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Summary. - The  present  paper  e~ntains an  existence and  uniqueness theorem for the s ingular  
GAUCltY problem for the non-homogeneous "EU'LER-POISSON-~)ARBOUX equation: 

k 
u ~  + u ~  - -  u t t  - -  ~ u t  = f ( x ,  y ,  t), t ~ O, k ~ O, 

u(x, y, O)~-ut(x, y, O)~-O. 

The solutiou o~ this problem is used to prove an  existence and uniqueness theorem for 
the followi~lg s ingular  GAUCHY problem : 

k 
Usx -i- Uyy - -  Utt ~ ~ U t - h(x, y, t)u = O, t ~ O, k > O, 

u(x, y, O)= gCx, y), udx, y, O)----O, 

by the method of  successive approximat ions .  

In t roduct ion .  - This paper  is concerned with the solution of the follo- 
wing singular  CAUcHY problem. Let  hlx, y, t) be continuous (i) for t ~ O  
together  With its derivatives h~,  hu,  ha:x, hwz~, hu v ,  and g(x, y) a twice 
continuously differentiable funct ion (if k ~  1) or a thrice continuously diffe- 
rentiable funct ion (if 0 ~ k  ~ 1). Then it will be shown that there exists a 
unique function u(x,  y, t), continuous for t ~ 0 together with its derivatives 
u~,  uu,  uxx,  uwv, uuv, which is twice continuously differentiable in (w, y, t) 
for t ~ O, satisfies 

k 
(1) L ( u ) - - h u - ~ u ~ + u  w - u u -  i u t  - hu  - O' k ~ O, t ~ O, 

and takes on the regular  initial data  

(2) u(x, y, o ) =  g(x, y), us(z, y, O ) -  O, 

on  the singular  plane t----O. 

(*) The research of this author was supported by the United States Ai r  Force through 
th~ Office of Scientific Research. 

(l) In  this paper all functions wil l  be considered defined for all real values of their 
arguments, unless otherwise specified. 
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(3a) 

with data 

This constitutes a generalization ifor the special case m - ~ 2 )  of the 
singular CAUCHY problem for the EULER-POISSON-DA~BOUX equation 

k 
=I ~ i  2 ' 

(ab) u(x,, x , , . . . ,  xm, 0 ) = g ( x , ,  x , , . . . ,  ~,,), 
u~(~,, x , , . . . ,  ~.,,, O)=  0. 

This latter problem has been solved by WE:~s~.I~ [11], and DIAz and 
W E I N B E R O E R  [ i 2 ] .  

The present analysis is restricted to the case of two space variables 
since then the definite integrals concerned Ithough improper) are convergent. 
For more than two space variables the corresponding improper definite 
integrals are divergent, and HADAMARD' S concept [8; 9, p. 133] of the finite 
parts of these integrals must be used. The restriction k > 0 is made since 
for k < 0  the solutions of (31 itself are not unique (~t, and for k - ~ 0  the 
problem is no longer a singular one. 

In section 1 the elementary solution, in the sense of I-IADAMARD, is 
f o u n d  for (3) from the known fundamental  solution of a corresponding 
elliptic equation, given by D:AZ and W~,INST~.IN [15]. This elementary solution 
(for m ~ 2 )  is used in section 2 to construct the solution of a regular 
CAUCHY problem on t---~t o > 0 for L(u)-~O, and in section 3 bounds for 
this solution and certain of its derivatives are obtained. The solution of this 
regular problem is then used in section 4 to construct the solution of a 
singular C~.ucEY problem on t ~ 0 for the inhomogeneous equation 
L(u)--f(x,, y, t). The method used is patterned after that of DUHAM]~L (') [2] 
for regular  C A U C H I  r problems, and the result obtained represents an extension 
of the theory of HADAMARD [9, p. 166] to a singular initial values problem. 
The bounds obtained in section 3 are employed in 4 to show that certain 

DUHAMEL integrals >> which are improper, are nevertheless convergent. 
Finally in section 5, the given CAUCHY problem (1) and (2) is solved by 
considering an equivalent problem in integral equations, the equivalence 
being demonstrated by the results of section 4. 

In  the conclusion it is shown that the singular problem (1)and (2)is  
well-posed, but that the present method fails whgn space-derivatives of the 
first order (even with regular  coefficients) are included in (1). The analysis 
indicates that difficulties may be expected in this case. Finally it is remarked 
that the corresponding problem for one space variable is covered, by the 
method of descent, in the present problem. 

(s) See [11; 12]. 
(9) A l s o  k n o w n  as  t h e  m e t h o d  of  v a r i a t i o n  of  p a r a m e t e r s  o r  * S t f i s s m e t h o d e  , .  
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1. The E lemen ta ry  S o l u t i o n . -  D ~ z  and W E ~ S V E ~  have shown [15] 
that the s ingular  elliptic equation 

k " ~ 
(4) ~ u  + u~,~, + ~ u~ - -  O ; a ~ Y, 

i = 1  ~ll~i t ~ 

has, when k ~ 0, a fundamenta l  solution 

(5~ 

7~ 

f sin~-~a da 
U{b~)(~' Y) = (0 z --I- b ~ -t-  y~ ~ 2by  cos :¢) ~+,,,-~l~ ' 

0 

where ~ ¢ - - ( ~ ,  ~ , . . . ,  x,,), ~ - - - x ~  Z ~ ,  and the singulari ty is at (0, b), 

The function (5) is clearly defined for complex values of y and b also. 
In  particular,  on putt ing y - - i t  and b--i '~,  with t and ~ real, it may be 
inferred that 

7~ 

f sin~-la da 
(61 0£(x, t; ~1 - -  (t' + ~ - -  0 ~ - -  2":t cos ~)(~+'-~)l -~' 

o 

is a solution of the s ingular  hyperbolic equation 

k 
(7) Au - -  u** - -  ~ u, - -  O. 

