On the singular Cauchy problem for a generalization of the
Euler-Poisson-Darboux equation in two space variables.

by J. B. Diaz (*) and G. 8. 8. Luprorp
(Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, U.S.A.).

Summary. - The present paper contains an existence and uniqueness theorem for the singular
Caucny problem for the non-homogeneous EULER-P01ssON-DARBOUX equation :

k
Uyt Uyy — Wy — t_”tzf(m) y, t), t>0, k>0,
u(@, y, 0) =uyx, y, 0)=0.

The solution of this problem is used to prove an existence and uniqueness theorem for
the following singular CAUCHY problem :

k
“mz+“:l/y"utt“'t_“t_h(m,! Y, hu=0, >0, k>0

u(x, ¥, 0) =g, y), usx, y, 0)=0,
by the method of successive approximations.

Introduction. - This paper is concerned with the solution of the follo-
wing singular CAvcomy problem. Let kix, y, {) be continuous (!) for {=0
together with its derivatives h,, hy, haz, hyy, hy,, and gz, y) a twice
continuously differentiable function (if = 1) or a thrice continuously diffe-
rentiable function (if 0 <% < 1). Then it will be shown that there exists a
unique function wu(x, y, #), continuous for ¢ =0 together with its derivatives
Uzy Uy; Upz, Uzy, Uyy, Which is twice continuously differentiable in (x, y, #)
for ¢ > 0, satisfies

(1) L(u)——husum+u,,,,——un—;fu,—hu=0, k>0, t>0,

and takes on the regular initial data

(2) w(x, Y, O):g(wr Y) Uy, ¥y, 0)=07

on the singular plane {=0.

(*) The research of this author was supported by the United States Air Force through
the Office of Scientific Research.

() In this paper all functions will be considered defined for all real values of their
arguments, unless otherwise specified.
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This constitutes a generalization (for the special case m =2) of the
singular CAUCHY problem for the EULER-PoI1sSsoN-DARBOUX equation

(3a) Au—u ——I—cu=0- A= 3 &
113 t t ) == i axig’

with data

(3b) u’(wn Lyyeny By O)=g(wu Lyyoeey wm))

U,y Xyyoeny X, 0) =0,

This latter problem has been solved by WEINSTEIN [11], and Diaz and
‘WEINBERGER (12},

The present analysis is restricted to the case of two space variables
since then the definite integrals concerned (though improper) are convergent.
For more than two space variables the corresponding improper definite
integrals are divergent, and HADAMARD’ s concept {8; 9, p. 133] of the finite
parts of these integrals must be used. The restriction %> 0 is made since
for k£ <O the solutions of (3) itself are not unique (*), and for k=0 the
problem is no longer a singular one.

In section 1 the elementary solution, in the sense of HADAMARD, is
found for (3) from the known fundamental solution of a corresponding
elliptic equation, given by Diaz and WEINSTEIN [15]). This elementary solution
{for m =2) is used in section 2 to construct the solution of a regular
CavcHY problem on ¢{=¢,>0 for L(u)=0, and in section 3 bounds for
this solution and certain of its derivatives are obtained. The solution of this
regular problem is then used in section 4 to construct the solution of a
singular CAUCHY problem on ¢ = 0 for the inhomogeneous equation
Liu)= f(x, 9, ). The method used is patterned after that of DunaMEL (%) [2]
for regular CAUCHY problems, and the result obtained represents an extension
of the theory of HADAMARD [9, p. 166] to a singular initial values problem.
The bounds obtained in section 3 are employed in 4 to show that certain
« DUBAMEL integrals » which are improper, are nevertheless convergent.
Finally in section b, the given CaUcHY problem (1) and (2) is solved by
considering an equivalent problem in integral equations, the equivalence
being demonstrated by the results of section 4.

In the conclusion it is shown that the singular problem (1) and (2) is
well-posed, but that the present method fails whén space-derivatives of the
first order {even with regular coefficients) are included in (1). The analysis
indicates that difficulties may be expected in this case. Finally it is remarked
that the corresponding problem for one space variable is covered, by the
method of descent, in the present problem.

