# On the Oscillation of Solutions of the Equation $\left[r(t) x^{(n-1)}(t)\right]^{\prime}+\delta \sum_{i=1}^{m} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right)=0\left(^{(*)}\left(^{(* *)}\right.\right.$. 

Lu-San Chen (Chung-Li, Taiwan-China)

Summary. - In this paper we are dealing with the oseillatory and asymptotic behavior of $n$-th order $(n>1)$ retarded differential equations

$$
\left.\left[r(t) x^{(n-1)}(t)\right]\right]^{\prime}+\delta \sum_{i=1}^{m} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right)=0
$$

which contain a damping term involving the ( $n-1$ )-th derivative of the unknown function, where $\delta= \pm 1$.

## 1. - Introduction.

In this paper we are dealing with the oscillatory and asymptotic behavior of $n$-th order ( $n>1$ ) retarded differential equations, which contain a damping term involving the $(n-1)$-th derivative of the unknown function. We now consider the following damped differential equations with retarded arguments

$$
\begin{equation*}
\left[r(t) x^{(n-1)}(t)\right]^{\prime}+\delta \sum_{i=1}^{m m_{i}} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right)=0 \tag{*}
\end{equation*}
$$

where $\delta= \pm 1$. The real valued functions $r, p_{i}, g_{i}(i=1,2, \ldots, m)$ and $\varphi$ are supposed continuous and such that:
(i) The functions $g_{i}, i=1,2, \ldots, m$ are differentiable on $\left[t_{0}, \infty\right)$ and such that for every $t \geqslant t_{0}$,

$$
g_{i}(t) \leqslant t, \quad g_{i}^{\prime}(t) \geqslant 0, \quad \lim _{t \rightarrow \infty} g_{i}(t)=\infty .
$$

(ii) The functions $p_{i}, i=1,2, \ldots, m$ are nonnegative on $\left[t_{0}, \infty\right)$ and for some index $i_{0}, 1 \leqslant i_{0} \leqslant m, p_{i_{0}}(t)>0$ for $t \geqslant t_{0}$.
(iii) The function $\varphi$ is nondecreasing on $(-\infty, \infty), y \neq 0$ implies $y \varphi(y)>0$ and such that

$$
\int^{\infty} \frac{d y}{\varphi(y)}<\infty \quad \text { and } \quad \int_{-\infty} \frac{d y}{\varphi(y)}<\infty
$$

[^0]20-Annali di Matematica

Note: Condition (iii) implies that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\varphi(y)}{y}=\infty=\lim _{t \rightarrow-\infty} \frac{\varphi(y)}{y} . \tag{1}
\end{equation*}
$$

(iv) The function $r$ is positive on $\left[t_{0}, \infty\right)$.

For equation $\left({ }^{*}\right)_{\delta=+1}$ we give some general condition results not only for the case where the condition

$$
\begin{equation*}
\int^{\infty} \frac{d t}{r(t)}=\infty \tag{2}
\end{equation*}
$$

holds, but also for some cases in which this condition fails.
In what follows, we consider only such solutions of the equation (*) which are defined for all large $t$. The oscillatory character is considered in the usual sense, i.e. a solution of the equation (*) is called oscillatory if it has no last zero, otherwise it is called nonoscillatory.

Before stating the theorems, we give the following lemmas, the first two of which can be found in [1] and [2], therefore the proofs of which may be omitted.

Lemma 1. - Let $u(t)$ be a positive $v$-times continuously differentiable function on $[a, \infty)$. If $u^{(\nu)}(t)$ is of constant sign and not identically zero for all large $t$, then there exist a $t_{u} \geqslant a$ and an integer $l, 0 \leqslant l \leqslant \nu$ with $\nu+l$ odd if $u^{(\nu)}(t) \leqslant 0, \nu+l$ even if $u^{(\nu)}(t) \geqslant 0$ and such that for every $t \geqslant t_{u}$

$$
l>0 \text { implies } u^{(k)}(t)>0 \quad(k=0,1, \ldots, l-1)
$$

and

$$
l \leqslant \nu-1 \text { implies }(-1)^{l+k} u^{(k)}(t)>0 \quad(k=l, l+1, \ldots, v-1)
$$

