
Sequences of nonlinear differenti~d equations 
with related solutions 

~J[OSTAFA A, ABDELKADER (~) 

Summary. - A second-order nonlinear differential equation which occurs (together with vari. 
ants of it) in many problems of applied mathematics, physics and engineering is here 
reduced to a first-order equation. This equation contains a parameter which is a qua. 
dratic rational function of two parameters appearing in the original equation. By 
applying a certain identity for a quadratic rational function, two tfinite or infinite) 
sequences of nonlinear differential equations are generated whose solutions are determi- 
nable whenever the solution of any equation belonging to a sequence is known. The 
cases amenable to e~cact solution by quadrature are given. 

1.  - I n t r o d u c t i o n .  

We consider the second-order  nonlinear  differential  equation 

b , c 
(1) y,, + yy ,2  _~ x y  _ ~ _ ~ y  W dxrys : O, 

where a, b, c, d, r, s are arbi t rary  constants, except that r ~ - -  2 and s =# 1. 
This equation (or a variant  of it) occurs extensively in applied mathematics,  
physics, astrophysics and engineering, as we will show by examples. 

One variant  of (1) which occurs in applications is obtained by making 
the substi tution y --  e+, whereupon (1) becomes 

b , c 
(2) +" -{- (a + 1)4 ,2 -~ ~ ~ + ~-~ + dx, re(~-t)+ -"  O. 

second variant  of (1), an equation of the third order, is obtained by 
introducing an independent  variable ~ and a dependent  variable f(~) by means 
of the substitutions 

d x  d f  l x l(2+r)l~l-s) 
w----fd-~ and y - - ~  ~ 

Equation (1) then goes over into 

a - - 1  2 ~ c 
(3) 5 + --77-1 f~ + 55  + ~ f~ 

+ dfr f ;+ ~ : O, 

where fn : d~f/d~ ~, n -  1, 2, 3. 

(*) Entrata in Redazione il 16 luglio 1968. 

Annali di Matematica 32 



250 MOSTAFA A, ABDELKADER: Sequences of nonlinear differential, etc. 

In just if ication for our present interest  in (1), (2) and (3), we give some 
examples where these equations occur in applications: 

(i) A special case of (2) (with a -- - -  I, b -- 1, c----- 0, s ~ 2) occurs in 
problems in the flow of viscous fluids with a viscosity depending exponen- 
tially on temperature,  and also in calculat ing the temperature  distribution 
in a dielectric in an al ternat ing field [1]. 

(ii) The Blasius equation of laminar  boundary layer theory, 

d3~ ..{_ d2~ 
d ~  i d-~ = O, 

is t ransformed by means of the substitution: f----d~/d~ into 

(4) ~ + f f2 -+- f~ --  O, 

where f n - - d ~ f / d ~  '~. Differentiat ing (4) with respect to ~, we get 

(5) f3 - ~ 2 ? f~ = o~ 

which is a special case of (3). 

(iii) An equation arising in the theory of precursor waves in shock 
tubes (equation (5.5) in [2]) is 

d (#1) + ~f~ -- 0, 
d~ 

with the same subscript notation as in (ii). By differentiation with respect  
to ~, we get (5). 

(iv) In  the study of cylindrical auto-conf inement  of a plasma [3], the 
following equation occurs:  

x dx  ~ Y ~ ":t- Y --  O, 

where ? is a parameter .  Carrying out the indicated differentiations, we get 
for y(x) the differential  equation (1), with a : ? - - 2 ,  b - - l ,  c -~O ,  d - ~ 1 / %  
r ~ 0 ,  s - - ~ 3 - - y .  
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(v) The generalized Dull ing equation with a damping term is 

zl + ~zl -]- ~zl + yz~ - -  O, (zl = dzl/dt)  

the original Dull ing equation having m ~ 3. By means of the substi tutions:  

we get for y(x) equation 
r - - m - - 3 ,  s - - r e .  

z ~ = y e '  and ~c--e ' ,  

(1) with a - - O ,  b - - ~ + 3 ,  c - - a + ~ - ] - l ,  d - - y ,  

(vi) A special case of (1) is the EMDE•-LANE-FOWLER equation:  

which occurs in astrophysics. 

(vii) The equation 

y" + 2 y '  + y ~ . = O ,  

y" : kxry ~, 

a simplified form of (1), has been considered by BELLMAN [4], and a special 
case of it is the TKO•AS-FER•I equation of nuclear  physics:  

Vxy" = y V y .  

Another equation which may be brought to the same form is: 

N = .  s 2 ,2 , 

which occurs in the analysis of large deflection of an annular  membrane [5], 
For  the substitutions 

bring the equation to the form 

(viii) The equation 

and x --  ~2 __ ~.2 

32y2y '' --- x?.  

