*, ?o 
and V have in common the property of being the smallest subvariety of G 
which contains all the P E G - - F  of period e; hence V'--I  V', V*, Yo}, and 
G ~  V X L ,  Q. E. D.. 

LEMMX 3.8. - Let G be a nonsingutar commutative 9roup-variety over 
the (algebraically closed) field k of characteristic p ;  let V be an irreducible 
group-subvariety of G, and set A - - - G / V ;  c~ssume that each one of the two 
varieties V, A is either a vector variety, or a lo[farithmic variety, or a periodic 
variety ; then : 

(1),if V and A are both periodic varieties, so is G; 
(2) in all other cases, G ~ V X A (direct product). 

PRoo~. - Assertion I1) is self-evident.  In  order  to prove assertion (2), 
we shall consider first the par t icular  eases in Which ei ther  V, or A (but not 
both) is a periodic variety, in which case p=[=0, and the other  variety is a 
logari thmic variety. If  V is periodic of period e, and A is logarithmic, by 
Lemmas 3.6, 3.5, G - - I A ,  V, TI for some 7EF(A, V); we are requested to 
prove that 7EI~o(A, V); by Lemma 3.3, this is true for any value of d i m A  
if it is true when dim A - -  1. Accordingly, assume dim A - -  1, and considor 
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the endomorphism ~ of G such that ~ P - - p e  for any point P of G, but not 
of its degenerat ion locus F ;  the same argument  used in the last part  of the 
proof of Lemma 3.7 proves that G contains a 1-dimensional logarithmic 
group-subvar ie ty  A' such that G - -  { IT, A'), and that V N A' has, outside F, the 
only component  Ea.  Then Lemma 3.7 applies, and yields G ~  V X A ' ~  V X A ,  
as desired. We shall now consider the case in which V is logari thmic and A 
is periodic of period e. Also in this case we may assume dim V - - 1 .  If  
has the same meaning as before, let A' be the component of the identi ty in 
the kernel  of 8;  since ~G--" V, and since no element of V has period e, we 
now have that the only component of V N  A' outside F is E~;; the same 
argument  previously used proves that G ~  V X A ' ;  hence A ' ~ - ~ G / V - - A ,  so 
that, again, G ~ V X A. 

There  remains  to be proved the main  part  of case (2), i . e .  the case in 
which ei ther p :~=0, and IT, A are logari thmic varieties, or p - - - 0 ,  and each 
one of the varieties V, A is a vector or a logari thmic variety. Lemma 3.5 
implies, in each case, that G ~ I A ,  IT, T I for some T E I'(A, V}; our aim is 
thus to prove that T E l~0{A, V); by Lemma 3.3, this is true if it is true in 
the par t icular  case in which dim V - - d i m A - - 1 ;  we shall accordingly limit 
our discussion to this case. Let  ~ be a n. h. g. p. of V such that the law of 
composition on V is given by ~ 3 " - ' ~  + x 2 ,  or x i - - ~ x . , ,  depending on 
whether  V is a vector or a logari thmic var ie ty ;  let y have a similar role 
for A ; we shall identify A with A~, and shall consider a copy z of y in k(A~). 
Then T prescribes an embedding of k(~) into k(y, z) (unless T operates on a 
point of IT, in which case there is nothing to be proved), so that we can 
wri te  ~-~-~(y, z) E ~ y ,  z). Since T is a factor set, we have, for an indeter- 
minate t, one of the following four re la t ions:  

(2) x(y, z -I- t) -I-- x(~, t) -~ x~(y -i- z, t) -I- x(y, ~), if IT. A are vector varieties, 

(3) x(y, z -l- t)x(z, t) - -  x(y -t- z, t)x(y, z), if V is a logarithmic variety, A a 
vector variety, 

(4} x(y, zt)-I--~{z, t ) ~  x(yz, t } -bx{y ,  z}, if V is a vector variety, A a loga- 
r i thmic variety, 

(5) ~(y, zt)~(z, t ) - -~ (y z ,  t)x{y, z) if IT, A are logari thmic varieties. 

By derivat ing (2) with respect to t, and then setting t -~  0, we obtain 

(6) ~x(y, z)/~z -~ ~(y -t- z) - -  ¢~(z), where ~0(z~ E k(z); 

operating in like manner  on i3}, (4), (5) (but setting t----1 in cases (4)and (5}I, 
we obtain respect ively:  

(7) (x(y, a))-'~x(y, z)/~z - -  ¢p(y -I- zb - -  ~(z}, 

(9} z(x(y, z))-'Ox(y, z) l~ = T ( y z ) -  ¢p(z). 
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Case (5) and (9) is the only possible case if p :~0 ,  and we shall discuss it 
in detail. Decompose ~tz) in part ial  fractions, in the form ~(z) - -P(~)- I -  
-t- ~ Ai(~--  a~) - I  -t- (sum of fract ions whose denominator  is either nonlinear,  
or - -  ~), where  P(z) E k[z], A~, a~ E k, a~ ~= O. Then z-t(~(yz) - -  ~(z)) - -  tP(yz) - -  
- -  P ( z ) ) r  I -t- E~ A~ai-l(z  - -  a~y-i) -~ - -  E~ A~a~-l(z - -  a~) -~ -b  (sum of fractions 
whose denominator  is nonlinear). On the other hand, if K denotes the 
algebraic closure of k(y), we have that (~c(y, z))-~x[y,  z)/Oz is a sum of 
fractions with numerators  in the prime field of k, and denominators  in K[z], 
l inear and menlo in z; as a consequence,  as :~= 1 for each i, and z - ' ( ~ ( y z ) ~  ¢p(z)) 
reduces  to the expression E~ A~a,-i(z  - -  aty-~) -~ - -  E~ A~a~-~(z - -  a~) -~, so that 
each A~a,- i--~ e~' belongs to the pr ime field of k. If  k has characterist ic  0, 
set e~--e~' ;  if k has characteris t ic  p : ~ 0 ,  denote by e~ a rational integer 
(to be determined more precisely later on) which represents  e~' (modp). Then 
~'IY, z) - -  x(y, z) II~ (yz - -  a,)-e~'(y - -  ai)ei(z - -  a,)ei defines a factor set associate 
to "f, and has the property that the corresponding ¢~(z) vanishes. Since w'(y, z) 
is symmetr ical  in y, z, we conclude that w'(y, z)EkIy' ,  z/), where  y ' - - -y~ ,  
z ' - - z  ~ (or that x'(y, z ) E k  if k has characteris t ic  0). If  p - - - 0 ,  this means 
that y ~ F~(A, V), as claimed. Otherwise, we have shown that when x is 
expressed as a product  of powers  of l inear monic polynomials in K[z], times 
a factor  in K, the product  of those powers  which appear  with an exponent  
not divisible by p differs from an element of K{z') by the factor 
II~ { y z -  a , ) - ~ d y - - a , ) e ~ ( z -  ai}e~. Therefore  it is possible to select the rational 
integers e~ in such a manner  that ~c'(y, z) does not contain any of the factors 
y z - - a , .  If x~'(y, z)~ k, the process can be repeated,  and so on;  after  a finite 
number  of times, one obtains an w~'){y, z~ which determines a factor set, 
and which is the product  of an element of k(y) and an element of k(z}. 
Such x ~'~) necessar i ly  belongs to k, a fact which proves that T ~F,,(A, V) 
also if p =~ 0. 

Similar  reduct ions can be carr ied on in each of the cases (2), (3), (4), 
wi th  the advantage that p - - 0  in each of these cases;  we shall not give the 
e lementary details here, and will only add that in each case one takes 
advantage of the fact that ~xIy , z)/Oz, when  decomposed in part ial  fractions 
as an element of K(z), contains no fraction whose denominator  is linear, 
while  (x(y, z~)-~$x{y, zl/Oz contains only fractions whose  denominator  is linear. 
This completes the proof, Q. E. D. .  