(?) See [11; 12].
(%) Also known as the method of variation of parameters or « Sttssmethode ».
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1. The Elementary Solution. - DiAz and WEINSTEIN have shown [15]
that the singular elliptic equation

By=0; a=3 2
@) Ou - uyy +@“u—' ; =2
has, when %> 0, a fundamental solution
T infta d
() _ st~ a da
(o) Up @a y) —j (0® ¥ b + y* — 2by cos a)kTm—D2’
b
m
where =(x,, ®,,..., ), p*=a"= I x, and the singularity is at (0, b),

=1
The function (5) is clearly defined for complex values of y and b also.
In particular, on putting y =4/ and b= it, with { and t real, it may be
inferred that

T
sin®*—la duo
(6) U, t; ) =/(t" 1 — p® — 2tf cos o) EFm—IR’
s

is a solution of the singular hyperbolic equation
k
(7) Au—"u“—zut_——o-

It is easy to verify that for (vt —¢)>p and =0, the region of (x, ) —
space which is of present interest, Qf(x, ¢; ¢) is real and finite.

As was noticed by D1az and WEINSTEIN for 4§, the function 9f may
be expressed in terms of the hypergeometric function. Thus putting & = (308”22c ;

z = 41t/[(t + 7)* — p*], (6) becomes
i 1 k4
%@, t; )= 2—m(z/1t)(k+m-1)/2]gi‘ (1 — &) 7 (1 — 2E)-k tm—12gE
¢
kE k E+m—1

k
=2-mB (é ' Q)(Z/Tt)‘k+m_])/2F(—— 3 1 g k; z)?

where EULER’s integral for the hypergeometric function (3, p. 14] has been used.
Now v = {*u defines a correspondence between solutions # of the equa-
tion (7) and solutions v of its adjoint equation (%)

(8) Av — vy + K(v/f), = 0.

(*) A similar fact has been noted by Orevskir [5] for the elliptic equation (4), and by
Tricomt {1] for a particular case of the same equation.
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Hence for any § =(§,, &,,..., &m) a singular solution of this latter equation is

D, t; & 1) = kW —§, ¢; 1),

9) (kB E+m—1 k 7t
:21‘ IB(E’ é)r’[k'*‘m"l)F( 3 N 2, ;C; 1—'775),

where r = V(¢ — )" — (@ —)* is the hyperbolic distance of (x, ¢) from (§, 1)
and 7 = V({4 1) — (® —§)* is the hyperbolic distance from the image point
(§ — ), see figure 1. A short calculation shows that ) becomes infinite (°)

Fig. 1.

like - 1/rtm—1) and 1/r'»—1 as r — 0 and # — O respectively, and these singu-
larities are indicated in the figure.

Now ) has the same singularities as the elementary solution of HADAMARD
[9, p. 104]. For m odd this elementary solution is not unique and in fact
itself is such a solution. For m even, however, the elementary solution is
unique and may be extracted from ) as follows. A well known transformation
of the hypergeometric function yields [3, p. 15]

k; 1 ——

E4+m—1 k r?
(10) F(m ) 9 7?: ey

=t (k—m+1 k r?
=L -3 )

() For m > 1. For m —1 the singularities are logarithmie.
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and, provided m is even, another 3, p. 21] gives

7 k—m+1 k e 1 re I‘(k)I‘( ) 7 k—m+1 kE 3—m_ 1r +
(—*2-—;?37 ’ _F) (k-l—m—l)[,(k) 19 T g ; rrlz)
2
(11)
P(k)P ) ) k+m—1 k m+1 r’)
+rk-m~|1rk<’r ( 3 T3
(=5 )0e)

Both of the hypergeomeiric functions appearing on the right hand side of (11)
are regular at r =0, when 14 0. Hence, it follows from (10) that, when m
is even, the first forms a multiple of the elementary solution, whilst the second
yields an additive regular solution, of the differential equation (8). Thus, the
required elementary solution (%) is, see (9),

etk _ _ 2
12) Vie, 6 E )= 2% F(k m+1 k 3—m, r),

7 Epim—1) ] ' 9 9 g2

for m even and t<=0. The present paper is concerned with the case m = 2,
for which

etk _(k—1 k 1 o

V(%’ t; §7 ’c):,r/T'rF(—_'z_‘ 2 2) lz) .

