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Summary. - See the Introduction. 

O. - I n t r o d u c t i o n .  

In  an n-dimensional affineiy coonnected manifold As is said to be k-fold project iv 
if there  exists a coordinate system with respect to  which every geodesic can be given 
by  means of k linear equations and n -  k -  1 equations tha t  need not  be linear. 
For  k = n --  2 i t  may  happen t h a t  there  exists ~ coordinate system such tha t  every  
geodesic is given with respect to this system by  n -  2 homogeneous linear equa- 
tions and one other  equat ion tha t  need not  be linear. Then such As is called a sub- 
project ive manifold by  B. KAGA~ [3]. In  a subprojective manifold A,,, a geodesic 
lies on a two-dimensional surface whose equations are given by  then form 

(0, 1) xa=-- aax"-l  + fl~x ~ (h = l ,  2, ..., n - -  2) 

for  a suitable coordinate system (x ~) (i = 1, 2, ..., n), where a ~ and flh are constants.  
F r o m  (0.1) we find tha t  the affine connection F]k ( i , j ,  k, . . . ,  = 1, 2~ . . . ,  n) takes the  
form 

0.2) F~k = %Sk ~ + ~%~j~ + ~kx  j 

where ~ and ~v~ are any  covariant  vector  and symmetric  tensor respectively. Con- 
versely, if the affine connection is given by  (0.2) for a suitable coordinate system, 
we can conclude tha t  As is a subprojective manifold. 

As a necessary and sufficient condition t h a t  a l~iemannian manifold be sub- 
project ive P. I~ACtlEVSI~¥ introduced relations 

(A) 

(A)' 

(B) 

Rk~h = T ~ g ~  + Tj~gih -- T~g j~ - -  Tshg~ , 

V ~ T ~ - -  V ~ T ~  = 0 ,  

T~j = Qgj~+ o~a~ , 

(*) Entrat~ in Redazione il 15 gennaio 1976. 
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where V means the operator  of covariant  derivat ion with respect to Riemannian 
connection defined by  the Riemannian metric tensor g~, and we pu t  

n - - 2  R~j 2 ( n - - 1 )  g/~ 

and a is a function of ~o. However  the conditions (A) and (A)' express tha t  the mani- 
fold is conformMly flat, because (A) ma y  be writ ten as C~oj~h-= - 0, where Ck~ ~ is 
the  Weyl  conformM curvature  tensor. 

Recent ly  many  authors  have dealt  with the Bockner  curvature  tensor of a K~hle- 
rian manifold as a curvature  tensor which corresponds to the Weyl  eonformM cur- 
va ture  tensor  of a Riemannian manifold and obtained the corresponding interesting 
theorems for a Ki~hlerian manifold with vanishing Boehner curvature  tensor to some 
results for a conformMly flat manifold. As for such problems, Professor S. TACI~I- 
BA~A has suggested one of present authors (S. YA~rAGUC~I) the following question: 
(~ Can you complexify the definition of a subprojeetive Riemannian manifold so tha t  
i t  fits for K~hlerian manifolds and obtain the corresponding theorems for such K~hle- 
rian manifolds to some results for subprojective l~iemannian manifolds? ~>. 

The purpose of this paper  is to give an answer to  this problem, taking account  
of the Bochner curvature  tensor instead of the Weyl  conformM curvature  tensor. 
In  § 1 we shall recall a Ki~hlerian manifold M with complex coordinate systems and 
a holomorphicMly planar curve in M. The definition of a holomorphically sub- 
projective Ki~hlerian manifold will be given in § 2, and moreover  we shall seek the 
necessary and sufficient condition for the Christoffel symbols of M in order t ha t  M 
is holom0rphicMly subprojective. The n0tiolf of the  Bochner  curvature  tensor intro- 
duced by  S. TACHIBA~A in real coordinate systems will be remembered in § 3. In  § 4, 
we shall calculate the curvature  tensor  f rom t h e  Christoffel symbols of a holomor- 
phicMly subprojective K~hleriaI~ manifold with respect to a suitable real coordinate 
system and the identities which are necessary for what  follows. The last section has 
proved the main : theorem of this paper, t ha t  is, we sha l l  show Under certain con- 
dition t h a t  a holomorphieMly subprojective K/ihlerian manifold is a K~hterian mani- 
fold with vanishing Bochncr curvature  tensor. 

