
A Nonlinear Parabolic Free Boundary Problem (*)(**). 
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Summary. - -  When two immiscible fluids in  a porous medium are in contact with one another, 
an interlace is ]ormed and the movement o] the fluids results in  a ]ree bounda~'y problem ]or 
determining the location o] the interlace along with the pressure distribution throughout the 
medium. The pressure satis]ies a nonlinear parabolic partial di]ferential equation on each 
side of the interlace while the pressure and the volumetric velocity are continuous across the 
interlace. The movement o] the interlace is related to the pressure through Darey's law. 
Two kinds o] boundary conditions are considered. I n  Part I the pressure is prescribed on 
the known boundary. A weak ]ormulation of the classical problem is obtained and the existe~ce 
o] a weak solution is demonstrated as a limit o] a sequence of classical solugons to certain 
parabolic boundary value problems. I n  Part I I  the same analysis is carried out when the 
flux is speci]ied on the known boundary, employing special techniques to obtain the uni]orm 
parabolicity o] the sequence o] approximating problems. 

PA~T I 

F I R S T  B O U N D A R Y  VALUE P R O B L E M  

7 1 .  - I n t r o d u c t i o n .  

FL~LKS and GUEETHEI~ in a recent  paper  [1], describe an extension of Muska t ' s  
model  which concerns the  mot ion of two incompressible and  immiscible fluids in a 

porous medium.  I n  the Russ ian  l i tera ture  [2] such a p rob lem bears the  name  of 
Verigim FVLKS and GUENTttEI~ considered the  case in which the  coefficients in the  

equat ion of mot ion  were considered constants .  The result ing prob lem was t ha t  of 
two hea t  equations wi th  differing diffusivities in respect ive domains which are sep- 

a ra ted  b y  ~ curve, the  interface between the  Hquids, across which it  was assumed 
t h a t  the  pressures and the  volumetr ic  velocities were continuous. The mot ion of 

the  interface was related to the  volumetr ic  velocities of the  fluids. The resulting 
free bounda ry  problem was solved using potent ia l  theoret ic  methods  similar to those 

of F~IED~A~ [3]. 

(*) Entrata in Redazione iI 29 novembre 1975. 
(**) This research was supported in part  by the National Science Foundation, the Senior 

]~ellowship Program of the North Atlantic Treaty Organization, the Italian Consiglio Nazionale 
delle Ricerehe, and the Texas Tech. University. 
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I n  this paper,  we shall consider a generalization of the differential equations 
involved in the Fulks-Guenther  extension of Muskat 's  model. Before stating the 
exact  mathemat ica l  model, it is informative to reconsider some of the physics of 
the problem which are discussed at  length in [4]. We sh~ll ~ssume the flow to be 
one-dimensional and horizontal.  We sh~ll assume tha t  capillary effects and the 
effects of gravi ty  are negligible (*). Since the fluids gre assumed to be incompressible, 
and immiscible, there  is a well defined interface, x =  s(t), which separates them, 
where x denotes the spatial variable and t denotes the t ime variable. To the left 
of the interface, we shull denote the volumetr ic  velocity of the fluid by  u~-~ u~(x, t) 
and its pressure by  p=p(x ,  t). To the  right of the interfuce, we shall denote 
the volumetr ic  velocity of the other  fluid by  u~=u2(x, t) and its pressure b y  
q~q(x, t) .  The pressures and volumetr ic  velocities are relat.ed b y  Darcy ' s  l~w: 

(1.1) Ui . . . .  a~xx, u ~ = - - b  , 

where a =  a(x, p) and b= b(x, q) are positive valued functions which are the ratios 
of the  permeabil i ty  of the  medium to the viscosity of the respective fluid. ~ o t e  tha t  
we are assuming the  tempera ture  as n fixed constant.  The equation of conservation 
of mass and the constancy of the densities yields the equations of motion 

(1.2) 

~ ( x ,  p) 3u2 _ 
3t ~- 3x - -O '  O~x<~s(t), O~t<~T, 

~(x ,  q) ~u2 ~ - - d - - ~  =O, s ( t )<x< l ,  O < t < T ,  

where u~, i = 1 , 2  are given by  (1.1), ? = ? ( x ,  .) is a positive valued function 
which represents the porosi ty of the medium which is assumed to be of finite length. 
Across the  interface, we shall assume the  cont inui ty  of the pressures and the vol- 

umetr ic  velocities. Thus, 

(1.3) 
p(s( t )  - o, t) = ¢(s(t) + o, t ) ,  

u~(8(t) - o,  t) = u~(s(t) + o, t) . 

Clearly, the motion of the interface is related to the volumetr ic  velocity at  the 
interface through the equation 

(1.4) ~(8(t) ,  p ( s ( t ) ,  t)) ~(t) = ~(~(t) ,  t) , 

where the dot  above the s denotes differentiation of t ha t  funct ion with respect to t. 

(*) The neglect of capillary effects is quite significant [5, 6, 7] and limits the utility of 
the model here to fluids having similar capillary behavior. 
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The discussion above motivates the statement of our free boundary problem 
which is to find functions p, q and s which as a triple (p, q, s) satisfy 

(1) ~cf(x, p) ~x [a(x, p) ~__pt ~t ~x]' O<x<s(t), O<t<T,  

(2) ~cf(x,q) ~[b(x,q)~q] ~t = ~ x  ~ , x ( t ) < x < l ,  o<t<T,  
s(0) = so, 0 < so < 1,  

(3) p(x,O) =hi(x), O<x<So, 
(2.5) (4) q(x, O) = h~(x),  So<X<1, 

(5) p(0, t) =fl(t), O<t<T,  
(6) q(1, t) ==f2(t),  O<t<T,  
(7) p(s(t),t)=q(s(t),t), O<t<T,  

ap 
(8) a(s(t),p(s(t),t)-~(s(t),t)-=b(s(t),q(s(t),t)~(s(t),t), O < t < T ,  

and 

~(s(t),t), o<t<1', 

where the functions ~, a, b, hl, h2, f~ and ]~ are given functions of their respective 
arguments and the so, 0 < so < 1, is a specified constant. With respect to the func- 
tions F, a and b, the physical situation suggests the following assumptions: 

(A1) there exist positive constants ~o and #1 such that  for 0 < x < l  and ~>0, 

(1.7) o<~o<~(x,~)<t, o<~-~(x,~)<~, 

and for each positive constant M, there exists a positive constant #(M) such that  

(2.8) 0 < # ( M ) < - ~ ( x , ~ )  when 0 . < x < l  and 0 < ~ < M ;  

(B1) there exist positive constants v and vl such that  for 0 < x < l  and ~>0, 

(1.9) 0 < v<a(x, ~), b(x, ~) <v~. 