16 is well known (9, p. 179] that the elementary solution (12) satisfies the
original differential equation (7) in the pole variables & <

2. A Regular Cauchy Problem for t=1{, > 0. - When there are only two
space variables it is more convenient to wrlte (2, %) = (2, %), §,,85)=( n)
and thus avoid the use of subscripts. With this change, consider the problem
of determining that solution u=w(, t; £{) of the hyperbolic differential
equation -

, k

(13) Uk 4 Uy — Uoe — — U = 0,

which assumes on the plane t=1{ > 0, see figure 2, the boundary values
(14) W@_, ty; 8) =0, w’r(g; boy &) = f(ﬁ’)’

where it is assumed that f(x) possesses continuous derivatives of the second
order. According to HADAMARD (9, p. 166] the function w is unique and is

(°) The normalization is that r#—1V—1 as r—0 through positive values.
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given for > ¢, by

(15) Wl < b)= o Vi, b & fdedy,

(2P (e —to?

where the «finite part)» sign may be omitted in this case since, as will be
shown immediately, the integral is convergent. The absence of this sign in-
dicates that the direct verification of (15) is simpler than for the case of
general m.

v €7

ANDETE R Y

VAL N

é‘g = Q(T—to)

Fig. 2.

This verification can be best carried out by writing  — &= a(t—1,),
with & = (a, ), and

I?(Y; 5 to) = (‘C - to)2V(§, to; §, 7)

(16) — 2ktok(1 — ) F k—1 f‘ 1 ‘,_1: Y
= A TR+ —y et P ( Y ahy Y,)’

T— 1,

where * = «® 4- 2. Then (15) becomes

17 wE 1 )= 2%: jf 17(7, T; b)IE+ 2t — &y, - Bt — &,)dadf,
a*-Bi<1
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the integration now taking place over a fixed region in the (x, B} — plane.
Differentation under the integral sign now yields

oo = 217: j j [V.f + V(afe -+ Bf,)|deds,

(18)
wee = g [ [ (Ve 4 2Velofi - B) 4 V(e fun +- 208y + Bl
1 ([«
Weg = 5— mewdotdp,
(19) s 2 [ [

( Wy = Q%[[f’fy,,dadﬁ,

where the convergence of these integrals, as well as that in (17), is. assured
for t > ¢, by the form (°) (16) of V. The left hand side of (13) may therefore
be replaced by

[ﬂ (]7 % + (afe + ?fy)(2V + - V)

(20) _
+ (02 — 1fun + 20Bfuy + B* —1f,y) V}dadﬁ.

Now from ihe fact, noted at the end of the last section, that V satisfief

the equation (7) in the pole variables (E, 1), it may be deduced, see (16), that V

satisfies the equation

(1"‘7)17 (T—t)VY“’_(T"'to)QVTT"‘[;— 6Y+I£YE?__'§_D)]I7T+
@1 o B
+(x— tn){4—’ﬂtﬁ}]m - [6—%1—@ 7=o,

and hence that the integral (20) may be written in the form

@2) -2% f [UAf + Bfs -+ Cf,)x + (Df -+ Ef + FF,)s)ded,

where

() Thus the argument of the hypergeometric function is less than ome for 0 Sy <1,
and (t—+ £y)% — v%(tv — ¢,)® cannot vanish in the same range.
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and D, F, E are obtained from A, B, C respectively by interchanging « and j.
In detail, identification of the coefficients of f,,, f., and f,, in the inte-
grals (20) and (22) yields B, (C+ E) and F, and from symmetry it is clear
that ¢ = E. Knowing B and E, identification of the coefficients of f, yields 4,
and similarly knowing C and F, identification of the coefficients of £, yield D.
Finally, the equality of (20) and (22) is established by computing from these

values of 4 and D the coefficient o (4 -+ Dg) of f in the latter, and proving

that it is equal to the coefficient of f in the former by virtue of (21).

