On Surjectivity for Nonlinear Maps in Banach Spaces (*) (1).
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Sunto, — Sia E uno spazio di Banack e f: E— E un operatore continuo, non necessariamente
lineare. Si danno delle condizioni su | affinché Uequazione x — f(x) = y sia risolubile per
ogni y& B,

Introduction.

Let f: F'— K be a continuous (possibly nonlinear) map from a Banach space E
into itself. We are concerned with finding conditions on f to get surjectivity for the
map 1—7, where 1: ¥ F is the identity. This is equivalent to answering the
question of whether the equation x — f(x) = p has a solution for any p e E.

This paper is divided into two parts., The first part aims at maximum generality
in order to extend and unify many of the previous known results on the subject.
In the second part we select the class of hemibounded maps (see definition below)
that are easier to deal with in computations and seem to be handier in applications.

We shall also show how hemibounded maps are related to bifurcation problems
in Banach spaces.

We shall now list some known results regarding surjectivity in the sense mentioned
above,

a) Let j: E— E be a Banach contraction, then (1 — f)(H) = L.

A continuous map f: H— F is said to be asymptotically linear [5] if there exists
a bounded linear operator L: E — F such that

im @ —L@] _

lef| e ]|
The unique bounded linear operator satisfying this condition is denoted by f'(co)
and is called the asymptotic derivative of f.

(*) Entrata in Redazione il 30 dicembre 1975.
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The following result is implicity contained in M. A. KRASNOSEL’SK1J’s book [5].

b) Let f: E—~ B be asymptotically linear and compact. If ||f'(co)| <1, then
1—-HE)=E.

Actually, [5] contains the following stronger resulf.

¢) Let f: E—E be asympiotically linear and compact. If the spectral radius
r(f'(c0)) < 1, then (1—f)(B) = E.

A continuous map f: H— F is said to be guasibounded [4] if

timsup 1O 1< 4 o
lel>e ]

The finite number |f| is called the quasinorm of f.
The following result is due to A. GRANAS [4].

d) Let f: E— E be compact and quasibounded. If |f|<<1, then (1 —f)(E) = E.

It can be easily seen that d) contains b) since if f is asymptotically linear then
Ifi = |f'(c0)|. But d) neither contains a) nor ¢). A first step in unifying these results
was made in [11]. Namely,

¢) Let f: B — F be condensing and quasibounded. If |f|<<1, then (1— f)(E)= K.
Clearly, e) contains a), b) and d) since Banach contractions and compact maps
are condensing. Nevertheless, e¢) does not contain ¢). A second step in unifying
these results was successfully undertaken in [9] in such a way that a) through e)
beecome particular cases of Theorem 2.1 given in [9].
In the first part of this paper we give a suifable approach that will allow us not
only to extend and unify ail of the above mentioned results (including those contained
in [9]) but also a recent result due to H. AMANN [1]. Namely,

f) Let f: E—E be an asympiotically linear o-contraction. Asswme that f'(oo)
does not have real eigenvalues greater than or equal to 1 (i.e. Ax £ f'(co)x for all 2 70
and 1>1). Then (1—f{E)=B.

Amann’s result cannot be obtained from those contained in [9]. It should be
remarked that b), ¢) and f) are given in the framework of ordered Banach spaces
and stated in terms of the existence of a fixed point for f, rather than in terms of
surjectivity for 1 — f. It can be shown that the results contained in this paper
can be suitably modified to hold in the context of ordered Banach spaces as well.

Finally, let us spend a few words regarding some notations used in this paper.

The greek letter o« will stand for the Kuratowski measure of noncompaciness. A
continuous map f: F— E from a Banach space into itself will be ea,lled‘oc-L@‘psahiiz
with constant K >0 if «(f(4)) <Ka(4) for any bounded subset A c H. The map f
is an a-contraction if 0< K <1, a-nonexpansive if K = 1 and condensing if a(f(4)) <
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< a(A) for any bounded A c F with a{d)>> 0. Let us mention that a compaect map
(sending bounded sets into relatively compact sets) is «-Lipschitz with constant
K = 0. Perhaps the simplest example of an «-contractive map is the sum of a com-
pact map with a Banach contraction.

1. — Essentially hounded maps, solvability of nonlinear equations and surjectivity.