Under these assumptions equations (1.5)-(1) and (2) are nonlhlear parabolic partial 
differential equations. Moreover, it should be noted that  the physical assumption (2.7) 
implies that  the problem must be nonlinear. We shall add additional assumptions 
on the data later. 
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In  the next  section we shall define what  is meant  by  a classical solution of 
problem (1.5)-(1.6), and we shall derive a weak formulat ion of it. The remaining 
sections are devoted to the demonstrat ion of the existence of a weak solution. This 
is accomplished by  retarding the argument  in the weak formulat ion of (1.6) and by  
applying the Ascoli-Arzel~ Theorem to sequences of solutions of a family of prob- 
lems which formally approximate  the weuk formulat ion of (1.5)-(1.6). 

R ~ A ~ :  1. - For  any given continuous function s(t), O< s(t)< 1, O<t<T, 
the problem (1.5) is an example of a diffraetio~ problem in the sense of [8], Chapter I I I ,  
section 13. 

I~E~[A~ 2. - The notat ion and definitions of LADYZEI~SKAJA, SOLO~IKOV~ and 
U~_¢L'CEVA'S book on Linear  and Quasflinear Equat ions  of 2~rabolic Type  [8] will 
be used extensively in this paper. As an aid to the reader, we shall list a few items 
here. Le t  QT-~ ((x, t ) :  O<x<l, O< t<T}. Then, 

W2 (Qr) denotes the Hi lber t  space with scMar product  a) i,o 

Oz 

while W~'°(QT) denotes the  subspaee of W~'°(QT) whose elements vanish when ~v= 0 
and x = l ;  

b) W~'~(Qr) denotes the Hilber t  space with scalar product  

f (  ~ v ~ v \  

o i,I T while W~ ( Q )  denotes the subspace of W~'~(Qr) whose elements vanish when x :  0 
and x----l; 

c) H~+~'~+~/e(QT) denotes the Banach space of functions whose second x deriv- 
ative is uniformly Holder  continuous with exponent  g and whose first t der ivat ive 
is uniformly Holder  continuous with exponent  ~/2. The norm consists of the sum 
of the uniform norms of the function, its first two x derivatives, its t derivative, 
the ~-H61der semi-norm of the second x derivative, and the ~/2-HOtder semi-norm 

of the first t derivative. 

2. - A w e a k  formulat ion of  problem (1 .5)  - (1 .6 ) .  

We begin with the definition of a classical solution of problem (1.5)-(1.6). 

DEFINITION. -- A classical solution of problem (1.5)-(1.6) is a triple of func- 

tions (p, q, s) such tha t  

i) s -~ s(t) is continuous in 0 < t <  T and continuously differentiable in 0 < t< /~ ;  
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ii) p = p ( x , t )  is continuous in O<x<s(t), 0 < t < T ,  ~p/~x is continuous in. 
O<x<s(t) ,  0 < t < T ,  ~'2p/~x~ and ~p/~t are continuous in O < x < s ( t ) ,  
O<t<T; 

iii) q=q(x , t )  is continuous in s( t )<x<l ,  0 < t < T ,  ~q/~x is continuous in 
s( t )<x< l, 0 < t < T ,  ~*q/Dx 2 and ~q/~t are continuous in s(t)< x<  l,  
O<t<T; 

iv) the equntions in (1.5)-(16.) are satisfied by  p, q and s. 

Obviously, the definition imposes some minim~t assumptions upon the d~ta. 

RE~AnK 3. - For  a given continuously differentiable s, a classical solution 
of (1.5) is a pair  of functions (p, q) which satisfies ii), iii) above and the equations 

in (1.5). 
Suppose now tha t  there exists a funct ion F z  F(x, t) which is defined and con- 

t inuous in 0 < x  < 1, 0 < t < T and possesses continuous derivatives ~F/~x, ~2F/~x~, 
and ~F / ~t in 0 < x < 1, 0 < t < T. Fur thermore ,  suppose tha t  for 0 < t < T, F(0,  t ) = / l ( t )  
and F(1,  t) ~/~(t). For  a given continuously differentiuble s, 0 < s < 1, s(O)-~ so, 
let  (p, q) denote ~ classical solution of (1.5). Defining the functions ~ and ~ via 

(sn) 
and 

(s.2) 

-p(x, t) --- p ( x ,  t) - ~ ( x ,  t) , 

~(x, t) == q(x, t) -- F(x, t ) ,  

O<x<s(t) ,  O<t<T, 

s ( t )<x<l  , 0 < t < T ,  

and we can now formulate  the weak 

F) ~(P+~x F)] d x d t =  

T s(t) 

0 0 
T 

+ t)a(s(t), ~(s(t), t) + F(s(t), t)) ~.(P3x + F) (~,t,,odt. 
0 

~nd 
2 s(t) 

0 0 

we see tha t  ~(0, t) = ~(1, t) = 0, 0 < t < T, 
version of (1.5). 

