On Holomorphically Subprojective Kiihlerian Manifold, I (%).
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Summary. — See the Iniroduction.

0. — Introduction.

In an n-dimensional affinely coonnected manifold 4, is said to be k-fold projectiv
if there exists a coordinate system with respeet to which every geodesic can be given
by means of % linear equations and n — k¥ — 1 equations that need not be linear.
For k= n—2 it may happen that there exists a coordinate system such that every
geodesic is given with respect to this system by = — 2 homogeneous linear equa-
tions and one other equation that need not be linear. Then such 4, is called a sub-
projective manifold by B. Kacan [3]. In a subprojective manifold 4,, a geodesic
lies on a two-dimensional surface whose equations are given by then form

(0, 1) = gtgnrl+ prar (h=1,2,..,n—2)

for a suitable coordinate system (¢°) (i =1, 2, ..., n), where o* and §* are constants.

From (0.1) we flnd that the affine connection I'j, (4,7, k, ..., = 1,2,...,n) takes the
form
(0.2) Ti= 9,0, + 0] + o’

where @, and ¢;, are any covariant vector and symmetric tensor respectively. Con-
versely, if the affine connection is given by (0.2) for a suitable coordinate system,
we can conclude that 4, is a subprojective manifold.

As a necessary and sufficient condition that a Riemannian manifold be sub-
projective P. RACHEVsKY introduced relations

(4) Byjo=Tugn+ Pinga— Tangn— TGy
(A)’ V;'Twc_viTszg
(B) Ty=0gis+ 0:05,

(*) Entrata in Redazione il 15 gennaio 1976.
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where V means the operator of covariant derivation with respect to Riemannian
connection defined by the Riemannian metric tensor g,;, and we put

1 i
Ty =-—5 (le“mgn) )

0, = 0,0, 6, = 0,0

and ¢ iz a function of 9. However the conditions (A4) and (4)’ express that the mani-
fold is conformally flat, because (4) may be written as C,;/»==0, where (.7 is
the Weyl conformal curvature tensor.

Recently many authors have dealt with the Bockner curvature tensor of a Kahle-
rian manifold as a curvature tensor which corresponds to the Weyl conformal cur-
vature tensor of a Riemannian manifeld and obtained the corresponding interesting
theorems for a Kéhlerian manifold with vanishing Bochner curvature tensor to some
results for a conformally flat manifold. As for such problems, Professor S. TAcHI-
BANA has suggested one of present authors (S. YaMaaucHI) the following question:
« Can you complexify the definition of a subprojective Riemannian manifold so that
it fits for Kahlerian manifolds and obtain the corresponding theorems for such Kihle-
rian manifolds to some results for subprojective Riemannian manifolds? ».

The purpose of this paper is to give an answer to this problem, taking account
of the Bochner curvature tensor instead of the Weyl conformal curvature tensor.
In §1 we shall recall a Kédhlerian manifold M with complex coordinate systems and
a holomorphically planar curve in M. The definition of a holomeorphically sub-
projective Kéhlerian manifold will be given in §2, and moreover we shall seek the
necessary and sufficient condition for the Christoffel symbols of M in order that M
is holomorphically subprojective. The notion of the Bochner curvature tensor intro-
duced by S. TACHIBANA in real coordinate systems will be remembered in § 3. In § 4,
we shall calculate the curvature tensor from the Christoffel symbols of & holomor-
phically subprojective Kihlerian manifold with respect to a suitable real coordinate
system and the identities which are necessary for what follows. The last section has
proved the main theorem of this paper, that is, we shall show under certain con-
dition that a holomorphically subprojective Kihlerian manifold is a K#hlerian mani-
fold with vanishing Bochner curvature tensor.