The following statements are immediate consequences  of Lemma 3.8: 
let G be a nonsingular  commutat ive group-var ie ty  over the f i e l d  k of 
characteris t ic  p ;  if p:~=0, the smallest  g roup-subvar ie ty  V of G containing 
all the i r reducible  periodic group-subvar ie t ies  of G is i tself  per iodic;  it will  
be called the mawim~l  periodic  subvarie ty  o f  G. The maximal  vector  
subvar ie ty  of V is then also the only maximal  vector  subvar ie ty  of G. I f  
p ~ 0 ,  let V be a maximal  vector subvar ie ty  of G; then G/V contains no 



104 ~[. BARSOTTI: S~ructure theorems for group-varieties 

positive dimensional vector group-subvariety, because if A were such a 
subvariety, the inverse image of A On G would be, by Lemma 3.8, a vector 
group-subvariety of G properly containing V. As a consequence, V is the 
only maximal vector subvariety of G. Similar results are true for a maximal  
logarithmic subvariety of  G (for any value of p), this being defined as a 
logarithmic group-subvariety L of G which is not properly contained in any 
logarithmic group-subwriety of G; in fact, G/L contains no logarithmic 
group-subvariety of positive dimension, since otherwise the inverse image 
on G of any such subvariety ~vould be, by Lemma 3.8, a logarithmic group- 
subvariety of G properly containing L. As a consequence, L is the only 
maximal logarithmic subvariety of G. We are now prepared to prove the 
following result : 

T~EORE~ 3.3. - Let G be a nonsingular rational commutative group-variety 
over the (algebraically closed) field k of  characteristic p ;  let L be the ma.zimal 
logarithmic subvariety of G, and let V be (a) the maximal  vector subvariety 
of  G i f  p ~ O, or (b) the maximal  periodic subvariety of  G i f  p :#0. Then 
G ~ - - L X  V. 

PROOF.- Set A - - G / V ;  then A has no positive dimensional vector or 
periodic group-subvariety, otherwise V would not be maximal. We shall 
presently p rove  that A is logarithmic; let L* be the maximal logarithmic 
subvariety of A, and set B-- -A/L* .  Since G is rational, so are A and B; if 
dim B H 0, B has a 1-dimensional irreducible group-subvariety C, by Lemmas 
3.4 and 3.1; C is rational, and is not a vector variety, or else its inverse 
image on A would contain a positive dimensional vector group-subvariety 
by Lemma 3.8. Hence C is logarithmic, and this contradicts the fact that L* 
is maximal. This proves that dim B---0,  and that A--~ L*, so that G ~  V X A 
by Lemma 3.8. ~;~ow let a be the natural h0momorphism of G onto I?--G/A; 
if aL :~=Ev, aL contains periodic points :~=Er, with periods prime to p if 
p :~ :0 ;  but this contradicts the relation a L c  V, and we conclude that 
aL----Ev, L~--A, Q. E. D.. 

A number of elementary properties of vector and logarithmic varieties 
can be deduced from Theorems 3.2 and 3.3 and Lemma 3.8. The (< elementary )> 
proofs of such properties are obvious in the case of characteristic zero, but, 
to the author ' s  knowledge, far from trivial, and apparently not to be found 
in the literature, for the case of positive characteristic. The most embracing 
of these properties is perhaps the one expressed in the following result, 
whose proof is left to the reader;  for sake of generality we include periodic 
varieties : 

COROLLARY. - Let V be either a vector or a periodic variety over k, and 
let L be a logarithmic variety over k ;  let G be a nonsingular group-variety 
over k, isomorphic to V X  L. Then : 

(1) Let G' be an irreducible group-subvariety of G; then G' A V and 
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G' N L have, outside the degeneration locus of  G, ex~actly one component V', 
L' respectively; V' is a vector or periodic variety, and L' is a logarithmic 
variety ; moreover, G' ~ V' X L' ; 

(2) Let ~ be a homomorphism of  G onto a nonsingular group-variety G' 
over k ;  set V ' =  o:V, L'-----aL; then V' is a vector or a periodic variety, and 
L" is a logarithmic variety ; moreover, G' ~ L ' X  V'. 

(In the previous statement,  V and L have been identified wi th  their 
images on G).,. 

4. The group of  algebraic equivalence on abelian varieties.  - Let G be 
an abelian variety of positive dimension n over k ,  let G' be a normal  
1-dimensional  vector  or logarithmic variety over k, and let y be a factor set 
of G into G', operating on G, X G2, where  Gl, G~ are copies of G; we say 
that ? is a constant Jet if ?lGt X G~I is the modified extension over k(G t X G~) 
of a point of G', or, equivalently,  if T [ P I X  Q~] does not depend on P,  Q 
when P, Q are generic points of G. W e  shall wr i te  1~ F o in place of F(G, G'), 
F0(G, G') respectively,  and "shall denote by Fe=: re (G , G') the group of the 
constant  se ts ;  then F c ~  F o ~ F, and F e is isomorphic to ei ther the additive 
group of the elements of k, or to the mult ipl icative group of the nonzero 
elements of k. W e  shall denote by c~ the relation of l inear equivalence (on 
a variety which  shall be specified, or tacit ly understood, each time), and by 

the equivalence of ( n - - 1 ) - d i m e n s i o n a l  cycles of G defined in section 57 
of [16]. If  0 denotes the zero cycle, w e  shall denote by ~0 the group of the 
cycles Xc ,~0  of G such that E G ~ r a d X ,  and by ~o the group of the cycles 
X ~ - 0  of G such that EGq r a d X ,  so that ~0 is a subgroup o~ ~f.. W e  have :  

T~]~O~EM 4.1. - Maintain the previous notations, and assume G' to be a 
logarithmic variety; then Fir c is isomorphic to ~o, and in this isomorphism 
F°/Pc corresponds to ~o. 

PROOF. - Let  ~ be a n. h. g. p. of G' such that the law of composition 
on G' is given by x~=x~w~;  let us denote by 0 the point of G' at which 
x - -  0, and by vo the point at infinity (for x) of G' ; then the degeneration locus 
of G' is the jo in  of 0 and c~. It  is readily seen that the mult ipl ieative 
notation for the law of composition on G' can be extended to the cases 
P c ~ - - ~ ,  'zO0---0 if P" is a point of G', not 0 or cx~; the associative and 
commutat ive propert ies  remain true when meaningful.  If  y operates on the 
whole G', we shall assume k(~c)C k(G~ X G2) as prescribed ~,. Let  H 0 and H ~  
be, respectively,  the ~ numerator  ~ and the • denominator~, of the divisor 
of x on G, >< G~; this means, by Theorem 3.1 of [2], that Ho=~'I01*, 
H~---~ '1~I*.  Let G 3 be another copy of G, and assume ktGs)Ck(G~ X G~), in 
such a manner  that this embedding generates the rational mapping of Gi X G~ 
onto G 3 which gives the law of composition on G. For  any ( n - -  1)-dimensional 
cycle Z of G, denote by Tz' the cycle of G, X G~ obtained from Z 3 as Tz is 

• a . t tna~ i  d~ Matemat~co lS_ 
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from Z~. The relation 

(10) (Y[P, X Q~R,])(y[Q, X R~]) - -  ('~[P,Q~ X R~)(y[P, X Q~]) 

will now have a meaning and be valid when (1) none of the points P,  X O~R~., 
Qt X R ~ ,  P I Q L X R , ,  P i X  O, belongs to C - - r a d H  0 N r a d H ~  (this being 
the fundamenta l  locus of y on G~ X G,), and (2) one factor at least an each 
side is nei ther  H nor ~ .  Let  H be a component variety of H 0 + / - / ~  which 
operates on the whole G~ and the whole G~; we contend that there exists a 
component  variety of H 0 + H~  of the type Y'l X G~, where  Y is an ( n - - 1 ) -  
dimensional  i rreducible subvariety of G, such tha t  H - - T ' y .  For  if it 
were  not so, it would be possible to find points P, Q, R of G such that 
P, X Q ~ E H - - ( C N H ) ,  while P i Q I X R 2 ,  PixQ~R.2 and Q~XR~ do not 
belong to rad (/t0 + Hoe); but  this would contradict  formula (10). Conversely, 
let Y be an ( n - -  1)-dimensional irreducible snbvariety of G such that Yl X G~ 
is a component variety of H, + H~,  bu t  assume T'y not to be a component 
var iety of /t0 + H u e .  Then again it is possible to find points P, Q, R of G 
such that Pl  Ql X R~ E rad (He + Hoe) - -  C, while P, X Q-2, Pt X Q~R~, Q, X R~ 
do not belong to  tad  (H 0 + H~) ; this would also contradict  (10). Hence, since 
y [ P ~ X  Q~] is symmetrical  i n  P, Q, we conclu.de that there are distinct 
( n - - 1 ) - d i m e n s i o n a l  irreducible subvarieties Zt, Z2,..., Zr of G, none of 
which  contains E~, and nonzero integers a~, a~,.. . ,  a,., b,, b.2, ..., b~, such 
that He - -  H ~  ~ (E~ a~Z~), X G._ + (~ a~Z~)2 X G, + Y,~ b~ T'z~ • Hence  the divisor 