Selecting a function ~/= (x, t) from ]~/Z~'l(Qy), where Qr ~- {(x, t) : 0 < x < 1, 0 < t < T} 
and ~(x, T ) =  0, we mult iply both  sides of (1.5)-(1) by  ~/, subst i tute p = ~ - F  and 
integrate  over the domain O<x<s( t ) ,  0 < t <  T. In tegra t ing  by  parts  we obtain 

y s(t) r s  (t) 

3t 
0 0 0 0 

~o T 

0 0 
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In a similar manner with respect to (1.5)-(2), we obtain 

(2.5) 

and 

(2.6) 

T 1 T I 

f f v (x , t )~ (x '~+F)~lx  
o s(t) o s(t) 

$o T 

0 0 

T 

f 
0 

1 

~(x, t) ~x b(x, ~÷ E) dxdt= 3x 
s(t) 

T 1 T 

- -  b(x, ~[ + t z) ~x ~x 
o s(t) o 

÷ f(8(t), t)) ~(~ + F) dr. 
~x (~(t),t) 

Equating the right hand sides of (2.3) and (2.4) and the right hand sides of (2.5) 
and (2.6) and adding the resulting equations, it follows from (1.5)-(7) and (1.5)-(8) 
that the integrals along the curve x= s(t) cancel each other. Hence, we obtain 

(2.7) 
s(t) t 

o o s(t) 
s(t) i 

" ~x dx + b(x, [t + F) . + F) ~ dx dt 

o o s(t) 

So 1 

= f v(x, O)qJ(X, hl(x)) dx + f ~(x, O)q~(x, h2(x)) dx . 
0 So 

Defining 

(2.8) 

(2.9) 

(2.1o) 

and 

(2.1~) 

v(x,t)=~ -~(x,t), O<x<s(t), O<t<T, 
i ~l(x, t) ,  s ( t ) < x < ~ l ,  O < t < ~ T ,  

w ( x ~ t ) : v ( x , t ) ~  F ( x , t ) ~  O ~ < x < l ,  O ~ t < T ,  

{ a(x,~), O<x<s(t), ~>O, 
r (x ,~ : ; s )=  b(x,~), s( t)<x<l,  ~ > 0 ,  

{ h~(x), O<x<so ,  
h(x) = h~(x), so< x <1, 
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We can rewrite (2.7) as 

T 1 

(2.12) -- ~(x, v ÷ F) ~vt -~- y(x, v ÷ F;  s) 
0 0 

. ~-~ ~ ax a~ = 

1 

~(x, Old(x,  h(x)) 
0 

dx .  

F r o m  the  above calculations we have shown tha t  any classical solution of (1.5), 
where s :  s(t) is continuously differentiable, satisfies (2.12) for every  ~ e ~ ' I (QT)  
such t ha t  ~(x, T)--~ O. lqote tha t  if v-~ v(x, t) is a solution of (2.12) in the  sense 
t ha t  v satisfies (2.12) for  every  ~e~V~'I(QT), ~(x, T)-~O, and if v possesses the  
smoothness of a classical solution, then  v can be employed in an obvious way to 
define p and q which form a classical solution (p, q) of (1.5). The analysis is ele- 
men ta ry  and is omit ted.  

l~eturning now to the free boundary  problem (1.5)-(1.6), suppose tha t  (p, q, s) 
is a classical solution. Then, p and q in the form of v along with s must  satisfy (2.12) 
for all ~ e ~V~'I(QT), ~(x, T)~--0. Recall  t ha t  the condition (1.6) was not employed 
in the formation of (2.12). We shall use it  now to obtain a weak formulat ion of 
the free boundary  condition. Consider (1.5)-(1) and mult iply both  sides by  x. 
In tegra t ing  over the domain 0 < x < s ( ~ ) ,  0 <  T < t ,  where r e ( 0 ,  T] it  follows tha t  

(2.13) 
s(O so 

0 0 

t 

0 0 0 

t 

0 

t s(T) 
Op 

a(x, p) ~x dx dT ÷ 

Since (1.6) implies the cancellation of the integrals along s, it  follows f rom (2.8)-(2.11) 
tha t  (2.13) can be wri t ten as 

(2.14) 
~(t) so t s(v) 

~F f x (x,v+  )dx= f x (x,h(x))dx- f f v(x,v+  )dxdv 
0 0 0 0 

We conclude this section with our definition of a weak solution of the free boundary  
problem (1.5)-(1.6). 
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DEFI~ITIOI~. -- A pair of functions (v, s), v =  v(x, t) and s =  s(t), is a weak solu- 
tion to the free boundary problem (1.5)-(1.6) provided that: 

i) s = s ( t )  is continuous in [0, T], O<~s<l, ~nd s(0)=so;  

° 1 0  ii) v ~ W~" (Q~) and v is bounded; 

iii) the pair (v, s) satisfies (2.12) for every ° ~,1 ~ We (Qr) that v~nishes at t = T, 
and the pair (v, s) satisfies (2.14), 

where T is a bounded function belonging to Wt°(QT) with traces F(0, t )=  ]l(t) and 
F(1, t )=  ~(t). 

3.  - S t a t e m e n t  o f  a n  e x i s t e n c e  t h e o r e m .  

We shall present here our assumptions on the data and the statement of our 
result. Recalling assumptions (A1) and (B~) in section 1, we add the following: 

(As) there exist positive constants #2, #~ and #~ such that 

(3.1) ~7~(x,~) < ~ ,  O<x<J, 8>0, 

(3.2) ~-ztx, 8) < ~ ,  O<x<l,  8>o, 

and 

(3.3) -3~ (x, 8) 1</t4, 0 < x < l ,  ~>0  ; 

(B~) there exist positive constants v~ and va such that 

I~a (x, 8)l<v~,I~-z-b_(x,~) <v2, O < x < l ,  $ > 0 ,  
{ vx ! i ~x 

(3.4) 

and 

(3.5) 

(c1) 

(3.6) 

(3.7) 

(3.S) 

~(x ,  8) ~(x,8)  <~ ,  0 < x < 1 , 8 > 0 ;  

the da ta / t ,  ]3, and h are bounded, positive, and Lipschitz continuous; in other 
words, there exist positive constants Mo, Mt, Lo and L~ such that 

O<Mo<]~(t).<.M~, O < t < T ,  i : 1 , 2 ,  

O < M o < h ( x ) < M t ,  0 < x < l ,  

tf~(tl)-],(t~)l.<..Loitl-t~I, t~,t~e[o, T], i =  1 , 2 ,  
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and 

(3.9) th(xl) - -  h(x~)I < L ~ i x ~ - -  x~l , x~ x~e[O, 1]; 

and 

(C~) the data  ]~, ]~, and h match  in the  corners; in other words 

(3.10) Ix(O) = h(O) and /2(0) = h(1).  

Tm~Ol~E~. - Under  the  assumptions (A~), (A~), (B~), (B~), (C1) and (C~) upon the 

da ta  92, a, b, ]1, ]2, h, and So, 0 < s o < l ,  it  follows tha t  for any  b such t h a t  
0 < 5 < Sod 1 -  (~, there  exists a To > 0 such tha t  in Q~o there  exists a t  least one 
weak solution (v, s) to the free boundary  value problem (1.5)-(1.6) such tha t  
~ < s ( t ) < l - ~ ,  o < t < T o .  

