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Summary. — In this paper we are dealing with the oscillatory and asymplotic behavior of n-th
order (n>> 1) retarded differential equations

[0 DO+ 83 it (olg.)) = 0

which contain o damping term involving the (n— 1)-th derivative of the unknown func-
tion, where 6 = 4 1.

1. — Introduction.

In this paper we are dealing with the oscillatory and asymptotic behavior of n-th
order (m>>1) retarded differential equations, which confain a damping term in-
volving the (n--1)-th derivative of the unknown function. We now consider the
following damped differential equations with retarded arguments

") P00+ 0 3 p D p(elg)) = 0

where § = 4-1. The real valued functions r, p,, ¢; ({ =1,2, ..., m) and ¢ are sup-
posed continuous and sueh that:

(i) The functions g;, © ==1,2, ..., m are differentiable on [t,, o) and such that
for every 1>1,,
gt)<t, gi{)>0, limg,t)= co.
{->o0

(il) The functions p;, 1 ==1,2, ..., m are nonnegative on [t,, o) and for some
indew &, 1<iy<m, p;()>0 for t>14,.

(iii) The function ¢ is nondecreasing on (— oo, oo), y=%= 0 implies yo(y) >0 and
such that

O

Ay fﬁl -
fw(y)<°° and w(y)< '

— 00

(*) Entrata in Redazione il 18 febbraio 1976.
{**) This research was supported by the National Science Council.
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Note: Condition (iii) implies that

1) tim # = o — tim ZY)
t>o0 Y tr—o0 Y

{(iv) The function v is positive on [i;, o).

For equation (*),_,; we give some general condition results not only for the
case where the eondition

¢ at

holds, but also for some cases in which this condition fails.

In what follows, we consider only such solutions of the equation (%) which are
defined for all large £. The oscillatory character is considered in the usual sense,
i.e. a solution of the equation (%) is called oscillatory if it has no last zero, otherwise
it is called monoscillatory.

Before stating the theorems, we give the following lemmas, the first two of whiep
can be found in [1] and [2], therefore the proofs of which may be omitted.

LeEMMA 1. — Let u(t) be a positive v-times continuously differentiable function on [a, o).
If u®(t) is of constant sign and not identically zero for all large t, then there exist a {,>a
and an integer 1, 0<l<v with v -1 odd if u™(t)<0, v -1 even if u®(t)>0 and such
that for every t>1,

1> 0 implies uP{)>0 (k=0,1,..,1—1)
and

l<y— 1 implies (— 1)@y >0 (b=0L14+1,...,v—1).

LeMMA 2. — Let u(t) be a (v— 1)-times (v > 1) continuously differentiable function
on [a, oo). Let also m(t) be o positive function on [a, o) such that the function m(t)ur—9(t)
is econtinuously differentiable on [a, co). Suppose moreover that for every t>a we have
w(t) > 0, Sur=2(t)> 0, $(m(E)u—2(1))' <0 and not identically zero for all large t, where
8= 41. Then there exists a constant k> 0 such that

m{t) [ue=0(0)]
m*(t)  wu(t/2)

for all large t, where m*(t) = max m(0).
H2<ht

tv——l < k

Levya 3. — Let equation (%)g. ., Satisfy the conditions (i)-(iv). Then we have the
following properties:

(I) If condition (2) holds, then for every nonoscillatory solution x(t) of equution
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()5~ .1 we have
2zt >0  for all large t.
X1y If for every T>t,

i
" 3 [pra

T p—

then for every wonoscillatory solution m(t) of equation (%)s.. ., with 33{: #(t) %= 0 we have

QY= >0 for all large .
(I If

4) fﬁ< oo and for some 4 >1

m > ~ A
3 [ [ 55) v=o

then for every monoscillatory solution x(t) of equation (%)s. ., with lim 5(t) 5= 0 we have
() 0(t) >0  for all large ¢.

PRroOF. — Let () be a nonoscillatory solution of equation (x);_,,. Then without
loss of generality «(f) > 0 for every t>1, and because of condition (i) there exists a
t,>1, such that z[g,(f)]>0 for t>¢ and 4=1,2, ..., m. Thus, in all cases (I)-(III)
we get

m

(5) @20 =— 3 p.(t) p(ag{H)]) < 0

i=1

for every ix>t,: Moreover, since p,(f)>0 for all large ¢, the same holds for
[r{f)a»-2(1)] and consequently the funetion r{tjai»~ (¢} is positive or negative for
all large ?. Thus sinee #(f) >0 for every i>1, we must have & 2(f)>0 or
V(1) < 0 for all large ¢.