, ! G , of x on (G~)k(G~) is (~a~Zi )**+  ~,~ b~Tz~l ~1 where  * denotes modified exten- 
sion over k(G~}. From the definit ion of ~" it appears that y[EG, X/)~] is a 
point of G', not 0 or c~, independent  of /o when  P is a generic point of G; 
therefore ~v is a unit  of Q(Es~X G.JG~ X G,); if u denotes reduction of this 
r ing modulo the prime of its nonunits,  we have that ~w is a nonzero element 
of k, so that its divisor on G.~ is the zero cycle, But it is well known, and 
easily seen, that such divisor is HolEc~l*--HoolEa~l*--(~.~ a,Z,),+ ~ b~T'z~lE6d*-- 
--- (E, a,Z~), + (E~ b~Z,)~. Consequently b~-- - -  a~ ; by setting Z - -  Z, a~Z~, we 
conclude that He - -  H~ - -  Z~ X G.~ -.b G~ X Z.~ --  T'z. Hence Z~* c,o T'z1G~ I, and 
therefore Z E ~  o. The correspondence y--* 7, clearly establishes a homo- 
morphism of F into ~0,  if we agree to map on Z - - 0  any ~, operating on 
only one point of G'; the kernel  of this homomorphism is then r c. In  order 
to prove that such homomorphism is onto ~o,  we select a Z ~ o ;  if Z----0, 
any element of P, corresponds to i t ;  if Z:~=0, we have Z:*ooTz~Gil by 
assumption;  hence Z ~ X  G ~ - - T ' z  is l inearly equivalent, on G~ X G~, to a 
cycle of the type Z , ' X  G,~; but then --T'zlG.~I is l inearly equivalent, on 

' ; T zig d c~ (G~)~) ,  to the modified extension of Z~ over k(G~) since also - - ~ '  
--(modified extension of Z~ over k(G~)), we conclude that Z~ X G~-+ Z ~ X  
X G ~ c ~ T ' z .  Let t be an element of k~G, XG~) whose divisor on G, RG~ is 
Z, X G.~-t-Z, X G , -  T'z, and let ~" be the rational m~pping of G~ X G~ onto 
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G' obtained by set t ing x - - t .  The  operat ion of in te rchanging  G~ wi th  G2 
t ransforms t into ht, for a nonzero e lement  h of k ;  appl icat ion of the same 
operat ion again shows that  h:--q-__ 1, so that  (co-ordinate  of y[P, X Q.2]) ~ 
"+-(co-ordinate of y[Q~ X P~]) for generic points  P,  Q of G; but  ~'[P~ X P.2] 
is a point  of G', nei ther  0 nor  0% for a generic P E G ;  hence y [ P ~ X Q ~ ] - -  
--y[Q~ X Ps]; the point  EG, XEG~ is not fundamenta l  for y, since it does 
not belong to red (Z~ X G2 -t- Zs X G~ + T'z) ; therefore y[EG~ X EG~] is a point  
of G', not 0 or exp. For  a P E  G, let ap~, ~p~ be the au tomorphism of k(G l X Gs) 
over, respefftively, k(G~) and k(G,), which  induce (ap)~, (ap)~ in k(Gi), k(G.~) 
respec t ive ly ;  if P, Q~ G, denote by x(P~, Qs) the e lement  of k to wh ich  x 
is congruent  mod P(P ,  X Q dG~ X G2), if x E Q(P, X Q,/G~ X Gs). Then  x(P , ,  Q~) 
is the co-ordinate  of y[P~ X Q~]; denote also by w(P~), x(xP.2) the e lements  
of, respectively,  k(G~), k(G~) to which  a0 is congruent  modulo,  respectively,  
I)(P~ X Gs/G~ X G,), P(G~ X P2/G, X G2) ; the same notat ion will  be used for 

- - 1  any element  of k(G~XG~) other than x. We have that  the divisor of apex 
- - 1  I on (G2)k(G,) is Z2*--ap~ T zlG~I ~ Z.z*--T'~tz[G~t, while  the divisor of ~ :  is 

(a~lZ)s* - -  T'~-z[, G~! ; hence the divisor of (a~)/(a~:w) i s  Zs* - -  (a~Z)s *, 

wh ich  is the modified extension over k(Gs) of Z s - - ( a ~ Z ) s ;  this, in turn,  is 
also the divisor of x(P~); we conclude that  there exists an e lement  y of k(G~) 

- t  (ap~o)x(P~). If  P is generic,  the  e lements  (a-~)(Es~), such that  y~e,x-~ 
(~-~x)(E~), (x(P~))(E~) exist, and equal  respectively (~),(~c(E~)), ~(P~), x(P~, E~). 
But  x(Ev~)~ k, and therefore  it coincides wi th  w(P,, Es~). Hence  y ~ x(P~), 
so that  (¢;~}x)x(P~)--(~:~)x(Pi) for a generic  P C  G. If  I Q, RI is a generic  
pai r  of ponts  of G, we have therefore  [(~}x}(Q,, R~)][x(Q~, P~) ] - -  

- - 1  ----[(~p~ x)(Q, , R..)][x(P,, R~)], or (,/[P, Q,xR~])('/[ Q,XP.]) = (~[ Q,XP~R.~])(y[P, XR.]), 
which  is precisely relat ion (10). Hence  y is a factor set of G into G', as 
claimed, def ined but  for an e lement  of Pc. Finally,  it is quite clear that  
Y ~ Po if and only if Z ~ 0 ,  Q. E. D. .  

We  shall  now denote by 8f the group of the X = 0  of G, and by £ the 
group of the X c,.~ 0 of G. Since each e lement  of ~ is l inearly equivalent  to 
an e lement  of ~0,  we have the fol lowing corol lary:  

COROLLARY. - Notations as in Theorem 4.1 ; then P/P0 is isomorphic to gf/£ 
R E M A R K .  - Let G, G' be commuta t ive  group-var ie t ies  over k, with  

degenera t ion  loci F, F '  respect ively;  we shall wri te  the endomorphisms  of G 
in the exponent ia l  fo rm:  if _P~ G - - F ,  and a is an endomorphism of G, we 
shall  wri te  P ~ = a P ;  ~hen ~ + ~ - - 7  if P~/~----Pr for any t ) ~ G - F ,  and 
a ~ - - y  if (P~)~----P~ for P ~ G - - F .  The  set of the endomorphisms  of G thus 
becomes a ring. If y ~P(G, G'), and a is an endomorh ism of G, denote by Ya 
the e lement  of F(G, G') such that  Ya[P~ X Q~] ~ y[P~'X Q~] for a generic pair  
of points  IP, Qi of G. Then  (y~):,--~.~; if y~ P0(G, G'), then y ~  Po(G, G'); 
more precisely,  if ~[P ,X  Q~]--(~[PQ])(~[P])-'(~[Q])-' (~ being a rat ional  
mapp ing  of G into G'), we have ~ ' : [P ,X Q~]--(~[PQ])(~[P])-'(~a[Q]}-', 
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where  ti~ is defined by setting I~[P] = ~t[P~] for a generic P of G. W e  
contend that y~+~ is associate to ~,~'~; ia fact, let t~ be the rational mapping 
of G into G' such that, for a generic P E G, we  have I~[P] = Y[P~X Q~]. Then 

= (y[P P x Q = PtQ?P  x 
x x Q ])(y[Pl x = x x x = 
--- (y[P~ Q~ X P~Q~])(y[P~ x Q~I)(y[P~ X Q,~]) - -  (y~[P, X Q,])(~'~[P, x Q~])(I~[PQ]), 
which shows that y~+~y~-ly~-lE Pc(G, G'). As a consequence, r(G, G')/Po(6t, G') 
can be considered as an abelian group having the ring of endomorphisms 
of G as ring of operators. In part icular ,  if ~ is the identical  endomorphism 
of G, then "l'~ is associate to yn, for each nonnegative integer n. The rela- 
t ionship of this fact to the content of § XI  of [16], in par t icular  Proposi- 
tion 32, is quite obvious. 

5. The invar ian t  derivations.  - Let  K be an algebraic function field 
over the arbi t rary field k;  a derivation in K over k is a mapping D of K 
into itself which  maps k into 0, and such that D ( x + y ) = D a ~ +  Dy, 
D(wy) - -  .~Dy -+- yDx for x, y ~ K. It is well  known that if n --- transc K/k 
and i n s ( K :  k ) =  1, the derivations of K over k form a free K-modu le  of 
order n. If  w, , . . . ,  ~,, are elements of K such that K is a finite separable 
extension of k(x), then a derivation D of K over k is uniquely  determined 
by assigning (arbitrarily) the elements Dx~ of K. If  V is" an irreducible 
variety over k, of inseparabi l i ty  1, the derivations in k(V) over k will  also 
be called the derivations on V. 

