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Sunlo. - Sia E uno spazio di Banach e ]: E - > E  un operatore eontinuo, non neeessariamente 
lineare. S i  danno delle eondizio~vi su ] a]]inch~ l'equazione x -  ](x) = y sia risolubite per 
ogni y ~ E. 

Introduction. 

Let  ]: E--> E be a continuous (possibly nonlinear) m a p  f rom a Banach  space E 

into itself. W e  are concerned wi th  finding conditions on ] to get  sur jec t iv i ty  for the  
m a p  1 - - ] ~  where 1: E - +  E is the  ident i ty.  This is equivalent  to answering the  

question of whether  the  equat ion x - -  ](x) = p has a solution for any  p e E.  
This paper  is divided into two par ts .  The first pa r t  aims a t  m a x i m u m  general i ty  

in order to ex t end  and unify n ~ n y  of the previous known results on the subject.  
I n  the  second p a r t  we select the  class of hemibounded maps  (see definition below) 
t h a t  are easier to deal wi th  in computa t ions  and  seem to be  handier  in applications.  

We  shall also show how hemibounded  maps  are related to bifurcat ion problems 

in Banach  spaces. 
W e  shall now list some known results regarding sur ject ivi ty  in the  sense ment ioned  

above.  

a) Le t  1: E--> E be a B a n a c h  eontraetion,  then ( ] -  f ) ( E ) =  E.  

A continuous map  l:  E--->E is said to be asympto t i ca l l y  l inear  [5] if there exists 
a bounded  linear opera tor  L :  E--> E such t h a t  

l i ra  tl](x) - -L (x ) I I .  = O. 

The unique bounded  linear opera tor  satisfying this condition is denoted b y  ]'(c,o) 

and  is called the  asympto t i c  derivative of ]. 

(*) Entrata in Redazione il 30 dicembre 1975. 
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ment of the University of Bonn in the <~ Sonderforsehungsbereich 72 ,) programm. 
(3) Universit~ di Firenze - Istituto di Matemafica <~ U. Dini ~> - Viale Morgagni 67-A - 

50134 Firenze. 
(a) Universit~ della Calabria - Dipartimento di Matematica - Casella postale 377 - 
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The following result  is implici ty  contained in M. A. K~AS~OSEI?SK:[J'S book [5]. 

b) Zet t:.E-->E be asymptotically linear and compact. I l IIl,(oo)ll < 1, then 
( i  - = E .  

Actually~ [5] contains the  following stronger result. 

c) Let f: E - .  E be asymptotically linear and compact. 
r(] '(oo)) < 1, then (1 -- ])(E) -= E. 

I f  the spectral radius 

A continuous map f: E - > E  is said to be quasibounded [4] if 

 sup IIl(=)II = 1/I < + o o .  

The finite number  Ill is called the quasinorm of ]. 
The following result is due to A. GRANAS [-~]. 

d) Let ]: E--> E be compact and quasibounded. I] Ill < 1, then ( l - - ] ) ( E )  ----E. 

I t  can be easily seen t ha t  d) contains b) since if f is asymptot ical ly  linear then  
I/I = IIf'(c~)tt • Bu t  d) nei ther  contains a) nor c). A first step in unifying these results 

was made in [11]. Namely~ 

e) Zet f: E--~ E be condensing and quasibounded. I] Ill < 1~ then (1 -- ])(E) = E. 
Clearly, e) contains a), b) and d) since Banach contractions and compact  maps 

are condensing. Nevertheless, e) does not  contain c). A second step in unifying 
these results was successfully under taken  in [9] in such a way tha t  a) through e) 
become part icular  cases of Theorem 2.1 given in [9]. 