Our first step will consist in introduecing a class of maps which contains the quasi-
bounded maps of Granas [4] and the s-quasibounded maps of [91.

Let E be a (real or complex) Banach space and let f: #—~F be continuous.
Given r >0 consider the extended real number

bir, ) =sup {A>0: Az = f(z), for some € F such that |z] =7}

if the set of eigenvectors of f with norm equal to » is not empty and b{r, f} = 0 other-
wige (the convention sup § = 0 will be used throughout this paper). Denote by

(flo=1int {b(r, f): r >0} .
For any peE define

(o= (f + 2o

where f -+ p denotes the map z—f(x) -+ p.
If the following number

(f) = sup {(f),: p € B}

is finite then the map f will be called essentially bounded and (f) is the essential
norm of f.

In order to state our first result we need some further notations. Let f: B —E
be a continuous map. Consider the following number.

@)
= f .
U=t

Define the positive spectral radius of § in the following way
rH(f) = sup {A>0: d(A—f) = 0},

where 2 — f stands for the map 1-1—7, (1-the identity on H).
Let 1, 9: B - FE be two maps. We say that f and g are asymplotically equivalent
(f~g) if

@) —g@)| _,

lim
o> o
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Clearly, this is an equivalence relation. We shall denote by f the equivalence class
containing f. Observe that f is asymptotically linear if and only if f contains a (unique)
bounded linear operator f'(oo).

Now we are able to state the following

ProrosITION 1.1. — The positive speciral radius of quasibounded maps has the fol-
lowing properties.

(a) rH(N<fl-

(B) f~g=rt{f)=r{g). In particular, if f is asympiotically linear then r+(f) =
= r+(f'(c0)).

{e) if L is bounded and linear then
rHL) =sup {A>0: Aeo(l)},

where o(L) is the spectrum of L.

ProOOF. - (a) We have

Therefore, if 1>0

dA—fy=r—1f].

Thus d(4A— f) =0 implies A<|f|. Hence r+(f)<f|.

(b) It is not difficult to show (see [2]) that j~ g implies d(f)=d(g). Fur-
thermore, if f~g then A—f~1—g for any AeR. Therefore, in this case,
(A —f) = d(A—g). Hence r+(f) = r+(g).

{¢) We have to show that the two numbers

a=sup{ieR: d(A— L)=0}
b=sup{icR: Aeo(L)}

are equal. It was pointed out in [3] that d(A—L)=0 if and only if 1e¢, (L),
the approximate point spectrum of L. Hence there exists a sequence {z,} in F such
that |2.] =1, Ve N and Az, — f(z,) >0 as n—> - co. Therefore, since o, (L) is
closed, aeg,(L)co(L). This implies that a<d. From the definition of b it fol-
lows that b £ do(Ll)—the boundary of ¢(L). On the other hand it is well known that
oo(Lyco,{L), hence b<a, and we are done. Q.E.D.

In the following proposition we list some properties of essentially bounded maps.
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ProposiTIiON 1.2:
(@) (Af) = A(f) for any A>0.

(&) If f is quasibounded then fis essentially bounded and the following estimates
of (f) hold

H<rtH<lfi-
(¢) If L is a bounded linear operator with x-Lipschitz constant K < r+(L) then
(L) = (L) = r*(L).

ProOOF. — () We may assume A > 0. We have

A= (f + plo=(Mf + 27'P))o = Mf + A7'p)o= A1, -

Hence
(Af) = sup {(Af)s: p € E} = sup {A(f);-,: p€ B} = A(f) .

() On the basis of Proposition 1.1-(a) we have only to prove the inequality
(H<r(f).

Observe that 7+(f + p) =r*(f) for any pc E. Therefore it is enough to prove
that (f)o<r(f).

If (f)=0 the assertion is frivial. Assume (f), > 0. From the definition of (f),
it follows that given 0 << a < (f), and ne N we can find z,€ E, A,>a such that
|2:] = » and A,x,= f(z,). Hence,

Since f is quasibounded this implies that {4,} is bounded. Therefore, we may assume
that {1,} converges to some A>a.

Now,
ﬁm,,u— fu(asﬂ)u <Vt nz,,a;,h—ﬁ(mn)ll — —1] .
Thus,
_____.]fﬁinﬂ——f(%)ﬂ -0 as n—-+ co.