The proof of the existence theorem will be given in section 6. In  section 4 we 
derive a family of approximations (%, s~) which are solutions to problems which 
tend formally to the weak formulat ion of (1.5)-(1.6) as m tends to infinity. In  
section 5 we obtain uniform estimates upon the (v~, s~) which enable us to utilize 
arguments  of the Ascolf-Arzela type  ill section 6 to demonstra te  the existence of a t  
least one weak solution to (L5)-(1.6). 

4. - A sequence o f  approximations.  

We begin by  extending the functions 92, a, and b to the domain ((x,~):  
-- c~ < x < c~, --  oc < ~ < c~}. The extension can be carried out so tha t  the extended 
functions satisfy (A1), (A~), (B1), and (B,), where some of the constants appearing 
in these conditions may  have  been modified slightly. F o r  any  continuous funct ion 
s=s( t ) ,  O<<t<T, s (0 )=so ,  we extend i t  b y  setting s(t)--so for t < 0  and s(t)_~s(T) 
for  t >  T. Recalling now the  definition of 7==y(x, ~; s) given b y  (2.11), we utilize 
the  extensions above to extend y via (2.11) over the domain {(x, t, ~ ) : -  o o < x <  c~, 
--  o c < t <  c~, and -- c ~ < ~ <  o¢}. 

Next  we mollify [3; p. 274] 92 and y to obtain sequences {92~} and {~,~} of C ~ 
functions which satisfy (A~), (A~), (B~) and (B~) and which are such tha t  the 92~ 
converge uniformly to 92 on compact  subsets of ((x, ~): --  o c <  x <  c~, -- c ~<  ~ <  c~} 
while the  ~ converge uniformly to ~ on compact  subsets of ((x, ~, t ) : -  ~ < x <  c¢, 
-- c ~ <  ~ <  0% -- o c <  t <  c~} which do not  intersect the surface x : s ( t ) .  Note that 
the mollification can be achieved by integrating the ]unctions 92 and y against C ~" kernels 
which have support in balls o] radius 1/2m. This wi~ be used in the  discussion below. 

In  wh~t follows, it  is essential t ha t  we smooth the  boundary  and initial da ta  in 
such a way as to be able to utilize the existence theorems of LADYZENSKAJA~ SOLON- 
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NIZ<OV, and U~AL'CEVA [8]. Consider ]~, i~--1, 2, and define 

(4.1) ],,,~(t) = 

1 i,(0), - -  oo<t<~, 

] , ( t - - 1 ) , l < t < T  
m 

m =  1, 2, . . . .  The functions ]~,~ can be mollified to obtain C ~ functions f~,~ which 
satisfy the conditions stated in (Cal. Moreover, the conditions 

(4.2) L,~(O) = O, m---- 1, 2, . . . ,  

can be achieved if the support of the mollifying kernel for each m is an interval 
of length 1/2m. Clearly, the uniform convergence of the/~,,, to the ]~ follows from the 
Lipschitz continui ty of the ]~. The transformation x'= (1--2/m)x+l/m maps the 
interval [0, 1] 1-1 and onto the interval [l /m, (1- - l /m)] .  Considering the inverse 
transformation, we define 

1 
h(O), - - o o < x < - -  

m 

m =  3, 4, 5, . . . .  The functions h~(x) can be mollified to obtain C" functions hm(x) 
which satisfy the conditions stated in (C1), where the Lipschitz constant  L1 must  
be replaced by 2L1 for m > 4 .  Obviously the hm converge uniformly to h and, 
moreover, 

(4.a) h~(O)=h:(O)=h~(1)=h:(1)=O 

can be obtained if the support of the  mollifying kernel for each m is an interval 
of length l[2m. 

We begin now the discussion of the procedure for generating the approximate 
solutions {(vm, s~)}. Set 

1 
(4.5) s,~(t) ~ 8 0 ,  0 < t < - .  

~rt~ 

For  this s=s,.(t), we can obtain a smooth 7~ in the strip O<t<l/2m. Consider 
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the problems 

(4.6) 

~ ( x ,  w ~ ) ~ x (  ~w,,,~ 1 ~t = r ~ ( x , w ~ , t ) - - ~ ] ,  O < x < 2 ,  o < t < ~ m  , 

1 
w~(o, t) = f~,~(t), o< t<~-g  m 

2 w~,(1, t) = ]~,m(t), o <  t < ~ - ~ ,  

w~(x, o) = h~(x),  0 < x < 2 ,  

m = 4 ,  5, 6, .... By the maximum principle [8; p. 23], it follows that  

(4.7) 

Hence, we can set 

(4.s) 

and obtain 

(4.9) 

Also, since there exist functions 

0 < Mo < w~(x, t) <<. M,. 

# - -  # (MI )  > 0 , 

Zm(x , t ) eC  ~ in 0 < x < 2 ,  0 < t < T  

such that  Zm(0, t) ~--/1.re(t), Z~(2, t) : f~.,,(t), and Z.,(x, O) = hm(x), and (4.2), 
(4.4) imply that  the differential equation in (4.6) is satisfied for w~-----Z~ at 
x~--0, t : 0  and x : l ,  t : 0 ,  it follows [8; p. 452] that  for each m there is a 
unique classical solution in a tt61der class in the closed rectangle 0 < x < l ,  O < t < l / 2 m .  

Next, we extend the boundary x =  sin(t) to the interval 2 / m < t < l / m ~  2/2m via 
a modification of the free boundary condition (2.25). First, we note that  for 
0 < t < 1/2m the equation 

~(t) 

(4.20) ~X~,~(X, W~,(X, 0)  dx = ~/(t) 
o 

defines a continuous function a(t) for any given continuous function H(t) since %~ 
is positive. Let ~ denote u fixed positive constant chosen so that  

(4.11) 

Setting 

(4.22) 

0 < ~ <  so< (i--(~) . 