In  the first par t  of this paper  we give a suitable approach tha t  witt allow us not  
only to extend and unify all of the above mentioned results (including those contained 
in [9]) bu t  also a recent result  due to H. A ~ A ~  [1]. Namely,  

]) Let ]: E---> ~ be an asymptotically linear :t-contraction. Assume that ]'(c~) 
does not have real eigenvalues greater than or equal to 1 (i.e. ~x ee ]'(c~z)x ]or all x ¢ 0 
and ~>1) .  Then ( 1 - - ] ) ( E ) =  E. 

Amann 's  result  cannot  be obtained from those contained in [9]. I t  should be 
remarked tha t  b), c) and ]) are given in the framework of ordered Banach spaces 
and s ta ted in terms of the existence of a fixed point  for ], ra ther  t han  in terms of 
surject ivi ty for 1 -  f. I t  can be shown tha t  the results contained in this paper  
can be suitably modified to hold in the context  of ordered Banaeh  spaces as well. 

Finally,  let us spend a few words regarding some notations used in this paper. 
The greek le t ter  ~ will s tand for the Kuratowski measure o] noncom2actness. A 

continuous map ]: E--~E f rom a Bana, ch space into itself wilt be called a-Lipschitz 
with constant  K > 0  if a(](A))<K:t(A) for any bounded subset A c E .  The map ] 
is an :t-contraction if 0 < K <  1, :t-nonexpansive if K = i and condensing if a(](A)) < 
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< , (A)  for any  bounded  A c E with  , (A)  > 0. Le t  us ment ion  t h a t  a compact  m a p  
(sending bounded  sets into re la t ively compac t  sets) is a-Lipschitz  wi th  constant  
K ---- 0. Pe rhaps  the  simplest  example  of an a-contrac t ive  m a p  is t h e  sum of a com- 

pac t  m a p  with  a Banach  contract ion.  

1. -Essentially bounded maps, solvability of nonlinear equations and surjeetivity. 

Our first step will consist in introducing a class of maps  which contains the  quasi- 
bounded  maps  of GI~A~As [4] and  the  s-qu~sibounded maps  of [9]. 

Le t  E be  a (real or complex) Ban~ch space and  let  ]: E - - > E  be  continuous.  
Given r ~ 0 consider the  ex tended  real  number  

b(r, ]) = sup {)~>~0: ).x = ](x), for  some x e E  such t h a t  Ilxll =- r} 

if the  set of eigenvectors of ] wi th  norm equal  to r is not  e m p t y  and  b(r, 1) = 0 other-  
wise (the convent ion sup 0----0 will be  used th roughout  this paper).  Denote  b y  

(])o = inf {b(r, ]): r ::> 0}. 

For  any  p ~ E define 

(/)~ = ( I  + p)0, 

where ] ~ - p  denotes  the  m a p  x ~ + ] ( x ) +  p.  
I f  the  following num ber  

q) = sup {(])~: p e E} 

is finite then  the  m a p  ] will be called essentially bounded and  (]) is the  essential 
norm of ]. 

I n  order to s ta te  our first result  we need some fur ther  notat ions.  Le t  ]: E - >  E 
be a continuous map .  Consider the  following number .  

d( ]  ) = l i ra  i n f  [tt(x)ll 
, lJ- o ltxlt 

Define the  posit ive spectral radius  of ] in the  following way  

r+(D = sup { ~ > 0 :  d ( ~ - ] )  = 0} ,  

where 2 -  ] s tands for the  m a p  2.. 1 -  I, (1-the iden t i ty  on E). 
Le t  ~, g: E -> E be two maps.  We  say t ha t  I and  g are asymptot ical ly  equivalent 

( t  ,-.~ g) i f  

lira tI](x) - -  g(x)tt = O . 
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Clearly, this is an equivalence relation. We shall denote b y  f the equivalence class 
containing ]. Observe tha t  ] is asymptoticMly linear if and only i f f  contains a (unique) 
bounded linear operator  f'(c~). 

lqow we are able to s tate  the following 

PRoPosI:rIo~ 1.1. - The positive spectral radius of quasibounded maps has the fol- 
lowing properties. 