It  is easy to verify that for ( ~ - - 0 > ~  and t ~ 0 ,  the region of (w, t) - -  
space which is of present  interest, e).~(x, t ;  :) is real and finite. 

As was noticed by DxAZ and WEINS~,I~ for U(b k), the function ~ may 
a 

be expressed in terms of the hypergeometr ic  function. T h u s  put t ing ~ - -  cos*~,  

z = 4~t/[(t ÷ ~)* - -  p*], (6) becomes 

1 

o~(x. t;  ~) -~- 2-"~(~l~t){k+'~-1~/~ ~ - I ( I  - -  ~ ) ~ - i ( 1  - -  z~)-(k ~-"~-lll~d~, 
o 

, ~ ,  k ;  , 

where EULER'S integral  for the hypergeometr ie  function [3, p. 14] has been used. 
Now v - ~  t~u defines a correspondence between solutions u of the equa- 

tion (7) and solutions v of its adjoint equation (4) 

(8) ~ v  - -  v ,  + k(v / t ) ,  = O. 

(4) k s imilar  fact  has been  noted by OLEVSKII [5] for the ell iptic equat ion (4), and by  
TRICOM[ [1] for a par t icu la r  case of the same equat ion.  
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Hence  for any ~ - - (~ l ,  ~ ,  ..., ~,,,) a ~iugalar solution of this lat ter  equat ion is 

(9) 

t; t; .:),' 

__ 2k_lB(k k~ __ t k F[k  -l- m - -1  k r ' )  
- -  ' 2]r 'Ck+~-l)  ~ 2 ' 2 '  k ;  1 - - - r ~  

where  r - - V ( t - - x ) ' - - ( ~ - - ~ ) ~  is the hyperbolic distance of (x, t) from (~, "c) 

and r ' -  V ( t - 4 - ~ ) : - - ( x -  ~)" is the hyperbolic distance from the image point 

(~, --~),  see figure 1. • short calculation shows that G1) becomes infinite (5) 

~ = 0  

/ 
/ 

/ 
/ 

/ / "  \ \  t . / / / / "  \ \ \  ~- 

/ \ \ 
/ \ \ 

/ \ \ 
/ \ \ 

/ \ \ 

Fig. 1. 

l i k e  l/r('~-1) and 1/r'("-l) as r ~ 0 and r'  --* 0 respectively, and these singu- 
larities are indicated in the figure. 

Now ~ has the same singulari t ies as the e lementary  solution of HADAMA1RD 
[9, p. 104]. For  m odd this e lementary  solution is not unique and in fact ep 
itself is such a solution. For  m even, however, the e lementary  solution is 
unique and may be extracted from e2) as follows. 2k well known transformation 
of the hypergeometr ic  function yields [3, p. 15] 

(10) F k + m - - 1  k --~-i 2 ' 2' k; 1 ~-~ , 2 ' 2  ' k ; 1  - -  

(~) F o r  m ~ 1. F o r  m ~ - 1  t h e  s i n g u l a r i t i e s  a r e  l o g a r i t h m i c .  
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and, provided m is even, another  [3, p. 21] gives 

(ll) 

F ( k - - 2 +  l, k 1 r ~ :  l ' ( k ' F ( - ~  -1) ~ [ k - m +  l k 32m . ; r* 
~,k; r,,] F ( k + . 2 _ l ) F ( k ) Z ,  ~ 2 ' 2 '  ~-~) -b 

+ _ _  ( ~ T - ' F I ' k H . - - 1  k , , , + 1  

Both of the hypergeometr ic  funct ions  appear ing  on the r ight  hand  side of (11) 
are regular  at r = 0, when  ": =1= 0. Hence,  it follows from (10) that, when  m 
is even, the first forms a mul t ip le  of the e lementary  solution, whilst  the second 
yields an addit ive regular  solution, of the different ia l  equat ion  (8). Thus,  the 
requi red  e lementary  solut ion (6) is, see (9), 

V(x, t; ~, "c) 2~t k F ( k - - m + l  k 3 - - m  r ~) 
- - - - ~ ' ~  ~ 2 ' ~ '  2 ; V  ~ ' 

for m even and z :4= 0. The present  paper  is concerned  with the case m - - 2 ,  
for which 

2kO F [ k - - 1  k 1 r ~) 
v(~.  t; ~, ~ ) = r - ~ r  ~ ~ ' ~' 2; ~ " 

It  is well known [9, p. 179] that  the e lementary  solution (12)satisfies the 
original  different ia l  equat ion  (7) in the pole variables (~, % 