Lemma 2. - Let $u(t)$ be a $(v-1)$-times $(v>1)$ continuously differentiable function on $[a, \infty)$. Let also $m(t)$ be a positive function on $[a, \infty)$ such that the function $m(t) u^{(y-1)}(t)$ is continuously differentiable on $[a, \infty)$. Suppose moreover that for every $t \geqslant a$ we have $u(t)>0, \delta u^{(\nu-1)}(t)>0, \delta\left(m(t) u^{(\nu-1)}(t)\right)^{\prime} \leqslant 0$ and not identically zero for all large $t$, where $\delta= \pm 1$. Then there exists a constant $k>0$ such that

$$
\frac{m(t)}{m^{*}(t)} \frac{\left|u^{(v-1)}(t)\right|}{u(t / 2)} t^{v-1} \leqslant k
$$

for all large $t$, where $m^{*}(t)=\max _{t / 2 \leqslant \theta \leqslant t} m(\theta)$.
Lemma 3. - Let equation $(*)_{d=+1}$ satisfy the conditions (i)-(iv). Then we have the following properties:
(I) If condition (2) holds, then for every nonoscillatory solution $x(t)$ of equation
$(*)_{\delta=+1}$ we have

$$
x(t) x^{(n-1)}(t)>0 \quad \text { for all large } t .
$$

(II) If for every $T \geqslant t_{0}$

$$
\begin{equation*}
\int^{\infty} \frac{\sum_{i=1}^{m} \int_{T}^{t} p_{i}(\theta) d \theta}{r(t)} d t=\infty, \quad t \geqslant T \tag{3}
\end{equation*}
$$

then for every nonoscillatory solution $x(t)$ of equation $(*)_{\delta=+1}$ with $\lim _{t \rightarrow \infty} x(t) \neq 0$ we have

$$
x(t) x^{(n-1)}(t)>0 \quad \text { for all large } t
$$

(III) If

$$
\begin{align*}
& \int^{\infty} \frac{d t}{r(t)}<\infty \quad \text { and for some } \lambda>1  \tag{4}\\
& \sum_{i=1}^{m} \int^{\infty} g_{i}^{n-2}(t) p_{i}(t)\left(\int^{\infty} \frac{d \theta}{r(\theta)}\right)^{\lambda} d t=\infty
\end{align*}
$$

then for every nonoscillatory solution $x(t)$ of equation $(*)_{\delta=+1}$ with $\lim _{t \rightarrow \infty} x(t) \neq 0$ we have

$$
x(t) x^{(n-1)}(t)>0 \quad \text { for all large } t .
$$

Proof. - Let $x(t)$ be a nonoscillatory solution of equation $(*)_{\delta=+1}$. Then without loss of generality $x(t)>0$ for every $t \geqslant t_{0}$ and because of condition (i) there exists a $t_{1} \geqslant t_{0}$ such that $x\left[g_{i}(t)\right]>0$ for $t \geqslant t_{1}$ and $i=1,2, \ldots, m$. Thus, in all cases (I)-(III) we get

$$
\begin{equation*}
\left[r(t) x^{(n-1)}(t)\right]^{\prime}=-\sum_{i=1}^{m n} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right)<0 \tag{5}
\end{equation*}
$$

for every $t \geqslant t_{1}$; Moreover, since $p_{i_{0}}(t)>0$ for all large $t$, the same holds for $\left[r(t) x^{(n-1)}(t)\right]^{\prime}$ and consequently the function $r(t) x^{(n-1)}(t)$ is positive or negative for all large $t$. Thus since $r(t)>0$ for every $t \geqslant t_{0}$, we must have $x^{(n-1)}(t)>0$ or $x^{(n-1)}(t)<0$ for all large $t$.

We shall prove that the assumption

$$
x^{(n-1)}(t)<0 \quad \text { for all large } t
$$

leads to a contradiction in all cases (I)-(III), provided that in cases (II) and (III) we have $\lim _{t \rightarrow \infty} x(t) \neq 0$. To do this we suppose that for some $t_{2} \geqslant t_{1}$ we have $x^{(n-1)}(t)<0$
for every $t \geqslant t_{2}$. Integrating (5) between $\left[t_{2}, t\right]$ we obtain

$$
r(t) x^{(n-1)}(t) \leqslant r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right)
$$

and consequently

$$
-x^{(n-1)}(t) \geqslant-r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right) \frac{1}{r(t)}
$$

for every $t \geqslant t_{2}$ : Integrating again between $\left[t_{2}, t\right]$ we have