Let G be a nonsingular  group-var ie ty  over (the algebraical ly closed 
field) k, with degenerat ion locus F. k derivat ion D on G is said to be 
left-invariant (respectively right-invariant) if ~pD$--D~px  (respectivey 
-:pD~v--D:px,) for each x ~  k{G) and each P ~  G - - / 7 .  If D is lef t - invar iant  
and r ight- invariant ,  it will  simply be called invariant. Let O,, G~, G~ be 
copies of G, and let B be the rational mapping  of G, X G~ onto G~ which 
gives the law of composition on G. Let  Ix, , . . . ,  *,,I be a n. h. g. p. of G such 
that x ~ - - 0  at E s ;  we  shall identify G, with G, and shall denote by lyl, 
lz} the copies of {wl in k(G~), k(G~) respectively.  Consider k(G~) as a subfield 
of k(B)'--k(G~ X G~) as prescr ibed by B, and let O be the quotient  ring of 
the identity of (G~)~:(~); then O is a regular  geometric domain ;  let P be the 
ideal of its nonunits.  If  n - - - d i m  G, it is possible to select n l inear combina- 
tions of y~,..., Ym, with coefficients in k, which form a regular  set of 
parameters  of O ;  after a projective transformation of co-ordinates,  we may 
assume that these are ~y~,..., Yn}; then k(G.,) is a separable extension of 
k[y,,..., y,). Since z~ ~ O, there are elements ¢oo ~k(G,) such that 

(11) z~ ----- x~ + ~"~=~ ~ooy , (mod P':) 

for j - - i , . . . ,  n. Since the set [ z , - - x , , . . . ,  z . , - - ~ , , I  is a regular  set of 
parameters  of O, we  have det (¢oo) 4= 0; hence there are n uniquely determined 
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independent  derivations D,,  ..., D,, on G, - -  G such that D~x~ --- to o ; we  intend 
to prove that each D~ is lef t- invariant .  In  fact, for any B E  G - - F ,  there is 
an automorphism aS of k(B) over k(G~) which induces (a~)~. (a~,)a in, respecti- 
vely, k(G~), k(G~). Hence  o ~ O - - O ,  o~1 ~ -~  F ,  and therefore 

(12) o~.z~ ~ a~x~ q- Y~L~ (o~to,~)y, (mod P ' ) .  

Now, ~ t o ~ - - - ~ P ~ o  ~ ~pDix~; on the other hand, if 8/Sx~ denotes the deriva- 
tion on G ~uch that ~a~j/8~---8 o (KRo~ECKER symSo1) (i, j ~ 1, ..., n), it is 
well known (see for instance [8] or [9]) ~hat (~v)~z t ~ ~v~j + ~ (~p~/3x,)(z~ - -  x~i) 
(rood P~), since P - -  P([/G~ )< G.~), I being the identical correspondence 
be tween G~ and G 3. On replacing for z i - - x ~  the expression give n by (11), 
we obtain ~ z ~  ~ o~,x~ + Eih (3oex~/3x~)t~h~y, (meal p2). This, compared with (12), 
gives ~pt%l - -  E~ (~px j /~x i )nax  ~ - -  D~e~c~, or apDhx~ --- Dho~x~, as claimed. 
A set of n independent  r ight- invar iant  derivations /x~ would  be defined by 
z~ ~ y~ q- E'~_l (hiy~)xi (mod P"~), where  P '  - -  P((E~)~(~)/(G~)~(s~)). The lef t -  
invariant  derivations on G form a free k-module  of order n. 

LE~r~A 5.1. - Let  G be a nonsingular  group-var ie ty  over k, and  set 
o - :  Q(Es/G), p - - F ( E s / G ) ;  let D be any  l e f t - invar ian t  derivation on G; then 
Dt E o i f  t e e ,  and  Dt E p "-~ i f  t E p", r ~ l. 

P R o o ~ . -  It is enough ~o prove the lemma when  D is any of the D~ 
previously def ined;  in the notation of (11), we shall first prove that o)~ i E o. 
And in fact, set O * - - Q ( E s ~ X E a J G ~  X G~), and let P*  b e  the ideal of the 
nonunits  of O*" then I~o~ ... x ,  y~,. . . ,  , , , , Y,, I is a regular  set of parameters  
of O*, and z~ E P * ;  hence there are forms ¢~#Ek[w~,..., w, ,  y~,. . . ,  y ,]  of 
degree i, for i-----1, 2, such that, for each integer ~ ' ~  1, z~ ~ ~¢ • " .  ~ ~=i ~oi~ 

(mod p,r+~) ; now, set p~* --- P ~ O* ; for each i, wri te  ~i~ = ~i~ + ~=lX#~Y~ + vi~, 
where  : ~i~ ~ k[x~, ..., ~v,,] is a form af degree i ; Xi~a E k[x~, . . ,  , , ,] is a form 
of degree i - -  1; v 0 E k[w(, ..., ~ , ,  y , ,  ..., y ,]  belongs to p~*~. Then 
z~ -=- Y ~  (q~ + ~" *~ p*'+~) -- a=i Xii~ya) (mod P2 + . We  shall  now denote by O 
the completion of O*, by p the topological closure of p~* in O (which 
coincides wi th  p~*O), by o the topological closure of o in O, and shall set 
Q --: O~, q ----- p~*Q pQ.  Then there are elements q~t E~°-i ~#, Xi~ ----- ~=lXi~a 
of O, apd the previous relation implies zf = ~ + E~_l XiaYa (rood p~), or 
also (mod q~). On the other hand, Q contains O ---- O p t ,  and P Q  ---- p~*Q - -  q,  

~ n  so that (11) can be wri t ten zi : : -x~q-~a=i toa iya  (mod q~); therefore 
(~  - -  xj) -I- ~=i (Xia - -  (oa~)ya E q~. Now, Q is a i:egular local r ing , with the 
regular  s e t  of parameters  lye,  ..., y ,  I, and contains as a subring the quotient  
field of o to which ~ ~ x~ and Xi~ - -  t°~i belong. Hence  ~ - -  x~ ~ X~ - -  to~ ----- 0, 
or ~oai -= Xia ~ o ~ ktG} - -  o, ar claimed. Now, define a derivation ~ in the 
quotient  field of o (over k) by setting D ~  Z" ~=0 g, - -  ~=~ (D~x~) ~7-o ~gdOx~, 
whenever  g~ E k[w~,..., x,,] are forms of degree i. I t  is readily seen that ~)~ 
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induces Dj in k(G), and that, since D~xaEo, we have D j t E o  if t e e ,  and 
D~t E ~ r - i  if t E p", Q. E. D. .  

LwMMA 5 . 2 . -  Notations as in  Lemma 5.1. Let D~,..., D ,  be the left-  
invariant derivations on G defined by f11); then D~w~ ~ ~i (mod p), where ~j 
is Kroneckers' s symbol. 

PROOF. - According to the proof of Lemma 5.1, we have D~x~Eo; let 
- -  ~ n  $ 2  

a i iEk  be such that D~x t ~ a ~  i (m0d p ) ;  then z t - x ~  --~=ta~iy~Ep.~ + 
+ I},*P~* ----- P*~, i[ p~* ~ 1)~O*--- pO*. Operating with the corresponding 
r ight- invar lant  derivations A~, one .would f i n d  elements b~iEk such that 

~ (a~iy~--b~ix~) E P*~, or E~(~i - b~i)x~-- z~--y 1 -  E~=~ b~ix~ E P*~. Hence  x~--y I -t- .~=~ 
- -  (8~i-- a~i)y~EP*~; since I x~,... ,  x,,, y~, ..., y ,  I is a regular  set of para- 
meters  of O*, this implies ~i - -  b~i - -  8~i - -  a~i - -  O, Q. E. D. . 

6. Noncommutative group-variet ies .  
LEMMA 6.1. - Let G be a group-variety over k, with the degeneration 

locus F ;  let S be a set of  points of G. TheJ~ there exists a group-subvariety V 
of  G such that the points of  V - - { V ( ' 1  F) are all and only the points P 
of G - -  F which satisfy the relation PQ ~ QP for each Q E S - -  (S A F). 