2. A Regular  Cauehy Prob lem for  z - - t  o ~ 0. - W h e n  there are only two 
space variables it is more convenient  to wri te  (x~, x~)-- (~,  y), (~ ,  ~)-----(~, ~) 
and thus avoid She use of subscripts .  With this change,  consider  the problem 
of de te rmin ing  that  solut ion u---w(~, ~; to) of the hyperbol ic  different ia l  
equat ion 

k 
(13) u ~  -4- u ~  - -  u ~  - -  7: u~ - -  0, 

which assumes on the plane z : t o ~ 0, see f igure  2, the boundary  values 

(14) w{vc, to; t o ) =  0, w~(a~, to; t 0 )= f (x ) ,  

where  it is assumed that  f(x) possesses cont inuous  derivat ives of the second 
order. According to HADA~4A-RD [9, p. 166] the funct ion  w is un ique  and is 

(6) The normal iza t ion is that r ' n - - l V ~ l  as r ~ O  through posi t ive values.  
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given for ": > t o by 

1 f , /  V(x, to; ~, ":)f(x)dxdy, (15) w ( ~ .  ":; t o )  ~ ~ - ~  _ _ _ 

where  the ~ finite part:,) sign may be omitted in this case since, as will be 
shown immediately,  the integral  is convergent.  The absence of this sign in- 
dicates that the direct verif icat ion of (15) is simpler than for the case of 
general m. 

~ f I _ ~ - ~ _ )  -- ('~ 

/ I  / i ( \  

• = 

Fig. 2. 

This verification can be best  carr ied out by writ ing x - - ~ - ~ a ( ~ - - t o )  , 
with a = (a, ~), and 

(16) 

fr(.f, ~; to)= (~ -  ,.o)~v(~, to; ~, ":) 

2~t ,k(~-  t,) _ / k  -- 1 
= (-1--v')'/~[(~+to)'--~"i~--t°)'}~/2 ~ / 2 

k 1 1 - -  T' \ 
- - '  ~ '  ~;/~+t°~' ) 

where ~ " ' - - a ' +  ~.  Then (15) becomes 

(17) w(~,~,+; to) - 1  .j~ V(T,+C;to)f(~-I-:¢m--to+~q-t-fJ+--to)d+ed~, 
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the integration now taking place over a fixed region in the (a, ~) - -  plane. 
Differentation under the integral  sign now yields 

(18) 
w.~ --" l f f  [~5:f + V(af~ -I-~fy)]dad~, 

(19) 
l ffcf=d~,d~, w~ --  ~-~ 

where the convergence of these integrals, as well as that in (17), i s  assured 
for z > to by the form (7) (16) of V. The left hand side of (13) may therefore 
be replaced by 

(20) 
+ (o~' - -  lf,~.~ + 2a~f,~, + ~" -:-. lf,,)~]dad~. 

Now from the fact, noted at the end of the last section, that V satisfies 
the equation (7) in the pole variables (~, ~), it may be deduced, see (16), that ~r 
satisfies the equation 

+ 

{21~ 
+ ( z - - t o ) J 4  k{x-- - - [6  2k(z-- t°)] It, ~ t ° ) l~ '=o ,  

and hence that the integral (20} may be written in the form 

(22) ~ j f  [(Af 

where 

A _ _  

i~ to)' y 

B -~-- (~x ~ -- 1) a~ 
- to) ~' c = It - to) ~' 

k,, 

(7) Thus |he  a r g u m e n t  of the hype rgeomet r i c  funct ion is less than one for 0 _ _ ~ y ~ : l ,  
and (z-4-to) ~ - - 7 ~ ( ; - - t o )  ~ cannot van i sh  in the same range.  
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and  D, F, E are  obta ined  f rom A, B, C respec t ive ly  by i n t e r c h a n g i n g  a and  ~. 
In  detail ,  iden t i f ica t ion  of the coef f ic ien ts  of fx~,  fxu and  fvv in the  inte- 
grals  (20) and  (22) yie lds  B, (C + E) and  F, and f rom s y m m e t r y  it is c lea r  
tha t  C - -  E. Knowing  B and  E, ident i f ica t ion  of the coeff ic ients  of fx yie lds  A, 
and  s imi la r ly  knowing  C and  F, iden t i f ica t ion  of the coef f ic ien ts  of fv yie ld  D. 
F ina l ly ,  the equa l i ty  of (20) and  (22) is es tabl ished by compu t ing  from these 

1 ( A  -t-D~) of f in the lat ter ,  and proving values  of A and  D the  coeff ic ient  ~-ff 

tha t  it is equa l  to the  coef f ic ien t  of f in the  fo rmer  by v i r tue  of (21). 
H e n c e  in o rde r  to show that  w is a solut ion of (13) the re  only  r e m a i n s  

to be shown that  for ~, z and to fixed, with ~ t o ,  a ( A f + B f ~ + C f u ) +  
+ ~{Df + Ef~ + Ffu) t ends  un i fo rmly  (s) to zero as "C ~ 1. For  the in tegra l  (22) 
is, by the d ive rgence  theorem,  the l imit  of the l ine in tegra l  of 1/2ny t imes 
this quant i ty ,  t aken  a r o u n d  the c i rc le  a ~ - I - ~ 3 ~ - ' f ~ <  1. Now for fixecl x, to, 
see (9)(16), 

