
On the Oscillation of Solutions of the Equation 
m 

[r(t)x(~-l)(t)]' + (~ ~, p,(t)  q~(x[g~(t)]) = 0 (*) (**). 
1 = I  
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Summary. - I n  this paper we are dealing with the oscillatory and asymptotic behavior of n-th 
order (n> 1) retarded differential equations 

[r(t)x(~-l)(t)]" ÷ ~ ~,p~(t)q~(x[gi(t)] ) = 0 
i = l  

which contain a dam~oing term involving the (n--1)- th  derivative of the unknown ]unc- 
tion, where ~ = ~ 1. 

1 .  - I n t r o d u c t i o n .  

In  this paper  we are deuling with the oscillatory and asymptot ic  behavior  of n-th 
order  ( n >  1) re ta rded  differential equations,  which contain a damping t e rm in- 
volving the ( n - - 1 ) - t h  derivat ive of the unknown function. We now consider the 
following dumped differential equations with re ta rded  arguments  

7~ 

(*) It(t) x(~-l)(t)]' + ~ ~ p,(t) ~(x[g~(t)]) = o 
i = 1  

where 3 = =t=l. The real valued functions r, p~, g~ (i = 1 , 2 ,  ..., m) and ~ are sup- 

posed continuous and  such t ha t :  

(i) The ]unctions g,, i = 1 , 2 ,  . . . , m  are di]/erentiable on [to, c~) and such that 

]or every t >~ to, 

g,(t) < t ,  g~ (t) >1 O,  lim g,(t) = c~ .  

(ii) The ]unctions p~, i = 1 , 2 ,  ..., m are nonnegative on [to, ~ )  and /or some 

index  io, l < i 0 < m ,  p~. ( t )>O ]or t> to .  

(iii) The ]unction ~ is nondecreasing on ( - -  c~ , ~ ) ,  y V= 0 impl ies  yq~(y) :> 0 and 

such that 
o o  

• ] ~ ( Y )  c~ and  < c ~ .  

(*) Entrata in Redazione il 18 febbraio 1976. 
(**) This research was supported by the National Science Council. 
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(1) 

Note: Condition (iii) implies t ha t  

lim ~(y) = co = lim ~(y) 
t -~  Y ~--~-,~ Y 

(iv) The /unction r is positive on [to, c~). 

For equation (*)t=+1 we give some general condition results not  only for the 
case where the condition 

(2) 
Jr ( t )  c~ 

holds, but  also for some cases in which this condition fails. 
In  what  follows, we consider only such solutions of the equation ( .)  which are 

defined for all large t. The oscillutory character is considered in the usual sense, 
i.e. a solution of the equation ( .)  is called oscillatory if it has no last zero, otherwise 
it is called nonoscillatory. 

Before stat ing the theorems, we give the following lemmas, the first two of which 
can be found in [1] and [2], therefore the proofs of which may  be omitted. 

LEYAV[A 1. - Zet u(t) be a positive v-times continuously differentiable /unction on [a, c~). 
I/u(~)(t) is of constant sign and not identically zero for all large t, then there exist a t~>~a 
and an integer l, O<l<v  with v + l odd if u(~)(t)<0, v + l even if u(~)(t)>0 and such 
that /or every t~t** 

1 ~ 0 implies u(k)(t) ~ 0 (k = 0, 1, ..., l - -  1) 

and 

1 ~ - - 1  implies (-- 1)~+~u(*)(t)~0 (k = l~ l + l ,  ..., ~,--1) . 

L E ) ~ A  2. -- _Let u(t) be a (v-- 1)-times (v > 1) continuously di//erentiabte /unction 
on [a, ~ ) .  Let also re(t) be a positive/unction on [a, c~) such that the ]unction m(t) u~-~(t) 
is continuously differentiable on [a, ~ ) .  Suppose moreover that /or  every t>~a we have 
u(t) > 0~ (~u(~-~)(t)> 0, ~(m(t)u(~-~)(t))'~0 and not identically zero/or all large t, where 

= q-1. Then there exists a constant k ~ 0 such that 

m(t) Iu(~-l)(t)[ t~-i Jk 
m*(t) 

/or all large t, where m*(t)-~ max m(O). 

