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S u n t o .  - In  questo lavozo si studiano it cam~ortamento asin.totico delle soluzioni non oscillatorie 
di una classe di equazioni di//erenziali di ordine suI~eriore al secondo. I n  particolare, si ddnno 
condizioni su//ieienti perch~ tutte le soluzioni, non oscillatorie e limitate, delZ'equazione con. 
siderata, abbiano per limite lo zero quando la variabile indipendente tende atl'infinito. 

1 .  - I n t r o d u c t i o n .  

We shall be concerned with the asymptot ic  behavior  of nonoseillatory solutions 
of the  differential equat ion 

(A) Er(t) y<~-'~>(t)] <~) + a(t)/(y(g(t)))  = b( t ) ,  

where n, m are positive integers such t h a t  n _> 2, 0 < m < n, a(t), b(t), g(t), r(t) are 

reul-vatue4 continuous functions on [0, co), and / (y)  is a real-valued continuous 
funct ion on (-- co, co). We also assume tha t  r(t) > 0 r lira g(t) ---- co, and y/ (y)  > 0 

t-->oo 

for y ~= 0. 
In  what  follows we shall confine our discussion to those solutions y(t) of (A) which 

exist on some half-line [T~, oo), T~ > O, and satisfy 

sup {ty(t)1: tog t <  co} > 0 

for every  to e [T~, oo). Such a solution is said to be oscillatory if it has an unbounded 
set of zeros in its domain of existence. Otherwise, the solution is said to be nonoscil- 
tatory.  

In  the oscillation theory  of nonlinear ordinary differential equations one of the  
impor tan t  problems is to find sufficient conditions which guarantee t h a t  all (bounded) 
nonoscil latory solutions of a given equation with forcing t e rm tend  to zero as the 
independent  variable goes to infinity. Since the work of IzIAhIMETT [4] this problem 
has been the  subject of numerous investigations; see, for example,  ATKI~SO~ [1]. 

(*) Entrat~ in Redazione il 6 febbraio 1976. 
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GRAEF and SPIKES [2], GlCI~ER. [3], KARTSATOS [5], KTJSA~-O and O~0SE [6], Lo~-  
DEI~ [7], SI~GH [9], and SIN~H and DAHI¥~ [1O]. 

The purpose of this paper  is to proceed fur ther  in this direction to provide con- 
ditions under  which all bounded nonoseil latory solutions of (A) approach zero as 
t -~ co. Our results include a generalization of a, theorem of SIXG~ [9] for the four th  
order re tarded equation y(~)(t) + a(t)y(g(t)) -~ b(t). 

2.  - M a i n  r e s u l t s .  

(t) 

We need the following lemma adapted  from STAIKOS and SFIO.~S [11]. 

LEYIMA. -- Let u(t) be the solution o/ the di//erentiaI equation 

h(t) 
u'---u+~ ~ -  = 0 on IT, c~) 

satis/ying u(T) ---- O, where :¢ is a positive constant and h(t) is continuous on [T, oo). 
I /  lira ]h(t)] = h* exists in the extended real line R ~, then lira ]u(t)] ~-u* exists 

t-+co b-~co 

in R #. In  particular, i/ h* is in/inite, then so is u*. 

P~ooF. - The solution u(t) is given by  

t 

T 

The existence of h* implies tha t  the improper integral 

t 

h(s) 
lim f :74i~ ds = H* 
t-~oo.] s 

T 

exists in /~#. I f  H*~=O, then  clearly lira Iu(t)t = co. I f  H* ---- O, then by  l ' t tospi-  
t-+c~ 

tal 's  rule 

t 

lim lu(t)lv-~ =lim~ ~-- j s ~ d S  ~ = ~-. 

T 

In  the sequel we use the notat ion:  a+(t) = max{a(t), O}, a-(t) = max{-- a(t), O}. 
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Tt~EORE)I 1. - Assume  that there exists an integer k, 0 ~-- k ~ m -- 1, such that 

co 

(2) f t~a-(t) dt < oo,  

oo 

(3) f t* Ib(t)l dt< ~ ,  

f tm-~-1 
(~) j - ~ T d t =  ~ ,  

tm--t¢--I 
(5) lim~sup - r--~- < c o .  