8. YAMAGUGHT wishes to express his sincere thanks to Professor S. TACHIBANA
who gave suggestions and criticisms.

1. — Helomorphically planar curve:

In the first place, we agree to adopt the summation convention and the follow-
ing ranges of indices throghout the paper: %, 4,7, ..., 7y 8 ... =1,2, .., 205 2, y,
Vyo=1,2, ,m; A=n-+2; & B,y=1,2,..,n—2. Consider an n complex dimen-
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sional Kihlerian manifold M with metrie

(1.1) ds? = g,d2'd

where (") is a local complex coordinate system and z2=2' (= conjugate of 2*).
As the metric is Kéhlerian, g,; satisfy the following conditions:

(1.2) glu:gm———(), gﬁ,j:gm:gzﬂ:gﬂ;

and (1.1) becomes ds?= 2g2;dzzd5”. gt satisfy the corresponding equations to (1.2).
The Christoffel symbols 17, vanish except Fﬁv and their conjugate.

We consider a curve in a Kihlerian manifold M defined by parametric represen-
tation in a real parameter z* = z'(t). If the curve satisfies

azwt o, dt dz*
(1.3) p Tw g g =eltl o,

in which p(f) is not real-valued, but complex-valued in general, we say the curve
to be holomorphically planar [5{.

2. — Holomorphically subprojective Kihlerian manifolds.

Let M be an n complex dimengional Kéhlerian manifold. In M if there exist
a complex coordinate system such that every holomorphically planar eurve is given
with respect to this system by n — 2 homogeneous linear equations and one other
equation that need not be linear, then we shall call M a holomorphically subprojective
Kihlerian manifold. We assume that M is a holomorphically subprojective manifold
in this section. In M, a holomorphically planar curve lies on a complex two-dimen-
sional surface whose equations are given by the form

(2.1) 2% == qognl - hogh

for a suitable complex coordinate system (z*), where a* and b* are complex constants.
We shall call this complex coordinate system a speeial complex coordinate system.

Now, we shall calculate the Christoffel symbols Z"Z;, of M from (2.1). Operating
d/dt and d2/di* to (2.1) respectively, we have

(2.2) dzo[dt == as{dzn1[dt) + b*{dz"|dt) ,
d2zo[dtt = ax(dBzn—1[di?) + bx{d2en/dt),
from which, by virtue of (2.1) and (2.2) we find

(2.3) d22tde? = a(t) de*|dt -+ p(t) 2",



220 SencHI YAMAGUCHI - TYUZI ADATI: On holomorphically subprojective, ete.

where «(f) and S(f) are complex-valued. Consequently, taking account of (1.3) and
(2.3), it holds that

(2.4) TLes =yt &+ 2(0) 4,

where we have put &= dz#/dt and y(f) and e(f) are complex-valued. If we assume
that dim M = n = 3, then by the same method of B. KAHAN [3], we have for I,
an expression of the form

(2'5) I‘[iv: Quai_‘}— 9, 6z+fﬂvzl7 f/w:fvu
with respect to all special complex cordinate systems. If we apply the coordinate
transformation

(2.8) = g(zA)Pf;'z*‘ y P,'f = complex constant,

then we have
AY = 37 [0e" = g PY 1 2¥'(0 log g/02")
0Aj 02 = (D¢ [02") Py, -+ ¢P}/(9 log 0/02")

+ 2% (8 log g/02")(0 log ]02") + #* (22 log p/02" 02)

and
Tliy = 0u0l + 008+ fund”

with

or = Ao, — 2logo/0s"

fuw = (1 + 2*(2 log /0e")) (A% fop — 07(22 /02" 227) .