(a) r+(t)< Ill. 

(b) f....g ~ r+(])= r+(g). In partieutar~ if f is asymptotically linear then r+(f)---= 
= r+(f'(oo)). 

(e) it L is bounded and linear then 

r + ( L )  = sup {),> 0: ~ e a(L)},  

where a(.L) is the spectrum o[ L. 

PROOF. - (a) We have 

Therefore,  if 2 i> 0 

tll(x)Jt 
ttxll Hxtl 

1 ) > 4 -  III. 

Thus d ( 2 - - ] )  -~ 0 implies 4 <  I][. Hence r+(])< Ill. 

(b) I t  is not  difficult to show (see [2]) tha t  1--~ g implies d(]) ---- d(g). Fur-  
thermore,  if ] -~g  then  ~ - - ] ~ 2 - - g  for any 2 E R .  Therefore,  in this case, 
d (2- -  ]) ~-- d(A-- g). Hence r+(]) = r+(g). 

(c) We have  to  show tha t  the two numbers  

a ---- sup (2 e R :  d(2 --  L) -= 0} 

b : sup {2 ~ R:  2 ~ a(L)} 

are equal. I t  was pointed out  in [3] t ha t  d ( 2 - - L ) =  0 if and only if ). E a,(L), 
the  approximate  point  spectrum of L. Hence there exists a sequence {x~} in E such 
tha t  llx~II = 1, V n e N  and 2x,--l(x~)-~O as n - +  ~- oo. Therefore, since a~,(L) is 
closed, aea,(Z)c(r(L).  This implies t h a t  a<b. F ro m the  definition of b i t  fol- 
lows t ha t  b e ~a (L) - - the  boundary  of a(L). On the other  hand it  is well known tha t  
~a(L) ca,(L),  hence b<~a, and we are done. Q.E.D. 

In  the following proposition we list some properties of essentially bounded maps. 
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P ~ o e o s i ~ i o ~  ~ .2:  

(a) (21)= 2(1) for any 2>0.  

(b ) I / / i s  quasibounded then / i s  essentially bounded and the following estimates 
ol (/) hold 

(l) < r+(/) < I l l -  

(c) 11 L is a bounded linear operator with :¢-Lipschitz constant K < r+(Z) then 
(L)o = (Z)  = r+(~) .  

P~ooF.  - (a) We m~y assume t > 0. We have 

Hence  

( V ) ,  = (21 + p)o = (~(1 + 2-~p))o = 2 ( I  + 2-~p)o = 2(f)~_~. 

(21) = sup {(, l l) ,:  p e E }  = sup {Z(fh-,~: p e E }  = 2 ( I ) .  

(b) On the basis of Proposit ion 1.1-(a) we have only to prove the  inequal i ty  

(f)<r+(f). 

Observe tha t  r+(f + p ) =  r+(])for any p eE.  Therefore it is enough to prove 

tha t  (f)o <r+{f). 
I f  (f)o= 0 the assertion is trivial. Assume (f)o > 0. F r o m  the definition of (f)o 

it  follows tha t  given 0 < a < (/)o and n e N we can find x~ e E,  t .  > a such t h a t  

IIx.II = n and 2~xo---- f ( ~ ) .  Hence, 

2~ = Ill~(x.)ll 

Since f is quasibounded this implies tha t  {2.} is bounded. Therefore, we ma y  assume 
tha t  0'~} converges to  some 1 > a. 

Now~ 

I 1 2 ~ - ] ( ~ o )  1I < t 2 ~ -  2I + l i2~xo-l (x~) l l  _ 12o-  21. 

Thus~ 

[2x~--f(x.) -->0 as n - - > ÷  ~ .  

This means d(2-- ]) ---- O, i.e. r+(f)>2>a. Since a can be chosen arbi trar i ly close 

to (1)o we get (f)0 < r+(f). 