Then, /or every bounded nonoscillatory solution y(t) o] (A), the derivatives y(°(t), 
i = 1, .. . ,  n --  m, tend to zero as t --> c~. 

P~ooF .  - L e t  y(t) be  a b o u n d e d  nonosc i l l a to ry  solut ion  of (A). W i t h o u t  loss of 

gene ra l i t y  we  m a y  suppose  t h a t  y ( t ) ~  0 for  t ~ to > 0. The re  exis ts  tl ~ to such 
t h a t  g(t) ~ to fo r  t ~ tl. Thus ,  y(g(t)) ~ 0 for  t >__ tl. Mul t ip ly ing  (A) b y  t k a n d  inte-  
g r a t i ng  f r o m  tl to  t, we ob t a in  

(6) 
t t 

r -'(,).> + j,'o+(,> 
t~ tl 

f, t 

W e  e x a m i n e  the  fol lowing two  possible  cases:  

Case 1. 
oo 

t~ 

Case 2. 
t l  

L e t  Case I hold.  Since the  r i g h t - h a n d  side of (6) is b o u n d e d  because  of (2), (3) 
a n d  the  b o u n d e d n e s s  of y(t), we ge t  

(7) 
t 

lira / s~[r(s) y(~-~)(s)] (~) ds = - -  o o .  

N o w  define 

t 

u~(t) = fs~-~[r(s)y(~-")(s)]('~-')ds , 
t l  

i = O, 1, . . . ,  k . 



934 T. KusA~o - H. O~osE: A s y m p t o t i c  behav ior  o] n o n o s e i l l a t o r y  so lu t ions~ etc. 

An integration by parts yields 

u~(t) ~ t~-~[r(t) y(~-~}(t)] ('~-~- ~) - -  t ~-~ rr~ s ~ ~,('-'O~ s ~ ~(~-~-~} I L '~ I~1 ~ I J s = Q  

t 

- -  (k - -  i )  f s ~-~-~ [r(s) y(~-'O(s)]{'~-~-~) ds  
t~ 

l 
= tu,+~(t)  - -  (k  - -  i )  u,+ x(t) - -  t~l -~ Jr(s) y{~- m)(s)]~27~ ~- ~) 

which shows tha t  u~+~(t) is a solution of the differential equation (1) with ~ =  k - -  i and 

h(t)  = - -  ui(t)  - -  tk-~ r~,to~ ~;(~-~)/o~l(m-~-l) 

Obviously u~+~(t) satisfies the inital condition u,+~(t~) = 0,so tha t ,  by  the lemma, it  
follows tha t  ]ira Iui+~(t)] = ¢x~ whenever lira lug(t)] = c~. Since lira Juo(t)] = c~by (7) 

t--~co t - ~  t-->co 

we obtain ~im ]u~(t)] = c~  and continuing in this way~ we arrive at  

t 

t l  

which imphes tha t  

tim I[r( t )y~'~-~)( t ) ]~,~-~-~)  I = c < ) .  

Consequently, there are positive numbers/~ and t~ ~ t~ such tha t  

(S) Ir(t)y(~-'~)(t) l >-_~t '~-~-~ for t > t 2 .  

Dividing (8) by r(t)~ integrating from t~ to t and letting t--> c~, we have by (4) 

(9) lim lyC~-,~-l)(t)l = c~, and hence lim ]yCt)l -~ ~ .  
t -~ ¢o  t -~co  

This contradicts the boundedness of y(t)  and it follows tha t  Case 1 is impossible. 
In  Case 2, letting t -~  c~ in (6), we see tha t  

l i m  ---- ' m  . . . . .  ' ( 8 ) l ' o ' d .  
t -+oa  5-~c~ 

tl  

exists as a finite number. Therefore, by  the lemma, 

t 

t -~  c~ t - - > ~  t 
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exists in the  extended real line. This limit must  be finite, since otherwise we would 
be led to a contradict ion as in Case 1. Applying this argument  repeatedly,  we obtain 
the  finite limit:  

t 

]u~(t)] = lim | [r(s)y~'~-'~(s)] ~ -~ds  . lira 
t--->co t--~co t l  . J  

Fro m this we readily conclude tha t  

(10) lim I[r(t)y(~'-,,)(t)] (~-k-~)] = O . 