~r ('5 z ; to) - -  K ( z ,  to) (1 - -  yo-)- ' le[1 + 0 ( l  - -  y'}] ,  

~rr(?, ~ ; t o) ---- K(% to)v(1 - -  V')-a!~[1 + 0(1 - -  y')], 

~r,(V, • ; to) = L (':, to) (1 - -  V')-~te[l + 0(1 - -  ?')], 

w h e r e  

H e n c e  

K(z, to) ----- (~-- to)(to/Z)~/~; L(z, to)= (t,,/~)k/efl 
k(~ - -  2 z  to)]. 

i ] ~" Ir v + 2(z -- to)l?~ - -  3 k(: --z to) V = 0(1 -- ~,,),l~, 

and  ~A -+- ~D, which  is 72/(.: _ toff t imes this quant i ty ,  tends  to zero un i fo rmly  
as ~ ' ~  1. S imi l a r ly  it Can be shown that  a B + ~ E  and a C + [ 3 F  are  each 

t_ 
0(l --.f2)~ and  hence  tend to zero un i fo rmly  as ,( --~ 1. 

F ina l ly  it m a y  be seen f rom (16) that  (1- -y~)2  V tends  to zero, and  
1 

that  (1 - -  ?~)-~ ~r tends  to uni ty ,  both un i fo rmly  with  respect  to % as • ~ to > 0. 
H e n c e  le t t ing { ~ ~o and • --* to > 0 in (17) and  (18) one obtains 

l im w(~ ,  z ; to) - -  0 ,  
~,--+ ~o, "c ~ to - 

1 
l im w,(~, z ; t0) = ~-~ ~ -y~iT~ d , p  ---- f(~0), 

~ - - -~  ~-0, ~ - - ~  ~ - 

s o  that  w takes  on the  cor rec t  CAUcH¥ data.  

(s) W i t h  r e s p e c t  to 0 ~-~ t a n  - I  f3/~.. 
(9) S e e  a lso  (24) f o r  the  e x p l i c i t  e x p r e s s i o n  of V~. 
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This  completes  the proof that  (15) is a solut ion of (13), tak ing on the 
boundary  data  (14) (,o). 

(23) 

and 

3. Bounds  on w and i ts  Derivat ives .  - In  order  to obtain cer tain bounds  
on w and its der ivat ives which will be requi red  in the next  section, it is 
first  necessary  to find bounds  for 

?('r, ~ ;  ~o) ---- (1 - ~,,)~[(-: + ~o)' - Y:(~ - -  ~o)'] ~ "  ~ ' ~ '  2 ;  ~ ' 

(24) 

ffJ~', "c; to) '-[  1 k { ( ' c ÷ t . ) - - y ' ( ' c - - t o ) } } l ~ +  
- -  to t (~ + to)'  - -  ~'~(~ - -  to)" 

2k+lk(k--1)to~:+I(x--to)'('c-b~o)(l-- T')I/~ (k 
- t  t (~ + to) '  - -  ~':(~ - -  to) '  }~+~a F 

where  

1 - -  ~'~ (~5) ~ = (~+ t.~'_ y, 
- to/ 

+ 1 ,  k 3 ) 
2 9 +1 '  ~; ~ 

It  will be shown immedia te ly  that  for 0 ~ T ~ 1, 0 ~ to ~ % 

(26) I ~V (y, ,: ; to) [  ~ A x / ( 1  - -  y')tl2, 
k 

a - - l - - B ,  O < k < l ,  
(27) I V-(Y, ": ; to) l ~  B' :~ / toa(1  - -  .f ')~ls 

1 a- ' -  ~, k ~ l ,  

where  A and B are constants  (depending on k). These  resul ts  are based on 
the fol lowing b o u n d s  on F(a, b, e;  ~) for 0_~ ~ < 1, see [3, pp. 10, 15]: 

(28~ ] F ( a ,  b, ~ ; ~) I <-- I~, c - -  a - -  b > O, 

(29) I F(a, b, c ; ~)l ~ M(1 - -  ~)c-a-a, c - -  a - -  b < 0. 

The  constants  M and M depend on a, b and v;  in what  follows a subscript  
on M will denote  a par t i cu la r  appl ica t ion of (28), and a subscr ipt  on ~r a 
pa r t i cu la r  appl icat ion of (29). Notice that  for 0 ~  y < 1, 0 ~  to < '% the 
variable  ~ given by (25) lies be'tween 0 and 1, so that  these bounds  apply. 

In  each of the three cases given below, the est imates are obtained by 
us ing e i ther  (28) or (29) and rep lac ing  ? by 0 or 1, and :t: to by • in 
appropr ia te  places. 

(10) As  a m a t t e r  of fac t  i f  (17) is t a k e n  as the  de f in i t i on  of ~v, r a t h e r  t h a n  (15), t hen  ~v 
is d e f i n e d  for  x ~ O, a n d  i t  is tw ice  c o n t i n u o u s l y  d i f f e r e n t i a b l e  and  sat is f ies  the  d i f f e r en t i a l  
e q u a t i o n  for  x ~ O. L i m i t  s igns  a re  t h e n  supe r f l uous  in  the  las t  two formulas .  

