Asymptotic Behavior of Nonoscillatory Solutions
of Nonlinear Differential Equations with Forcing Term (*).
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Sunte. — In questo lavoro si studiano il comporiamenio asiniotico delle soluzioni non oscillatorie
di una classe di equazioni differenziali di ordine superiore al secondo. In particolare, si ddnno
condizioni sufficienti perché tutte le soluzioni, non oscillatorie e limitate, dell’equazione con-
siderata, abbiano per limite lo sero quando la variabile indipendente tende all'infinito.

1. — Introduction.

We shall be concerned with the asymptotic behavior of nonoscillatory solutions
of the differential equation

(A) [r(t) y ()] + a(t) f(y (g (1)) = b(t) ,

where »n, m are positive integers such that n = 2, 0 < m << n, a(t), b{t), g(t), #(t) are
real-valued continuous functions on [0, co), and f{y) is a real-valued continuous
function on (— oo, co). We also assume that r(7)> 0, Jim ¢(i) = oo, and yf(y)>0
for y=£0.

In what follows we shall confine our discussion to those solutions y(¢) of (A) which
exist on some half-line [7',, o), T, > 0, and satisfy

sup {ly(t)]: t,<t<< o0} >0

for every ¢, e [T, o0). Such a solution is said to be oscillatory if it hag an unbounded
set of zeros in its domain of existence. Otherwise, the solution is said to be nonoscil-
latory.

In the oscillation theory of nonlinear ordinary differential equations one of the
important problems is to find sufficient conditions which guarantee that all (bounded)
nonoscillatory solutions of a given equation with forcing term tend to zero as the
independent variable goes to infinity. Since the work of HAMMETIT [4] this problem
has been the subjeet of numerous investigations; see, for example, ATKINSON [1].

{*) Entrata in Redazione il 6 febbraio 1976.
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GrAEF and Spixes [2], GRIMMER [3], KARTSATOS [6], KUsaxo and OxosE [6], Lox-
DEN [7], SiNcH [9], and SineH and DAHTYA [10].

The purpose of this paper is to proceed further in this direction to provide con-
ditions nnder which all bounded nonoscillatory solutions of (A) approach zero as
{— oo. Our results inelude a generalization of a theorem of SingH [9] for the fourth
order retarded equation y@(f) + a(f)y(g(t)) = b(¥).

2. ~ Main results,

We need the following lemma adapted from StTarxos and Srrcas [11].

LevmMA. — Let u(t) be the solution of the differential equation

1) @L’—Ec—u—{— h(t) =

; : 0 on [T, oo)

satisfying w(T) = 0, where « is a positive constant and h(t) is continuous on [T, co).
If }L%M(t)l = h* exists in the extended real line B!, then lim |u(t)] = u* ewists
in RE. In particular, if h* is infinite, then so is w*.

Proor. — The solution «{f) is given by

13

u(t) = ——t“fh(s) ds .

gotl
T

The existence of k* implies that the improper infegral

11
Iimf@ds:ﬂ*

oo sa+1
T

exists in B, If H*30, then clearly lim [u(t)] = co. If H*=0, then by I'Hospi-
tal’s rule

3

st -84 )
|

In the sequel we use the notation: a*(t) = max{a(t), 0}, a~(t) = max{— a(t), 0}.
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THEOREM 1. — Assume that there exists an integer ky 0 < k= m — 1, such that

(2) f tra—(t) di < o0,
3 ftk ) dt< oo,
ootm—kml
. fm—k—1
(B) 111;1+ Sollp ol < oo

Then, for every bounded nonoscillatory solution y(t) of (A), the derivatives y®(t),
§=1,..,n—m, tend to zero as t-— oco.