PROOF.- Given a QE G - - F ,  there exists a rational mapping a of G 
into a copy G, of G such that, for any P E G - -  F ,  ~ve have a l P ] - -  (PQP-I)I ; 
set V~ ~ a[Qt]; then P E  VQ --  (VQ (1 F) if and only if PQ ~ QP. Let V' be the 
intersection of all the VQ when Q ranges over S - - ( S  ('1 F), and let V be 
the join of all the components of V' which are not subvarieties of F ;  then V 
has the required property, Q. E. D..  

If, in part icular ,  S ~  G, V is called the center of G; we say that G is 
central if the center  of G is E~. 

L]~MMA 6.2. - Let V be an n-dimensional nonsingular vector variety 
over k, and let V,, V~ be copies of  V; then there exist a nonsingular group- 
variety G over k, with degeneration lovus F, and an algebraic correspondence D 
between G and V~ >( V2, such that: 

(1) dim G - -  n ~ ; 
(2) when P ranges over G -  F, D[P] has exactly one component Sp 

outside the degeneration locus of  Vi X V,, and Sp ranges over all the isomer. 
phisms between Vi and V 2 ; 

(3) i f  s~, is the automorphism of k(V) over k which is related to Sp 
(as automorphisms of  kIV) are related to. isomorphisms of V), then the cor. 
spondenee 1 :) ~ sp is a group-isomorphism; 

(4) DIG} and DI V~ >< V21 are absolutely irreducible. 
The group-variety G is unique, but for isomorphisms. 

PROOF. - We may assume V to have a n . h . g . p .  {x , , . . . ,  x , I  such that 
the law of composition on V is given by (x~)8- (x~), + (x~),. Denote by X 
the one-column matr ix  (x,, ..., x,),  and by X, ,  X, the copies of X related 
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to, respectively, V i and V~. Let  G be an n~-dimensional projective space 
over k, wi th  n. h. g .p .  lY~jl (i, j - - 1 , . . . ,  n), and let Y be the matrix (y~j); 
define a law of composition on G by setting Y~-" YtY~ (matrix-product).  
Then  G becomes a group-var ie ty  whose degenerat ion locus F is the radical 
of the divisor of d e t Y  on G. For a P E G - - F ,  denote by Y(P) th.e matr ix  
obtained by mapping the elements of Y into k, rood P(P/G). "Let D be the 
algebraic correspondence between G and V i X  V~ such that a basis of the 
ideal ~(D]k[(x)~, (~)~, y]) is formed by the elements of the matr ix  X 2 -- YX i .  
Then, for any P E G - - F ,  the only component of D[P] which  is not a 
subvariety of the degenerat ion locus of V~ X V2 is the Sp such that 
~(Sp/k[(~),, (x)2]) has as a basis the set of the elements of the matr ix  
X~ ~ Y(P)X,  ; clearly, Sv is an isomorphism of V~ onto V~. Conversely, if S 
is an isomorphism of V~ onto V~, it is readily seen that there exist elements 
~ i  of k such that det (~i)=]=0, and that a basis of ~(S]k[(~},, (~)~]) is given 
by the set of the (~}~ - -  Ej ~j(xj)l ( i - -  1,..., n) ; if P is the point of G whose 
co-ordinates  are the ~ t ,  then S ~ - S v .  Statements  (3) and (4) are easily 
verified, and the uniqueness  of G is a consequence of the fact that G is the 
representat ive variety of a cer tain algebraic system of cycles on V~ X V., 
Q . E . D . .  

Any group-var ie ty  isomorphic to an irreducible group-subvarie ty  of the 
group-var ie ty  G (for some value of n) of Lemma 6.2 will be called a Vessiot 
variety. The nature  of the degenerat ion locus of the group-var ie ty  G shows 
that no VESSIOT variety of positive dimension is an abelian variety. The 
direct  product  of two VESSIO~ varieties is a V~ssm~ var ie ty ;  vector varieties 
and logarithmic varieties are V~.ssIoT varieties. 

Let  G be a nonsingular  group-var ie ty  over k, with degenerat ion 
locus F ;  set o-----Q{E~/G), p--P(EG/G);  let G~ be a copy of G, and set 
0 - -  Q(EG~ )< G/G, X G), P - -  P(E~ X G/G, X G). If n --- dim G, let lye, ..., Y,, I 
be a n. h. g. p. of G~ such that y~ E p~, and that I y~,... ,  y ,  I is a regular  set 
of parameters  of o~; for any positive integer r, let u,. be the homomorphie 
mapping of o~ onto Odl)~' "+~ whose kernel  is pi"+~; if o~/p~ is identified 
with k, it is well  known that u , p ~ - - - p J p , " + '  is a k-module  isomorphic to 
the direct  sum of the k-modu]es p~/la~ ~+~ (i---1, 2,... ,  r) ;  for each positive 
integer i,~ let ~y~,.. . ,  y~ . l  be a k-basis for the forms of k[y~,..., y,]  of 
degree i, and take in par t icular  Y~i"--Y~ ( J " - 1 , . . . ,  n);  then a k-basis for 
u,.p~ is the set of the ~rY~i for i----1, 2, ..., r, and. for all the possible values 
of j. We shall now introduce the operator ~---~e~:~ ~, defined whenever  up, 
zv have a meaning ;  we have ~¢ - - -~p~q .  Let  Ixl be a copy of ly] in k(G), 
and let X be the point of (Gt)~(~) whose co-ordinates  are w~,..., a~,~; then~ 
for i---  1,..., n, we have ~ x Y ~ P ,  hence ~xY~i~P. Now, O / P  r+~ can be 
identified with the extension of O~/la~ T M  over k(G); we shall accordingly 
extend o; to the homomorphic mapping of O onto O/P r÷~ whose kernel  
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is pr+~. Wri te  

(13) 

where  ~m is extended over the values 1, 2,.. . ,  r of h, and over all the 
possible values of l ;  we have b~im~ h(G). We remark  that a change in the 
choice of the Y~i (including a different  choice of n. h. g. p.) does not affect 
the r ing k[..., b~1a~, ...]. T h e  matr ix  (b~im), where  i and j remain  fixed on each 
column, has a. non~ero determinant ,  since the elements o~xY~i form a basis 
for v,.P. Let P ~  G -  F ;  then there exist elements b~im of h such that 

Let  ~ ,  denote the homomorphie mapping of Q(P/G) onto k whose kernel  is 
q - - P ( P / G ) .  Set q ' - - P ( P X G J G X G 4 ) ,  and consider a third copy G 2 of G, 
with n. h. g .p .  lz} ~ I~xyl ; the embedding of h(G~) into h ( G X  G4) generates 
a rational mappijag D of GXG~ onto G~, such that if P X Ql is a generic 
point of G X  G~, we have D [ P X  QI]----(P-'QP)~" As a consequence, this 
relation is true whenever  P, Q are points of G - -  F. But then, for P ~ G - -  F, 
we have z~--pply~Eq',  or ~xY~--~PlYiEq'- Let  z O E G - - F  be such that z i 
and b~ihz belong to O * = Q ( P X E G ] G X G ~ )  for i, h - - I , . . . ,  r ;  let P*  be the 
ideal of the nonunits  of O* ; then ~p~y~j - -  ~xY~i E ()* N q'  - -  q* - -  qO*, and 
(14) gives ~PlY~i - -  ~hzbiihzYhl E p , r + l ,  while (13) gives PxYii - -  Em b~jmyh~ E 
E pr+~ A O* C P*"+~ ; hence ~ z  [b~p,l - -  b~jh~)yhz -+- (PP~Yij --  exY~j) E P*"÷~, or 

t T-~$, ' -~  i 
y.m (b~jm -- b~m)Ym ~ q* -t- 1 ~*'+ ; hence Sm (~,b~m - -  b~m)ym ~ ~:P~ , if r:p is 
natura l ly  extended to a homomorphic mapping of O* onto o~ with kernel  
q*. But uz,P* : p , ,  and ~:~p,r+, _. p r+~; hence Zm (u~b~m-- ~m)ym ~ p,"+~, 
a fact which proves that ~pb~z--b~im if P is generic. 