For,  if the limit (10) is not  zero, t hen  there  exist positive numbers  tt and t~ such tha t  (8) 
holds, and we are ted to (9), an impossibility. I t  is a ma t t e r  of e lementary calculus 
to deduce from (10) t ha t  

h m  -~-~:~ y(-~)(t) ---- 0 ,  
t - ->co |  v 

which, on account  of (5), gives 

(11) limly(~-~)(t)] = 0 .  
t - ~  

I f  n - - m =  1, the  proof is complete. I f  n - - r e > l ,  then  since y(t) is bounded 
and (11) holds, we are able to apply a classical inequali ty of Kolmogorov (cf. SCiOnS- 
BErG [8]) to conclude tha t  l ira ly(~)(t)l = 0 for i = :1, 2, ..., n - - m - -  1. This comple~ 
tes the proof. 

F r o m  the  proof of Theorem 1 i t  is no t  difficult to  see tha t  the  same conclusion 
holds if the hypothesis (2) is replaced by  

co 

(12) jt~a+(t) dt 

T~EORE~2. -Assumetha t the reex i s t san in tege rk ,  0 ~-- k ~ m -- 1, such that (3)-(5) 
and (12) hold. 

Then,  ]or every bounded nonoscillatory solution y(t) o] (A), the derivatives y~i)(t), 

i -~ 1, ..., n --  m, tend to zero as t ---> c~. 

The following theorem is one of the main results of this paper. 

THEOI~E~ 3. -- I n  addit ion to (2)-(5) assume that g'(t) is nonnegative and bounded 

above and  that there exists a posit ive number  ~ ~ 0 such that 

t+i~ 

(13) l iminf  | s~a+(s) ds > O . 
b ~ c o  " /  

t 

Then  every bounded no~wsciltatory solution of (A) tends to zero as t -> c~. 
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PROOF. -- Our proof is based on an adapta t ion  of the techniques used by  HA~- 
~sT~r [4] and Sz~G~ [9]. Le t  y(t) be ~ bounded nonoscfllatory solution of (A) such 
tha t  y(g(t)) > 0 for t ~ T. A parallel argument  holds if y(t) is assumed to be even- 
tual ly  negative. F r o m  the  proof of Theorem 1 we must  h~ve 

(14) 
T 

Note tha t  (13) implies 

(15) 
c ~  

t~a+(t) dt 
T 

~ -  O O °  

F r o m  (14) ~nd (15) it follows tha t  

(16) lim inf y(g(t) ) ---- lim inf y(t) -= O , 
t-~c~ t-*co 

and so it remains to show tha t  

(17) lim sup y(g(t)) = lira sup y(t) = O. 
t--*co ~-*c~ 

I i  this is not  the case, then  there  exists U > 0 such tha t  

(18) lira sup y(g(t) ) > 2~] > O . 
t-*co 

In  view of (16) and (18) there  is an increasing sequence of numbers {tv}~ 1 with the 
following properties:  

(i) limt~ = oo; 
y - - >  o o  

(ii) For  each ~, y(g(t~))>29; 

(ifi) For  each ~, there  exists a number  t: such tha t  t~_ 1 < t: < t~ and y(g(t:)) < ~]. 