I J E ~ A  3. -- Let equation (*)~=+1 satis/y the conditions (i)-(iv). Then we have the 
following properties: 

(I) I /  condition (2) holds, then ]or every nonoseillatory solution x(t) of equation 



Lv-SA~ CHE~: On the oscillation o] solutions o/ the equation, ete. 307 

(*)~=+: we have 

x(t)x(~-:)(t) > 0 /or all large t .  

(II)  I /  /or every T>to  

t 

(3) ~, p , (O)dO 

f r t>~T r(t) dt = ~ , 

then ]or every nonoseillatory solution x(t) of equation ( ,)~=+: with ]im x(t) V: 0 we have 

(4) 

(IIi) If  

x(t)x('-:)(t) > 0 ]or all large t .  

co 

f d~(t)~c~ an~ ~or some ~ 1  

co co 

f (f g~ ( )p~( ) dt = c~ 
i=1 

then ]or every nonoseillatory solution x(t) o] equation (,)~= +: with l im x(t) V: 0 we have t->co 

x(t)x(~-:)(t) > 0 /or all large t .  

PROOF. - Le t  x(t) be a nonosci l latory solution of equat ion (*) t=+l"  Then wi thout  
loss of genera l i ty  x ( t ) >  0 for every  t >  to and  because of condition (i) there  exists a 

t:>~to such tha t  x[g~(t)]~ 0 for t>~t, and i ~ 1, 2, ..., m. Thus,  in all eases ( I ) - ( I I I )  
we get  

(5) 
m 

[r(t)x(~-:'(t)]'= -- ~ p~(t)q~(x[gdt)] ) < 0 

for every  t>t::  Moreover,  since Pio(t)>O for all large t, the  same holds for 
[r(t)x(~-:)(t)] ' and  consequent ly  the  funct ion r(t)x:'-:)(t) is posi t ive or negat ive  for 
all  large t. Thus since r ( t ) >  0 for every  t>to, we mus t  have  x~-: ) ( t )> 0 or 
x(~-:)(t) < 0 for all large t. 

We shall p rove  t h a t  the  assumpt ion  

x: '-~(t)  < 0 for all large t 

leads to  a contradic t ion in all cases (I)-(III), provided  tha t  in cases (II) and  (III) 
we have  }ira x(t) =/= O. To do this we suppose t h a t  for some t~>tl we have  x("-:)(t) < 0 
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for every  t ) t z .  Integrat ing (5) between [t2, t] we obtain 

r(t) x('-~(t) < r(t,)x('-~)(t,) 

and consequently 

1 
r(t) 

for every t>~t~, Integrat ing again between [tz, t] we have 

t 
x (~ ~) t f" dO - x(,-~'(t) + x'~-~)(t,)>-r(t~) - ( ~ ) J r ~ )  

tz 

and consequently condition (2) implies 

lim x(~-~)( t) = --  oo 
b-~oo 

which contradicts  the  posit ivi ty of x(t). This contradiction proves (I). 
To prove (II) we remark  tha t  the  assumption lira x ( t ) ~  0 implies the  existence 

t--~- co  

of a constant  kl > 0 such tha t  

qJ(x[g,(t)]) > k l ,  i =- 1, 2, ..., m for every t> t~ .  

Thus, from equation (,)e~+~ leads to the following inequali ty 

(6) [r(t)x(*-l)(t)]r+ ~,p , ( t )k~<O for every t > t , .  
i = 1  

Integrat ing (6) between [t2, t] we obtain 

t 

r( t )  x~ -1 , ( t )  - r ( t~ )x ,~- , ( t~ )  + k~.= fp , (o )  so < o ,  
t ,  

and consequently 
t 

f ,i(o)do 
i = l  

t~ 

r(t) 
for every t > t , .  

Using this inequal i ty 
lira x("-2)(t) ---- - -  c ¢ .  
t---~oo 

and condition (3) we obtain again the contradiction 
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To prove  ( I I I )  we rewri te  equat ion (,)~=+~ as follows: 

(7) [r(t) x(~-~)(t)] ' + ~ p , ( t )  cf(x[g,(t)]) t > t8 ~=1 x[g~(t)/2] x = 0 , 

and  we r e m a r k  t h a t  (1) and l im  x(t)V= 0 imply  the  existence of some t3>t,  and  of 

a cons tan t  k~ > 0 such t h a t  

cf(x[g,(t)]) 
x[g,(t)/2] > k2 , 

i = 1, 2, ... ~ m for every  t > ta. 