$$
-x^{(n-2)}(t)+x^{(n-2)}\left(t_{2}\right) \geqslant-r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right) \int_{t_{2}}^{t} \frac{d \theta}{r(\theta)}
$$

and consequently condition (2) implies

$$
\lim _{t \rightarrow \infty} x^{(n-2)}(t)=-\infty
$$

which contradicts the positivity of $x(t)$. This contradiction proves (I).
To prove (II) we remark that the assumption $\lim _{t \rightarrow \infty} x(t) \neq 0$ implies the existence of a constant $k_{1}>0$ such that

$$
\varphi\left(x\left[g_{i}(t)\right]\right) \geqslant k_{1}, \quad i=1,2, \ldots, m \text { for every } t \geqslant t_{2}
$$

Thus, from equation $(*)_{\delta=+1}$ leads to the following inequality

$$
\begin{equation*}
\left[r(t) x^{(n-1)}(t)\right]^{r}+\sum_{i=1}^{m} p_{i}(t) k_{1} \leqslant 0 \quad \text { for every } t \geqslant t_{2} \tag{6}
\end{equation*}
$$

Integrating (6) between $\left[t_{2}, t\right]$ we obtain

$$
r(t) x^{(n-1)}(t)-r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right)+k_{1} \sum_{i=1}^{m} \int_{f_{i}}^{t} p_{i}(\theta) d \theta \leqslant 0
$$

and consequently

$$
-x^{(n-1)}(t) \geqslant k_{1} \frac{\sum_{i=1}^{m} \int_{t_{2}}^{t} p_{i}(\theta) d \theta}{r(t)} \quad \text { for every } t \geqslant t_{2}
$$

Using this inequality and condition (3) we obtain again the contradiction $\lim _{t \rightarrow \infty} x^{(n-2)}(t)=-\infty$.

To prove (III) we rewrite equation $(*)_{\delta=\div 1}$ as follows:

$$
\begin{equation*}
\left[r(t) x^{(n-1)}(t)\right]^{\prime}+\sum_{i=1}^{m} p_{i}(t) \frac{\varphi\left(x\left[g_{i}(t)\right]\right)}{x\left[g_{i}(t) / 2\right]} x\left[\frac{g_{i}(t)}{2}\right]=0, \quad t \geqslant t_{3} \tag{7}
\end{equation*}
$$

and we remark that (1) and $\lim _{t \rightarrow \infty} x(t) \neq 0$ imply the existence of some $t_{3} \geqslant t_{2}$ and of a constant $k_{2}>0$ such that

$$
\frac{\varphi\left(x\left[g_{i}(t)\right]\right)}{x\left[g_{i}(t) / 2\right]}>k_{2}, \quad i=1,2, \ldots, m \text { for every } t \geqslant t_{3}
$$

From above inequality, (7) leads to

$$
\begin{equation*}
\left.\left[r(t) x^{(n-1)}(t)\right]\right]^{\prime}+k k_{2} \sum_{i=1}^{m} p_{i}(t) x\left[\frac{g_{i}(t)}{2}\right] \leqslant 0, \quad t \geqslant t_{3} . \tag{8}
\end{equation*}
$$

Applying Lemma 2 with $v=n-1$ and $m(t)=1$, from (8) we derive the following

$$
\begin{equation*}
\left[r(t) x^{(n-1)}(t)\right]^{i}+k k_{2} \sum_{i=1}^{m} p_{i}(t) g_{i}^{n-2}(t) x^{(n-2)}(t) \leqslant 0, \quad t \geqslant t_{3} \tag{9}
\end{equation*}
$$

By (9), $x^{(n-2)}(t)$ is obviously a positive solution of the following equation

$$
\begin{equation*}
\left[r(t) y^{\prime}\right]^{\prime}+\frac{k k_{2} \sum_{i=1}^{m} g_{i}^{n-2}(t) p_{i}(t) x^{(n-2)}(t)+\mu(t)}{x^{(n-2)}(t)} \quad y=0, \quad t \geqslant t_{3} \tag{10}
\end{equation*}
$$

where

$$
\mu(t)=-\left[r(t) x^{(n-1)}(t)\right]^{\prime}-k k_{2} \sum_{i=1}^{m} g_{i}^{n-2}(t) p_{i}(t) x^{(n-2)}(t), \quad t \geqslant t_{3}
$$