A*tts~/i di MGtem~t~  6 
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CASE I :  0 ~.. k ~ 1. - For  this range 
the hypergeometr ie  funct ion in (23). Hence  

(30) 

SO 

c - - a - - b = - - k < 0  so that  (29) mus t  be used. 
middle  es t imate  for V in (30) yields 

of k, c - - a - - b - - 1 - - k ~ O  for 

1 k(t + to}] (t - -  to)tokl2M, 

2k+lk(1 - -  k) to~+l (~  - -  to) ' (~ + to)(1 - -  y e ) l l 2 ~  
+ ~ ¥ ~ y - ~ - ~ _ ~ / ~ : i ~ ) ~  - , ,  

r ,~ + to ] (~'-- to)tok/~M, 
(31) + to)i" (1 - -  y , ) , /~ . :kl~  + 

+ 2k+lk(1 - -  k)tok+1(~[4tto] ~+~r~- to)"(~ + 1o)(1 - -  y,)ll'~ _~,, 

(k + 1)'cl-~/2M, k(1 - -  k)(1 - -  y~)l12%l-kJ~M, 

- ~ - -  ~ t o - ~ - k l ~  + ~o~_~l~ , 

so that  (27) holds wi th  B - - ( k +  1)Mt- t -k (1- -k)M~.  
CASE I I :  k = - 1 .  - For  this value of k the hypergeometr ic  funct ion 

in (23) is identical ly unity.  Thus  the es t imates  (30) hold with M ~ - - 1 ,  so 
that  (26) holds with A - - 2 .  Again, the second term on the r ight  hand  side 
of (24) is identical ly zero, so that  the bounds  (31) hold with M~-= 1 and 
M~----0. Thus  finally, (27) holds with B - - 2 .  

CASE l I I :  k ~ l .  - For  these values of k, c - - a - - b - - 1 - - k ~ 0  in the 
hypergeometr ie  funct ion  in (23). Hence  from (29) 

2~-~ to@-~(~  - -  to)M~ 
F t o~ ] l - - k l  2 ' 

.~ 2~-kto':Z-~'(~ __ to)M~ 
(1 - -  V')'l~(~ + / o ) ~ - ~ ' [ 1  - -  y J ' : ~ ] - -  t°Y]zt~'j 

~ 2 ~ - ~ / 0 t ~ - ~ ( ~  - -  to)(': + t o ) ~ - ~ M ~  

(1  - -  y~)~l~(4~to)~l ~ 

.< (~ - -  to)to~l~M~ 2~M~ 
- -  (1 - -  ? ' ) ~ l ~ / ~  ~ (1 - -  ? ' ) z l ~ '  

2ktok(~ - -  to) 
I ~'1 ~ (1 - -  ?~),l~(4,:top~ ~" -~'  

(x  - to)tok12M, 2"cM l 
(I - -  'I'~)'12": k/'~ ~ I 1  - -  "i'~) ' /~ '  

that  (26) holds with A - - 2 M , .  For  the hypergeometr ie  funct ion in (24), 
This  together  with the 
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so that  (26) holds with A ~ 2 M ~ .  For  the hypergeomet r ic  funct ion in (241, 
c - - a - - b - - - - k < 0  as before, so that  (29) together  with the last but  one 
es t imate  above for F gives 

t k(1; + to)] (1; - to)to'~'~, 
I TT~ I [~------to 4-  74~-~ o J (1 - -  y,)t l~1;t l ,  ..i.- 

2~+lk(k- -  1)tok+Z(1; - -  go)=(1 - -  yt)llSM, 
4 -  

(I; - I-  to)S-~[1 - -  11; - -  t \=le-l¢l~ 

,,[ ( ~ + t o ) ]  ( ~ - t . j t J ~ M ,  
< ( k  + "JL2to(1; - to)j" ~ i - - ~  "+ 

4- 2~-~k(k - -  l)to(1; - -  to)'( l  - -  ~ , , ) m ~ ,  

(1; + t°P-~1;~[t --Y'(1;-\~-TTo/*°~']'~I ' 
~ ( k  4- t)~12/~ k(k - -  1)(1; - -  to)'(1; 4- to)~(1 - -  7')traM0 

: ~ 4 -  29_F~tollSc/¢44/9 , 

~( ,k  -4- 1),dte.~ + k(k - -  1)1;t/~(1 - -  7~)XaM~ 
- -  ,y=)l/~tol/-'-- ~ tol---hf , 

so that  (27) holds wi th  B - -  (k 4-  1)M 2 -4- k(k - -  I]M,.  
Suppose  (~, 1;) is res t r ic ted to a f inite closed region R of interest .  Then  

the region of t-he p lane  z-~-t  o for which f inf luences  the funct ion  w, given 
by (15), in R will  be closed and fini te also, and hence  f, f~,, fv,  f=#, f#v, fvv 
will be bounded  there by N, say. Us ing  (26) to obtain es t imates  f rom (17 b 
(19) and the s imilar  express ions  for w~, w~, and w ~ ,  it is clear  that  in R 

132) ] w l, I w~ }, I w.~ I, I w ~  l, t w~'n t, I ~'¢~ I ~ dO 1 - -  y,),ra 7d7 "-- Ag'c. 

Similarly,  us ing  (27) in (18), one has  the es t imate  

133) 
2~ 1 

l f d0 f BzY1;= B~r~  "" I w, J ~ - ~ j  bj ~o=([=7,)t/, yd Y 4- 2AN1;- -  g-~--I-2A-,'V1;. 