S. YA~[AaI:CI~I wishes td~express his sincere thanks  to Professor S. TACI~I~A~A 
who gave suggestions and criticisms. 

1. - H o l o m o r p h i c a l l y  planar  curve,  

In  the  first place, we agree to adopt  the summation convention and the follow- 
ing ranges of indices throghout  the paper:  h, i , j ,  ..., r, s, . . . .  :l, 2, ..., 2n; ~, #, 
v, . . . .  1, 2, ..., n; ~ = n ÷ ).; ~, fi, ? ----- 1, 2, ..., n --  2. Consider an n complex dimen- 
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sional Ki~hlerian manifold M with metric 

(1.1) ds 2 = gt~dz~ dz j , 

where (z ~) is a local complex coordinate system and z~= ~ ( =  conjugate of z~). 
As ~ the metric, is K~,hterian, g~.j satisfy the following conditions: 

(1.2) g~, = g~z -= 0 ~ g~  =- g ~  = g5, "- g ~  

and (1.1) becomes ds 2 =- 2g~idz~d5 ". gJ~ satisfy the corresponding equations to (1.2). 
The Christoffel symbols U]~ vanish except FJ, and their conjugate. 

We consider a curve in a K~hlerian manifold M defined by parametric represen- 
ta t ion in a real parameter  z~= z~(t). I f  the curve satisfies 

(1.3) d~z ~ F~ dz" dz  ~ dz ~ 

in which ~(t) is not  real-valued, but  complex-valued in general, we say the curve 
to be ho]omorphically p]anar [5[. 

2. - Holomorphically subprojective Kfihlerian manifolds. 

Let  M be an n complex dimensional Ki~hlerian manifold. In  M if there exist 
a complex coordinate system such tha t  every holomorphically planar curve is given 
with respect to this system by n -  2 homogeneous linear equations and one other 
equation tha t  need not be linear, then we shall call M a holomorphically subprojective 
K~hlerian manifold. We assume tha t  M is a holomorphieally subprojective manifold 
in this section. In M ,  a holomorphically planar curve lies on a complex two-dimen- 
siona, t surface whose equations are given by the form 

(2.1) z ~ = a ~ z ~ - l ÷ b ~ z  ~ 

for a suitable complex coordinate system (z~), where a~ and b ~ are complex constants. 
We shall call this complex coordinate system a special complex coordinate system. 

:Now, we shall calculate the Christoffel symbols F ~  of M from (2.1). Operating 
d/dt  and d~/dt ~ to (2.1) respectively, we have 

(2.2) dz~/dt  = a~(dz , -~/dt)  ~- b~(dz,,/dt) , 

d~z~/dt 2 = a~(d~z,*-~/dt 2) + ba(d~z~/dt) , 

from which, by  virtue of (2.1) and (2.2) we find 

(2.3) d2z~/dt "2 = ~( t )dz~/dt  + f l ( t ) z  ~ , 
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where zt(t) and/3(t) are complex-valued. Consequently, taking account of (1.3) and 
(2.3), it holds tha t  

(2.4) r~ ~ $ ~ -  ~ - ,  . . . .  - -7(t)  + 2 ( t ) z  a,  

where we have put  ~u = dzu/dt and 7(t) and s(t) are complex-valued. If  we assume 
tha t  dim M = n > 3, then by the same method of B. KAIZ~'~" [3], we have for F ~  
an expression of the form 

(2.5) 

with respect to all special complex cordinate systems. If  we apply the coordinate 
transformation 

(2.6) z r =  ~(z ~') PJ'z ~ , Pj '  = complex constant,  

then we have 

A,r = 8zr l~z , = qp~.z + zr(8 log el~z') , 

8 A ,  I3z = (3ol3z') PJ" + ePJ'(3 log el3z') 

+ zr(3 log ~/~z")(3 log q/~z ~) + zr(8 ~ log e/~zV~z ~) 

and 

with 

~ ,  = A~ ,eg -  b log ~o/~z r , 

f /¢  = (1 + z~(8 log a ~ 

From these equations we see tha t  a t ransformation of the form (2.6) transforms a 
special coordinate system to a special one with same origine. The ~ and ]~ do not  
behave like a vector field or a tensor field resprectively and each of them forms a 
geometric object for transformations of the form (2.6) only. I t  is often convenient 
to consider a vector field and a symmetric tensor field defined by  u~. = ~x and u~, ---- ]~  
in a special complex coordinate system (z ~) but  these fields depend on the choice 
of @) and they  change if another special complex coordinate system is introduced 
instead of @). We can easily prove from (2.5) t ha t  the vector o~ and the symmetric 
tensor ]~ are self-conjugate. 