Since, from (9),

$$
\mu(t) \geqslant 0 \quad \text { for every } t \geqslant t_{3}
$$

the functions $r(t)$ and

$$
k k_{2} \sum_{i=1}^{m} p_{i}(t) g_{i}^{n-9}(t)+\frac{\mu(t)}{x^{(n-2)}(t)}
$$

are obviously subject to the conditions

$$
\int^{\infty} \frac{d t}{r(t)}<\infty
$$

and for some $\lambda>1$

$$
\int^{\infty}\left(k k_{2} \sum_{i=1}^{m} p_{i}(t) g_{i}^{n-2}(t)+\frac{\mu(t)}{x^{(n-2)}(t)}\right)\left(\int \frac{d t}{r(t)}\right)^{\lambda} d t=\infty
$$

Thus, applying a result due to Moore [7] we conclude that all solutions of (10) are oscillatory. But this is a contradiction, since $x^{(n-2)}(t)$ is a nonoscillatory solution of (10). This contradiction proves (III).

## 2. - Main results.

Theorem 1. - In addition to conditions (i)-(iv) assume that for every $T \geqslant t_{0}$

$$
\begin{equation*}
\sum_{i=1}^{m} \int^{\infty} p_{i}(t)\left(\sum_{i=1}^{m} \int_{T}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta\right) d t=\infty \tag{11}
\end{equation*}
$$

where $r^{*}(t)=\max _{t / 2 \leqslant \theta \leqslant l} r(\theta)$.
Then:
( $\alpha$ ) Under condition (2) every solution of equation $(*)_{\delta=+1}$ is for $n$ even oscillatory and $n$ odd either oscillatory or tending monotonically to zero as $t \rightarrow \infty$ together with its first $n-2$ derivatives.
( $\beta$ ) Under conditions (3) or (4) every solution of equation $(*)_{\delta=+1}$ is either oscillatory or tending monotonically to zero as $t \rightarrow \infty$ together with its first $n-2$ derivatives.

Note: In the case where the function $r(t)$ is nondecreasing, condition (11) can be replaced by

$$
\begin{equation*}
\int \frac{\sum_{i=1}^{m} g_{i}^{n-1}(t) p_{i}(t)}{r(t)} d t=\infty \tag{*}
\end{equation*}
$$

Proof. - Let $x(t)$ be a nonoscillatory solution of equation $(*)_{\delta=+1}$ with $\lim _{i \rightarrow \infty} x(t) \neq 0$. Then, without loss of generality, that $t_{1} \geqslant t_{0}$ is chosen so that $x\left[g_{i}(t)\right]>0, i=1,2, \ldots, m$ for every $t \geqslant t_{1}$. In view of equation $(*)_{\delta=+1}$ and conditions (ii), (iii) we have $\left[r(t) x^{(n-1)}(t)\right]^{\prime} \leqslant 0$ for every $t \geqslant t_{1}$, where this function is not identically zero for all large $t$. Under one of the conditions (2), (3) and (4) we get, from Lemma 3,

$$
x^{(n-1)}(t)>0 \quad \text { for all large } t
$$

without loss of generality we assume that

$$
x^{(n-1)}(t)>0 \quad \text { for every } t \leqslant t_{1} .
$$

By Lemma 1 there exists a $t_{2} \geqslant t_{1}$ such that $x^{\prime}(t)>0$ or $x^{\prime}(t)<0$ for every $t \geqslant t_{2}$ and consequently we have to examine the following cases:

Oase 1) $x^{\prime}(t)>0$ on $\left[t_{2}, \infty\right)$.

Let

$$
\begin{equation*}
z(t)=-\left[r(t) x^{(n-1)}(t)\right] \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right] \varphi\left(x\left[g_{i}(\theta)\right]\right)} d \theta, \quad t \geqslant t_{2} \tag{12}
\end{equation*}
$$

we obviously have

$$
\begin{equation*}
z(t) \leqslant 0 \quad \text { for every } t \geqslant t_{2} . \tag{13}
\end{equation*}
$$