Hence in order to show that = is a solution of (13) there only remains
to be shown that for £ <t and #, fixed, with 1> {,, a(4f+ Bf, + Cf,) +
+ B(Df + Ef, + Ff,) tends uniformly (°) to zero as y — 1. For the integral (22)
is, by the divergence theorem, the limit of the line integral of 1/2mny times
this quantity, taken around the circle a® + f*=¢* <1. Now for fixed «, £,,
see () (16),

Vv, o5 t) = Kx, &) (1 — )71+ 0(1 — v?))

Ty, 5 )= K, tr(L — y*)*31 + O(1 — y*)],
Vily, ©; t) = Lix, £) (1 —7v*)~171 + O(1 — ¢?)},
where
Kbs, 1) = (e — GG Ll 4)= b ft — ]
Hence
1';7 7,4+ 26 — t) V. — Is el 1] EVOY PRV

and a4 + BD, which is y?/(t — ¢, times this quantity, tends to zero uniformly
as y — 1. Similarly it can be shown that «B + BE and aC + BF are each

1
0(1 — y*?® and hence tend to zero uniformly as y — 1.
Finally it may be seen from (16) that (1 — y?)® V tends to zero, and

Lo
that (1 — y?)? V. tends to unity, both uniformly with respect to v, as t — ¢, > 0.
Hence letting § — §, and © — £,> 0 in (17) and (18) one obtains

lim  wE t; §)=0,

by r—ty

lim w‘r(gy T; to) = 5n [f(f‘gn : ﬂ::a dedf = f(g_o)

é..—-—*éo,'r-—vtq

s0 that w takes on the correct CAucHY data.

(3) With respect to 8 = tan—1 p/a.
(%) See also (24) for the explicit expression of V.
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This completes the proof that (15) is a solution of (13), taking on the
boundary data (14) (*°).

3. Bounds on » and its Derivatives. - In order to obtain certain bounds
on w and its derivatives which will be required in the next section, it is
first necessary to find bounds for

, ~ Cey 2kt Kt — ¢,) (k —1 & 1 )
(23) V('r, 1 3 to) = (1 __ Y’)”Z[(’: i to)z — Y'.'(,: — to)ﬂ]k[ZF 2 y 2) 2! C y
and
7 . — 1 _k{(ﬁc"*‘to)_‘\’!h_’to)}l”
24) TS = e e — v —
2B+ 1R(l— 1) F-+1(x—1F, ) (v £, ) (1 — v*)12 7 (k +1 k% +1 3, C)
{ (T4 4,) — yi(r — &) |2HRe 2 72" 779 3y
where
- i
(25) C — F%)T— \ .
T—1, I
It will be shown immediately that for 0 <y <1, 0 < ¢, <1,
@) V() <AL —y)R
. k
_ o oc_.l——é,0<k<1,
(27) | Vely, ©5 to) | < Bre/t, (1 — y?)U2 1
& == 3’ k=1,

where 4 and B are constants (depending on k). These results are based on
the following bounds on Ffa, b, ¢; §) for 0 < { < 1, see [3, pp. 10, 15]:

(28) | Fla, b, ¢; §) | <M, c—a—b>0,
(29) | Fa, b, ¢; )| <M1 —§°+?° c—a—b<O.

The constants M and M depend on a, b and ¢; in what follows a subscript
on M will denote a particular application of (28), and a subscript on M a
particular application of (29). Notice that for 0 <y <1, 0<{, <1, the
variable § given by (25) lies between O and 1, so that these bounds apply.

In each of the three cases given below, the estimates are obtained by
using either (28) or (29) and replacing y by O or 1, and =4#, by <t in
appropriate places.

(19 As a matter of fact if (17) is taken as the definition of w, rather than (15), then w
is defined for ©>>0, and it is twice continuously differentiable and satisfies the differential
equation for t>>0. Limit signs are then superfluous in the last two formulas.