Conversely, substi tuting (2.5) into (1.3)7 we get 

(2.7) 

d~z~/dt ~ + p(t)(dz~/dt) + q(t)z~= O, 

d2z.-~/dt ~ + p(t)(dz~-*/dt) + q(t)z"-~ = 0 ,  

d2z~/dt 2 + p(t)(dz"/dt) + q(t)z ~= O, 
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from which, elimina.ting pit) and q(t) from (2.7)~ we get 

[ d~za/dt ~ 

des ~ d~z"-l/dt ~ 

\ d2z~ / dt ~ 

and consequantly we may put 

(2.8) 

(2.9) 

(2.1o) 

dza/dt za t 

dz"-~/dt z "-1 = 0 

dz"/dt z" / 

Aa(t)z ~ ~- Ba(t)z ~-~ + Ca(t)z ~ = O, 

Aa(t)dza/dt -~ Ba(t)dz~-l/dt + C~(t)dz"/dt = O, 

Aa(t) d~zc'/dt ~ + B~(t) d~z~-2/dt ~ -~ Ca(t) d~z~/dt ~ = 0 

from which, operating d/dt to (2.8) and eompering with (2.9), we can find 

dA~/dt ---- ~(t) A ~ , dBa/dt ---- y~(t) B a , 

that  is, 

Aa = ka exp [f~(t)  d t ] ,  Ba = l~' exp [f~f(t) d t ] ,  

dCa/dt = 9,(t) C a , 

Ca = ma exp [fy,(t) dt], 

where k a, Ia and m a are complex constants. Substituting these into (2.8), it follows that  

z a = fl~z~-1-4- ~ z  ~ 

and hence, this means that  M is holomorphieally subprojective. 
Therefore we have 

TttEORE~ 1. - A Kiihlerian manifold of complex dimension n (> 3) is holomor- 
phieally subprojeetive i f  and only i f  there exists a local coordinate system (z ~) such that 

the Christoffel symbol I '~  of M Sakes the form 

where ea and f~,, are self-conjugate vector and symmetric tensor respeotively. 

3 .  - B o c h n e r  c u r v a t u r e  t e n s o r .  

Let M be a real 2n-dimensional Kahlerian manifold with complex structure J 
and Riemannian metric g which satisfy the followings: 
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V being the opera tor  of  c o w r i u n t  der ivat ion with  respect  to I~iemannian connection 

defined b y  g. 
We denote b y  R~t  ~ the Riemunniun curva ture  tensor  

h _ ~ ÷ _ ~ = :  ~/~x ~ 

where (x 9 denotes real  coordinate systems a.nd by  R~,  R the  Ricei tensor,  the scaL~r 

curva ture  respectively.  
l~ow we shull consider a tensor  K ~  ~ defined by  

1 
(3.l) K~'~ = R ~  -[- 2(n ~ 2~) ( ' L ~ - -  L ~ ( ~  ~ g~L~ ~ -  g~L~ ~ 

-~ M~J~ ~ -  ]l~J~-~ J~M~ ~ -  J~M~ ~ - 2M~J~ ~ - 2J~M~ ~) , 

where we have  pu t  

12 
(3.2) L~ = Rj~ 4(n + 1) gJ~ ' Ma~ = J / L ~  . 

Then we can prove  t h a t  the tensor  K ~  ~ has components  o£ the tensor given by  
S. BOCItl~EI% with respect  to complex coordinate systems. This tensor is in t roduced 

in real  coordinate sys tems b y  S. TAC~BA~A [9] and  called the  Bochner  curva ture  
tensor.  

4. - Identities o f  a holomorphieal ly  subprojeetive K ~ l e r i a n  manifold.  

In  a real 2n (n ~ 3) dimensional K~hleriun manifold M, b y  mak ing  use of Theo- 
rem 1, we can easily prove  the following: 

T~EOI~E~I 1' .  -- I n  order that M is holomorphically subprojective, it is necessary and 

su,,ic~entthatthereexistsaloealcoordina~e system (x h) suchthatthe Christo,,elsymboll:~l 

o] M takes the ]orm 

(4.1) j i = ~(j ~)~ ~- 5(~J~i~ +/~ix~--/~cJ(x'~ ' 