From these equations we see that a transformation of the form (2.6) transforms a
special coordinate system to a special one with same origine. The g, and f,, do not
behave like a vector field or a tensor field resprectively and each of them forms a
geometric object for transformations of the form (2.6) only. It is often convenient
to consider a vector field and a symmetric tensor field defined by u; = ¢, and u,, = f,,
in a special complex coordinate system (¢") but these fields depend on the choice
of (2}) and they change if another special complex coordinate system is introduced
instead of (¢'). We can easily prove from (2.5) that the vector g, and the symmetrie
tensor f,, are self-conjugate.
Conversely, substituting (2.5) into (1.3), we get

dzes[di? -+ p(t)(dex/dt) + gq(t)2*= 0,

{2.7) dzen—1/de2 4+ p(t)(den—2/dt) + g(t) e 1= 0,
dzen|di? + p(t)(den/dt) + g(t)en =0,
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from which, eliminating p{t) and ¢(¢) from (2.7), we get

d?z*/dt® dze/dt 2
det| d2e*/dt* derifdt &1 ) =0
d*zn/di? den/dt 2»

and consequantly we may put

(2.8) A%(t) 2% + Bx(t)evt + O(t)en =0 ,
(2.9) As(t)de®|dt + B(t)den2/dt + Co(t)den/dt =0,
(2.10) Ax(t) d2en At + Ba(t) d2en2]dt? -+ Co(t) d2er|ds =0 ,

from which, operating d/df to (2.8) and eompering with (2.9), we can find
dAs|dt = p(t) A*, dBxj/dt = pyB*, dC*/dt=yp(t)C=*,
that is,
A% = k= exp [fqp(t) dt], Be=I*exp [fzp(t) dt], CO*=m>exp [fy)(t) at],
where k%, I* and m#* are complex constants. Substituting these inte (2.8), it follows that
2% = Pagnl | page

and hence, this means that M is holomorphically subprojective.
Therefore we have

THEOREM 1. — A Kdéihlerian manifold of complex dimension n (= 3) is holomor-
phically subprojective if and only if there exists a local coordinate system (2*) such that
the Christoffel symbol I'i, of M takes the form

.F;‘,,= Qpai + Qvéi + fng‘a ’

where 9, and f,, are self-conjugate vector and symmetric tensor respectively.

3. — Bochner curvature tensor.

Let M be a real 2n-dimensional Kablerian manifold with eomplex strueture J
and Riemannian metric ¢ which satisfy the followings:

Jirdi=—0;, Ji/IJig=¢u, Vi JF=0,
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V being the operator of covariant derivation with respect to Riemannian connection

defined by g.
We denote by Ej;,» the Riemannian curvature tensor

neeabl-sfh GIGBI e

where (2°) denotes real eoordinate systems and by E,,, R the Ricci tensor, the scalar

curvature respectively.
Now we shall consider a tensor K;* defined by

(31) Ku'= BEy"+ (L0 — Ly 0" + gl — g L

1
2(n+ 2)
+ Myd— Mud -+ T M — T My 4 2My i+ 20, M)

where we have put

i1
(3.2) Lj = By~ mt 1 Gii 5 My = ;" Ly .

Then we can prove that the tensor K,;* has components of the tensor given by
5. BooENER with respect to complex coordinate systems. This tensor is introduced
in real coordinate systems by 8. TaouiBana [9] and called the Bochner curvature
tensor,

4. — Identities of a holomorphically subprojective Kihlerian manifold.

In a real 2n (n = 3) dimensional Kahlerian manifold M, by making use of Theo-
rem 1, we can easily prove the following:
THEOREM 1'. — In order that M is holomorphically subprojective, it is necessary and

sufficient that there exists a local coordinate system (a*) such that the Christoffel symbol{jhi}

of M takes the form

h o N
(@.1) { } } — 000"+ G6TS it — T,
(4.2) fin=0, fudwm =0,

where o, and f;; are covariant vector and tensor respectively and &= Jrz* and §,=

= —dJ 70, and (ij) resp. [if]) means the symmetric part (resp. skew-symmetric part)
with respect to i and j, for evxample

Ugyy = Uy + Wy (TOSD. Uy = Uy — Uy) -
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Now we calculate the curvature tensor with respect to (4.1). Then, by a straight-
forward and rather complicated computations, we obtain

(4.3)  Ryl'=— Puyd] + Hy 0y + Qui” + J M Pydy) — I Hygd ;f ~ J [ Q&

or

(4.3)  Ryn=— Py + Hindin + Qe+ JaPwdy — I Hygd jp— I Qi

where we have put

(4.4) Piw=010:— 0:0+ 0: 0

(4.5) Fop=—@0+0Vat "I fn, =0, =7,
(4.6) Hy=Pu+ Fu,

(4.7) Qus= ufni+ fatne— Tulued s o= Tu?s fr=fu® .