(c) Since (L)o<(L)<r+(L) it  is enough to show t h a t  (L)o>r+(L). We ma y  
assume r+(L) > 0. As in the proof of Proposit ion 1.1-(e) it  can be shown tha t  r+(L) e 

1 4  - . d n n a l i  d i  M a t e m a f i c a  
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as(L ) ~ the  approximate  point  spectrum of L. So there exists a sequence {x.} 
in E with Hx~I[ = 1, such tha t  r+(L)x . - -L(x~)  goes to zero as n--~ ~- c~. Consider 
the set A = {x~: n a N}. Clearly, 

r+(L)o:(A ) = ot(L(A )) < K a ( A ) .  

Since r+(L)> K we get ~ ( A ) =  0, i.e. A is relatively compact.  We may  therefore 

assume tha t  {x,} is convergent to some x such tha t  ilxll = 1. By the  cont inui ty  
of L we get r+(L)x --- L(x), i.e. r+(L) is an eigenvalue for L. On the other hand the 
l inearity of L implies tha t  (L)o is the  largest positive eigenvalue for L. Therefore 
(L)o>r+(L). Q.E.D. 

The following is the main result of this section. 

THEOI~EM 1.1. - Let /: E -+  E be condensing. 

(a) I /  (/)o< 1, then / has a /ixed point. 

(b) I /  (/)~ < 1~ then the equation x - - / ( x ) = p  has at least a solution x e E. 

(c) I /  ( / )< 1, then ( 1 - - / ) ( E ) =  E. 

PROOF. - Clearly, ( a ) ~  ( b ) ~  (c). Therefore we have only to prove (a). The 
inequal i ty  ( / )o< 1 implies the  existence of r > 0 such tha t  b(r,/) < 1. Le t  R: E - +  
-~B(0 ,  r) be the  radial  retract ion onto the ball B(O, r) centered at  the  origin and 

radius r~ i.e. 

R ( x )  = 

x if IIxH < r ,  

rx  
if ]lxlI > r .  llxll 

Since R is ~-nonexpansive (see R. D. NUSSBAV~ [6]) the map R o / i s  condensing 
and sends B(0, r) into itself and hence it  has a fixed point  x e B(0, r). I f  II/(x)ll <r  
then  ~ is a Axed point  for /. If  II/(x)ll > r  *heu ~ =  (r'/(x))/H/(~)ll.  Thus  

/(x> = !l/<x)jl ,x  wi th  JJl(~)ll > 1 ,  

contradicting the  fact  t ha t  b(r,/) < 1. Q.E.D. 
Theorem 1.1 contains as part icular  cases all the  results a) through e) and repre- 

sents a direct extension of Theorem 2.1 of [9] since the essential norm is smaller t han  
or equal to the s-quasinorm introduced in [9]. I t  also contains Amann 's  result  /). 

We shall show this in the sequel. 
As an immediate  consequence of Proposit ion 1.1, Proposit ion 1.2 and Theorem 1.1 

we have the following. 

COROLLARY 1.1. -- Let /: E -+  E be an asymptotically linear condensing map. I /  
r+(/'(oo)) < 1 then (1 -- I)(E) = E. 
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RE~A~K 1.1. - I f  r(]'(c~)) stands for the spectral radius of ]'(c~) then  we obviously 
have  r+(]'(c~))<r(f '(~))<~ II]'(c~)II. The last  inequal i ty  shows t h a t  the  results b) and  
c) ment ioned  in the  introduct ion of this paper  are direct consequences of Corollary 1.1. 

W e  shall show t h a t  Corollary 1.1 Contains ]) as well. 

We  need the  following. 

LE~)~A 1.1. - Let L: E - +  E be a linear ~-contracbion. Ass~eme that L satisfies the 
]oltowing condition 

(a) )~x=/=L(x) ]or all x ¢ O  and ~ > 1 .  

Then r+(L) < 1. 