(4.2) /[~] = 0 , ]~J~]~ == 0 , 

where o~ and ]Ji are covariant vector and tensor respectively and kh= j ~ x  ~ and ~ =  
= -  J i ~  and (ij) resp. [ij]) means the symmetric part (resp. skew-symmetric part) 
with respect to i and j~ ]or example 

u(j 0 = uj~ 4- u~ (resp. uEj~] = u~ - -  u~).  
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lqow we calculate the :curvature tensor with respect to (4.1). Then, by  a straight- 
forward and rather complicated computations, we obtain 

(4.3) 

o r  

(4.3)' p ~ J ( H r [ ~ J i ]  h ~ ~ R ~ h  ---- - -  ~ [ ~ ] g ~ h  _u H ~ g ~ ]  h + Qk~iXh -}- J~h: ~ J ~  -- -- J~ Q~X~, 

where we have put  

(4.5) F , ~ = - - ( l + e ' ) ] , ~ + ( ' J , ~ ] ~ ,  ~'----e~x ~, ~ = e ~ : ~  ~ , 

(4.6) ~/~ = Pi~ + i ~  
! Y ~, / I/ 

By virtue of (4.2)~--(4.7), we can easily prove the followings which are necessary 
for what  follows. 

(4.8) P ~ J ~  = H~[aJ~ ~ , -- (n + 1 ) P ~  + Q ~ x ~ =  0 ,  

(4.9) Q(~)~-~ 0 ,  Qt~m = 0 ,  J t ( Q ~  = 0 .  

In  the first place, le$ us prove ~h~t P ~ =  O, t h a t  is, ~o~ is closed in M. Mak- 
ing use of /¢~(¢~)----O~ it  holds from (4.3), tha t  

2 H ~ g ~  + H(~g~ 0 + Q~(~x~o - H ~ J ~ ( ~ J ~  -- Q ~ J ( (  ~ ) =  0 (~.~o) 

o r  

(~.10)' 2 H [ ~ ] g  m +  ~-, [~:~'~] ~ ,v~i ,~ - -  ~ [ ~ ]  ~ ~ ' v ~ i r -  ~: - -  • 

Hence we can take four unit  vectors y~, 9 ~, z ~ and 5~ which are orthogonal each 
other and also to x ~' and ~ being 2n >_ 6. Mulitiptying y~z ~ to (4.10) and sum- 
millg for h and i~ we find 

(4.11) 

• " 9 j and 5J respectively and furthermore, contracting this with y~, z~ 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

z~H~ = y J t ( z ,  y) + z~H(y, y) + 9~H(5, y) + ~H(9 ,  y ) ,  

y~H~ ---- yToH(z, z) + z~H(y, z) + 9kH(~ z) + ~kH(9, z) ,  

9 ~  -- y~TI(z, ~) + z~tt(y, ~) + ~ ( ~ ,  ~) + ~[[(9, ~) , 
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where we have put  H(y, z ) =  y'z~H~ and etc. On the other hand,  if we contract 
(4.10) with y~y~ and z~z h respectively, it  follows tha t  

(4.16) -- H~: -}- y~H,~ky n ÷ 9~H~kgn = O, 

(4.17) -- HEkj] -~ z~ H~:~zj] + ~ H~[k~ ~- 0 

and, making use of (4.13), (4.15) and (4.16), we get 

(4.18) -- HE~ ~ + yE~gkl(H(5, z) -- H(z, 5)) ÷ yr~z~:H(y, z) 

+ y~5~H(9, z) ÷ 9,5~]H(9, 5) ÷ 9~%~H(y, 5) = O. 

Similarly we can readily obtain from (4.12), (4.14) and (4.17) 

(4.19) -- t t ~  + z,5~](H(~, y) -- H(y, 9)) -}- z , y~H(z ,  y) 

+ z:~gJt(5, y) + 5j~:H(z, 9) + 5~9~H( 5, 9) = 0 

and hence, the equations (4.18) and (4.19) mean tha t  

B[(9, y) = ~ (y ,  9) , 

H(y, z) + H(z, y) = 0 ,  

~(9 ,  5) + ~(5, 9) = o ,  

1t(5, z) = i t (z ,  5) , 

H(~, z) + H(z,  9) = O, 

H(y, 5) ÷ H(5, y) ---- O . 

By transvecting y~z ~, (4.18) and (4.19) imply by virtue of the above equations 

H(y, z) : H(z, y) =-- H(y, 5) ---- H(9 , 5) = O, 

which show tha t  H~k~----0 or -P~k~----0. Therefore the equation (4.8) may  be rew- 
r i t ten as follows: 

(4.20) Qk~x~ :- 0 ,  P~t~l= 0 .  