F r o m  above  inequali ty,  (7) leads to 

(8) [r(t)x(~-~>(O]' + k k ~ p , ( O x  g t) < 0  ~ t>t~. 

Applying  L e m m a  2 with v = n - - 1  and  m ( t ) =  1, f rom (8) we derive the  following 

m 

X" ~ It~-n-elt~x(n-2)lt ~ (9) [r(t)x(~-~)(t)]'~ - kk2 z~/~t J~i t ~ t j < 0 ,  t ) t 3 .  
i = 1  

B y  (9), x('*-~)(t) is obviously a posi t ive solution of the  following equat ion  

m 

kk2 ~ g~-~(t)p,(t)xt'~-')(t) -~ it(t) 
(10) [r(t)y'] 'q- ~=1 x(~_:)(t ) y = 0 ,  t>~ta 

where 

it(t) = -  [r(t)x(~-l)(t)] ' -  kk~ ~,g~-2(t)p~(t)x('-2)(t) , t > t 3 .  
i=1 

Since, f rom (9), 

the  funct ions r(t) and 

be(t) > 0 for every  t > t3 

" t '~-~t  + ~( t )  kk~p,(,=l )g' ( )  x ~ (  t ) 

are obviously subject  to the  conditions 

co  

and  for some ,~ > 1 

c o  co  

2 i ~ C ~ .  
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Thus, app ly ing  a resul t  due to M o o ~  [7] we conclude t h a t  all solut ions of (10) are 
oscillatory. Bu t  this is a contradict ion,  since x(~-~)(t) is a nonosci l latory solution 

of (10). This contradic t ion proves  ( I I I ) .  

2 .  - M a i n  r e s u l t s .  

T~EOI~E~ 1. - In  addition to conditions (i)-(iv) assume that for every T>~to 

co t 

"~ g~ (O)g~(O) dO dt (11) p~(t) = o~ 

~=1 ~ r*[gi(O)] 
T 

where r * ( t ) =  m a x  r(O). 
tlg<<. O<~t 

Then: 

(~) Under condition (2) every solution o] equation ($)6=+1 "iS for n even oscilla- 
tory and n odd either oscillatory or tending monotonically to zero as t -~ ~ together with 
its ]irst n - - 2  derivatives. 

(fl) Under conditions (3) or (4) every solution of equation (*)~=+1 is either oscil- 
latory or tending monotonically to zero as t --~ c~ together with its ]irst n - -  2 derivatives. 

Note: In  the case where the  funct ion r(t) is nondecreasing,  condition (11) can be 

replaced b y  

V ~ g~-~(t)p~(t) 
(11") j ioo~ r(t) dt : c~. 

P~ooF. - Le t  x(t) be a nonoscil latory solution of equat ion  ($)6= +~ with ~ i m x ( t ) ~  O. 

Then,  wi thout  loss of general i ty ,  t h a t  t~ >~ to is chosen so t h a t  x[g~(t) ] > O, i ---- 1, 2, ..., m 
for every  t>~t~. I n  view of equat ion (~)6=+1 a n d  conditions (if), (iii) we have  

[r(t)x(~-~)(t)]'<O for every  t>~t~, where this funct ion is not  identical ly zero for all 

laxge t. Under  one of the  conditions (2), (3) and  (4) we get, f rom L e m m a  3, 

x(~-~)(t) > 0 for all large t 

wi thout  loss of general i ty  we assume t h a t  

x(~-l)(t) > 0 for every  t < t l .  

By  L e m m a  1 there  exists a t~>tl such t h a t  x ' ( t )> 0 or x ' ( t )< 0 for every  t>t2 and  
consequent ly  we have  to examine the  following cases: 

Case 1) x ' ( t )> 0 on [t~, ~ ) .  
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:bet 

02) 

t 
Wt ~--2 tO ! 

z(t) --~ - -  [r(~)x (~)J~=~ j r * [ ~ - ~ ( O ) ] )  
t~ 

we obviously have 

dO, t>~t~ 

03) z(t)<O for every t>t~ .  