V~]y" - -  e ~ , 
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a space-charge  equation in one dimension [6], goes over by means of the 
substitution t - - e "  into the LANG~UIR-BLOD~ET~ space-charge  equation for 
cylinders : 

d~y t dy l 
dt 2 ~- t dtt ~ - '  tVy  

which is a special case of (1). 

(ix) The LA~(~MUIR-BOGVSLAVSKI equation [7] 

-h-;, 

where n -- 0 for the plane, n --  1 for the cylinder, and n --  2 for the sphere, 
is~also a special case of (1). 

(x) The nonlinear Poisson equation for the potential with linear, 
cylindrical or spherical symmetry :  

where g(w, y) is the space-chat 'ge density, is a special case of (1) when g(x, y) 
has the proper form, such as in Dew's equation [8], p. 66: 

l d I d Y l - - 1  

(xi) Another  equation occurring in space-charge theory is Iv]~Y's 
equation [8], p. 242: 

y" - -  ~y'2 ~ 2 y  ' .:l- ky2 --  O, 

which is a special case of (1). 

(xii) In  the theory of internal  ballistics of guns [9], the following 
equation occurs : 

(6) y" .%yy '2  + ~ = 7 y  , 

and for the special practical cases where ~ : 0, it has the form of equation (1). 
When a = ~ t - - 0  and 7 = - - 1 ,  (6) becomes an equation to which are redu.  
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cible both the BLASIr:S equation and the LA~QMUIR-BLODGETT space-charge  
equation for cylinders [10]. 

(xiii) In  the equation 

d-zz ~ F2 + 2zF = O, 

which occurs in the analysis of plasma diffusion in a magnetic field (equa- 
tion (i3) in [11]), we make the substitutions 

and get 

x = z  2 and y - - ' F  2, 

VY=o, y,, + ly, +__~ 

which is a special case of (1). 

2. - Reduction to a f i r s t -o rde r  differential  equation. 

Having now shown that the differential  equations (1), (2) and (3) are of 
sufficiently general  applicability to warrant  independent  study, we shall re. 
duee these equations to a single f i rs t -order  nonlinear  equation. We shall 
concentrate  on equation (1), since equations (2) and (3) are  reducible to it. 
In t roducing an independent  variable z and a dependent  variable w(z) by 
means of the substitutions 

d~ 
(7) y --  zx(2+T)](~-~) and w(z) = xz ~ dx '  

(remembering that r : 4 = -  2 and s :4: 1), equation (1) is t ransformed into the 
f i rs t -order  nonl inear  equation 

(8) 

where 

and 

dw G(z) 
dz - -  F ( z )  -~ w ' 

i F(z) - -  l - - b - - 2 ( a +  l ) ~ ,  

--  --  1 2 + r 2  
G(z) 1(1 b)2"{'rl--s ( a +  ) l ~ - s l  --clz2°+1 

w dz2~+ ~ . 
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Equat ion (8) is integrable only in special cases, such as when the coeffi- 
cient of z ~ io F(z) vanishes, or when d = 0 (two ether cases of integrabil i ty 
will be given below). So, assuming that d ~ 0 and setting 

2 + r  A = l - - b - - 2 ( a + l ) ~ - ~ 4 : 0 ,  

we make the following changes of scale of w and z: 

and 

so that (8) becomes 

z - -  Z t A2/d } ~/('-~) 

m - -  ~¥d(a+l)/o-~)A 1+2(~+1)/(~-1) , 

(9) d-zdW __ Za + w I  KZ2~+I __ Z2a+s l , 

where K is a function of a, b, e, r, s. We shall treat a, c and s as fixed 
constants~ and K will then appear  as a quadrat ic  rational (Q.R.) function of 
both b and r. Considering K as a Q.R. function of b; we have 

(lO) K(b, r ) - -  

{(1 - -  s ) ( 2  + r )  - -  ( a  + 1)(:~ + r) 2 - -  c(1 - -  s )  2 } - -  ( l  - -  s)(2 + r)b 
[[ 1 - s - 2 ( a  + 1 ) (2  + r ) }  - ( t  - -  s)b] 2 

and considering it as a Q.R. function of r, we have 

(11) g(b, r) = 

{2(1 --s)(1 - - b ) - - 4 ( a +  1)--c(1 - - s )  2} + t(l - -  s)( i - -  b) -- 4(a -{-- 1 ) } r - ( a f t -  1)r 2 
[ ( ( l - - s ) ( 1 - -  b ) - -4 (a  + 1)}--2(a  + 1)r] 2 

3. - Sequences of  e q u a t i o n s .  