5. Main Theorem. 

The purpose of this section is to prove the our main Theorem after some compli- 
cated computations. In  the first step, making use of (4.3) and (4.3'), we shall derive 
three kinds of the form of the Rieci tensor R~ in a holomorphically subprojective 
K~hlerian manifold M. By  contraction over h and k in (4.3), it holds t ha t  

(5.1) R a  ----- -- 2nP,~ -- 2(n -- 1 ) / ' ~  -- 2(~bP)~ + Q ~ x  ~ - J~Qs~,£ ~ , 
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where we have put  ( ¢ P ) , . =  J~'J¢"P,~ and used (4.5) and (4.6). Transvecting g~¢ 
to (4.3)', we find 

(5.2) R,~ = -- H** g,~ - -  ~ - -  (¢P),~ 4- Q,~* x~ - J**Q~,,~ , 

and, interchanging k and h in (5.2) and subtracting the equation thus obtained 
from (5.2), it  follows tha t  

Q ~ x ~  - Q~jx~ = J ~ ( Q ~  - Q ~ )  , 

from which we get 

(5.3) Q ~ :  2x~ , Q ~ J  . . . .  # ~  , 

where we have used (4.9) and put  Ixt22 = Q j x ~  and Ix]2# = Q ~ J ~ .  Final ly if 
we contract (4.3) with J ~  and consider the well known relation R~ = -- ½J~ R ~  J~', 
then we can obtain 

(5.~) 

In  the second step, let us determine the form of H ~ .  Subtracting (5.1) from (5.4) 
and regarding to (4.9) and (~.20), we can readily find 

( n  - -  1 ) H ~  - -  Q ~ x  ~ - J ~ Q ~  = o , 

which shows tha t  

(5.5) / 7 . z~  = 0 

w i t h / 7 ~ - - - - H ~ - - ( ¢ H ) ~ ,  Tow if the ident i ty  of Bianehi is applied to (4.3), with 
respect to indices k,  j and h, then  we h a v e  

x~  Qkm - P~r~Jkl~ Jhu ~ 2 J (  H~EkJ~ ~ - -  ~ Qk~l~J ( = 0 

f rom which, contracting this with j~h and j ~ h j ~  respectively, it  holds t ha t  

(5.6) 2 Q ~ "  = (,~ - -  ~):~xk~ -F 2n.P~EjJ~ ~ - -  2 H f  Jk~ , 

(5.7) (,z + ~)Ixl ~ = 2 n ~ ,  

because of (5.3). By  the w~y, transveeting (4.10), by x h and xhx  ~ respectively, it  
follows tha t  

(5.s) 2t~c~x~ + x~tt,~g~ + Ixl~Qkj~ + J , [ / / ~E~  - ~'//~E~J~j~- Q ~ ' ~  = o ,  

(5.9) x' H,~x~ + ~ H , ~  = o ,  

1 5  - A n n a l i  dt Matemat ica 
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because of (4.9) and (4.20), and furthermore,  contracting (5.9) with x ~ and ~ respec- 

t ively, we have 

with ]x]~a ~-- H ( x ,  x),. ]x]~b : H(:~, x) and lxl~c -~ H(~, &). Regarding to (5.5), we huve 
a : c and b = 0. Consequently, the above equations can be reduced to 

(5.10) x ' l t ~ - - -  ax~ , ~2~H,~= a ~  . 

F r o m  (4.10), we c~n find 

qg} (i~h)) A (~l~trI.T (hTO) A (~glirt 1(~]~))~ 0 

being ~ (*~r c~ h)) O. Pu t t ing  1 .~ m in this, then  we have 

which yields the followings: 

(5.12) 2 n [ i x i ~ Q ~ -  Q~,~*~ - J , ~ H [ % ~ -  a ~ Z ~ ]  + g,~,() .[xl*x~- Q ~ r ~ , ' ~ )  

÷ x ~ Q ~ J ~ x ~  "* + ~ - ~ -~ 

( 2 n  - x)lxi'Q~,,~x" = [(2n - 1 ) Q ~ , ~ * x ' ~  " -  (2 -+- #)Ix]'] ~ , .  ( 5 . 1 4 )  

I t  follows f rom (5.14) tha t  

(5.15) ~ + ~ = o and Q ~ , ~ x ~  = ~ l x ] ~ ,  

with lxI*e ---- Q ~ , ~ x * ~  ~, f rom which, by  vi r tue  of (5.7) we can see t h a t / v , ~ _  0. By  

the  way,  we obtain f rom (5.4) 

f rom which, considering (4.9) and (5.15), 

(5.16) Q , 8 , ~  ~ -~ - elx]~x, 
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and therefore the equation (5.13) can be written as follows: 