Atinali di Matematica ¢
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Casg I: 0<< k< 1. -~ For this range of k, c—a—b=1—k>0 for
the hypergeometric function in (23). Hence

2ktok(7 —_ to)
(T =) Pt P
(v.— &)t 12M, 2tM,
(1 — %)k = (1—y?)ir’

so that (26) holds with 4 = 2M,. For the hypergeometric function in (24),
¢c—a—b=—k<0 so that (29) must be used. This together with the
middle estimate for V in (30) yields

1 kf+ t.,)] (x — B, )t,%12M

‘VT|£L_t0”' T, | (1— y)eee

21 — B)E BT — b)*(r + o)1 — )R o

(x4 8)* — v*(c — & PFR - (ded)* Y

T+, (v — £)t,*PM,

2t — )| (1 — y*)eEr

4 ZHR(L — it"H (e — P + L)L — v
(4t P Y

(b + 120, K1 — Bl — y")PeitE,
== 72)1;2t01—k;2 + {1k

so that (27) holds with B= (k- )M, -+ k{1 — B)M,.

CasE II: k= 1. - For this value of %k the hypergeometric function
in (23) is identically unity. Thus the estimates (30) hold with M, =1, so
that (26) holds with 4 = 2. Again, the second term on the right hand side
of (24) is identically zero, so that the bounds (31) hold with M, =1 and
M, = 0. Thus finally, (27) holds with B = 2.

CasE III: k> 1. - For these values of k, c—a—b=1—%k < 0 in the
hypergeometric fanction in (23). Hence from (29)

22—rg cl~¥(x — t,) M,

(1 — v¥)i2e + ¢ )a—k[l —y (l: :- ;! ) ]1—k{2 )

92—k{ gi—k(x — §)M,

NES

. M,
(30)
<

31) =k + 1)[b

| V<

= 112 2 T— LY
(1 — 1) 3w+ 2, [I—Y(H_t”

- 22k —kr — 4, + o)1 M,

e

(= £, 12 M, M,
T =y T (1 — )
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so that (26) holds with 4 =2M,. For the hypergeometric function in (24),
¢—a—b=—k <0 as before, so that (29) together with the last but one
estimate above for V gives

= 1 k(x + 4)](c — 4,)4,\°M,
| V| S\‘C — ¢, + 4<t, | (1 — yP)L3c12
B+ k{l— h (s — (L — Y,
£ 13-k 1 z"-to'g—kla‘ltrc,
(t + &) [ _Y(m‘o)] (4=ty)
(T + to) . (t - to)tolmﬂz
<0+ g =ty (= v
2Rkl — 1)to(x — £)*(1 — v*)'2M,
3—kok|{ __ntfT— o ’
(e 44 T[l Y(r+t)]
(b + D20, Kk — 1)(c — &) + (1 — Y’)"’M
(I — y°)ir% 112 PR TR e
S(k + 1M, Kk — 1)1 — 7‘)1/2M
( 1 — Ys)l/atollz t 1/2

so that (27) holds with B = (% + 1)M, + k(k — 1)}, .

Suppose (§, t) is restricted to a finite closed region R of interest. Then
the region of the plane t=¢#, for which f influences the function w, given
by (15), in B will be closed and finite also, and hence f, fs, fy, fow, foy, foy
will be bounded there by N, say. Using (26) to obtain estimates from (17),
(19) and the similar expressions for w, w,, and we,, it is clear that in R

AN
82) [wl, mel, ], [, |0t || < o [dej(l Ty = AN

Similarly, using (27) in (18), one has the estimate

(33) || < o f a [ ; a(fN‘ A7 1Y -+ 24 = L V7.
0

Since w satisfies (13), it is clear from these estimates that one has the ad-
ditional estimate

kBNwo-1
t>

(34) ' Wer l = -+ 2AN('C + k).
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4. A Singular Cauchy Problem for the Non-homogeneous Euler-Poisson-
Darboux Equation. - Consider the problem of determining a function u(§, z)
which is twice continuously differentiable for t > 0, once continuously diffe-
rentiable for © =0, and has the properties that