Proor. - Let y(f) be a bounded nonoscillatory solution of (A). Without loss of
generality we may suppose that y{f) >0 for ¢t =1{,> 0. There exists {, =1, such
that g(t) = 1, for ¢ = ¢;. Thus, y(g()) > 0 for { =¢,. Multiplying (A) by t* and inte-
grating from ¢, to ¢, we obtain

H

|1 t i
®)  [sre)ye )17 ds + [sat(s)(y(9(5)) ds = [s+b(s) ds + [s2a=()(y(g(s))) ds
1 121

¢ A 21

We examine the following two possible cages:

Case 1. ﬁka*‘(t)f(y(g(_t))) di = oo,
#

Case 2. Tt’”a*(t)i(y(g(t))) dt< oo
121

Let Case 1 hold. Since the right-hand side of (6) is bounded because of (2), (3)
and the boundedness of y(t), we get

£
@ lim f SHP(8) Y= (8)]" ds = — o0 .
o0 H

Now define
¢
w; () == |8¥ " r(s)yt"m(s)]m 0 ds , t=0,1,..,k.
i
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An integration by parts yields

ui(t) = [ g IV — 7 r(s) g ) Y

4 g =1y
|2
— (= D) )y eV s

1

= gy () — (b — i) gy (1) — & () g W)Y
which shows that ,., () is a solution of the differential equation (1) with =%k — i and

W) = — u(t) — 11~ [r(s) y " s) 2

3= §y

Obviously w,,,(?) satisfies the inital condition u,.(f) = 0,s0 that, by the lemma, it
follows that lim |u,,(#)] = co whenever A |u,(f)] = co. Since Jim [uy(t)] = co by (7)
we obtain Jim |u,(f)| = oo, and continuing in this way, we arrive at

11
lim [1,(t)] = lim j [ @) gmis) v s | = oo,
{00 {->00
f2

which implies that
Iim ;{?(t)y{n*m)(t)](m—k—l)} == 0O .
f->00
Consequently, there are positive numbers u and #, = ¢, such that
8) () y ()| Zptm—rt for t =1, .
Dividing (8) by r(¢), integrating from ¢, to ¢ and letting ¢ —> co, we have by (4)

9) lim jy®n—m=D(§)] = oo, and hence lim |y(f)] = oo.
] o0
This contradicts the boundedness of y(f) and it follows that Case 1 is impossible.
In Case 2, letting ¢ — co in (6), we see that
|1
lim |uy(#)] = lim Q [ 511953 as !
f->00 t—>00

151

exists as a finite number. Therefore, by the lemma,

¢
lim [ul(t)l = lim Ifsk—1[7.(g)y(n—m)(s)](m—n ds l
t->00 t—>o0 P
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exigts in the exfended real line. This limit must be finite, since otherwise we would
be led to a contradiction as in Case 1. Applying this argument repeatedly, we obtain
the finite limit:

t
lim juy(t)] = lim ; J'{fr(g)y(n—»m)(s)](m—k)ds .
t—>oco tso0 s

From this we readily conclude that

(1.0) Lim |[#(8)y ™= () Jm*=| = 0 .
f->00

For, if the limit (10) is not zero, then there exist positive numbers y and ¢, such that (8)
holds, and we are led to (9), an impossibility. It is a matter of elementary calculus
to deduce from (10) that

)

lim | 222 y=m(1) l =0,

OO

which, on account of (5}, gives

(11) lim Jy—m()| = 0 .
o0

X n—m =1, the proof is complete. If n—m>1, then sinece y(f) is bounded
and (11) holds, we are able to apply a classical inequality of Kolmogorov (cf. SCHOEN-
BERG [8]) to conclude that lim [y(¢)] =0 for i=1,2, .., —m—1. This comple-
tes the proof.

From the proof of Theorem 1 it is not difficult to see that the same conclusion
holds if the hypothesis (2) is replaced by

(12) f Peat(t) di < oo .

THEOREM 2. ~ Assume that there exists an integer ky, 0 < k < m — 1, such that (3)-(5)
and (12) hold.

Then, for every bounded nonoscillatory solution y{i) of (A), the derivatives y(t),
t=1,..,n—m, tend fo zero as t— co.

The following theorem is one of the main results of this paper.