-~x tx, r) dx dr ,  
o o o 

9 - A n n a l t  d t  M a l e m a t i c a  
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m = 4 ,  5, 6, . . . ,  we solve (4.10) with H(t) replaced by  H,,(t) for ~(t) and define 

(4.13) s,.(t + l )  = cr(t) 

for  0 < t < 1/2m. If  there is a t* such tha t  s~(t*~ + 1/m) = ~ (or s~,(t* -~ 1Ira) = (1 -- ~)), 
then  we set 

(4.14) ~. . ( t )  - ~ ( o r  , . ( t )  =_ 1 - ~ )  

ge 
for t>t~+ ]Ira. In  the cases of (4.14) the coefficients y,~ can be defined up to t :  T 
and problem (4.6) can be solved up to  t =  T. In  the event  t h a t  

(1) 
o < ~ < s , ,  t +  m < ( 1 - 6 )  

for O<t<l/2m, then the boundary  x =  s,,(t) can be defined in O.<.t<l/m+ 1/2m via 

(4.15) s~ ( t )  : 

1 
So, 0 < t <  ~n' 

1) l<t<!+ 1 
(r t - r e '  m m 2-m" 

Thus, the  function 7 can be defined up to t = l / m - ~ l / 2 m  and the  function y~ 
obtained for O<t<l/m. Note  tha t  y~ here coincides with the ~ in (4.6) for 
O<t<l/2m. Consequently, we can replace 1/2m in (4:6) with ]Ira and obtain a clas- 
sical solution w~ in O<x<l,  O<t<l/m. Considering (4.10) and (4.12) again along 
with (4.13) and (4.14), we see tha t  the  boundary  can be extended to the  interval  
1/m + 1/2m < t < 1/m ~ 2(1/2m). By  induction, we obtain a sequence {(w~, s~)} such 
tha t  s~ are continuous and satisfy 

(4.16) O<~<s~(t)<l--(~,  O<t<T,  m = 4 , 5 , 6 , . . .  

and tha t  there exists an ~ ,  0 <  ~ <  1, such tha t  

(4.17) w~ ~ H~+~'I+~/2((~T) , m =  4, 5, ..., 

and w~ satisfies (4.6) with 1/2m replaced by  T and y~ defined from ~,(x, ~; s~). 

5. - S o m e  u n i f o r m  propert ies  o f  w~ and s~ .  

We begin with the following lemma which will be used in obtaining a uniform 
estimate of w~ in W~'°(Q),. 
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LE~IMA 1. - The re  exis ts  a pos i t ive  c o n s t a n t  C a n d  an  in teger  mo which  depend  

on (~ ~nd the  p a r a m e t e r s  in t he  se t  ff = {~oo, if, #~, #~, ff.~, ff~, v, v~, v~, v~, 2~Io, M~, Lo, L~} 
such t h a t  for  a n y  m>~mo, 

(5.1) 

P ~ o o ~ .  - Set  

' t)  1 < C ,  O < t < T .  

zoAx)= (5.2) -(~) 

1 1 1~(o) ÷ ~, o<x<~-~, 

1 1 } 1 
L~x + f,(o) -~ ~ L,~ , '~m 

M 1 ~ 1 ,  x~,~<xdd/2, 

where  

(5.3) L~ = m a x  {L~, 85+*(t]/, -F 1)},  

(5.4) x .... : L~ '  M~ ~- 1 - - - - - -  /l(O) ~- L ~ , -  Z , 
n 

~X~X,,m 

n =  ] ,  2, 3, . . . ,  a n d  m ~  mo-F 1, too-t- 2, . . . ,  where  mo is a pos i t ive  in teger  wh ich  

satisfies 

(5.5) mo > 4(~ -1 • 

L e t  (n) Zo.m(x ) ~gains t  ~ pos i t ive  s m o o t h  ke rne l  wh ich  Zo,~(x ) deno te  t he  moll i f icut ion of -( ')  
has  s u p p o r t  in an  i n t e r v a l  of l eng th  less t h a n  ½min(L~, l /2m).  Clearly,  all of 

t h e  d e r i v a t i v e s  of ~(~) v a n i s h  a t  x ~ 0 a n d  x =  6/2. Moreover ,  e l e m e n t a r y  consid- ~ 0 , ~  

era t ions  y ie ld  t h e  f ac t  t h a t  

(5 .6 )  z (n)' o,~x)>h~(x) 

F o r  ~ll n = 1, 2, a n d  m > mo N o t e  ~lso t h a t  t he  f i rs t  d e r i v a t i v e  of ~(~) is b o u n d e d  . . . . .  0 , m  

b y  ~ c o n s t a n t  t h a t  depends  on ly  on L~ and  ~. 

W e  cons ider  n o w  

(5.7) 

~%(x, (~)' a (  x ~z (~') 1 (~ z ~  (~J t) ~ ~- O <  O < t ~ T  ~t = ~ %( '~" '  ~ x  ~' x < ~ ,  

l r~ /  1)]-'t o<t<T 1 + L_ to ' i , (o )+  , , z~'(o, t) = l,,~(t) + 

z(~,)(x, O) I~') 0 < x < 5 / 2 .  = zo,~(x), 
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Referring to the discussion following (4.6), we see tha t  a unique classical solution z~ ) 
exists. For  m > m,,  it  follows tha t  the coefficient y~ and its derivatives ~y,~/~x 
and 3~,~/~z~, can be est imated in terms of the bounds given in (B~) and (B~) since 
the boundary s~ is 6/2 units away from the domain under consideration, ttenc% 
we may  apply the Lemma 3.1 [8; p. 535] and Theorem 4.2 [8; p. 444] to conclude 
tha t  there exists a positive constant  C~ independent of m and n such tha t  

I ~- (n) l UZ m (5.8) -~- <¢,,  O<x<~/2,  0 < t < T .  

Moreover, Theorem 1.1 [5; p. 419] implies tha t  the functions z~ ) are equi-HSlder- 
continuous in 0 <~x ~ ~[2, 0 ~ t ~ T with respect to n. Since the ma, x imum principle 
can be applied to obtain a uniform bound for the z~ ), it  follows tha t  for fixed 
m > m o  there exists a subsequence {z~ ')} which converges uniformly to a HSlder 
continuous function z~= z~(x, t). From (5.8) i t  follows tha t  z~ is Lipschitz continuous 
with respect to x with Lipschitz constant  C~. Applying the lemma of WES~PHAL- 
P~Ol)I [3 i p. 52] to z~ ) and w~, we obtain 

(5.9) z~)(z,t)>w~,(x,t), O<x<(~/2, o< t<T,  

which implies 

(5.10) z~(x,t)>~w,~(x,t), O<x<~/2 ,  O < t < T ,  

while 

(5.11) z~(O,t):w,,(O,t)----11,~(t), 0 < t < T .  