PRooF. - I t  was proved  b y  R. D. NUSSBAUM [8] t ha t  if Z is ~-Lipschitz wi th  

constant  K then  ~ ~ a(L) and 121 > K imply  t h a t  2 is an  eigenvalue for L. On the  
other  hand  condition (a) means t ha t  Z has not  posi t ive eigenvalues greater  t h a n  

or equal to 1. Hence  r+(L)< 1. Q.E.D. 
We  are now in a posit ion of p rov ing  A m a n n ' s  result  [1]. 

CO]~O~,LAR¥ ] .2.  - Let ]: E - ~  E be an asymptotically linear ~-eontraction. Zet 
the asymptotic derivative ]'(c~) o]] satis]y condition (a) o] Zemma 1.1. Then 1 -- ] 

is onto. 

P ~ oos .  - I t  is known (see [1] or [9]) t ha t  if ] is ~-eontract ive then  so is ]'(c~). 

B y  L e m m a  1.1 we have  r+(]'(c~))< 1. :Now apply  Corollary 1.1. Q.E.D.  
The  nex t  is an example  showing t h a t  nei ther  Granas  c) nor A m a n n ' s  result  ]) 

app ly  while Theorem 1.1 is applicable. 

EXA~PL]~ 1.1. - Le t  ]: C - +  C be defined us follows ] ( z )=  z . exp  ( i /%/ l+  [zl) for 

any  z e C. I n  this case (]) = 0. Indeed ,  we have  to solve the  equat ion 2z -- ](z) = p~ 
p e C. I n  other  words if z V: 0 we h a v e  

Z 

B y  set t ing z = r exp (iO), p = ~ exp (i~p) we get 

2 - - e x p  + exp (-- i(O 

Therefore  

cos (0 - -  ~) - -  ~ sin (0 - -  ~ ) .  
r 
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Obviously, since 2 is real we must  have 

1 -Q sin (0 --  ?) = 0 .  sin %/1 + r r 

This equation is solvable iff 

s i n _ _ 7 1 1  < e ,  
I ~ ¢ l + r  r 

which is clearly impossible for r large enough. Therefore (/) ----- 0. Now observe tha t  
the function ] is asymptotically linear and its asymptotic derivative /'(c~) is the 
ident i ty  on C. Clearly, ] does not  satisfy neither Granas condition since t]1 -~ 1 nor 
Amann's  condition since 1 is an eigenvalue of/ ' (c~) .  On the other hand (1) = 0 and 
thus  Theorem 1.1 applies. 

2. - Hemibounded maps, properties and its relation to bifurcation on Banach spaces. 

In  this part  we introduce the class of hemibounded maps which is included in 
the class of essentially bounded maps. However, hemibounded maps are easier to 
deal with and have nice properties tha t  relate them to bifurcation problems in Banach 
spaces. 

Let  ]: E--->E be a continuous map from a Banach space E into itself and let 
b(r, ]) be defined as in the first part  of this paper. 

Set 

(/)o : lim sup b(r, f) .  
r--~+ ¢0 

Note tha t  (as for (1)0) in the case when ] is linear (]}o is the supremum of all 
positive eigenvalues o f / .  

In  analogy to what  we have done in the first part  of the paper we put  for any  
p e E  

The mapping ] is said to be hemibounded if the following number is finite 

F rom the definition of (1) it  follows immediately t ha t  (/)~< (]~. 
Other properties of hemibounded maps are gathered in the following 
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P~oeosmo~ 2.1: 

(a) <~]>----t<]> ]or any ).>0. 

(b) I] ] is quasibounded then ] is hemibounded and the ]ollowing estimates o] <1> 
hold 

<1> < r+(t) < I l l -  

(c) I l L is bounded linear and ¢e-Lipsehitz with constant K < r+(L) then (L) = 
= < t )  = r + ( L ) .  