Since w satisfies (13), it is c lear  f rom these es t imates  that  one has the ad- 
di t ional  est imate 

(34) [w¢¢ I ~ kBNx=----------~ + 2AIV(x + k). 
to a 
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4. A Singular Cauchy Problem for  the  Non-homogeneous Euler-Poisson. 
Darboux Equation.  - Consider the problem of de termining a function u(~, "c) 
which is twice continuously differentiable for z > 0, once continuously diffe- 
rentiable for • ~ 0, and has the properties that 

k 
(35) u~.¢ + u ~  - -  u ~  - -  :: u~ = f (~ ,  "~), ": > O, 

(36) u(~, O) - - -  O, u4x  . O) - -  O, 

where f, f~, f~,  f~ ,  f ~ ,  f ~  are assumed continuous in the half space z ~ 0 .  
It  wilt be shown that the unique solution of this problem is given by the 
formulas 

[ ; t.)dt, , .: > O, (371 u(~, "el--. , 
0 

(33) u(~, o) = o, 

where w(~, ~; t.,) is given by the equation (17) with f(x) replaced by f(z_, to). 
Moreover it will be shown that the solution (37}, (38)llas continuous << space 
derivatives >~ u~, un, u ~ ,  u ~ ,  u ~  for ": ~ 0. 

One has formally, from (37) for • > 0 

u~:.-~ f w~(~, ":; to)dr o + w(~,_ "~; "c), 
0 

--~ ]'w~(~, "c; to)dto, 

from (14). Again, 

0 

T 

0 

+ wJ~, ~; ~), 

from (14). Final ly 

0 

• ; to)dr o -4-f(~, ~), 

; to)dto, 
0 
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so that since w satisfies (13) for each to, 0 < t o ,~ % u satisfies (35)for • > 0. 
There  remains  to be shown that ea('h of the integrals appearing in this formal 
presentat ion is convergent.  Now if 4~, z) is restr icted to some .finite closed 
region ~t of interest  (bounded part ly })y • - - 0 ) ,  then the region of (~, z) 
space for which f (x ,  to) inf luences the funct ion u, given by (37), in ~ will be 
closed and finite ; hence f, f~ ,  fu,  f ~ ,  f~u, fuu will be bounded there by 07~, 
say. The convergence of each of the integrals above now follows from the 
estimates (32), (33) and (34), w i th  N replaced by O'5, since a < 1 for k ~ 0, 
see (27). 

i t  is also clear  from these estimates that 

BO'5~ 
] u ] ~ A~YL':,, ] u~ J 1 -- ~ + 2AO'~'d, 

so that u, u~ ~ 0 as z --* 0. Hence,  see the second formula  in (38), u is con- 
t inuous for z ~ 0 and since I u~ ~ I ~ A ~ ;  (which tends to zero as z --* 0) u~ is 
also. In  addition, the conditions (36) are satisfied. 

The space derivatives (u~., u~, u ~ ,  u ~ ,  u ~ )  are given,  for z ~ 0, by 

f (w~,  w~, w~¢, w ~ ,  w~)  dto respectively, these integrals being convergent  and 
0 
each tending to 0 as ~:--~ 0, from (32). Hence since these space derivatives 
are all zero for z---0,  see (38), they are continuous for • ~ 0. 

The uniqueness  follows from the fact that (35), with f ~ O, and (36)imply 
u--= 0, see  [11, 12]. 

5. Equivalence o f  the  Given Cauchy Problem and a Problem in In tegra l  
E q u a t i o n s . -  Let  h(~, ~) be continuous for • ~ 0  together with its ¢ space de- 
rivates >> h~, h~, h ~ ,  h ~ ,  h ~ ,  and g(~l a twice continuously differentiable 
funct ion (if k ~ 1) or a thr ice-cont inuously  differentiable function (if 0 ~ k ~ 1). 
Then it will be shown that there e~ists a unique  funct ion  u(~_, "c), cont inuous 
for  • ~ 0  together wi th  its space derivatives u~, u~, u ~ ,  u ~ ,  u ~ ,  which 
satisfies 

k 
(39) L(u) - -  hu  ~ u ~  + uv ,  -- u ~  - -  ~ u~ - -  hu  - -  O, v > O, 

and  takes on the in i t ia l  data 

(40  u(x, o)-- u (x, o)--o. 
This will be proved by demonstra t ing the equivalent (second) proposition in 
integral  equations, namely :  There e~ists a unique solution o f  (~i) 

, r  

to)h(x, to)U(~ 2 
. /  

0 a2+~----- t 

(li)  T h e  c o n v e n t i o n  is m a d e  t h a t  fo r  ~ ~ - 0  the  i n t e g r a l  is  zero .  
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where x -  ~ + a ( ~ -  to}, which is continuous for • ~ O. Here u,,(~, z) is the so. 
lut ion o f  the in i t ia l  values problem, posed first, for h --  O. In order to demon- 
strate this equivalence it will be sufficient  to show that any solution of the 
first  problem is a solution of the  second and c o n v e r s e l y .  

Let  u(~, x) be a solution of the first problem. Then u - - u -  u o satisfies 

L(Tt) = L(u) = hu,  

and takes on the initial data 

u(_x, 0) = 0, 0) = 0. 

Hence  put t ing f--hu, the last section shows that 

P 

0 a~-~-~l~l 

where the arguments  of ~ h, u in ~.his integrand are the same as those in 
(41) respectively.  Thus u is a solution of (41~. 