Denote by X(P)  the point of ( ~ , ) ~  whose co-ordinates  are *~x~, . . . ,  
- -1  ~ xm ; the element  ,~x(p~Y~ is obtained by applying to ~xyii the automorphism 

of h ( G X  G~) over h(G~) which induces e ~  in h(G); such automorphism we 
shall denote by ,~,. On the other hand, ~x(~Y~i is also obtained by applying 
to Y~i the automorphism of h ( G X  G~) over h((7) given by ~x(~)~ t - "  ~x(~,)x-~; 
now, X ( P ) X - '  - -  P , ,  so that ~x(~,)p~ ~ - -  p~.  Accordingly, ~ x Y ~ i  ~ ~,~xY~i, 

- -1  or, by (13), Y'm (a~" b~im)ym --  Y.~q b~i~q~ly~q (rood 1:'"+~), and by (14) : 
,,m ~ (o~-~b~im)Ym ~ ~m E~q b~i~:~b~mym (rood pr+~), if P is generic ; this means 
that a-~b~m~ Z~qbi@qupb~qhl. This implies that the matr ix  (r~l,b~@z), where  
p, q remain constant in each column," has a nonvanishing determinant .  

Let  B be" the V]~ss]o~ variety with n. h. g. p. IB~tml (i, h ------ 1, ..., r ; j, l 
compatibe with these}, where  the B~im are indeterminates,  with the law of 
composition given by (B~im)~ "-'-E~,u (B~m),(B~t~q)~ ; let a,/ be the rational point 
of B~:~s~ at which  B~im has the value b~im, and set a,.~---D~,,s. Then the 
previous formula  indicates that, for a generic pair  of points IP, QI of G, we 
have (ar[P]}(a,.[Q])--a,[PQ]. Hence,  by Lemma 2.3, a is a homomorphism 
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of G into B, and operates on a Y~ssxo~ variety B,.; this shows also that 
biim "--7:pbi;m for any P E G -  F. Since h(B , )C  h(B,+,), there exists a positive 
integer  s such that h(B,.) "-- h(B,) if r ~ s, but not if r ( s. If  C is the kernel  
of a , ,  we have, from (14), that  ~z~w~j---oc~i for  all i, j ,  and for a P E G - - F ,  
if and only if P E C; hence C is the center  of G. We  shall express these 
results  in the following theorem:  

T~,OREM 6.1. - Let G be a nonsi~gular group-variety over h, and let C 
be the center of G; then there exists a homomorphism a of G onto a Vessiot 
variety B, such that the kernel of a is C. 

We remark  that  if h has character is t ic  0, then B~--(t/C; otherwise, this 
is not necessari ly t rue ;  however,  a par t icu]ar  B and a par t icular  a satisfying 
Theorem 6.1, and uniquely  determined but for, respectively, isomorphism and 
equivalence, have been constructed in the course of the previous analysis ;  
they will be called, respectively, the stem and the stem-homomorphism of G. 
The method of construction of the variety B, denoted by B, in the preceding 
proof, gives some fur ther  informat ion:  in the previous notation, and for 
i - - 1 ,  2,..., we shall define ri by recur rence  in the following m a n n e r :  
r~ is the integer  such that d i m B ~ > 0 ,  but  d i m B ~ _ l - - 0  if r ,~> 1; r~, for 
i ~ 1, is the integer  such that h (B , ._~) - -h (B ,  _~)C h(B,.), if such ri exists;  
the largest existing ri ,  say r~ is s. If  G is not commutative,  there is a f inite 
sequence I r4, r~, ..., r~--- s I of integers, which  we call the first, second..., 
v-th index of G; if G is commutative,  we shall define c~ to be the 
only index of G; the integer v will be called the ra~k of G, and we set 
v--- 0 by definition if G is commutative.  If  1 ~ i  ~ v, the embedding of 
h(B,.) into h(B,.i+~) generates a rational mapping [~+, of-B,..+j onto B,.;; 
~+~ is clearly a homomorphism such that a,.---~i+~a,.+~; the kernel  V~+~ 
of [~i+~ is the join of the components,  outside the degenerat ion locus of B , . .  , 
of the subvariety of B,.+, given by the equations bptm--8phSjz (KRoNv, CXV,~s 
symbols) for p, h- - -1 , . . . ,  r i + , - - 1 ,  and for all the possible values of ], I. 
If  P is a point of G - - F  such that a,~+_~P is the identity, equation (14), 
because of the meaning of the Y~i, indicates also that  ~:~b~im equals :  0 if 
p - -  r~÷~ and h ~ ri~_~ ; ~# if p ---- h ~ ri+~. Therefore  the matr ix  M ~ (b~im) 
(for p, h - -  1, ..., ri+~), where  h, 1 remain  constant on each row, acquires at P 

( ~ p ~  0 )  w h e r e /  designates any identical matrix,  0 a n y  the form M ( P ) - -  ~-- , 

(rectangular) matr ix  whose elements are all 0, and M'(P) is the value at P 
of a rec tangular  matr ix  M';  if Q is another  point of G - - F  such that 

a~+_~Q is the identity, we have M(P)M(Q)-"-M'(P)-~-M'(Q) , a fact 

which indicates that the component of the identity in V~+~ is a vector variety 
(see the Corollary to Theorem 3.3). The same argument  shows that B , .  is a 
vector variety if r~ > 1. 

Annai i  di Matemctttea 15 
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T~__EORV, M 6 . 2 . -  Let G be a nonsingular  noncommutative group-variety  
over the (algebraically closed) field h of  characteristic p ;  i f  p ~ O, then the 
rank and  the index of  G both equal 1; i f  p :4:0 ,  then each index o f  G is 
divisible by p. 

PROOF. - W e  maintain the previous notation, and wri te  aii for bin1 
(i, j - -  1, . . . .  n). If  X has the same meaning as in the symbol ~z, the ele. 
ment  z~ of formula (11) coincides with -1 a x y j ,  so that I l l)  can be wri t ten  

(15) ~ l  y~ _.~ xj  -q.- Y~i (D~j)y~ (mod P~) ; 

on the other hand, a basis [At,  ..., h,, } for the r ight- invar iant  derivations 
on G is obtained by setting 

(16) -1 ":x y~ - -  ao~ + Y~ (h~x,j)y~ (mod P*) ; 

by applying Ox to (15) we  obtain y j - ~  x j - [ -E i  (D~xj)oxy~ (rood (oxP)'), and by 
.applying zx I to th is :  Zxly~ ~- xj  -I- ~i (D~xj)piy~ (rood P~), or, by (16): 
E~ (h~vj)y~ ~ ~ (D~xj)pxy~ (rood P~); this, by (13) for r - -  1, becomes 
E~ ih~xj)y~ - -  ~ a  (D~xj)aihyh, or ha --" E~ a~aD~, a fact which proves that the matrix 
(aq) t ransforms the h-module  of lef t - invar iant  derivations on G into the 
h-module  of the r ight- invar iant  derivations on G. If  we  assume the first 
index o[ G to be r~ ~ 1, it fol lows that each lef t - invar iant  derivation is 
invariant.  Let  then D~',..., D, '  be copies of D~,.. . ,  D,, on G~, and let the 
same symbols denote also their extensions over h(G). Formula  (13) gives 

(17) pxy~ -~ Yi +- ¢P~ (rood P"~+~), 

where  q0iEh[y,,. . . ,  y,,] is a form of degree r~, and q0i=~=0 for at least one 
value of i. Application of D~' to this congruence yields, by Lemma 5.1: 
~xDI'y~ -~ Dj'yi -!- D~'~ (rood pr,). ~ow,  by Lemma 5.2, we have D~'¢~ ~-- ~¢~i/~y.~ 
(rood pr~), so that ~xD~'y~ ~-- Dj'y~ + O¢~d~Y~ (rood p,'i). If  p - -  O, or if p :4= 0 
but  r, is not divisible by p, we  have that ~¢~/~y~ =J= 0 for at least one value 
of i, j ,  so that ~xD~ yi - -  D~'y~ q P"~. On the other hand, set D~ y~ - -  t, so that, 
by Lemma 5.1, t 6 0  ; then t ~ f(y) (mod P",), where  f(y) ~ h[y~, ..., y, ]  is a 
polynomial  of degree < r~ ; from (17) we obtain ~ x f ( Y ) -  f(Y) (modP~) ,  so 
that ~ x t - -  t ~ p r , ,  a contradiction. W e  conclude that r~ - -  1 if p = 0, and 
that r~ is divisible b y p  if p = ~ 0 .  ~Tow, assume p - - O ,  and let r~ be the 
second index of G, if it exists. W e  have seen that Aa~E~a~aDi,  so that 
haw~ ----- E~ a~hD~,  and therefore, for P ~ G - -  F,  o~h~x~ - -  ~ Z~ a~D~xj --" 

--1 O--1 - -E~(ap a~)(D~ p oat). Now, in the discussion which  led to Theorem 6.1 we 
-~ E~a~7:~a,~; if P belongs to the kernel  of a , ,  we have proved that o~ a~u --- 

--1 --1 
therefore ~ a ~  -~- a ~ ,  so that ~ h ~ , x  I - -  E~ a ~ D ~  x i - -  h ~ .  a~ ; hence 
~pAax i - - h ~ . x i  for such P.  Formula  (14) gives, for such P :  

(18) f~Pa~i ~ x1 + ~iv (rood ~r~+~), 
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where  ~j~, is obtained from a form ~p E k(G)[y,,.. . ,  y,], of degree r~, by first 
replacing each coefficient with its image according to up (which exists), and 
then replacing I Y,, . . . ,  Y~ I with J x , , . . . ,  x,, I ; moreover, the fact that r~ is 
the second index of G indicates that ~jp::J=0 for at least one P q F  of the 
kernel  of a,. Since ~phhx i - -  Ah~PX], W e  can operate on the last congruence 
as we did on (17), with  the result  that ~phhx i -  hazy i~  p"~ for at least one 
value of h. Set  again t ' - 5 a x j E  o, and wr i te  t _~ f (x )  (mod p"~), where  
f(~) E h[$,, ..., x,,] has degree < r., ; then (18) implies that ~ef--  f ~ p% hence 
~ p t - - t  E p"~," a contradiction. This proves that the second index of G does 
not exist," or that G has rank 1. 