k
(35) Uz = Ugy — Uy — o U, = f@, T)’ > 07
(36) u(x, 0)=0, Uz, 0)=0,

where f, fz, fu, fit, [t [an are assumed continuous in the half space 1 = 0.
It will be shown that the unique solution of this problem is given by the

formulas
T

1) we, o= [l v tdty, >0
0
(38) u§, 0) =0,
where w(, ; £,) is given by the equation (17) with f{x) replaced by fle, t,).
Moreover it will be shown that the solution (37), (38) has continnous «space

derivatives » wug, ., Uz, Uey, Uqy for 1=0.
One has formally, from (37) for > 0

“, = [ wiE, T L)dt, + wiE T ),
0

=Jw1@’ T; Lo)di,,
[
from (14). Again,

u.wzjwﬂ(g_, 5 L), + 0§ ;5 1),

= [0l =5 bty + 1 )

from (14). Finally

wep = [l 55 ), o= [y <5t
0 0
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so that since w satisfies (13) for each ¢,, 0 < ¢, < 7, u satisfies (35) for = > 0.
There remains to be shown that each of the integrals appearing in this formal
presentation is convergent. Now if (§, 1) is restricted to some finite closed
region & of interest (bounded partly by t=0), then the region of v —
space for which f(x, {,) influences the function u, given by (37), in & will be
closed and finite; hence f, fu, [y, fzas [zy> fyy will be bounded there by 9,
say. The convergence of each of the integrals above now follows from the
estimates (32), (33) and (34), with- N replaced by 9, since a <1 for k> 0,

see (27).
It is also clear from these estimates that
U S ATCE, | | ST 2400,

go that %, u, — 0 as v — 0. Hence, see the second formula in (38), u is con-
tinuous for 1 =0 and since | u/t|=<< A9+ (which tends to zero as v — 0) u. is
also. In addition, the conditions (36) are satisfied.

The space derivatives (uz, ., s, gy, U,y are given, for >0, by

T
f (wg, Wy, W, Wy, Wy,) dE, respectively, these integrals being convergent and
A

each tending to 0 as T — 0, from (32). Hence since these space derivatives
are all zero for T =0, see (38), they are continuous for t=0.

The uniqueness follows from the fact that (35), with f = 0, and (36) imply
u =0, see [11, 12].

5. Equivalence of the Given Cauchy Problem and a Problem in Integral
Equations. - Let (g, t) be continuous for 1= 0 together with its « space de-
rivates » hg, hy, he, hey, By, and g(@) a twice continuously differentiable
function (if k= 1) or a thrice-continuously differentiable function (if 0 < k < 1).
Then it will be shown that there ewists unique funclion u(, 1), continuous
for © =0 {logether wilh its space derivatives s, U,, Wes, Usy, Uqy, Which
satisfies

39) Lu) — hu = uge + Uy — Uy — ?ur —hu=0, >0,
and takes on the inilial dala
(40) ux, 0)=g(), ufx, 0)=0.

This will be proved by demonstrating the equivalent (second) proposition in
integral equations, namely: There exists a unique solution of (*)

T

(41) ufy 1) = u,f§, z)+% f dt, f / T, <, thiz, t)ule, t)deds,

0 oA=L

(**) The convention is made that for t==0 the integral is zero.
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where x =& + aft — t,), which is continuous for v =0. Here u,(&, 1) is the so-
lution of the initial values problem, posed first, for h =0. In order to demon-
strate this equivalence it will be sufficient to show that any solution of the
first problem is a solution of the second and conversely.

Let u(, ) be a solution of the first problem. Then u = u — u, satisfies

L(E) = L{u) = hu,
and takes on the initial data
ulm, 0)=0,  ufz, 0)=0.

Hence putting f—= hu, the last section shows that

u, ©) =ul, ©)— u,(§ “’=zi7: / Tdto f [ Vhudadg,

0 at-+Bi<t
where the arguments of V, h, u in this integrand are the same as those in
(41) respectively. Thus u is a solution of (41).