Conversely, let u{~, ~) be a solution of the second problem. Then it will 
be shown immedia te ly- tha t  it has cont inuous space derivatives u~, u~, u ~ ,  
u ~ ,  u ~  for ~ 0 .  Hence,  as in section 4, the operator  L act ing on the in- 
tegral yields f(~, x ) - -h l~  . "c)u(~, ~) so that 

L(u)  = Lluo) + h u  --- hu .  

Thus u is a solution of (39). Moreover it has been shown that the integral 
in (41) and its x-derivat ive vanish for " : - -0 ,  so that u satisfies the same 
CAUCHY data  as u 0 on • - - 0 ,  namely {40). 

In order to show" that integral equation (41) possesses a unique continuous 
solution for " c ~ 0 ,  and that this solution has the property that its space de- 
r ivatives up to and including the second order are continuous for • ~ 0 also 
the method of successive approximation due to PIOARD will be used. A se- 
quence of functions un{~, ":), n - - 1 ,  2, 3, ... is defined by the recurrence  re- 

lation ('~) 
q~ 

' I l l  (42) u,,(~, ":)-~-~ dt o P('f, ~; to) hu,,_tdad~, n - - 1 ,  2, 3, ..., 

where the arguments  of h and u,,_l in integrand are the same as for h and u 
in (41), and uo(~ , z) is the funct ion oecuring in thai equation. Then since u o 
has continuous s p a c e  derivatives up to and including the second order for 

(it) Phus, as wi l l  be clear immediately ,  L(u n) = h u n - i  and  un has zero Cauchy data 
Ol l  ~ . ~ 0 .  
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z ~ 0 ,  see [12] (is), it follows by induction that the same is true for u,,, for 
n - - - 1 ,  2, 3, .... For  it was shown in the preceding section that these deriva- 
tives can be formed from an integral such as that in (42) provided h(x, ~0) 
and u,,_~(x, to) have such cont inuous derivatives for to ~ 0, and the integral  is 
defined robe  zero for z - -  0. These derivatives ~u,,/~, ~u,,/~, O~u,,/O~, O~u , , /~ ,  
O~u~/~ ~ will be given by a formula similar  to (42) with hu._l  replaced by 

~h Ou,,_~ 
u,,-a + h ~ -  , 

u. -1  -+- ~y , 

(43) u,,--~ + 2 ~h ~ u,,_~ h 0~ u,~_~ 

Oh 0un-i  Oh 3u,_~ 
~xOy ' 

~h 

O~h 

O~h 
u,,_~-t ~ ~y + O y  

~ h  ~h Ou,~_~ 
~ u , - l + 2 ~ y  ~y +h-- 

- -  + h ~ U n - t  
Ox 

Oy~ ' 
OD 

respectively. There  remains to be shown that the series E u,,t~, "c) converges 

uniformly in any' arbi t rar i ly  large re t rograde half -cone with base on ~---0, 
together with the corresponding series of space derivatives. The solution of the 
integral  equation will then be the sum funct ion of this series, and it will 
have the stated cont inui ty  properties. 

In  such a cone, u~,(.~, ~} and its space derivatives are determined by the 
values of u,_l(~, ~) and i t s  space derivatives in the same  cone. Let H be an 
upper  bound for the absolute values of hI~, ":) and its space derivatives, and M 
an upper  bound for the absolute values of u0(~, ":) and its space derivatives. Then 

(44) l u ,  I , T (  ' ' ' ' <-  (2n  - 1 ) 1 2 n  - . . . 1 '  n l" 

For clearly from (26), (42) and the corresponding integrals involving (43), 

1 ~ ~ 1 --  
' u,  ' ~ ~ / d t o  f dO.f yd'f (( 1 A~..)I/2" -[-'I " . ~ ] - -  AHM'c2, 

o o o 

(13) Although it is not stated explicitly in that paper, it follows from the formulas 
given there that u0 has continuous space derivatives up to and including the second order 
for ~ 0 ,  provided that for (i) 0 ~ k ~ l ,  i. e. m - - 2 ~ k ~ m - - 1 ,  g has continuous third 
order derivates, and for (ii) k ~ 1, i. e. k z~ m -- 1, g has continuous second order derivatives. 
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so tha t  (44) is t rue  for n - ~  1. Moreover  a s s u mi n g  (44) is t rue  for n, one has  
in a s imi la r  m a n n e r  

"r $n I 
1 r • 

[ un+t [ ~ - ~ ]  dtoj dO ]'TdTI( 1 __ A;,)l/2 
0 0 0 

2 ~"A"+IH" +~M'd"+2 
= (2n + ,  1)(2n - -  1) ... 1 ' 

] ~ u . + l  J ~u, ,+l  2 • 2~"A "+t H "+t M~ 2"+-" 

- - ~ / - -  ' ~ ' - - ~  - -  ( 2 n + 1 ) ( 2 n - - 1 ) . . . 1  

~02~ ] 
• H.  2~"A"H'M(2n - -  1)(2n - -  3)... 1 ' 

so tha t  (44) is t rue  for n + 1. The un i fo rm convergence  in the ha l f - cone  of the 
six series concerned  now follows f rom lha t  of the series whose genera l  term 
is the  r igh t  hand  side of the inequa l i ty  (44). 