Thns~ z~ is a barrier for w~ at  each point of the boundary  x =  0. Consequently, 

(5.12) 3w"(O,t)<C1, O < t < T ,  m > m , .  
~x 

By similar arguments, the remaining inequalities in (5.1) can be demonstrated. 

L : E ~ A  2. - There exists a positive constant C which depends only upon (~ and the 
parameters in the set ff such tha t  for m > too, 

(5.13) tt w~ tt w,,.(Q~)< C.  

P~ooF. - We mult iply both sides of the differential equation in (4.6) by  
~ ( x ,  w~(x, t)) and integrate over 9 < x < 1 and 0 < • < t .  An integration by parts 



J.  1~. C A ~ o ~  - A. FASA~O: A nonlinear parabolic ]ree boundary problem 133 

on the  right hand side yields 
1 

(5.1~) f v~(~, ~,~(~, t)) 
0 

1 

1 2 
ax - -5 f ~È(x' h.(x)) ax = 

0 
t 

f = ~ . (1 ,  h,.,(~l)--fT- (1, - 
0 

t 

0 0 

t 

f 8W~ ~.(0,  ]1.~(~)) --$g (0, ~) d~ -- 

0 

O~ Ox J dx dr " 

Using the assumptions (A~), (A~) and (B1) it follows from (5.1), (5.14) and Schwartz's 
inequality tha t  

t 1 

8W.~ 2 1 

0 0 

whenee~ we conclude tha t  

g 1 

(5.17) [ ( ( (Sw '~ 'dxd t }  J \ S x ]  
0 0 

t 1 

[ J  J \  3x / 
0 (} 

2#v 

Combining (5.17) with (4.7). We obtain the result (5.13). 
Writ ing the differential equation for w~ in the form 

~t = ~ x  r ~ \ ~ /  ~xj + r ~  [ ~ x L ~ x ~  ~ ~ J J '  

it  follows from the assumptions (A1), (As), (B1) and (B~) and from ( 4 . 7 ) t h a t  
Theorem 1.1 of [8; p. 419] can be applied to obtain the following result. 

LE~MA 3. -- There exist positive constants H und ~, 0 < ~ < 1, which depend 
only on the parameters in the set if, such tha t  

(5.19) Iw,~(x', t ' )  - wm(x" ,  t")] < / / { ix ' -  x"l~-F I t ' -  t"l ~/2} 

holds for all m =  1, 2, . . . ,  and (x', t'), (x 'r, t") eQT. 
Based upon the results of Lemmas 1, 2 and 3, we can demonstrate the fol- 

lowing lemma. 

L E ~ [ A  4. - There exists a positive constant  C, which depends only on the para- 
meters in the set ff and on ~, such tha t  for each m>mo and any  t', V'e(O, T], 

(5.20) ls.~(t') - s,~(t") I < t i t ' -  t 'T ~2 , 

where ~ is the exponent in (5.19). 
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PROOF. -- lgecalling the construction of s,~, it is clear that we can restrict  our 
a t tent ion to the  t ime interval  [1/m, t*,~] in which s,~ is defined via. (4.10), (4.12) 
and (4.13). Selecting t' and t ' f rom [l[m, t*], it  follows from (4,10), (4.12) and (4.13) 

tha t  
s ~ ( t ' )  

o 

Hence, 

(5.22) 

s~(t") 

o 
t~-tlm sm(~) 

- -  - - ~  (x, ~) dxd~:. 

t'-- l/m 0 

sm(t') / 

1 

o 

÷ 
t"-- llr~ S~(~) 

~ -  (x, ~) dx d~ = L ÷ I s .  

t'--l/m 0 

Considering the left hand side of (5.22) and recalling assumption (A1) and (4.11) 
we see tha t  

(5.23) 
s~( t' ) 

f X~m 
s,~(~") 

~> ~- [s,~(t')] 2 -- [s.~(t")]~ 

> ~o l s~(¢ )  - s,~(t")j. 

Fro m lemma 3 and (1.7), I1 the  first t e rm on the right hand side of (5.22), can be 
est imated to  yield 

( 5 . 2 4 )  Zl < / ~ l H l t ' -  t"t :/~ . 

Applying Sehwartz 's  inequali ty to Is and using Le mma  2, we obtain 

(5.25) I~<vl ~t t ' -  t"t + . 

Consequently, the result (5.19) follows from (5.22), (5.23), (5.24), and (5.25). 
The following lemma is an immediate  consequence of Lemma 4. 

LEM~A 5. - There exists a t ime interval  [0, To], To > 0 and independent  of m, 
such tha t  for 0 < t < To and m > m0, 

(5.26) ~ < s~(t) < 1 -- 6 ,  

where ~ satisfies 0 < ~ < So < 1 -- ~. 



J. 1~. CA~o:~ - A. FAS~_~o: A ~onlinear paraboliv free boundary problem 135 

6. - Pro o f  o f  the  ex i s tence  theorem.  

Set 

(6.~) F(x, t )= (1--x)f~(t)+ x/2(t), O < x < l ,  O< t<To, 

and 

(6.2) Fm(x,t)=(1--x)f~,~(t)+xf~,~(t), O < x < l ,  O<t<To,  m>mo,  

where To is that  of Lemma 5. Then, it is clear that  {/v} is a sequence of C~ func- 
tions which converge uniformly to F. Moreover, {F~} converges strongly to F in 
the norm of W~'°(QTo). If  we multiply the differential equation in (4.6) by ~ test 
function ~ e W~'~(QT.) which vanishes when x =  0, x~- l ,  and t =  To, perform the 
usual integration by parts over QT., and define 

(6.3) v,,~ : w~-- F~ , 

then we obtain 

(6.4) 

T~ 1 

0 0 

v~ ÷ F~) ~ ÷ r~(x, v~ + F~, t) a(v~x F~)~x}dxdt 

i 

= f v(x, o)~(x, h°~(x))dx. 
0 

In addition the equations (4.10), (4.12), and (4.13) can be rewritten in the form 

(6.5) 

s~(~+ 1 / ~ )  s o 

0 0 

0 0 

~(v~ ÷ F~) 
~x 

dx dT. 