Let  ~ be the la, rgest number  less t han  t~ such t h a t  y ( g ( ( ~ ) ) :  9, and let ~v be 
the smallest number  larger than  tv such tha t  y(g(7:~))= 9. By  the mean vMue theo- 
rem there  exists, for each ~, a (~,',e (~ ,  t~) such tha t  

(19) f l ! / y (g(o, , ) )g  (~,) = y(g(t,))- y ( g ( ~ , ) )  > _ _  
t~  - -  0"~ 

Since g'(t) is bounded and ]im y'(g(t)) : 0 by  Theorem 1, it  follows from (19) t h a t  
t - > c o  

(20) lira (z~-- a~) : oo .  
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By  the definition of a, and v~, y ( g ( t ) ) ~  on [~,, T~] and hence there is a con- 
stunt e(V) > 0 such tha t  

(21) 1(y(g(t))) _-> e(,)  on 

Using (13), (14), (20) and (21), we finally obtain 

co  T,  ~ ,  

f' kf '£f co > ~a+(t) g(t d t ~  t~a+(t g(t dt > e(V t~a+(t) dt = oo.  

T a~ a~, 

This, however, is a contradiction and (17) follows. Thus the proof is complete. 
On the basis of Theorem 2 we can prove in a similar way the following theorem. 

TItEOICE~ 4. -- I n  addition to (3)-(5) and (12) assume that g'(t) is nonnegative and 
bounded above and that there exists a positive number (~ > 0 such that 

(22) lira inf f s~a-(s) ds > O. 
t 

Then every bounded nonoseillatory solution of (A) tends to zero as t---> c~. 
When specialized to the case r ( t ) - - 1 ,  Theorems 3 and 4 give the following 

nonoscillation result for the  equation 

(B) y,-,(t) + a(t)/(y(g(t))) = b(t). 

COROLLARY. -- Suppose g'(t) is nonnegative and bounded above. 
nonoseillatory solution o/ (B) tends to zero as t -+ cx~ i] there exist 
0 <~ k <_ n -- 2, and a positive number ~ such that either 

Every bounded 
an integer k, 

t*a-(t) dt < c~ , 

OCl 

ftklb(t) l dt < o~, 

~+~ 

lira inf Is~a+(s ) ds > 0 ,  

o r  

c a  ¢0 t + ~  

ft~a+(t) dt < oo,  f t~]b(t) ldt< oo, lim inf f s ~ a - ( s ) d s > O .  
t 

RE~ArtK. -- This corollary generalizes a recent result of SI~G~ [9] for the fourth  
order case. 

We conclude with examples which illustrate our principal results. 
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E X h a L E S .  - 1) Consider  the  equa t ion  

(23)  ( t2y"(t))  (~) + t -2y3(~, t )  : (48 ~ y - 3 ) t - ~  , 

where  ~ is a posi t ive  cons tan t  (possibly grea te r  th~n  1). Here  n : 6, m = 4, ](y) = y~, 

g(t) : rt, 

r ( t )  : t 2 , a+( t )  = t -~ , a - ( t )  ----- 0 a n d  b(t)  : (48 q- ~ - 8 ) t - 5 .  

All the  condi t ions  of T h e o r e m  3 are  s~tisfied wi th  lc : 2 H e n c e  all b o u n d e d  non-  

osci l la tory solut ions of (23) t e n d  to  zero as t -> c~. I n  fact ,  y(t) ---- t -~ is a b o u n d e d  

nonosc i l l a to ry  solut ion of  (23). 

2) Consider  the  equa t ion  

(24) ( ty"( t ) )"  --  t-~y(log t) = 3 2 ( 2 t -  3) exp [-- 2t] - -  t -~ . 

H e r e  n = 6, m = 3, ] ( y ) =  y ,  g ( t ) =  log 4 

r(t) : t ,  a+(t) : 0 ,  a-(t) = t -~ and  b(t) = 32 (2 t - -  3) exp [-- 2t] --  t -3 , 

and  the  condi t ions  of T he o re m  4 are  satisfied wi th  k : 1. I t  follows t h a t  all b o u n d e d  

nonoscf l la tory  solutions of (24) t e n d  to  zero as t ~ c~. This equa t ion  h~s a b o u n d e d  

nonosc i l l a to ry  solut ion y(t) : exp [--  2t]. 

Acknowledgment .  The  au tho r s  wou ld  like t o  t h a n k  t he  referee for  a n u m b e r  of  

helpful  suggest ions.  
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