THEOREM 3. — In addition to (2)-(b) assume that g'(t) is nonnegative and bounded
above and that there exists o positive number § > 0 sueh that

4

(13) lim inf f sta*(s)ds >0 .
f->00 Yy

Then every bounded nonoscillatory solution of (A) tends to zero as t—> oo.
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Proor. — Our proof is based on an adaptation of the techniques used by HAMm-
METT [4] and SINGH [9]. Let y(f) be a bounded nonoscillatory solution of (A) such
that y(g(t)) >0 for t=T. A parallel argument holds if y(f) is assumed to be even-
tually negative. From the proof of Theorem 1 we must have

o<

(14) [t i(ylow)) dt < oo

T

Note that (13) implies

(15) feat(t) dt = oo .
]

From (14) and (15) it follows that

(16) lim inf y(g(¢)) = liminfy(¢) = 0,

f—> o0 {00
and so it remains to show that

an Lim sup y(g(t)) = limsup y(t) =0 .
f->00

{—>oc0

If this is not the case, then there exists #>>0 such that

(18) limsup y(g(t)) >27>0.
t->0a

In view of (16) and (18) there is an increasing sequence of numbers {t,},>, with the
following properties:

(i) limt, = oo;

(ii) For each v, y(g(t)) > 27;
(ili) For each v, there exists a number ¢, such that ¢,_, < #, < ¢, and y(g(,)) <.
Let o, be the largest number less than f, such that y(g(oy)) =, and let 7, be

the smallest number larger than ¢, such that y(g(z»)) = 5. By the mean value theo-
rem there exists, for each », a o, (0,,?,) such that

{y— Oy Ty— Oy )
Since g'(7) is bounded and %_1_)1‘2 y’(g{t)) =0 by Theerem 1, it follows from (19) that

(20) im (1,— 0y) = co.

¥—>03
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By the definition of o, and 1, y(g(t)) =7 on [0y, 7»] and hence there is a con-
stant ¢(n) > 0 such that

(21) flulg®)) Z et)  on [0y, 7).

Using (13), (14), (20) and {21), we finally obtain

oo Ty

00 > tka*@)f(y(g(t)))dtzé ta+(0)f(y(g(t))) dt > e() i f trat(t) dt = oo

T ay

This, however, is a contradiction and (17) follows. Thus the proof is complete.
On the basis of Theorem 2 we can prove in a similar way the following theorem.

THREOREM 4. — In addition to (3)-(8) and (12) assume that g'(t) is nonnegative and
bounded above and that there exists a positive number 6 > 0 such that

t4-8

22) lim inf f s*a~(s) ds >0 .

{—->00 i

Then every bounded nonoscillatory solution of (A) tends to zero as t—> oo.
When specialized to the case r(f) =1, Theorems 3 and 4 give the following
nonoscillation result for the equation

(B) y(t) + at) fy(9(1))) = ) -

COROLLARY. — Suppose ¢'(1) is nonnegative and bounded above. Every bounded
nonoscillatory solution of (B) tends to zero as t—oco ¢f there exist an integer k,
0= k< n—2, and a positive number 6 such that either

oo oo i+aé
ftm-(t) dt< oo, fzk}b(t)] di<oo,  limint fska+(s) ds>0,
A $-ro0 s
or
oo oo i3
f trat(t) di < oo, f #lb(t)|di< oo,  liminf [ sta~(s)ds>0.
>0

[3

REMARK. — This corollary generalizes a recent result of Singn [9] for the fourth
order case.
We conclude with examples which illustrate our principal results.
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ExaMpLes. — 1) Consider the equation
(23) (tzy”(t))(“) -+ t—ZyS(?)t) — (48 -+ ,},—3) {5 ,

where y is a positive constant (possibly greater than 1). Here n = 6, m = 4, f(y) = y3,
g(t) =y,

rt) =12, at@t)=12, a(t)=0 and b(t)= (48 + y-9)t>.

All the conditions of Theorem 3 are satisfied with k = 2 Hence all bounded non-
oseillatory solutions of (23) tend to zero as ?— oo. In faet, y(f) =1 is a bounded
nonoscillatory solution of (23).

2) Consider the equation
(24) (ty" ()" — ty(log t) = 32(2t — 3) exp [— 28] — -3 .
Here n =6, m =3, {(y) =1y, g(t) = logt,

r)y =1, a*{t)=0, a (@)=t and b(f)=232(2t— 3)exp[—2]—1¢3,

and the conditions of Theorem 4 are satisfied with & = 1. It follows that all bounded
nonoscillatory solutions of (24) tend to zero as £ — co. This equation has a bounded
nonoscillatory solution y(f) = exp [— 2¢].

Acknowledgment. The authors would like to thank the referee for a number of
helpful suggestions.
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