From (6.2) and the results and analysis of section 5, it follows that  the v~, m>mo, 
form a sequence of functions which belong to Wl'°( ~ ~ and which have their norms 2 ~ T o l  

uniformly bounded. ~oreover, the v~, m > too, are uniformly bounded and are 
uniformly ttSlder continuous in QT'o. From Lemma 4 and Lemma 5, we see that  
the s~ are equibounded and equicontinuous in 0 < t <  To. By the usual diagonal 
process of the proof of the Ascoli-Arzeta Theorem, there exist subsequences {v~,} 
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and {s~,} such tha t  

(6.6) 

(1) the  sequence {v~,} converges nniformly in QT° to a HSlder continuous 
function v, 

o 1,0 (2) the  sequence {%~,} converges weakly to v in W~ (Q~,) which implies 
~Vl'°( r~ ~ and tha t  v e  2 ~ , J ,  

(3) the sequence {s~,} converges uniformly to a t tSlder  continuous func- 

t ion s on [0, To]. 

In  what  follows, we shall use (6.4), (6.5), and (6.6) to show tha t  (v, s) satisfies (2.13) 
and (2.15) and thus forms a weak solution of (1.5)-(1.6). 

First,  we relabel the subscripts of the sequences {v~,} and {s~,} to m, and note  
tha t  f rom (6.6) it  follows tha t  

(6.7) lira 9~(x, v~ + Fro) = 9(x, v + F) 
~ - - >  ¢O 

uniformly in QT°. l~ext, for each s, O < s <  ~/4, select two piecewise linear func- 

tions s(~)-- - -  s (~) t s~)= s (*) t _ _ ( ) ~nd + ( ) such tha t  

(6.8) e < s ( t ) - -  s (*)_()<2e,t O < t < T o ,  

and tha t  

(6.9) 

Set 

(6.10) 

e<s~)(t)--s(t)<2s, O < t < T o .  

Q(~)= {(x, t): s (') t s (~) t , _ ( ) < x <  +() o< t< / ' j  

We remark  t h a t  the measure of Q(~) satisfies 

(6.12) rues Q(~): 0(s) . 

Since the  s~ converge uniformly to s, it  follows tha t  

(6.13) lira 7,~(x , v ~ +  _F~, t) ~ 7(x, v +  F ;  s) 

and 

(6.11) Q~')= ~ . -  Q(~). 



g. 1%. CA~O~ - A. FASA~O: A nonlinear parabolic ]ree boundary problem 137 

uniformly in Q~). Consider the quan t i ty  

To 1 

(6.14) J = --  9~(x, v ÷ F)  ~ ÷ ?(x, 

0 O 

v + z~; s) e(v + F) ~1, ' ~ ~xjdXdt 

1 

- f~(~,  Old(x, h(x)) d~ 
o 

where the v and s are the  limits of the  sequences {v~} and {s~} whose subscripts have  
been relabeled. Using (6.4) we see tha t  for each m, 

(6.15) j = j o ) _ i _  T ( ~ )  ~ .T(8) 

where 

(6.16) 

(6.17) 

and 

To 1 

o o 

1 

J~'= f (w(~, hm(~))- ~(~, h(~))}d~, 
0 

To 1 

,~ - -  y ( x ,  v ÷ F ;  q) - -  

o o 

{cf,~(x, v,~ ÷ F,~) -- (p(x, v ÷ F)} -~dxd t ,  

~(v ÷ F) ~, ,,(x, v,~ + F.~, t) 
~x 

:Now (6.7) implies tha t  for m sufficiently large 

~x ] ~ dx dt . 

(6.19) IJ~)t, ]J~)l < e .  

Wi th  respect to  the contr ibut ion to Jl~ ) f rom Q(o, Le mma  2, and and application 
of Schwarz's lemma implies a contr ibution which tends uniformly to zero as e tends 
to zero. Considering the  contr ibut ion to J(~) f rom Q~), (6.13) and (6.6) imply tha t  
for m sufficiently large tha t  contr ibut ion in absolute value can be made  less t han  e. 
Hence,  

(6.20) J = 0; 

and we see tha t  our limit pair (v, s) satisfies (2.13). Wi th  respect to equat ion (2.1o) 
we can define 

s(O so ~ s(~') 

(6.21) r= f x~(x,v+F)dx-- f x~(x,h(x))dx+ f fr(x,v+~;8) ~(v+F) O ~  dx dr. 
0 0 0 0 
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Using (6.5) and a.n analysis similar to tha t  ~bove, it  follows tha t  

(6.23) 1"-~ 0 , 

and we see tha t  our limit p~ir (v, s) satisfies (2.15). Consequently, (v, s) is ~ weak 
solution to (1.5)-{1.6) in Qr°. 

PA~T I I  

SECOND BOUNDARY VALUE P R O B L E M  

l .  - I n t r o d u c t i o n .  

Referring to Par t  I for a discussion of the physics and symbols, we consider 
in this paper the problem of finding functions p, q and s which as ~ triple (p, q, s) 
satisfy 

3~(x, p) 
(1) ~t -- ~x a(x ,p)-~ , O<x<s( t ) ,  O < t < T ,  0 < s ( t ) < l ,  

(2) ~(x ,q)  ~ [b(x,q)~x] , s ( t ) ~ x < l ,  O < t < T  
~t 3x 

(3) p(x,O)=h~(x),  O<x<~So~ s(O)=so, 0 < s 0 < l ,  

(~) q(x,O)= h~(x), s o < x < 1 ,  

(5) a(o, p(o, t)) ~P (o, t) = g~(t) 
55g 

(6) b(1, q(1, t)) ~ (~, t) = g~(t), 

(7) 

(1.1) 

and 

O< t< T~  

O < t < T ,  

p(s(t) , t)-~q(s(t) , t) ,  O ~ t < T ,  

(8) a[s(t), p(s(t), t)) ~x (S(t), t) -~ b(s(t), q(s(t), t) ~ x (s(t), t) , O ~ t< T ,  