Finally,  assume p~=0 ,  and assume the s - th  index rs of G to exis t :  we 
shall prove by recurrence on i that r~ is divisible by p. This is true for 
i - - l ;  assume it to be true for i - - 1 ,  2,. . . ,  s - - l ;  then a formula similar 
to (18), wi th  r.~ replaced by r , ,  is true, and the relat ion pphax~- -5h~ex  i is 
true for any P ~ F  of the kernel  of a , . , _ .  Then the same type of proof 
previously applied would lead to a contradict ion unless r ,  is a mult iple of p, 
Q, E. D . .  

We  shall now give two examples  in order to i l lustrate the substantial  
difference be tween  the two cases of Theorem 6.2. Assume p =~=0, 2, and let G 
be the 3-dimensional  project ive space over h wi th  n. h. g .p .  Iw~, w~, w 3 I ; 
define a law of composition on G by setting (w,, w~, w3)(Y,, Y~, Y~) 
- -  (x, -~ y , ,  x~ -~  y~, x~ -t- Y3 ~ (x~Y.z - -  x~Y,) p) ; then G becomes a noncommu- 
tative group-varie ty ,  with the plane at infinity as degenerat ion locus. It  is 
readily seen that ~xy, ~ y , ,  ~xY~ "-  Y~, ~xY3 "-- 2P(Y,W~ - -  x,Y~) ~, so that the 
rank of G is 1, the index is p, and the inseparabi l i ty  of the s tem-homomor-  
phism of G is p~. As another example,  consider the 2-dimensional  project ive 
space G over h (of characteris t ic  p :~=0), with n. h. g. p. I a~,, x~ 1, and define 
a law of composition on G by setting (x,, w~)(y,, y ~ ) - - ( x , y , ,  x~y, ~ + y~); 
then G becomes a noncommutat ive group-var ie ty  whose degenerat ion locus 
is the line at infinity, and whose center  is the point (1, 0). In the notation 
of (13) we have b , , , , - - -1 ,  b,,,~ - -  b,~,, --  0, b , ~  ~ ~,~, so that the kernel  of a, 
is the g roup-subvar ie ty  of G defined by the equation x , - - 1 .  Therefore  G 
has the first index ----1, but  rank ~ 1. 

T~EO~E~ 6.3. - A n y  abelian group-subvarie ty  of  a nons ingular  groulg- 
variety  G over k is a subvariety of  the center of  G. 

PROO~. - If  G is not commutative,  let B be the stem of G, and let a 
be the s tem-homomorphism of G. If  A is an abelian group-subvar ie ty  of ~, 
then aA is an abelian group-subvar ie ty  of B, and is therefore 0 'd imens iona l  
since B is a VEss~o~ variety. Hence  A is a subvariety of the kernel  of a, 
which  is the center of G, Q. E. D. .  

The previous result  is a generalization of Theorem 5 of [16], and its 
proof depends only on the fact that the degenerat ion locus of an abelian 
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variety is empty. Theorem 6.3 could also be obtained, if it were known a 
priori  that A is an invariant  group-subvar ie ty  of G, by observing that  
each ~p, for P E  G--/7" ( F - - d e g e n e r a t i o n  locus of G), induces an automor- 
phism of A;  as the set of the automorphisms of A is discrete, by [16], it 
follows that each pp induces the identical automorphism on A ;  the  same 
proof can be used to show that any invariant logarithmic group-subvariety 
of  G, and any O-dimensional invariant group-subvariety of  G is a subvariety 
o f  the center of  G; we will not develop the proof since no use will be made 
of these results in the present  work. 

Theorems 6.3 and .~.1 give:  
COROLLAaY. - Let A be an abelian group-subvariety of the nonsingular 

group-variety G over h;  then G contains an invariant irreducible group- 
subvariety B such that G is the homomorphic image, in a homomorhism of 
finite degree, of  the direct product A )< B. 

T~EOREM 6.4. - Let G be a nonsingular group-variety over k;  let C be 
the component of the identity in the center of G; let B be the maximal  rational 
group-subvariety of  C. Then G contains aninvariant irreducible group-sub. 
variety H such that : 

(1) G/H is an abelian variety; 
(2) there exists a homomorphism a of H onto a Vessiot variety, and the 

kernel of  a is a group-subvariety B' of  the center of  G, such that B is the 
component of  the identity in  B'. 

PROOF.-  If G is commutative,  this is a consequence of Theorems 3.2 
and 3.3. If G is not commutative, let S, ~ be, respectively, the stem and the 
s tem-hom0morphism of G. By Theorem 6.1, C is the component of the identity 
in the kernel  of ~; let 7 be the natural  homomorphism of G onto G/B; then, 
by Theorem 2.2, there exists a homomorphism ~' of G/B onto S such that 

--~'7- By Theorem 3.2, ~,C is abelian, so that, by the Corollary to Theo- 
rem 6.3, there exists an invariant  irreducible group-subvar ie ty  H' of G/B 
such that G]B--(TC, H'); since 7C is a component of the kernel  of ~', 
we  have that ~ ' H ' - - S ,  and that a ' ~  [~'; H', S] has finite degree. Let  H be 
the component  of the identity in y- IH' ,  and let 8 be the homomorphism 
of G/B onto ~'C (whose existence is asserted by Theorem 3.1) such that H '  
is the component  of the identity i n  the kernel  of 8. Then 8~, is a homomor- 
phism of G onto 7C, and the component of the identity in the kernel  of 8~, 
is H ;  since 7C is abelian, it follows that G/H is also abelian, as asserted. 
Now set " ( ' - - [7 ;  H, G/B], so that 7' is a homomorphism of H onto H', and 
set a - - £ 7 ' ;  then a is a homomorphism of H onto the VEssIo~ variety S ;  
on the other hand, we have c¢----[[~; H, S], so that the kernel  of a is the 
jo in  of the components, outside the degenerat ion locus of G, of the inter- 
section of H with the center  of G. As a' has finite degree, one of these 
components is B, Q. E. D. .  
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7. R e m a r k s . -  Le t  G be an  n - d i m e n s i o n a l  abe l ian  var ie ty  over h, and 
tet  G' be a 1 -d imens iona l  vector  var ie ty  over  k. L e t  7 be a fac tor  set of G 
into G';  let G,,  G~ be. copies of G, wi th  the n. h. g . p .  I~1, Jy~l (copies of 
each other). As seen in sect ion 4, if 7 opera tes  on the whole  G', it prescr ibes  
an embedd ing  of h(G') into h(~v, y). I t  t is a n .  h. g. p. of G, such  tha t  the 
law of composi t ion on G' is g iven by t ~ - - t  t ÷ t~, we can  wri te  t - ' t ( x ,  y) 
as a r a t iona l  func t ion  of x ,  y. W e  shal l  assume w ~ - - 0  at EG,, so tha t  y ~ - - 0  
at  EG,. As seen in the proof  of Theorem 4.1, fo rmula  (10) can be wr i t t en  

- -  ~p~y) ÷ t(z, y) if  Izt are the co-ord ina tes  of Pi  or P~. 
W e  can  cons ider  Iz} as the n . h . g . p ,  of a th i rd  copy G 3 of G, and  wri te  
a~lx~--g~(z, x~)--g~(x, z), g~ be ing  symbol  of a ra t iona l  func t ion  wi th  coeffi- 
c ients  in h ;  then  the previous  fo rmula  becomes 