Il

This means d(A—f) =0, ie. r+{f)=>Ai>a. Since a can be chosen arbitrarily close
to (f)e we get (f)o<r*(f).

(¢) Since (L)< (L)<rt(L) it is enough to show that (L)y>r+(L). We may
assume r+(L) > 0. As in the proof of Proposition 1.1-(¢) it can be shown that r+(L) e

14 —~ dnnali di Malematica
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€ 0,(L) — the approximate point speectrum of L. So there exists a sequence {,}
in E with |«,]| =1, such that r+(L)z, — L(x,) goes to zero as n — -+ co. Consider
the set 4 = {,: ne N}. Clearly,

Since r+(L)> K we get a(d)=0, i.e. 4 is relatively compact. We may therefore
assume that {x,} is convergent to some » such that |#| =1. By the continuity
of L we get r+(L)x = L(x), i.e. ¥*(L) is an eigenvalue for L. On the other hand the
linearity of L implies that (L), is the largest positive eigenvalue for L. Therefore
(L)o>rH(L). QERE.D.

The following is the main result of this section.

THEOREM 1.1. — Let f: B — E be condensing.
(@) If (flo<<1, then f has a fixed point.
(0) If (fl,<<1, then the equation x— f(x) = p has at least a solution x € K.
(¢) If ()< 1, then (1—f)(E)= K.

ProoF. — Clearly, (a) = (b) = (¢). Therefore we have only to prove (a). The
inequality (f); << 1 implies the existence of » > 0 such that b(r, f) << 1. Let B: I/
~ B(0, ) be the radial retraction onto the ball B(0,r) centered at the origin and
radius 7, i.e.

@ if || <r,
R(x) =
( e A IEY
|

Since R is a-nonexpansive (see R. D. NUSSBAUM [6]) the map Rof is condensing
and sends B(0,r) into itself and hence it has a fixed point x € B(0,r). If [f(x)|<r
then @ is a fixed point for f. If |f(z)] >~ then z= (r-f(m))/l[f(x)”. Thus

i@l

& with >1,

contradicting the fact that b(r, f)<1l. Q.ED.

Theorem 1.1 containg ag particular cases all the results @) through e) and repre-
sents a direct extension of Theorem 2.1 of [9] since the essential norm is smaller than
or equal to the s-quasinorm introduced in [9]. It also contains Amann’s result f).
We shall show this in the sequel.

As-an immediate consequence of Proposition 1.1, Proposition 1.2 and Theorem 1.1

we have the following.

COROLLARY 1.1. — Let f: B — E be an asymptotically linear condensing map. If
r+(f(c0)) < 1 then (1 —y)E) = E.
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REMARK 1.1.-If 7(f'(00)) stands for the spectral radius of f'(co) then we obviously
have 7+(f'(c0)) <#{f'(o0)) < |[f (c0)|. The last inequality shows that the results b) and
¢) mentioned in the introduction of this paper are direct consequences of Corollary 1.1.
We shall show that Corollary 1.1 contains f) as well.

We need the following.

LEMMA 1.1. — Let L: E > E be a linear o-contraction. Asswme that L satisfies the
following condition

{a) A= I{z) for all 520 and 2>1.
Then r+(L)< 1.

ProoF. —~ It wag proved by R. D. NusssauM [8] that if L is «-Lipschitz with
constant K then 1eo(L) and |A] > K imply that 1 is an eigenvalue for L. On the
other hand condition (a) means that L has not positive eigenvalues greater than
or equal to 1. Hence r+(L) << 1. Q.E.D.

We are now in a position of proving Amann’s result [1].

COROLLARY 1.2. — Let {: E—E be an asymplotically linear a-contraction. Let
the asymptotic derivative f'{oco) of f satisfy condition (a) of Lemma 1.1. Then 1 —f
is onlo.

PROOF. — It is known (see [1] or [9]) that if f is a-contractive then so is f'(co).
By Lemmsa 1.1 we have r+(f(c0)) < 1. Now apply Corollary 1.1. Q.E.D.

The next is an example showing that neither Granas ¢) nor Amann’s result f)
apply while Theorem 1.1 is applicable.

EXAMPLE 1.1. — Let j: C— C be defined as follows f(z) = 2-exp (i/V1+ []) for

any zeC. In this case (f) = 0. Indeed, we have to solve the equation Az — f(z) = p,
peC. In other words if 2540 we have

A= exp (\—/—i—;—w ,_M) 4

o I

By setting z =r exp (i0), p = g exp (ip) we get

)= exp (—;i_—:) +Zexp (—i0—g)).