From (12) for every $t \geqslant t_{2}$, we obtain

$$
\begin{aligned}
z^{\prime}(t)= & -\left[r(t) x^{(n-1)}(t)\right]^{\prime} \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right] \varphi\left(\left[x\left[g_{i}(\theta)\right]\right)\right.} d \theta-\sum_{i=1}^{m} \frac{r(t) x^{(n-1)}(t) g_{i}^{n-2}(t) g_{i}^{\prime}(t)}{r^{*}\left[g_{i}(t)\right] \varphi\left(x\left[g_{i}(t)\right]\right)} \\
= & \sum_{i=1}^{m} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right) \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right] \varphi\left(x\left[g_{i}(t)\right]\right)} \mathrm{d} \theta \\
& \quad-\sum_{i=1}^{m} \frac{g_{i}^{n-2}(t)}{r^{*}\left[g_{i}(t)\right]} \cdot \frac{r(t) x^{(n-1)}(t)}{x^{\prime}\left[g_{i}(t) / 2\right]} \cdot \frac{x^{\prime}\left[g_{i}(t) / 2\right] g_{i}^{\prime}(t)}{\varphi\left(x\left[g_{i}(t)\right]\right)}
\end{aligned}
$$

Since the functions $\varphi$ and $x(t)$ are nondecreasing and the function $r(t) x^{(n-1)}(t)$ is nonincreasing, we get

$$
z^{\prime}(t) \geqslant \sum_{i=1}^{m} p_{i}(t) \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta-2 \sum_{i=1}^{m} \frac{x^{(n-1)}\left[g_{i}(t)\right]}{x^{\prime}\left[g_{i}(t)\right]} \cdot \frac{r^{*}\left[g_{i}(t)\right]}{r^{*}\left[g_{i}(t)\right]} g_{i}^{n-2}(t) \cdot \frac{\left(x\left[g_{i}(t) / 2\right]\right)^{\prime}}{\varphi\left(x\left[g_{i}(t) / 2\right]\right)}
$$

for every $t \geqslant t_{2}$ : Thus applying Lemma: 2 with $u=x^{\prime}, m=r, \nu=n-1$ and $g_{i}(t)$ in place of $t$, we have

$$
z^{\prime}(t) \geqslant \sum_{i=1}^{m} p_{i}(t) \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta-2 k \sum_{i=1}^{m} \frac{\left(x\left[g_{i}(t) / 2\right]\right)^{\prime}}{\left(x\left[g_{i}(t) / 2\right]\right)}
$$

for every $t \geqslant t_{3}$, where $t_{3} \geqslant t_{2}$ is chosen property. By above inequality, integration between $\left[t_{3}, t\right]$ and taking into account conditions (iii) and (11) we obtain $\lim _{t \rightarrow \infty} z(t)=\infty$, which contradicts (13).

Case 2). $x^{\prime}(t)<0$ on $\left[t_{2}, \infty\right)$.
Let

$$
\begin{equation*}
z(t)=-\left[r(t) x^{(n-1)}(t)\right] \sum_{i=1}^{m} \int_{t_{2}}^{t} \frac{g_{i}^{n-z}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta, \quad t \geq t_{2} \tag{14}
\end{equation*}
$$

we obviously have

$$
\begin{equation*}
\tilde{z}(t) \leqslant 0 \quad \text { for every } t \geqslant t_{2} . \tag{15}
\end{equation*}
$$

From (14) for every $t \geqslant t_{2}$, we obtain

$$
\begin{aligned}
\tilde{z}^{\prime}(t)= & -\left[r(t) x^{(n-1)}(t)\right]^{\prime} \sum_{i=1}^{m} \int_{t_{3}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta-\sum_{i=1}^{m} \frac{r(t) x^{(n-1)}(t)}{r^{*}\left[g_{i}(t)\right]} g_{i}^{n-2}(t) g_{i}^{\prime}(t) \\
= & \sum_{i=1}^{m} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right) \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta-\sum_{i=1}^{m} \frac{r(t) x^{(n-1)}(t)}{r^{*}\left[g_{i}(t)\right]} g_{i}^{n-2}(t) g_{i}^{\prime}(t) \\
\geqslant & \sum_{i=1}^{m} p_{i}(t) \varphi\left(x\left[g_{i}(t)\right]\right) \sum_{i=1}^{m} \int_{t_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta \\
& +2 \sum_{i=1}^{m} \frac{x^{(n-1)}\left[g_{i}(t)\right]}{\left|x^{t}\left[g_{i}(t) / 2\right]\right|} \cdot \frac{r\left[g_{i}(t)\right]}{r^{*}\left[g_{i}(t)\right]} g_{i}^{n-2}(t)\left(x\left[\frac{g_{i}(t)}{2}\right]\right)^{\prime}
\end{aligned}
$$