- Conversely, let u(§, t) be a solution of the second problem. Then it will
be shown immediately that it has continuous space derivatives wug, u,, e,
Ugy, Uy for T =0. Hence, as in section 4, the operator L acting on the in-
tegral yields f(§, 1) =h(§, tju(§, t) so that

L(u) = L(u,) + hu = hu.

Thus % is a solution of (39). Moreover it has been shown that the integral
in (41) and its t-derivative vanish for t=0, so that u satisfies the same
CaucHY data as #, on ©=0, namely {40).

In order to show-that integral equation (41) possesses a unique continuous
solution for © =0, and that this solution has the property that its space de-
rivatives up to and including the second order are continuous for t =0 also
the method of successive approximation due to PrcArp will be used. A se-
quence of functions u,(§, t), n=1, 2, 3, ... is defined by the recurrence re-
lation (*?)

T

1 ~

42) w9 =g [ e f [ Viy, @ ) hugdeds, n=1, 2, 3, ..,
L

where the arguments of # and #,_, in integrand are the same as for & and u

in (41), and u,(, 1) is the function occuring in that equation. Then since u,

has continuous space derivatives up to and including the second order for

{1%) Thus, as will be clear immediately, L(u,)==hu,_, and u, has zero Cauchy data
on t:=0,
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t =0, see [12] (*%), it follows by induction that the same is true for u,., for
n=1, 2, 3,... For it was shown in the preceding section that these deriva-
tives can be formed from an integral such as that in (42) provided &(z, i)
and u,—i(2, {) have such continuous derivatives for {, =0, and the integr_él is
defined to be zero for t= 0. These derivatives 2u,/oE, 3u,/dy, 9*u,/SE?, Bu,/dEdy,
R*u,/on® will be given by a formula similar to (42) with hw,_; replaced by

oh OUpn—1
o U1t h e ’
Sh S’M/”.._l
37/ Up—1 - h 3y »
*h ok dup—1 O Uyt
(43) 7 R P h o
*h oh aun_1 + _alb 3%”_1 + Q’u,,. -1
oy Vo oy V oy ow Swdy
oth oh 2%, P Uy
-a? Up—1 + 2 @ ay +h ay, )

respectively. There remains to be shown that the series 2 #a(, T) converges

uniformly in any arbitrarily large retrograde half-cone w1th base on © =0,
together with the corresponding series of space derivatives. The solution of the
integral equation will then be the sum function of this series, and it will
have the stated continunity properties.

In such a come, u,(&, 1) and its space derivatives are determined by the
values of u,_4(& 1) and its space derivatives in the same cone. Let H be an
upper bound for the absolute values of h(, 1) and its space derivatives, and M
an upper bound for the absvlute values of #,(&, t) and its space derivatives. Then
ouy SPun| |Pu, 2t An H " M2
k| > | 8 | |SEam |’ T @2n—1)2n—3)..1’
For clearly from (26), (42) and the corresponding integrals involving (43),

St Sty

44)  Ju.l, n=>1.

T 2 1
1 Az . .
Iui lsﬁofdtoa[de[YdY[I——-?ﬁ/—g.H. M]—AHMT,

lau ‘3“ l<2AHM'c’

*u,

SE'I ’95371 32“

ls 4AHMr=?,

(3) Although it is not stated explicitly in that paper, it follows from the formulas
given there that u, has continuous space derivatives up to and including the second order
for ©==0, provided that for ({) 0 <<k <1, i. e. m—2< k< m—1, g has continuous third
order derivates, and for (é) k=1, i. e, k==m — 1, g has continuous second order derivatives.
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g0 that (44) is true for n» = 1. Moreover assuming (44) is true for 5, one has
in a similar manner

tzn

2n 1
1 A n Anrn 0
| Untt | g 0] dtojde/‘fd\’la—»)r/z'ﬂ'z A Y e Tyon — 3y 1)

22"An+lHn+lM,rzn+2
“Enr)2n—1)..1"

gt Uy 9 . 9tn g+t frn-+1 Jq2n-+2
k% [’ o 2n+1)2r—1)...1 ’
32“n+l 32Mn+1 azu”+l 4 . 9tn gn+1frn-bs Jrente
P R = R Grnrl@gn—1)..1 °

so that (44) is true for # -+ 1. The uniform convergence in the half-cone of the
six series concerned now follows from that of the series whose general term
is the right hand side of the inequality (44).