V14 r r
Therefore
. 1 0 20 .
A = cos i8N ————+=c08 (§ — @) ——=5sin (6 —¢) .
\/1+r+ \/1+f+’?‘ (0—o) , 0—q)
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Obviously, since A is real we must have

sin

v1+r~%sin(6—¢) =0,

This equation is solvable iff

J sin 1

VS

4
<=
1“,

which is elearly impossible for » large enough. Therefore (f) = 0. Now observe that
the function f is asymptotically linear and its asymptotic derivative f'(oco) is the
identity on €. Clearly, f does not satisfy neither Granas condition since |f| =1 nor
Amann’s condition gince 1 is an eigenvalue of f'(co). On the other hand (f) = 0 and
thus Theorem 1.1 applies.

2. — Hemibounded maps, properties and its relation to bifurcation on Banach spaces.

In this part we introduce the class of hemibounded maps which is included in
the class of essentially bounded maps. However, hemibounded maps are easier to
deal with and have nice properties that relate them to bifurcation problems in Banach
spaces.

Let f: H—> H be a continuous map from a Banach space F into itself and let
b(r, f) be defined as in the first part of this paper.

Set

{fro=limsup b(r, f) .
>+ @

Note that (as for (f),) in the case when f is linear {f, is the supremum of all
positive eigenvalues of f.

In analogy to what we have done in the first part of the paper we put for any
pekl

Fro=<f+ 0.
The mapping f is said to be hemibounded if the following number is finite
{fy=sup{{f,:peB}.

From the definition of <{f) it follows immediately that (f)<{f>.
Other properties of hemibounded maps are gathered in the following
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ProrposiTIiON 2.1:

(a) <Afy = XKf> for amy 2>0.

(b) If f is quasibounded then f is hemibounded and the following estimates of {f)
hold

Hr<r<if -

(¢) If L is bounded linear and wu-Lipschitz with constant K < ++(L) then (L) =
=Lf)=r*(L).

The proof of Proposition 2.1 is analogous to the one of Proposition 1.2,
The following iz an example showing that the striet inequality (f) < {f> may
indeed occur.

ExampLE 2.1. - Let y: R— R be defined by j(z) = » sen?x. Note that in the
case of real functions

7

b(r, f) = max {O,j—(}) ) _f_(_:_r)}

In our case

b(r,j—{—p)——-senﬁr—}—l-j;i, YpeR.

Hence,

>, = lim sup (sen2r+ ‘Pl) —1,

>+ @ T

(s =inf(sen2r+ ipl) —0.

>0 7
Thus, (f) =0 and {f)>=1.

REMARK 2.1, — Theorem 1.1 holds for hemibounded maps by simply substituting
everywhere in the corresponding statements essential boundedness with hemibound-
edness.

In order to prove the next resnlt we need the following lemma which represents
an extension of the well-known. Birkoff-Kellog theorem to the context of «-Lipschitz
maps.

LeEMMA 2.1. (Birkoff-Kellog theorem for «-Lipschitz maps). — Let f: 8 — F be an
a-Lipschitz map from the unit sphere S = {x e E: |a|| =1} into a Banach space E.
Assume dim B = -+ oo and

lf@)|>e> K, forall ze8,



214  Massivmo FURI - ALFONSO VIGNOLI: On surjectivity for nonlinear, ete.

where K >0 is the a-Lipschitz constant of f. Then f has at least a positive cigenvalue
(greater than or equal to o).

ProOF. — Denote by U(p) = {we E: |z]|>0}.

It is enough to prove that the map [7of: § — 8, where II: U(p) — 8 is defined
by II(x) = o:/ |#], has a fixed point. To this end we have to show that [Tof is «-con-
tractive and apply Nussbaum’s theorem [7]. Observe that I7 can be regarded as the
composition /7 = sor, where r is the radial retraction of U(p) onto 8(o) = {ze B: ||z =
= p} and s: S(p) > 8 is defined by s(z)==xfo. Now, the map ITof= sorof is
x-confractive with constant K /p < 1 since f is o-Lipschitz with constant K, the map »
is a-nonexpansive (see R. D. NussBAUM [6]) and the map s satisfies a(s(4)) = (1/o)a(4)
for all Ac8{p). Q.E.D.