Moreover, since $\lim _{t \rightarrow \infty} x(t) \neq 0$, there exists a positive constant $\eta$ such that

$$
\varphi\left(x\left[g_{i}(t)\right]\right) \geqslant \eta, \quad i=1,2, \ldots, m \text { for every } t \geqslant t_{2}
$$

Thus, by applying Lemma 2 with $u=\left|x^{\prime}\right|, m=r, v=n-1$ and $g_{i}(t)$ in place of $t$, we finally obtain

$$
\tilde{z}^{\prime}(t) \geqslant \eta \sum_{i=1}^{m} p_{i}(t) \sum_{i=1}^{m} \int_{i_{2}}^{t} \frac{g_{i}^{n-2}(\theta) g_{i}^{\prime}(\theta)}{r^{*}\left[g_{i}(\theta)\right]} d \theta+2 k \sum_{i=1}^{m}\left(x\left[\frac{g_{i}(t)}{2}\right]\right)^{\prime}
$$

for every $t \geqslant t_{3}$, where $t_{3} \geqslant t_{2}$ is chosen property, by condition (11) and the fact that the solution $x(t)$ is bounded, this inequality leads to $\lim _{i \rightarrow \infty} \tilde{z}(t)=\infty$, which contradicts (15).

We have proved by that for every nonoscillatory solution $x(t)$ of equation $(*)_{\delta=+1}$ with $\lim _{t \rightarrow \infty} x(t)=0$ and consequently $x(t) x^{\prime}(t)<0$ for all large $t$. If condition (2) is satisfied, then $x(t) x^{(n-1)}(t)>0$ for all large $t$ and consequently $n$ must be odd. Moreover, as it is easy to see, $\lim _{t \rightarrow \infty} x(t)=0$ implies that $\lim _{i \rightarrow \infty} x^{(j)}(t)=0$ for $j=1,2, \ldots, n-2$.

Theorem 2. - In addition to conditions (i)-(iv), (2) and (11) assume that for every $\xi \neq 0$

$$
\begin{equation*}
\sum_{i=1}^{m} \int^{\infty} p_{i}(t) \varphi\left(\frac{\xi g_{i}^{n-3}(t)}{r^{*}\left[g_{i}(t)\right]}\right) d t= \pm \infty \tag{16}
\end{equation*}
$$

Then every solution $x(t)$ of equation $(*)_{\delta=-1}$ satisfies exactly one of the following:
$(\alpha) x(t)$ is oscillatory,
( $\beta$ ) $x(t)$ and its first $n-2$ derivatives tend monotonically to zero as $t \rightarrow \infty$,
( $\gamma$ ) It holds

$$
\lim _{t \rightarrow \infty} r(t) x^{(n-1)}(t)=\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} x^{(j)}(t)=\infty, j=0,1, \ldots, n-2
$$

or

$$
\lim _{t \rightarrow \infty} r(t) x^{(n-1)}(t)=-\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} x^{(j)}(t)=-\infty, \quad j=0,1, \ldots, n-2
$$

Moreover, ( $\beta$ ) occurs only in the cases of even $n$.
Proof. - Let $x(t)$ be a nonoscillatory solution of equation $(*)_{\delta=-1}$ with $\lim _{t \rightarrow \infty} x(t) \neq 0$. As in the proof of Theorem 1, we may (and do) assume, without loss of generality that for $t_{1} \geqslant t_{0}$ it holds

$$
\begin{equation*}
x\left[g_{i}(t)\right]>0, \quad i=1,2, \ldots, m \text { for every } t \geqslant t_{1} \tag{17}
\end{equation*}
$$

Using equation $(*)_{\delta=-1}$, conditions (11) and (ii), it is easy to see that for $t_{2} \geqslant t_{1}$ we have $x^{(n-1)}(t)>0$ or $x^{(n-1)}(t)<0$ on $\left[t_{2}, \infty\right)$. Thus, we have the following cases:

Case 1) $x^{(n-1)}(t)>0$ on $\left[t_{2}, \infty\right)$.
By $\left[r(t) x^{(n-1)}(t)\right]^{\prime} \geqslant 0, t \geqslant t_{2}$, we get

$$
r(t) x^{(n-1)}(t) \geqslant r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right)
$$

and consequently

$$
x^{(n-1)}(t) \geqslant r\left(t_{2}\right) x^{(n-1)}\left(t_{2}\right) \frac{1}{r(t)} \quad \text { for every } t \geqslant t_{2}
$$

from condition (2), implies that $\lim _{t \rightarrow \infty} x^{(n-2)}(t)=\infty$ and hence

$$
\lim _{t \rightarrow \infty} x^{(j)}(t)=\infty \quad \text { for } j=0,1, \ldots, n-2
$$