We shall prove that the assumption

() <0 for all large 1

leads to a contradiction in all cases (I)-(III), provided that in eases (II) and (III)
we have tl_igg 2(t)7= 0. To do this we suppose that for some #,>1, we have z"9(1) < 0
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for every t>1,. Integrating (3) between [4,, ] we obfain
(62" I(E) <r(ty) w2 (t,)
and consequently

1
— B ED() > — p(t,) BD(L,) @
for every ¢>1,: Integrating again between [i,, ] we have

2

— w2 (t) + m‘"‘2>(t2)>—r(tg)m("—l)(tg)f%

2

and eonsequently condition (2) implies

lim ¢*29(t) = — oo

t—>c0

which contradicts the positivity of «(t). This contradiction proves (I).
To prove (II) we remark that the assumption 3;‘32 () = 0 implies the existence
of & constant &; > 0 such that

p(2lg.()) >k, =1,2,.., m for every i>1t,.

Thus, from equation (%),.., leads to the following inequality

(6) [r)a"2()) + 3 pH k<0  for every t>t,.
i=1
Integrating (6) between [f,,¢] we obtain
13
r() @Ot — r(t) 2" V() + k1 3 | p(0)dh<0,
i=1
[

and consequently

— wD(1) > ‘*¢ for every t>t,.

Using this inequality and econdition (3) we obtain again the contradiction
Jim af-2(t) = — oo,
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To prove (III) we rewrite equation (k);_., as follows:

0 o oS,

and we remark that (1) and }132 x(t) = 0 imply the existence of some #,>¢, and of
a constant k, > 0 such that

p(=lg:1)))

>k t=1,2,..,m for every t>1,.
2[g:(1)]2] 23 3 Ay seny y 3

From above inequality, (7) leads to

.(t)
2

(8) [r@) a7 + kk, > p{t) @ ,: ] <0, t>1,.

§=1
Applying Lemma 2 with v =n— 1 and m(f) =1, from (8) we derive the following
(9) [r() 2v=0(t)) + Kk, 2 ) g2 "2 < 1>t

By (9), #2(t) is obviously a positive solution of the following equation

22 ﬁlg’f‘z(t)pi(t)w‘“‘%) + ult)

o= (f)

a0 [r(®y'7 +

where

p(t) = — [rt)a2@)] kkzz “H)p () 2tTEE), it

Since, from (9),
ut)=>0 for every i=t,
the functions »(¢) and

u(t)

x(%—2)(t)

k?czZP g~ t) +

are obviously subject to the conditions

and for some A>1

oo

m s u(t) cc}dt Ao
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Thus, applying a result due to MooRE [7] we conclude that all solutions of (10) are
oscillatory. But this is a contradiction, sinee z»~2(f) is a nonoscillatory solution
of (10}. This contradiction proves (III).

2. — Main results.

THEOREM 1. — In addition to conditions (i)-(iv) assume that for every T >1,

oo

(11) S [ pu ( f *[(5)(933"’010)@:00

i=1

where r¥(t) = max »(0).
y2<o<t
Then:
(0 Under condition (2) every solution of equation (¥);_., is for n even oscilla-
tory and n 0dd either oscillatory or tending monotonically to zero as t — oo together with
its first n— 2 derivatives.

(B) Under conditions (3) or (4) every solution of equation (%)s. . 8 either oscil-
latory or tending monotonically to zero as t — oo together with its first n— 2 derivatives.

Note: In the case where the funetion r(f) is nondecreasing, condition (11) can be
replaced by

(11%) i=1 N
f 7(t) dt B

PROOF. — Let z(f) be anonoscillatory solution of equation ()s_ ., With Jim #(t) # 0.

Then, without loss of generality, that #,>1, is chosen so that z[g,(1)]> 0, i =1,2, ..., m
for every i>t;. In view of equation (%),_,, and conditions (i), (iii) we have
[0y <0 for every t>1,, where this function is not identically zero for ail
large t. Under one of the conditions (2), (3) and (4) we get, from Lemma 3,

a0ty >0  for all large ¢
without loss of generality we assume that
() >0  for every t<{;.

By Lemma 1 there exists a #,>¢ such that #'(?) > 0 or 2'(t) < 0 for every ¢{>1, and
consequently we have to examine the following cases:

Case 1) 4'({) >0 on [4,, ool
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Let

1? 2 6)

daf t>1
r*[g.(6 ]w(x[gs - :

(12) 2(t) = — [r(t) x>0 3}]2 f
we obviously have
(13) 2(1)<0  for every i>t,.

From (12) for every ¢>1,, we obtain

. OG0 e Vg0 g
)= —[rze0)] -z ) g 0Nl @ls @)%~ 2 g mleEe0)

m 4(0)
= Sp0olo o) 3, f T0.6) W(fv{g o)
Y. G0 i) 2" ) o/g.0)[2] i)

g w'Tg)/2]  e(@[g:()])

Since the funections p and #(f) are nondecreasing and the funetion r{f)z™ () is
nonincreasing, we get

(xlg.1)/2])
p(alg.(0)/2])

¢
L . < fg:— (O)g’t(e) de_ 2 mzx(%1){gi(t)]' T{gz(t)] '{z~2(t),

g0)] & 2e®] a1

for every t>1,: Thus applying Lemma 2 with 4 =2', m=7, » =n— 1 and ¢,(f) in
place of ¢, we have

t
s BB Cg0)gi6) o o (@lgit)(2])
z“)ﬁéf"‘“’glif o] 2 a2

for every t>1,, where ;>>14, is chosen property. By above inequality, integration
between [t;, t] and taking into account conditions (iii) and (11) we obtain t]l> 10 2(f) = oo,
which contradicts (13).