The following proposition relates {f>, with

Tl
) = limint S

introduced in the first part of this paper.

ProposiTioN 2.2. — Let f: B — E be a-Lipschitz with constant K. Assume dim E =
= + oo and d(f)>> K. Then d(fy<{f>-

ProoF. —~ Let ¢ be such that K << ¢ < d(f). It is enough to show that there ex-
ists 74> 0 such that for all r > », there is at least an eigenvalue A of f on 8(r) =
= {wek: |z =r} such that 1>c. In fact, if this iy the case we have (f)>¢ and ¢
can be chosen arbitrarily cloge to d(f). Now, from the definition of 4(f) we can find
>0 such that |z|>7, implies [f()|>e¢|z]. At this point for any r>r, apply
Lemma 2.1 to the map f.: 8> FE defined by f.(2)= 1/r)f(re). Q.E.D.

REMARK 2.2. — The following simple example shows that in the assumptions of
Proposition 2.2 we cannot remove mneither d(f)> K nor dim E= + co. In fact,
let f=—1 (1 is the identity on E). Clearly d(f) =1 and {f>=0.- On the other
hand the «-Lipschitz constant of — 1 is 0 if dim F < + oo and 1 if dim B = 4 oo.

The following proposition shows the existing relation between hemibounded maps
and asymptotic bifurcation peints. We recall that A e R is called asymptotic bifur-
cation point (see [B]) of a map f: H— F from a Banach space F into itself if there
exists a sequence {(1,, #,)}in R x E such that 1,— 4,]z.]| - + oo and 4,2, — f(z,) = 0.
The set of all asymptotic bifurcation points of fwill be denoted with the symbol B(f).

PrOPOSITION 2.3, — Let f: E— E be hemibounded. Then (>, = B+(f)= max {i>
>0: Ae B(j)}.

Proor. — To prove {fY,< B*{f) we may assume {f>, > 0. In this case we can
find two sequences {x,} in E and {1,} in R such that [z.| - + oo, 1,—> (/> and
Any = f(z,). This means that {f,> is an agymptotic bifurcation point of f. It remains
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to show that there are no asymptotic bifurcation points greater than {f>,. Let 2> 0
be an asymptotic bifurcation point of f, then there exists two sequences {u,}cC %,
{.3cR such that A,—~ 4, |.| - + oo and 2,#,= f(#,). This implies that

b([#n]s 1) > 2u -

Thus, lim supb(r, f)>4, ie. {(Hu>1 QED.

Notice that if {f»,> 0 then B(f) %@ and {f>, is the largest positive asymptotie
bifurcation point for f.

From Proposition 2.3 and Theorem 2.1-(a) it follows that if f: ¥ > F is hemi-
bounded, condensing and fixed point free then f has at least an asymptotic bifurca-
tion point A>1. On the other hand if a map f: H—> F is not hemibounded then
there exist two sequences {1,} in R and {#,} in E such that 1,—> + oo, |@,]| > 4 oo
and 2,2, = f(z,). When this occurs we say that -+ oo is an (improper) asymptotic
bifurcation point for f. We have therefore the following.

COROLLARY 2.1. — Let f: E— B be condensing and fixed point free. Then | has
o (possibly improper) asympiotic bifurcation poini A>1.

This result in the case when f is compact is an equivalent formulation of Schae-
fer’s theorem [10].

Using Proposition 2.3 we can now prove the estimate {f)<r*™{f) without quasi-
boundedness assumptions on f (see Proposition 2.1-(b)). Namely, we have the fol-
lowing.

COROLLARY 2.2. — Let f: B> E be hemibounded. Then {f><r+{f).

Proor. 1t is enough to show that {f>,<r*(f). In fact, if this is true, then {f), =
= {f + pdo<tH(f + p) = r+(f). Now, by Proposition 2.3 it sufficies to show B+(f) <
<r*(f). Without loss of generality we may assume BHf) = 1> 0. We have 1,2,=
= f(#,), where A, A and |r,]] > + oo. Therefore

| Aw,— f(a,)]]

X I

a§ n-> - oco. Thus d(1—f)=0, hence from the definition of r+(f) we get A<
<rtf). Q.ED.
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