The proof of Proposition 2.1 is analogous to the one of Proposition 1.2. 
The following is an example showing that  the strict inequality ( t )<  (1> may 

indeed occur. 

EXAMPLE 2.1. - Let I: R-->R be defined by l ( x ) = x  sen2x. 
case of reM functions 

b(r, ] ) :  max {O,/(r) ] ( r  r)} 
r ' 

I n  01117 CaSe 

b(r, ] + p) -~ sen 2 r + {P~, 

Hence ,  

V p e R .  
r 

<1}~----lim sup ( s e n : r , _ + +  ~ ~-[ .P!)= 1, 

(])~------inf ( sen2 r ~- i p ] ) ' > 0  ----0. 

:Note that  in the 

Thus, (])----0 and <1}----1. 

RE~[ARK 2.1. -- Theorem 1.1 holds for hemibounded maps by simply substituting 
everywhere in the corresponding statements essential boundedness with hemibound- 
edness. 

In  order to prove the next result we need the following lemma which represents 
an extension of the well-known Birkoff-Kellog theorem to the context of ~-Lipschitz 
maps. 

LE~MA 2.1. (Birkoff-Kettog theorem for ~-Lipsehitz maps). - Let 1: S-+ E be an 
ce-Lipsehitz map /rom the unit sphere S-~ { x e E :  ]lxtt ---1} into a Banach space E. 
Assume dim E-= ÷ oo and 
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where K > O  is the o:-Lipschitz constant o / / .  Then / has at least a positive eigenvalue 
(greater than or equal to ~). 

eRoo . - D e n o t e  b y  

I t  is enough to prove  t ha t  the  map  / / o f :  S - >  S, w h e r e / / :  U(9 ) -~ S is defined 
by  II(x) =- x/Hxll , has a fixed point.  To this end we have  to show tha t  Ho  t is a-con- 
t r ac t ive  and app ly  Nussbaum's  t h e o r e m  [7]: Observe t h a t  H can  be regarded as the 

composi t ion H = sor, where r is the  radial  re t ract ion of U(e ) onto S(~o) = {x c E :  ItxI! = 
= e }  and s:S(e)--;>S is defined b y  s(x)=x/o~. Now, the  m a p  I I o / = s o r o f  is 

a -contrac t ive  with constant  K/9 < ~ since / is a-Lipschitz  wi th  constant  K,  the  map  r 
is a-nonexpansive  (see R. D. NUSSBAV~ [6]) and the  map  s satisfies ~(s(A)) = (1/e)a(A) 

for  a, ll A c S(e). Q.E.D.  
The following proposi t ion relates </}o with 

= l i m  i n f  ]l/('x) I/ 

in t roduced in the  first pa r t  of this paper.  

PI~0POSITIO~ 2.2. - Let ~: E -+  E be o~-Lipschitz with constant K.  Assume dim E = 

= ~- c~ and d(/) > K.  Then d(/) < </}0. 

PROOF. -- Le t  c be such t ha t  K < c < d(/). I t  is enough to show tha t  there ex- 

ists r0 > 0 such t h a t  for all r > ro there  is at  least an eigenvalue t of / on S(r) = 
-= { x e E :  Itxll = r }  such t ha t  ~ > c .  I n  fact ,  if this is the case we have  </}>~c and c 
can be chosen ~rbitrurily close to d(/). Now, f rom the definition of d(/) we c~n find 

r o > 0  such t h a t  ]lx[[>ro implies ]l/(x)l]>cjjxll. At this point  for  any  r > r o  apply  
L e m m ~  2.1 to the  m a p  /~: S - ->E  defined by  /~(x).-= (1/r)/(rx). Q.E.D. 

RE)[AR~( 2.2. -- The following simple example  shows tha t  in the assumpt ions  of 
Proposi t ion 2.2 we cannot  remove  nei ther  d(] )> K nor dim E =  + ~ .  I n  fact ,  

let ] = -  1 (1 is the  ident i ty  on E). Clearly d ( / ) =  1 and </} == 0. : :on the  o~her 
hand  the  , -Lipschi tz  constant  of --  1 is 0 if d im E < + c~ ~nd 1 if dim E == + c~. 