By virtue of (4.2) ~ (4.7), we can easily prove the followings which are necessary
for what follows.

(4.8) Pv[a'Jk]r = Hr[iJk]T y  —{(n+1)Pyy+ Qe =10,
(4.9) Q(ica‘n‘: 0, @Qua=0, thkilr= 0.

In the first place, let us prove that Py, = 0, that is, o, is closed in M. Mak-
ing use of Ry, =0, it holds from (4.3), that

(4.10) 2H b + Hondmy + Qua®n — Hindnady — Qud ( &y =0
or
(4.10)' 2H 0" 4+ HG07 + Q' — H o JG IV + Quyy S8 = 0

Hence we can take four unit vectors y*, 4%, 2* and 2* which are orthogonal each
other and also to #* and &, being 2» = 6. Mulitiplying y*2* to (4.10) and sum-
ming for 2 and ¢, we find

(4.11) S H gy + Y Hypon + F Hpfn + § HypZp= 0

and furthermore, contracting this with ¢, 2/, 7 and #’ respectively

(4.12) FHp=ypH(2, y) + 2 H(y, y) + §:HE y) + Z5H (G, 9)
(4.13) Yy Hou=yuH(2, 2) + 2 H{y, 2) + §uHEZ 2) + 2 H (G, 2)
(4.14) FHy=y:Hz ) +2Hy, D) + 5:HE §) + 5HG, §),
(4.15) FHyo=y:H (2 2) + 2 H(y, 2) + 5:HE ?) + 2.H(G, 2)
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where we have put H(y, z) = y"#2°H,, and etc. On the other hand, if we contract
(4.10) with y'y* and z’2* respectively, it follows that

(4.16) — Hyy + ¥ Hyg Y+ § Hip =0,
(4.17) — Hyy+ ¢ Hygoy + F HypZy= 0

and, making use of (4.13), (4.15) and (4.16), we get

(4.18)  — Hyy + y39u(HE, 2) — H(z, 2)) + yyznHY, 2)
+ YuZa H(G, 2) + §,2, H(@, 2) + Gy H(y, 2) = 0.

Similarly we can readily obtain from (4.12), (4.14) and (4.17)

(4.19) — Hy,+ Zb‘%}a(ﬂ(gy y)— H{y, ?7)) + 2y H(z )
+ 2y F HE y) + 2yl (2 §) + 2,0, HE §) =0
and hence, the equations (4.18) and (4.19) mean that

H@,y)=H(y,§), H(Z, 2) = H(?),
H(y,z)+ Hzy)=90, H@)+Hk§=0,
H# 2+ HE§H=0, Hy,2)+HEyY)=0.

By transvecting y*+’, (4.18) and (4.19) imply by virtue of the above equations
H(y,#2)=H(z,y) = H(y,?) = H(§,2) =0,

which show that H ;=0 or Py, = 0. Therefore the equation (4.8) may be rew-
ritten as follows:

(4.20) Q' =0, Pyy=0.