From (12) for every t>~t~ we obtain 

t 

z'(t) = --  [r(t)x(~-z)(t)] ' g~-~(O)g~(O) ,Tt} ( ) ( )g~ ~ Jy~t s 
r*[g~(O)]q~([x[g~(O)]) ~ ~=~ r*[g~(t)]~(x[g~(t)]) 

t~ 
t 

m n - S O  ' 0  

i = 1  i = I  ,] r*[gi(O)]~(x[gi(t)]) 
t~ 

"~ g~-~(t) r(t)x(~-~)(t) x'[g~(t)/2]g~(t) 

Since the functions q~ and x(t) are nondecreasing and the funct ion r(t)xC'-~)(t) is 

noninereasing~ we get 

t 

z"t" ~ "t " ~ ~ gT-~(O)g~(O) d~ 
4 = 1  i ~ l  J LY~:~ / ]  

t2 

r[g~(t)] . _ 2 , t ,  (x[g~(t)/2])' 
" r - , ~ ]  g ~ ( )  [gi( )J V(x[gi(t)/2]) 

for every t>.t~: Thus applying Lemma 2 with u = x', m ----- r~ v ~ n - -  1 and g~(t) in 

place of t, we have 

" ~  " ~  g~ (O)g~(O) 
z'(t)>~=lP~(t) " r*[g~(O)] 

t~ 

do - 2k ~ (x[g,(t)/2])' 
~=I (x[gi(t)/2]) 

for every t>t~, where t3~t2 is chosen property.  By  above inequality, integration 

between [t3, t] and taking into account  conditions (iii) and (11) we obtain lim z(t) = 
t---> co 

which contradicts (13). 

Case 2). x'(t) < 0 on [t2, ~ ) .  

:bet 

t 

~(t) = --  [r(t)x('~-l)(t)] ~ f g~-~(O)g~(O) dO 
~=i r*[gi(O)] ' 

t2 

t ~  t~ 
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we obviously have 

(15) 5(t) ~<0 for every  t >  t~. 

F rom (14) for every  t>t~, we obtain 

t 

('-~) t ' g~ ()gi(O) r(t)x("-l)(t) g~ (t)gi(t) 2'(t) = -- [r(t)x ( )] ~ dO -- ~ "-~ ' 
~=~ r*[gi(t)] 

t~ 

t 

"t" "x ~ "t "~ ~-" Fg~-~(O)g~(O)~ ~-" r(t)x(~-~)(t) . '- '(t~ 

t2 

t 

>~ ~=,~P~(t)qJ(x[g~(t)]) g ~ (  )g~(O) dO 

t: 

÷ 2  ~ x(~-~)[g~(t)] r[g~(t)] g'~-~(t) x 
~=1 Ix'[g~(t)/2 ][ r*[g~(t)] 

Moreover, since Lim x ( t ) ~  O, there  exists a positive constant  ~ such t h a t  

q~(x[g~(t)])>~, i = 1 , 2 ,  . . . , m  for every  t>t2.  

Thus, by  applying Lemma 2 with u =- Ix'l, m = r, v = n - -  1 and g~(t) in place of t, 
we finally obtain 

t 

2'( t)>~ 2.,p~ff) 2., [ .  ~ a(7 + 2k ~, x 
i=1  i = l J  [ Y i l  2] i = 1  

t2 

for every  t>ts ,  where t3>t~ is chosen proper ty ,  by  condition (11) and the fact  tha t  
the solution x(t) is bounded,  this inequal i ty  leads to lira 5 ( t )=  oo~ which contra- 

t -*co  

diets (15). 
We have proved by  tha t  for every  nonoscil latory solution x(t) of equat ion (.)~= +1 

with l i m x ( t ) =  0 and consequently x( t )x ' ( t )<  0 for all large t. If  condition (2) is 

satisfied, then  x(t)x(~-l)(t) > 0 for all large t and consequently n must  be odd. More- 
over, as it  is easy to see, l im x(t) = 0 implies tha t  lira z(J)(t) = 0 for j = 1, 2, ..., n - -  2. 