We now come to the main objective of this paper, which consists in the 
application of an identity for a Q.R. function first given in the solution of a 
proposed problem [10], and applied in [12] to classical polynomials and 
BESSEL functions, and in [13] to electric circuits. (For brevity we shall not 
reproduce the identity here, and refer the reader  to any of the above-men.  
tioned references). 
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Apply ing  the iden t i ty  f i rs t  to K(b, r) as g iven  by (10) we get :  K(b, r)~-- 
=----K(b', r), where  

(t2) 

and  

D~b' = b {(1 - -  s)(2 -]- r) - -  (a -}- 1)(2 -{- r) z - -  e(1 - -  s) 2 } 

+ { 2 c ( 1 - -  s) - -  (2 -f- r) } { l ~ s - -  2(a + 1 ) ( 2 + r ) } ,  

D~ - -  b(1 ~ s)(2 + r) - -  {(1 - -  s)(2 + r) ~ (a -{- 1)(2 + r) 2 - -  c(1 - -  s)2}. 

Nex t ,  app ly ing  the same iden t i t y  to K(b, r) as g iven  this t ime by (11), 
we ge t :  K(b, r ) ~  K(b~ r'), where  

(13) r '  ---- (1 - -  s)(1 - -  b )  r --  4. 
a - 4 - 1  

Thus ,  when  b is r ep l aced  t h ro u g h o u t  by  b', or else r by r', the  n u m e r i c a l  
va lue  of K in (9) r ema ins  the same, and s ince  a and  s are f ixed,  we have  the 
same solu t ion  W(Z)  for  the two va lues  b and  b' (or r and  r'). H o w e v e r ,  y(x.) 
as a so lu t ion  of (1) will  not  be the  same as for  the  equa t ion  which  is s imi la r  
to (1) excep t  tha t  it has  b' ins tead  of b (or r '  ins tead  of r), a l t hough  know- 
ledge  of the so lu t ion  of one enab les  one to de r ive  that  of the other .  

This ,  however ,  is not  the end  of the mat te r .  F o r  we can  now do two 
a l t e r n a t i v e  ope ra t i ons :  (i) Rep l a c e  b by  b~-= b' us ing  (12), and  then r ep lace  
r by rl - -  r '  u s ing  (13) with ba in p lace  of b; next ,  r ep l ace  b~ by b2 us ing  (12) 
wi th  r~ in p lace  of r ;  and so on. (ii) Rep lace  r by r~ - -  r '  f rom (13), and  then 
r ep l ace  b by  b~ = b' u s ing  (12) wi th  r~ in p lace  of r ;  next ,  r ep l ace  r~ by  r2 
us ing  (13) wi th  bl in  p lace  of b; a n d  so on. 

The  f i rs t  cha in  of r e p l a c e m e n t s  gives:  

(14) K(b, r) -~ K(b~, r) =- K(b~, r~) ~ K(b2, rl) ~ K(b2, r2) 

=- K(b3, r2) = K(b3, rz) -= K(b~, r3) ~ . . . ,  

where  b l ,  b2,  b3, . . . ,  and  r l ,  r2 ,  ~'3, .**, are  d e t e r m i n e d  f rom the r e c u r r e n c e  
r e l a t ions  : 

D2b~+~ : bn{ (1 - s)(2 -~ r , )  - -  (a -}- 1)(2 + r , )  2 - -  c(1 --  s) 2 } 

where  
-k- t 2c(1 - -  s) - -  (2 + r.)}  { 1 -- s - -  2(a + 1)(2 -}- r . ) } ,  

D~ = b.(l - -  s)(2 + r . )  

- -  {(1 - -  s)(2 + r . )  - -  (a -}- 1)(2 + r . )  2 - -  c(1 - -  s) 2 }, 
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and 

1 - - S ( l _ b ~ + ~ ) _ r ~ _ _ 4 ,  n = 0 ,  1, 2, ... r~+l = a +--~i 

with b0 = b and ro = r .  

The second chain of replacements  gives: 

(15) 

where 

and 

where 

K(b,  r) = K(b,  r~) ~-  K(b~ ,  r~) =--- K(b~ ,  r~) =--- K(b2, r2) 

=- K(b2 ,  r~) =- K(b3 ,  r3) ~ K~b3, r 4) ~ . . . ,  

1 - -  s(1 - -  b m ) - -  r ~ - -  4, r.~+~ - -  a + - - i  m = 0 ,  1, 2, ... 

D3b~+~ - -  b.~ {(1 --  s)(2 @ r ~ + a ) -  (a + I)(2 + r~+a) 2 -- c(1 --s)2!  