5. Main Theorem.

The purpose of this section is fo prove the our main Theorem affer some compli-
cated computations. In the first step, making use of (4.3) and (4.3'), we shall derive
three kinds of the form of the Ricei tensor R, in a holomorphically subprojective
Kéahlerian manifold M. By contraction over & and % in (4.3), it holds that

(6.1) Ry=—2nP;—2(n—1)F;;—2(¢P) s + Qpssv” ~ J 7Q,;n &°
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where we have put (¢P),;=J/JP,, and used (4.5) and (4.6). Transvecting g
to (4.3)', we find

(8.2) Ry=—H,/gm— Pu,— (PPhin + Qi tr — J*Qrpy

and, interchanging k and h in (5.2) and subtracting the equation thus obtained
from (5.2), it follows that

Q" Tn ~— Q" T = J™(Qrers T — Qs O) 5

from which we get

(5'3) rir = Zwk ] risJ”'x ,uah;’k s

where we have used (4.9) and put |[z2A= @, "o* and |¢|?y = Q,,,J™*&:. Finally if
we contract (4.3) with J,° and consider the well known relation Ey; = — 1J;1 Ry, J7%
then we can obtain

(5.4) RBii=— (0 -+ 1)(Pus + ($P))) + I, Qrsr & .

In the second step, let us determine the form of H,,. Subtracting (5.1) from (5.4)
and regarding to (4.9) and (4.20), we can readily find

(n - I)Hﬂc - Qrka’w'r - Jistrkﬁr =0 )

which shows that
(5.5) H,zr=0

with H;;= H,;;— (¢H);;: Now if the identity of Bianchi is applied to {4.3), with
respect to indices %, j and A, then we have.

a’[thm —P rm'Jk]TJ BT 2d 'iTHr[kJ Fo ﬁ{thﬁrJ 1‘7 =0
from which, contracting this with J* and J®J% respectively, it holds that

(5.6) 2@ = (A — p) By + 2nPyJy — 2H, Ty,
(6.7) (A + o2 =2nF/,

because of (5.3). By the way, transveeting (4.10), by a* and x*x°¢ respectively, it
follows that

(6.8)  Hyay+ o Hypgy+ [0 Qus + I Hyp By — & Hypd g — @15, TE; = 0,

{5.9) o' Hgon+ 8 Hy&p=0,

15 — dnnali di Matematica
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becanse of (4.9) and (4.20), and furthermore, contracting (5.9) with #’ and # respec-
tively, we have

WTHTJC = G, + bfzk s ﬁrHrk = bi{/’k -+ C.’z’k

with |2]2¢ = H(z, x),. lz|2b = H(%, x) and |»|2¢ = H (&, &). Regarding to (5.5), we have
a=c¢ and b=0. Oonsequently, the above equations can be reduced to

(5.10) (XﬁlH,«k == Gy §7H7k= aﬁk .
From (4.10), we can find
5&3@@7«5:}?‘3) 4 6[@/,2;552']51(;“?7@) + 6[?;2 Q 3]'}“5”}& =

being 8, Y H S8 = 0. Putting !=m in this, then we have
(6.11)  2n[Ql s + QT + HL IR D] + M fwyw

+ 6[;[@5}7 H??) + Q ilm Jh) + Q;t 'n‘:!’} !mixh)} = 0
which yields the followings:
(6.12)  2n[|2|*Quy — Quird & — I H By — oyl + g@m(limi% — Qe " E)

+ w[k(Qﬂﬂwr a]z + Qa]m wm - nuﬁa'lfi) =0,

(3.18) (20— 1)|2|2Q),, 2" — 2nQ,, 2 F'F,;

+ (ﬁlm;l; + Qmo’r Mr) g}m - 1(‘2‘ Qk/mf )

+ Qs I @B 4 |02 (Hy — Qo Jm'fm + ui &) =0,
(5.14) (2n — 1)|2]2Qy, B o = [(2n — 1) Qup B 27T ¢ — (A + p)|2|]Z; .
It follows from (5.14) that

(5.15) A+p=0 and Q" = ¢o|*¥,

with [#|*e = Q. &#7 ¥, from which, by virtue of (5.7) we can see that #,”= 0. By
the way, we obtain from (5.4)