The unigueness follows by induction in the usual way. Suppose u®, u®
are continuous solutions and let %= u® — u®, Then if M i an upper bound
on | % | in the half-cone, the integral equation

(45) ~21 [dt /[ (¥, © t ), t)ulm, t,)dadp,
A<t

satisfied by u, implies

AH"Mer
(46) | uE, V== TEn =9 .1

for any integer » =1, in this half-cone. For if (46) is true for n, the equation
(45) gives

T 2n 1 ~
- 1 Ar AnH It
| wl 1) | Sg,;/d%_/de ./YdY l“*—uz B on—tem—3.1)
0 0 0

An+£H91+1M,c!n+2
TP+ )2 —1)..1’

so that (46) is true for » + 1. That it is true for n =1 follows on using the
original bound M in the integral of (45). Simce for each fixed t the right
hand side of (46) tends to zero as % — oo, u=0 in an arbitrarily large
half-cone, and hence everywhere for ©=0.
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Concluding Remarks. - In section 2, a certain regular CAucBY problem,
with data (14), for the equation (13) was solved. As was remarked in the
introduction, HADAMARD’s method, upon which this solution was based, leads
to «finite parts » when the corresponding CAUCHY problem in m > 2 space
variables, for the EULER-PoI1ssoN-DARBOUX equation (3a), is considered. As
is well-known, the relation between the concept of « finite part» and analytic
continuation has been developed by Rirsz and applied to the solution of
regular CAUCHY problems [4] for second order equations, and these ideas
have been extended to linear partial differential equations of arbitrary order
with constant coefficients by GARDING [6]. DavIs [18], in a doctoral dissertation
now in preparation, has applied a modified version of Ri¥sz’ s method to
solve the regular CAUCHY problem

Au——uTT—q—’_IEuT:O, >, >0,

u(f; t) = f(w)y MT(_&}, to) = 07

2

with A= 3 = and m arbitrary.
i=1 OF;

The following three remarks concern the CAUCHY problem treated in the
present paper. First, it is clear that the restriction made that the given function f,
appearing in (14) of section 2, be defined for all x is adopted for convenience.
Only unessential modifications arise if the function f is not defined for all .
A similar remark applies to the functions f(x, {), g{x) and h{x, ¢). Secondly, it
should be noticed that the CAUCHY problem (39), (40) of section b is wellposed
in the sense of HapAMARD. By this is meant that if (in the notation of (39))

L) —hu =0, >0,
uPz, 0) =gWNx),  ulz, 0)=0,

where ¢ =1, 2, and if | g) — g® | << e on the base (in the plane t = 0) of a
given retrograde half-cone, then | u® — u® | < Ke throughout this half-cone,
where the constant K depends only on k, the upper bound H for |h| in
this half-cone, and the height t, of the cone. The proof follows in the usual
way by successively bounding | u{) — «® | and noting that a similar theorem
holds for | u{) — uf) | . Thirdly it should be pointed out that the present
method breaks down when linear terms in #: and u, are introduced into (39).
For then the integrand in (41) will include terms in u, and u,, and upon
differentation of the integral equation there will always be derivatives on the
right hand side which are of one higher order that on the left. This means,
see (42), that from a knowledge of bounds on u, and its derivatives up to the
second order, only bounds on u, and its derivatives up to the first order can
be obtained.

In particular, the theorem of section 5 holds when the functions g and h
of (39) and (40) depend on only ome space-variable, say g(x)= g(x) and
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RE ©="n(E 7). Then clearly the unique solution u(f, t) = u(E, 7) depends only
on one space variable . Thus as a special case a corresponding theorem for
the differential equation

Ugg — Wnr — g e — BE, TJu =0,

in one space variable E, is obtained (cf. GERMAIN and BADER {7] for a related
theorem for & =1/3).
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