-]- { 2c([ - -  s) - -  (2 + r~+~)} { 1 - -  s - -  2(a -}- 1)(2 -4- r~+~)}, 

D3 = b~(1 - -  s)(2 + r~+~) 

- -  I(1 - s)(2 + r ~ + i )  - -  (a  + 1)(2 + rm+~) ~ - -  C(1 - -  S )2} ,  

with ro = r and bo = b. 
The n - sequence  (14) and the m-sequence  (t5) are infinite unless:  (i) any 

value of by or r~ becomes infinite, (it) a fixed point is reached, i.e. b ~ + l -  b~ 
or r ~ + ~ - - r ~ ,  ( v -  m, n); this follows from a property of the l inear fractional 
t ransformation associated with the identity [13], or (iii) a previous pair  of 
values (b, r) is again reached, so that the sequence becomes cyclic, repeating 
itself indefinitely. 

Thus, from any given differential  equation (1) with fixed values of a, c 
and s (d, which is assumed non-zero, may be varied by a change of scale of 

or y), we have generated two (finite or infinite) sequences of differential  
equations with related solutions and having the same values of a, c and s, 
but  different values of b and r. Knowledge of the solution of any equation 
belonging to these sequences (including the generating equation) enables one 
to derive the solutions of all the others. 

An intriguing problem is to t rack the successive values of by and r~ for 
the two sequences on the (b, r) plane (the paths are parallel  to the axes), 
and find out whether  a limit point (B, R) is at tained as v ~ c ~ ,  or whether  
B and R do not exist. Of part icular  interest  are the changes which are pro- 
duced in the character  of the paths when the initial point is varied. This 
problem is similar in outline to that of the nonlinear  i terative transforma- 
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tions of a point, which have been studied by ULAM and S~EIN using electronic 
computers [14]. 

As an example, the equation 

~4y,, z t_ y2 _ 0 

generates the class of equations of the form 

y,, + by,  + x~Y ~ = 0 

which, incidentally, go over into 

y,, _~ b(2 - -  b) 
4~ 2 y _{_ ~-(b/2)~,2 . -  0 

by means of the substitution ~, : ygjb/2. 
For the n-sequence  the (b, r) values are:  (0, - -  4), (3, - -  4), (3, 2), (-- 3, 2), 

( - -3 ,  --10),  (9, - -10) ,  (9, 14), ( - -15,  14), ( - -15,  - 3 4 ) ,  (33, --34),  (33, 62), 
( - -63,  62), (--63,  --130),  ..., and there is no limit point. 

m-sequence  the (b, r ) v a l u e s  are:  ( 0 , -  4). ( 0 , -  1), (~ - , - -1 ) ,  For the 

31 

/33 311 33 
\32 '  16]" ~ '  3-2 ' 6-4' 32] ..., and the limit point is B - - 1 ,  

R - - - - 2 .  

4. - E x a c t  so lu t ions .  

We finally give the four cases for which we were able to obtain the 
exact solutions of our nonlinear  equations. 

CASE 1. - If  a, b, r, s satisfy the relation 

1 - -  b - - 2 ( a +  1) 2 + r O, 
I - - 8  

equation (8) becomes separable and is thus integrable by a quadrature.  

CASE 2. - If d - - 0 ,  the general solution of (1) is 

yo+l = C~-b+l -I- D~-~, (a + 1 4: O) 

Annali  di Matematica 3~ 
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where  
z 2 q- (i - -  b)~ q- c(a q- 1) = 0, 

and C, D are a rb i t ra ry  constants .  

CASE 3. - I f  b --  0 and s --  - -  a =4= 1, the genera l  solut ion of (1) is g iven by 

x-~y  ~+' : C q- D f x-2~dx 

- - d ( a - ~  1) f x-  lf x +rdx}dx, 
where 

z 2 -  ~ + c(a + 1) = O. 

CASE 4. - I f  a, b, c, r, s sa t i s fy  the re la t ion  

(16) K -- - -  2 . ! 2 a +  s + 1)2 + (0, cx~), 
(4a + s -k- 3) 

with K given by (10) or (11), we make  in (9) the subs t i tu t ions :  

and 

where  

Z,-~ : K U 2 

1 
v = ~ - ~  kWU(2~+~+~)/C~-~) , 

1 
k = --  ~ (4a + s -{- 3)K (1+")/(I-~) . 

Equa t ion  (9) then  goes over into the linear equa t ion  for U(v): 

dU I - -  s v U - -  1 
d v - -  2 a +  s +  l v 2 - 1  ' 

which has  the genera l  solut ion 

s - - 1  f (v2--  1)sU = 2a-F s +  1 (v2--  1)-~dv + C, 