J ka,,-xr Jichaarm 1]
from which, considering (4.9) and (5.15),

(5'16) karﬁsﬁr: - Eiwlgwk
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and therefore the equation (5.13) can be written as follows:
(5.17) @0~ 1)@"— (2ne + A 2w, + (A + &)@)2gi— Ariy — QppJI E™ Hy,=0

by virtue of (5.15) and (5.16). Transvecting & to (5.12) and taking aceount of (5.16),
we obtain

(5.18) Qi@ + e+ J Hup + ad ;=0
or
(5.19) Qrrsd f& + ey, — Hyo -+ agyy =0,

from which we have
(5.20) Quir® + e(@uB — 2,8,) + J i Hyp— Jo Hyi+ 2ad 5= 0
by (4.9) and, substituting (5.19) into (5.17), it follows that
(5.21) (21— 1)Qu " — (2ne + A)T&, + (A + )| — @) gur
— (A4 a)a;,-m,c—l—ﬁk,,-+ H,,=0,
Considering (5.14) ~ (5.16) and (5.19) ~ (5.21), we can get
(6.22) (20— 1)(|2|*Quy + J | H gy — adipd )
+(2ne -+ ) Tyl + (20 — 1) E(H, . J 5 + 2ad )
+ (A + e)|w]* — @) gy + (Hyg+ Hygay =0 .
On the other hand, from (5.8) we have by transvection
(5.23) (@n—3)H,+ (@H);+ (A + &)@, + &) — (2n—1)a + (4 + &)|]2) gy =0
or
(6.23)"  (2n—3)pH)y+ Hy+ (A + e)www, + &) — (2n—1)a + A+ &)|2]r) g,y =0
because of (5.10) and (5.20), from which we obtain
(5.24) H,=0 or H,=(¢H),;
and at last, the equation (5.23) may be reduced to
(5.25)  2m—1)H,;=[2n—1)a+ (A+8&)@|2lgy— (A + &)@, + &) .

Thus we have determined the form of H,;.
In the last step, we shall prove the following main theorem of the paper.
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THREOREM 2. — A holomorphically subprojective Kdihlerian manifold M (n = 3)
with 24 4+ (n+1)e =0 is a Kdhlerian manifold with vanishing Bochner curvature
tensor, where we hove put |w|2h =Q, " and |w|te = Q&'

ProoF. — Regarding to (5.24) and (5.25), the equation (5.22) can be rewritten
as follows:

2(n ~ 1)[2*Qu; + (A + )@ (JinFy + 28Ty + Gipn) + 2024+ (n + 1)e) Zdymy =0,
which means that

(5.26)  2(n— 1)@ Q2 — Quipd { &) + (A -+ a2 [(J iy -+ 2J 3 & + qinn) @,
~ (T + 2T 52 + 9T &) + 224 + (0 + 1)e) Tyl &y 0y = 0

and therefore by virtue of (5.25) and (5.26) we get from (4.3)

A Ak
(6.27)  Ryp= (a + %HBL) [gw‘[lcg:i]h“ T i+ 2 5]
2’ A ~
B mi_(;) [(iein ~+ 2J i~ Giia) @

— (S + 2J s - Gargrg) En
+ @wpgm + F@ngm— 2 afurn + Tixnd m— vi&nd m]

“_2}.%- {(n-+ 1)e

Taking account of our assumption 24 -+ (n -+ 1)e = 0, we have

b —
e(@pan + Td)

Ry = —(2(n + 1)a-2ﬁe]m|2) gk,,-"“;

B = (n+ 1)(—4na+ (n—2)elx|?),
and these mean that the tensor L;, defined by (3.2) reduces to
L=~ (n+2) [(“ - i“elwlz) gs+ %8(901503' + 53'155;)]

and consequently, substituting this into (5.27) and considering M, =J,L,; and
22+ (n+ 1)e = 0, we have K= 0. This completes the proof of Theorem 2.
As a corollary of Theorem 2, we have

COROLLARY. — A holomorphically subprojective Kdahlerian manifold with A =¢=0
is & manifold of constant holomorphic sectional curvature.
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