The  following proposi t ion shows the  exist ing relat ion between hemibounded  maps  

~nd a sympto t i c  bifurcat ion points.  We  recall t h a t  t ~ R is called asymptotic bi]ur- 
cation point  (see [5]) of a m~p /: E-->E f rom a Banach  space E into itself if there 

exists a sequence { (~ ,  x~)} in R × E such tha t  i~ -~ i ,  !Ix~ N --~ ÷ c~ ~nd i~x~ =/(X~) = O. 
The set of all ~sympto t i e  bifurcat ion points of / will be denoted with the  symbol  B(/). 

PROPOSITION 2.3. -- Let /: E-->E be hemibounded. Then </>0 == B+(/) = m a x  {~>~ 

> 0 : 2  e B(/)}. 

PROOF. - To prove  </}o<B+(/) we m a y  assume </}o > 0. I n  this case we can 
find two sequences {x~} in E and  {).~} in R such t h a t  [tx~[I --~ -~- c~, t~--> </}o and  
tnx,, -=/(x , ) .  This means t h a t  </o} is an a sympto t i c  bifurcat ion point  o f / .  I t  remains 
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to show tha t  there are no asymptot ic  bifurcation points greater t han  (]}0. Le t  2 > 0 
be an asymptot ic  bifurcation point  of ], then  there  exists two sequences (x,} c E, 
{2~}cR such tha t  2~-->A, Itx~ll-->+oo and 2~x~=](x~). This implies t h a t  

b(I[x.ll= ]> > 4 . .  

Thus,  l ira sup b(r, ]) > 2, i.e. (]}Q>2. Q.E.D. 
~'--> + co 

:Notice tha t  if (]}0 > 0 then B(]) ~ 0 and (]}0 is the largest positive asymptot ic  
bifurcation point  for ]. 

F r o m  Proposi t ion 2.3 and Theorem 2.1-(a) it  follows t h a t  if ]: E - ~ E  is hemi- 
bounded,  condensing and fixed point  free then  ] has at  least an asymptot ic  bifurca- 
t ion point  4 >  1. On the other hand if a map ]: E - ~  E is not  hemibounded then  
there  exist  two sequences {2,} in R and {x.} in E such tha t  2~-~ + 0% IIxoll-  + oo 
~nd 2~x, = ](x,). When  this occurs we say tha t  + oo is an (improper) asympto t ic  
bifurcation point  for ]. We have therefore the  following. 

CO~OLI~A~¥ 2.1. - Let ]: E--~ E be condensing and ]ixed point ]ree. Then ] has 
a (possibly improper) asymptotic bi]urcation point 2>~. 

This result in the case when ] is compact  is an equivalent  formulat ion of Schae- 
let 's  theorem [10]. 

Using Proposit ion 2.3 we can now prove the est imate <]}<r+(]) wi thout  quasi- 
boundedness assumptions on ] (see Proposit ion 2.1-(b)). :Namely, we have the fol- 
lowing. 

COROLLARY 2.2. -- Let ]: E-->E be hemibounded. Then (]}<r+(]). 
PnooF.  I t  is enough to show tha t  <]}o < r+(]). In  fact, if this is true, then  <]}~ = 

:= <] +p}o<r+(] + p )  = r+(]). :Now, by  Proposit ion 2.3 it  suffieies to show B+(])< 
<r+(]) .  Wi thou t  loss of general i ty we may  assume B + ( ] ) =  2 > 0. We have 2~x~ = 
- -  ,vhere and IIx II--> + Therefore 

Itx.II 

aS n - ~  + oo. Thus d(2--]) -~  0, hence from the definition of r+(]) we get 4 <  
<r+(]). Q.E.D. 
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