The  un iquenes s  fol lows by induc t ion  in the usua l  way. Suppose  u "), u a) 
are con t inuous  solut ions and let  u ~ u m -  u c~). Then  if J]~ i~ an upper  bound  
on l u [  in the ha l f -cone ,  the in tegra l  equa t ion  

,r 

sat isf ied by u, implies  

(46) I l --~i2n - -  1)(2n --  3)... 1 '  

for any  in teger  n ~ 1, in this  ha l f -cone .  For  if  (46)is t rue  for n, the equa t ion  
(45) gives 

,r 2r~ 1 

, ' f dto f dO f ,d,[l 
O 0 0 

An+l.H,+i~..c~,+ "- 
= (2n + 1)(2n - -  1)... 1 '  

A"Hn'Mt°~" ] 
• H .  (2n - -  1)i2n - -  3) . . .  1 ' 

so tha t  (46) is t rue for n + 1. Tha t  it is t rue  for n----1 fol lows on us ing  the 
or iginal  bound  /~  in the in tegra l  of (45). Since for  each f ixed x the r ight  
h a n d  side of (46) tends  to zero as n--~ 0% u ~__ 0 in an a rb i t r a r i ly  large 
ha l f -cone ,  and  hence  everywhere  for x ~ 0 .  



J. B. DIAZ - G. S. S. LUDFORD: On the sin.qular Cauchy problem, etc. 49 

Concluding Remarks.  - In  section 2, a cer ta in  regular  C~ucnY problem, 
with data (14), for the equation (13) was solved. As was remarked  in lhe 
introduction, H.~DAMAI~D'S method, upon which this solution was based, leads 
to ~rfinite parts >> when 1he corresponding CAUCHY problem in m > 2 space 
variables, for the EUL]~R-PoIsso~c-DA~]3OUX equation (3a), is considered. As 
is wel l -known,  the relat ion between the concept of ~ finite part  >> and analytic 
cont inua t ion  has been developed by R]~:sz and applied to the solution of 
regular  C.~uClZY problems [4] for second order equations, and these ideas 
have been extended to l inear  partial  different ial  equations of arbi t rary order 
with constant coefficients by GA]aDINe~ [6]. DAVIS [13], in a doctoral dissertation 
now in preparation, has applie d a modified version of R]~-sz' s method to 
solve the regular  CAUCHY problem 

k 
~u - -  u~  - -  ~- us = 0, "~ > t o > 0, 

u(z, to~ = f(~), u¢(x, t o )=  O, 

with A---- and m arbitrary.  
i=1 ~V 

The fol lowing three remarks  concern the CAUCHY problem treated in the 
present  paper. First, it is clear that the restr ict ion made that the given function f, 
appearing in (14) of section 2, be defined for all x is adopted for convenience. 
Only unessential  modifications arise if the funct]-on f is not defined for all x. 
A similar r emark  applies to the functions f (x ,  t), g(x) and h(m, t). Secondly,-it  
should be noticed that the CAUCH¥ problem-(39), (4~ of section 5 is wellposed 
in the sense of H~DA~A~tD. By this is meant  that i5 (in the notation of (39)) 

L(u(~)) - -  hu(~) - -  O, • > O. 

o)=CO(x), o)= o, 
where  i ~ 1 ,  2, and if [g0)- -g(e) ]  < ~  on the base (in the plane x - - 0 )  of a 
given retrograde half-cone,  then ] u (I) - -  u(2) ] < Ks throughout this half-cone,  
where  the constant  K depends only on k, the upper  bound H for I h [ in 
this half-cone,  and the height z0 of the cone. The proof follows in the usual 
way by successively bounding ] u~) -- ~ )  I and noting that a s imilar  theorem 
holds for [u(oJ)--u[0~)]. Thirdly it should be pointed out that the present  
method breaks down when l inear  terms in u~ and u., are introduced into (39). 
For  then the integrand in (41) will include terms in ux and uv,  and upon 
differentat ion of the integral equation there wi l l  always be derivatives on the 
right hand side which are of one h igh( r  order  that on the left. This means, 
see (42), that from a knowledge of bounds on u 0 and its derivatives up to the 
second order, only bounds on u~ and its derivatives up to the first order can 
be obtained. 

In  part icular ,  the theorem of section 5 holds when the functions g and h 
of (39) and (40) depend on only one space-variable,  say g ( x ) ~ g ( x )  and 

~ H c t l i  di  Mctt~tctti~¢t 7 
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h(~, ~ ) - - h ( ~ ,  ":). T h e n  c l e a r l y  the  u n i q u e  s o l u t i o n  u(~, " : )---u(~,  "0 d e p e n d s  o n l y  
o n  o n e  s p a c e  v a r i a b l e  ~. T h u s  a s  a s p e c i a l  c a s e  a c o r r e s p o n d i n g  t h e o r e m  f o r  
t h e  d i f f e r e n t i a l  e q u a t i o n  

k 
u ~  - -  u ~  - -  ~ u~ - -  h(~, ~)u = O, 

i n  o n e  s p a c e  v a r i a b l e  ~, is o b t a i n e d  (ef. GE~MAIZ~ a n d  BADER [7] f o r  a r e l a t e d  
t h e o r e m  f o r  k --- 1/3) .  
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