t ->co  t -~oo 

THEOREM 2 . -  I n  addition to conditions (i)-(iv), (2) and (11) assume that for 
every ~ 0 

(16) .= p~(t)~ \r*[g~(t)]] 
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Then every solution x(t) o] equation (*)~=-i satis]ies exactly one o] the ]oIlowing: 

(o~) x(t) is oscillatory, 

(fl) x(t) and its ]irst n - - 2  derivatives tend monotonically to zero as t--> c~ , 

(~) I t  holds 

l imr( t )x~- l ) ( t )  = c~ and limx(~)(t) = c~ ,  j = 0, 1, ..., n - -  2 

o r  

l imr(t)x(,-~)(t)  -~ -- z~ and lira x(J)(t) ----- - -  c~ ,  

Moreover~ (fl) occurs only in the cases o] even n. 

j = O , l ~ . . . , n - - 2  . 

t)]~ooF. - Le t  x(t) be a nonosci l latory solution of equat ion  (,)~=_~ with  ~im x(t) V: O. 

As in the  proof  of Theorem 1~ we m a y  (and do) assume,  wi thout  toss of genera l i ty  

t ha t  for t~> to it  holds 

(17) x[g , ( t ) ]>O,  i = 1, 2, ..., m for every  t > Q .  

Using equat ion  (.)~=_~, conditions (11) and  (ii), i t  is easy to see t h a t  for t ~ t ~  we 

have  x(~-~)(t) ~ 0 or x(~-~)(t) < 0 on [t~, c~). 

Case 1) x(~-~)(t)> 0 on [t~, ~ ) .  

B y  [r(t)x(~-~)(t)]~O~ t>~t2, we get  

and  consequent ly  

Thus,  we have  the  following cases: 

r(t) x(.-l)(t) > r(t~)x('-'(t~) 

1 
x(~-l)(t)>~r(t2)x('-l)(t2)-:~, for every  t~ t~  

f rom condit ion (2), implies t h a t  l i m x ( ~ - ~ ) ( t ) =  c~ and hence 
~---> c~  

limx(J)(t) = c~ 
t - ->¢o 

for j = 0, 1~ ..., n - - 2  . 

Tak ing  t~>~t~ such t h a t  

(is) x(J)(t) > O, t>t3 for j = 0 ,  1, ..., n - -  2 .  

Apply ing  Tay la r ' s  t heorem to the  funct ion x(t) we obta in  

(19) 
~-2 x(k)/ti2) 

x(t) = y.  (t121  + 
k=O 

x(~-ll(t*) t ( . - ,  
( n - -  1)! 2 <'-1) ' 

where t* is a point  be tween t/2 and  t, and  every  t>~2t3 = t4. 
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F r o m  (18) und (t9) i t  follows t h a t  for t>t~ 

t~-~ x~-~)(t*)r(t*) x(~-~)(t~)r(t~) t~-~ 
x(t) >~ 2~_~(n _ 1)! r - ~  >2"-~(n - -  1)1 r*(t) 

~nd consequen t ly  the re  exists  some ts~> t~ such t h a t  

(20) x[g~(t)]> ~ g~-~(t) 
r*[g~(t)] ' 

i = 1 , 2 ,  ...~ m, for  every  t > t ,  

where  ~ = (x(~-~)(t~)r(tz)/2~-~(n - 1)!). I n t e g r a t i n g  equa t ion  (*)~=-1 be tween  [t~, t] a n d  

us ing  (20) ~nd condi t ion  (16) we ge t  l imr( t )x(~-~)( t )= z~. H e n c e  t he  solut ion x{t) 

sa,tisfies (y). 

C~se 2) x(~-~)(t)< 0 on [t2, ~ ) .  

B y  consider ing t he  func t ions  z .  = - -  z and  5, = --  5 respec t ive ly  in p lace  of t he  

func t ions  z a n d  5 of the  proof  of T h e o r e m  1 ~nd us ing L e m m a  2, we ob ta in  the  

desi red cont r~di t ions .  The  proof  of  t he  t h e o r e m  is now obvious.  
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