(191 y ) ÷  y))÷ y). 
! t Le t  IDa , . . . ,  D,, 1 be a basis  for the invar i an t  der iva t ions  on G~, which  we 

shal l  consider  ex tended  over '  h{y, ~), and let D~ be the copy of D~' on Gs, 
which  we shal l  cons ider  ex tended  over  h(y), and  D~* be the copy of Di' on G2, 
which  we shal l  consider  ex tended  over  h(z). Then  [D~'gj(y, x)]~=o----D~zj; 
therefore,  if we apply  Di' to fo rmula  (19), and  then  set z - - 0 ,  we obta in  
D~t(z, y) ÷ [D~'t(x, z)]~=o - -  D~'t(x, g(z, y))]~=o, or, a f te r  se t t ing  [D~'t(x~, z)]~=0 - -  ~(z) : 
DJ(~, y) - -  7~{g{z, y)) - -  ~(z). There fo re  D~*D~t(~, y) - -  D~*~(g{z, y)), and for • - -  0, 
D~*~(y) ~ [D~*DJ(~, y}]~=o; bu t  the previous  formula ,  for y ~ 0 ,  gives 
D~'~(z) --- [D~*~(g(a, y))]~=o --" [D~*DJ(~, Y)]~=o --" [D~Df*t(z, Y)]~=o ; hence  D~*~(y) 
~-[D~*Dit{y , z)]~=o~Di*~i(y }. Le t  d be the d i f fe ren t i a l  opera tor  on ((/~)~G~), 
and  let [to,,  ..., ¢o,~ } be a h-basis ,  for the inva r i an t  d i f fe ren t ia l s  on G~ (which 
are all  of the f i rs t  k ind  (~)), selected in such a way that  ~.i~iDiai--dz i. W e  
shal l  wri te  coi(z) in  place of toi, so tha t  coi(y) has  an  obvious m e a n i n g ;  then  
the previous  fo rmula  ind ica tes  tha t  (o a ) -  Ei qo~(z)toi(z) is a closed .differential ,  
and  we can  wri te  dr(z, y)----to(g(z, y))--to(z).  I f  G' were  a logar i thmic  
1 -d imens iona l  var ie ty ,  this  fo rmula  should  be rep laced  by dt(z, y)/t(z, y ) - -  
--to(g(z, y ) ) -  o)(z). I t  is not d i f f icu l t  to see tha t  to(z) is a d i f fe ren t ia l  of the 
second k ind  if G' is a vector  var ie ty ,  and  of the th i rd  k ind  if G' is a 
loga r i thmic  var ie ty .  I f  we set to ----- 0 w h e n  7 does not  opera te  on the whole  G'i 
the m a p p i a g  ~'--* to is a h o m o m o r p h i s m  of the group F - - F ( G ,  G') into the 
group of the d i f fe ren t ia l s  of, respect ively ,  the second or the th i rd  k ind  on G~ 
wh ich  are f in i te  at  EG~; the e lement  7 ~1 ~ belongs  to F o - -  Fo(G , G') if  and  
only  if  the cor responding  to is (i) an exac t  d i f ferent ia l ,  p lus  a d i f fe ren t i a l  
of the f i rs t  kind,  if G' is a vec tor  var ie ty ,  or (2) of the type da/a, for 
0 :~ a ~ k(Gs), p lus  a d i f fe ren t i a l  of the f i rs t  kind,  if G' is a logar i thmic  var ie ty .  

(z) The word differential is used in any of the equivalent meanings recently appeared 
in the literature; see for instance [10] or [1"2]. 
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Denote by ~ ,  ~)~, ~ l ,  ~)e, ~)t the additive groups of, respectively, the 
closed differentials  on Ga, the closed differentials  of the second kind, the 
differentials of the first kind, the exact  differentials,  and the differentials  of 
the type d a i s ,  for O ~ = a E  h(Gs). If G' is a logarithmic variety, and k has 
characteris t ic  0, it can be proved, by t ranscendenta l  means, that the mapping 
$ .-~ ~o induces an isomorphism between F/[' 0 and ~) / (~  + ~)~); the algebraic 
equivalent  of this fact is expressed by Theorem 4.1, and is valid for any 
characterist ic.  If  G' is a vector variety, and h has characteris t ic  0, it can 
be proved, by t ranscendental  means, that the mapping 7 ~ ¢o induces an 
isomorphism between r / r  o and ~/(~),-t--~)e); since, in this ease, it is also 
known that ~)~/(~)l-t-@e) is a free k-module  of order n, it follows that l~/Fo 
has the same structure.  There  are indications that this result  could follow, 
without  any use of the differentials,  from the considerations which close 
section 4, but the author  has been unable to supply the complete proof;  if 
the characteris t ic  of h is positive, then each element of F/F 0 is periodic, and 
each I~/, G', 71 contains a group-subvar ie ty  isogenous to G. 

Lemma 3.6 does not g i v e  complete information on commutat ive periodic 
group-var ie t ies ;  the type of a rgument  used in its proof can, however,  be 
extended to yield the complete s t ructure  of any such variety~ but the result  
is unduly complicated;  an example of a periodic 9ommutative variety G of 
period 8 over a field of characterist ic  2 is the following: G is the 3-dimen- 
sional projective space with n. h. g. p. I 0c, y, z }, with the law of composition 

given by x 8 - -  x ,  -~  ~.2, Y3 - -  Yi + Y~ + x ix~ ,  z3 = ~ -t- z.2 ~-  y~Y.~ + x~x~(y~ -~- 
+ + + 

The points of contact of section 6 with the method of LIE algebras are 
obvious. It  has been known (see for instance [5]) that such a method is highly 
unsat isfactory for the case of positive character is t ic ;  as seen in the .proof 
of Theorem 6.2, the method Of LIE algebras depends on the study of the 
module p/p~ (in the notation of that proof), and on the effect of the lef t -  
invariant  derivations on the field h(..., bliu, ...); its failure in the positive 
characteris t ic  case is due to two distinct reasons, namely :  (1) p / p r + ,  may 
yield more information for some r ~ 1 than for r - -  1 ; (2) the stem-homo- 
morphism may have inseparabil i ty ~ 1. Our method takes care of the first 
difficulty, but does not overcome the second;  if this second difficulty could 
be overcome, a more precise formulat ion of Theorem 6.4 could be given, 
and would probably state that H is a VESSIO~ variety. 

The investigation of p /p"+ i  ra ther  than p/p2 corresponds, approximately,  
to the consideration of invariant  derivations of higher order, as defined 
in [8] or [9], instead of jus t  those of order 1, as the LIE method does;  this, 
in turn, is made necessary by the fact that derivations of h igher  order are  
not i terated derivations of the first order when  the characteris t ic  is positive. 

We close by remark ing  that our definition of factor sets is tailored to 
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the  c o m m u t a t i v e  c a s e ;  some  of the  r e s u l t s  of sec t ion  6, and  p e r h a p s  m o r e  
p r e c i s e  r esu l t s ,  cou ld  be  e x p r e s s e d  in t e r m s  of f a c t o r  sets,  a f t e r  the  defi-  
n i t i on  of these  is g e n e r a l i z e d  in an  obv ious  m a n n e r  in  o rde r  to a p p l y  to the  
n o n c o m m u t a t i v e  case .  T h e  c o n t e n t  of  sec t ion  6 c a n  a lso  be  i m p r o v e d  a f t e r  
l e a r n i n g  m o r e  a b o u t  the  s t r u c t u r e  of  V~SSlO~ va r i e t i e s .  T h i s  c a n  be  a c h i e v e d  
by  m e t h o d s  s i m i l a r  to those  of sec t ion  3 ;  in fact ,  a m i n o r  m o d i f i c a t i o n  of 
the  p roo f  of L e m m a  3.1 y ie lds  the  r e s u l t :  a n y  n o n a b e l i a n  n - d i m e n s i o n a l  

g r o u p - v a r i e l y  over  h c o n t a i n s  some p o s i t i v e  d i m e n s i o n a l  p r o p e r  g r o u p - s u b v a r i e t y  

i f  n > 1. A p p l i c a t i o n  of th i s  r e s u l t  to VESSlO~ v a r i e t i e s  e s t a b l i s h e s  the  
e x i s t e n c e  of the  we l l  k n o w n  ~, o n e - p a r a m e t e r  g r o u p s  )~. T h e  a u t h o r  p l a n s  to 
dea l  w i th  these  ques t i ons  in the  fu tu re .  
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