Case 2). #'(t)<<0 on [f;, o).

Let

m o gr0) gl(B
(14) 1) = — [r(t) a( ; f 7%]_)"39’ t>1,
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we obviously have
(15) Zl) <0  for every t>t,.

From (14) for every t>t,, we obtain

4
GO0) gy F IO

2(t) = — [r(t) a2(t) ]’E g (0)] & g1 7

& )t

=El t)p(@lg.(t) Zf *[g 9)] “i=lmgi (1) g:(t)

3 e i=1

i

m x(n—ﬂ[gi(t)].ﬂgi(t)] - ( [gi(t)])’
i=1{x’[gi(t)/2]f y*[gi(t)]gz iz 2 .

Moreover, sinee lim x(f)+ 0, there exists a positive constant » such that
p(zlg: ) >n, i=1,2,..,m for every i>1,.

Thus, by applying Lemma 2 with % = |#'|, m =, » =n— 1 and g,(f) in place of ¢,
we finally obtain

2050 3 pdt %f{i;:x%)%‘g){f)dﬁ w3 (%))

= i=1

for every i>1,, where f,>1, is chosen property, by condition (11) and the fact that
the solution x(?) is bounded, this inequality leads to %LIE Z(t) = oo, which contra-
diets (15).

We have proved by that for every nonoseillatory solution () of equation (#),.. .,
with lim #(t) = 0 and consequently x(t)«'(f) <0 for all large i. If eondition (2) is
satisfied, then x(f)a2(¢) > 0 for all large ¢ and consequently » must be odd. More-
over, as it is easy to see, lim x(f) = 0 implies that Jim #@) =0 for j =1,2, ..., n— 2.

THEOREM 2. — In addition to conditions (i)-(iv), (2) aend (11) assume that for
every &40

o

(16) $ (e (5-"1 ))dtzioo.

i1 1]
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Then every solution z(t) of equation (%)y._, satisfies exactly one of the following:
{o) @{t) is oscillatory,
(B) «(t) and its first n— 2 derivatives tend monotonically to zero as t — oo,
(y) It holds

mr{$) a9t} = oo and Iima(l)=o00, j=0,1,..,n—2

000 f—>o0
or
Hmr{) x> D) = — oo and limef)=—0co, j=0,1,..,n—2.
o0 f>00

Moreover, (§) occurs only in the cases of even n.

ProoF. — Let 2(f) be a nonoscillatory solution of equation (%), _; with lim 2(f) = 0.

As in the proof of Theorem 1, we may (and do) assume, without loss of generality
that for #,>1% it holds

an olgH1>0, i=1,2,..,m for every i>1%.
Using equation (%)s._,, conditions (11) and (ii), it is easy to see that for {,>1, we
have @Dt} >0 or a* V()<< 0 on [I;, o). Thus, we have the following cases:
Case 1) a»3(f)>0 on [, oo).
By [r{)a'" ()] =0, t>1,, we get
H() @D () > r(t) 2D (L)

and consequently

1
) = p(t,) 2 0(t,) —  for every {1,

r(t)

from condition (2), implies that lim #"2(t) = cc and hence

lim #2(f) = oo for j=0,1,...,m—2.

t—c0

Taking #,>1, such that

(18) dD()>0, txt, for j=0,1,..,n—2.

Applying Taylar’s theorem to the function x{t) we obtain

P B w(k)(t/g)

19) w0 =3 "

GO (k) gin=1)
(n— 1)1 200"

(/2)* +

where * i3 a point between /2 and f, and every t>2f =1,.
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From (18) and (19) it follows that for t>1,

-1 TDEEY (%) @ D(L) p(E,) £t
éb’(t) > n—1/, t * Z on—1 ° 3? #
271y — 1)} 7(1%) 27 Up — 1} #*(8)

and consequently there exists some #;>1, such that

g7 ()

(20) o[g(t)] > ——rrs i=1,2,..,m,for every t>t,

r¥g:(t)]’

where & = (2 0(t,)r(t;) /2" (n— 1) 1). Integrating equation (%)s;._, between [;, ] and
using (20) and condition (16) we get Jim r(f)at»(f) = co: Hence the selution z(t)
satisfies (y).

Case 2) V()<< 0 on [t,, o).

By considering the functions z, = - 2 and Z; = — £ respectively in place of the

functions # and Z of the proof of Theorem 1 and using Lemma 2, we obtain the
desired contraditions. The proof of the theorem is now obvious.

(1]
{2
(3]
[4]
(5]
[6]
£7]
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