Taking $t_{3} \geqslant t_{2}$ such that

$$
\begin{equation*}
x^{(j)}(t)>0, \quad t \geqslant t_{3} \text { for } j=0,1, \ldots, n-2 \tag{18}
\end{equation*}
$$

Applying Taylar's theorem to the function $x(t)$ we obtain

$$
\begin{equation*}
x(t)=\sum_{k=0}^{n-2} \frac{x^{(k)}(t / 2)}{k!}(t / 2)^{k}+\frac{x^{(n-1)}\left(t^{*}\right)}{(n-1)!} \frac{t^{(n-1)}}{2^{(n-1)}} \tag{19}
\end{equation*}
$$

where $t^{*}$ is a point between $t / 2$ and $t$, and every $t \geqslant 2 t_{3}=t_{4}$.

From (18) and (19) it follows that for $t \geqslant t_{4}$

$$
x(t) \geqslant \frac{t^{n-1}}{2^{n-1}(n-1)!} \frac{x^{(n-1)}\left(t^{*}\right) r\left(t^{*}\right)}{r\left(t^{*}\right)} \geqslant \frac{x^{(n-1)}\left(t_{3}\right) r\left(t_{3}\right)}{2^{n-1}(n-1)!} \frac{t^{n-1}}{r^{*}(t)}
$$

and consequently there exists some $t_{5} \geqslant t_{4}$ such that

$$
\begin{equation*}
x\left[g_{i}(t)\right] \geqslant \xi \frac{g_{i}^{n-1}(t)}{r^{*}\left[g_{i}(t)\right]}, \quad i=1,2, \ldots, m, \text { for every } t \geqslant t \tag{20}
\end{equation*}
$$

where $\xi=\left(x^{(n-1)}\left(t_{3}\right) r\left(t_{3}\right) / 2^{n-1}(n-1)!\right)$. Integrating equation $(*)_{\partial_{=-1}}$ between $\left[t_{5}, t\right]$ and using (20) and condition (16) we get $\lim _{t \rightarrow \infty} r(t) x^{(n-1)}(t)=\infty$ : Hence the solution $x(t)$ satisfies ( $\gamma$ ).

Case 2) $x^{(n-1)}(t)<0$ on $\left[t_{2}, \infty\right)$.
By considering the functions $z_{*}=-\approx$ and $\tilde{z}_{*}=-\tilde{z}$ respectively in place of the functions $z$ and $\tilde{z}$ of the proof of Theorem 1 and using Lemma 2, we obtain the desired contraditions. The proof of the theorem is now obvious.

## REFERENCES

[1] I. Kiguradze, On the oscillation of solutions of the equation $d^{m} u / d t^{m}+\alpha(t)|u|^{n} \operatorname{sgn} u=0$, Mat. Sb., 65 (1964), pp. 172-187 (Russian).
[2] 1. Kyguradze, The problem of oscillation of solutions of nonlinear differential equations, Differential'nye Uravnenija, 1 (1965), pp. 995-1006 (Russian).
[3] Lu-San Chen - Cmen-Chin Yef, Nonoscillation generating delay terms in odd order differential equations, Rend. Accad. Sci. Fis. Mat. Napoli (to appear).
[4] R. S. Dahiya, Nonoscillation generating delay terms in even order differential equations, Hiroshima Math. J., 5 (1975), pp. 385-394.
[5] V. Sevelo - N. Varėch, On the oscillation of solutions of the equation $\left(r(t) x^{(n-1)}(t)\right)^{\prime}+$ $+p(t) f(x(\tau(t)))=0$, Ukrain. Mat. Z̆., 25 (1973), pp. $707-714$ (Russian).
[6] Y. G. Spicas, On the oscillatory and asymptotic behavior of damped differential equations with retarded argument, University of Ioannina, Technical report no. 41, September 1975.
[7] R. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math., 5 (1955), pp. 125-145.


[^0]:    (*) Entrata in Redazione il 18 febbraio 1976.
    ${ }^{(* *)}$ This research was supported by the National Science Council.