(5.17) (2n -- 1)Q~r~x ~ - (2ns ÷ 2)xkx~ ~- (2 ~- s ) t x [ 2 g ~ -  2x~x~ - ~ '~ ~ J ~  ~± 1 ~  = 0 

by virtue of (5.15) and (5.16). Transvecting ~ to (5.12) and taking account of (5.16), 
we obtain 

(5.18) Qkj~£2 -~ exk~, ~- J~'H,~ -5 a J ~  ---- 0 

or 

(5.19) Qkr~Ji'~ r -~ 8x~x~ - H ~  -~ agkt ----- 0 , 

from which we have 

(5.20) Q ~ "  + e ( x ~  - x ~ )  + J ~ H ~  -- J , T H ~  + 2 a J ~  = 0 

by (4.9) and, substi tuting (5.19) into (5.17), it  follows tha t  

(5.21) ( 2 ~ -  1)Q~,~x,- (2~,~ + 2 )~ .~  + ((2 + ~)lxl ~ -  a) g~ 

Considering (5 .14)~ (5.16) and (5.19)---(5.21), we can get 

(5.22) ( 2 n -  *)(lxl~Q~ + J ( 1 L ~ -  a~J~) 

÷ ((2 -5 e)lxt2 --  a) g~ex~ + ( H ~ e ÷  H ~ x ~  = O. 

On the other hand,  from (5.8) we have by transvection 

(2n -- 3) H,~ + (¢H),~ -~ (2 -~ e)(x,x~ + ~ )  --  (2(n -- 1) a + (2 + e)lxl ~) g,~ ----- 0 (5.23) 

or 

(5.23)' 

because of (5.10) and (5.20), from which we obtain 

(5.24) H . =  0 or H~j= (¢H).  

and at  last, the equation (5.23) may  be reduced to 

(5.25) 2 ( ~ -  1 ) / / ,  = [ 2 ( n -  1)a + (). + ~)tx]~] g , -  (2 + ~)(x,x~ + ~,~). 

Thus we have determined the form of Hi~.. 
In  the lust step, we shall prove the following main theorem of the paper. 
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TItEOI~E]g 2. - A holomorphieally subprojeetive Kiihlerian manifold M ( n ~  3) 
with 2~ ~ (n ~ 1)e = 0 is a K~ihlerian manifold with vanishing Bochner curvature 
tensor, where we have put Ix[~ = Qkjx ~ and Ix[4s-----Qkj~x~ ~. 

PROOF. - l~egarding to  (5.24) and (5.25), the equation (5.22) can be rewri t ten 
as follows: 

which means tha t  

(5.26) 2(n -- 1)Ixl2(Qkj~xk- Q~jJ(xh) ÷ (~ + e)Ix[~[(J~ + 2Jj~Y~ + g,:kx~)xh 

- (J~E~x~ + 2jj~x~ + g, fs~)~] + 2(2~ + (n + ~)~) x : ~ : ~ x ~  = o 

and therefore by  vi r tue  of (5.25) and (5.26) we get f rom (4.3)' 

(5.27) ~ = ( a +  ()'+e)lxl~ - J J 

2 ( n -  ~) 

- (J~xn ÷ 2 J j ~  ÷ g~2~)~ 

2 ~ 5 - ( n s - 1 ) S x  ~ ~ x 
( n _ l ) [ x ] ~  ~ n ~ a~- 

Taking account  of our assumption 22 ÷ (n ~ 1)e = 0, we have 

R ~ - = - -  2(n s - 1 ) a ~ e [ x  I g~ 2 

= (us- ~)(-~na 5- (n-~)~lx]~), 

an4 these mean tha t  the tensor L~  defined by  (3.2) reduces to 

L ,  = -- (n + 2) [ (a  -- ~ l x [  ~) g ,  + .~-~(x,x~ + ~ , ) ]  

and consequently,  subst i tut ing this into (5.27) and considering M , =  J~'L~ and 
2~ ~- (n ~- 1)e = 0, we have  K ~ - ~  0. This completes the proof of Theorem 2. 

As a corollary of Theorem 2, we have 

COrOLlArY. - A holomorphieally subprojeetive K~hlerian manifold with ~ ~--e= 0 
is a manifold of constan~ holomorphic sectional curvature. 
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