~p 
(1.2) q~(s(t),p(s(t),t))i(t)=--a(s(t),p(s(t),t))~-x(S(t),t), O<t<~T, 

where the functions ~, a, b, hi, h2, gl and g2 are given functions of their respective 
arguments and the So, O< so~l ,  is a specified constant. As in Pa r t  I,  the physical 
situation suggests the following assumptions on the % a, and b: 



J. 1~. C A ~ o ~  - A. FASA~o: A nonlinear parabolic ]ree boundary problem 139 

(A1) there  exist positive constants  90 and #.1 such tha t  for O < x < l  and -- c ~ <  ~ <  0% 

(1.3) 0 <  %<~v(x, ~ ) 4 1 ,  0 <~-~  (x, ~) </xi ,  

and for each positive constant  M, there exists a positive constant  #(M) such tha t  

(1.4) o<  #(M) <-~  (x, ~) 

when 0 < x < l  and [~[<M;  

(B~) there exist positive constants v and vl such tha t  for 0 < x  < 1 and - - o o <  ~ <  0% 

(1.5) 0<~<a(x,~), b(x,~)<vl. 

Under  these assumptions equations (1A)-(1) and (2) are nonlinear parabolic part ial  
differential equations. Again, it  should amphasized tha t  the physical condition (1.3) 
implies tha t  the  problem must  be nonlinear. We shall add additional assumptions 
on the data  later. 

In  the next  section we shall define what  is meant  by  a classical solution of 
problem (1.1)-(1.2), and we shall derive a wea.k formulat ion of it. As in P a r t  I the  
remaining sections are devoted to the demonstra t ion of the  existence of a weak 
solution. Although much o] the analysis used in Part I will apply to the problem (1.1)-(1.2), 
there is a delicate di]]erence in that the maximum principle cannot be applied directly 
to obtain an a priori estimate on the solution so that (1.4) can be applied to obtain a 
uni]orm parabolicity. Di]]erent techniques are needed. 

The s t ructure  of this paper  follows tha t  of l~art I. In  section 2 the definition 
of a classical and weak solution of (1.1)-(1.2) is given. Section 3 is devoted to the  
s ta tement  of the existence theorem along with t h e  hypotheses on the data.  Section 4 
is devoted to the presenta, t ion of the derivation of a sequence of approximat ion via 
a re tarded argument  method  presented in Pa r t  I.  In  this paper  the construction 
of the  approximat ing sequence is considerably more delicate than  in Pa r t  I .  In  
Section 5 some estimates on the approximations are obtained which enable us to 
conclude the  proof of existence of a weak solution in Section 6. 

As in Pa r t  I,  We shall use the notat ion and definitions of LADYZE~SKA/IA~ SOLO- 
~It(OV, and UI~AI~'CEVA'S book on Linear  and Quasilinear Equat ions  of Parabolic 
Type  [8]. 

2. - A w e a k  formulat ion  o f  problem (1 .1 )  - ( 1 .2 ) .  

We begin with the definition of a classical solution of problem (1.1)-(1.2). 

DEFInITIOn. -- A classical solution of problem (1.1)-(1.2) is a triple of ftmctions 
(p, q, s) such tha t  

i) s ~ s (t) is continuous in 0 < t < T and continuously differentiable in 0 < t < T;  
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ii) p = p ( x , t )  is continuous in O<x<<.s(t), O<<.t<.T, ~p/~x is continuous in 
0 < x < s(t), 0 < t < T, ~2p/~x~ and ~p/~t are continuous in 0 < x < s(t), 0 < t < T;  

iii) q=q(x , t )  is continuous in s ( t )<x<l ,  O < t < T ,  ~q/~x is continuous in 
s(t)<<.x<l, O < t < T ,  ~2q/~x~ and ~q/~t are continuous in s ( t ) < x < l ,  
0 < t < T ;  

iv) the  equations in (1.1)-(1.2) are satisfied b y  p, q, and s. 

Obviously, the definition imposes some minimal assumptions upon the data.  

RE~A~K 1. -- For  a given continuously differentiable s, a classical solution of (1.1) 
is a pair  of functions (p, q) which satisfies ii), iii) above and the equations in (1.1). 

I f  we consider a classical solution of (1.1) for a given continuously differentiable 
function s =  s(t), and if we define 

(2.1) w(x, t) = { p(x, t),  
q(x, t), 

a(x, ~1, 
y(x, ~; s) = b(x, ~), (2.2) 

and 

O<x<s(t), O<t<T, 

s(t)<.x<.l, O<t<T, 

O<.x<s(t), -- oo<~< co. 

s ( t ) < x < l ,  --  ~ < $ <  ~ .  

hi(x), O<x<<. So, 
(2.3) h(x)= { 

h~(x), so < x < 1, t 

then it can be shown as in section 2 of Pa r t  I t ha t  

(2.~) 
T 1 

0 0 
1 T 

0 0 

must  be satisfied for every  ~ e WI'I(QT) which vanishes when t :  T. 
In tegrat ing equation (1.1)-(1) over the domain 0~<x<s(~), 0 < ~ < t  and using 

equation (1.2) and (2.1), follows tha t  

8(t) z~ t 

0 0 0 

Consequently, a classical solution of (].1)-{1.2) must  satisfy via (2.1), {2.2) and (2.3) 
the equations (2.4) and (2.5). Thus, we are mot iva ted  to make the following definition. 

DEFInitIOn. - A weak solution of problem (1,1)-(1.2) is a pair of functions (w, s) 
such tha t  

i) s~s( t )  is continuous in [0, T], 0 ~<s< l ,  and s (0 )~s0 ;  
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ii) wE W~'°(Q~) and is bounded; 

iii) the pair (w, s) satisfies (2.4) for every ~ e W~'I(QT) that  vanishes at t = T, 
and the pair (w, s) satisfies (2.5). 

RE~ARK 2. -- Clearly any weak solution of (1.1)-(1.2) which has the necessary 
smoothness of a classical solution can be shown to generate a classical solution. 

3.  - S t a t e m e n t  o f  a n  ex i s t ence  t h e o r e m .  

I t  is convenient here to present the  remainder of our assumptions on the d~ta 
prior to the statement of our result. Recalling assumptions (At) and (B~) in section 1, 
we add the following: 

(A~) there exist positive constants /~,/~3, and g~ such that  

(3.1) t ~-~--~xq~x(X,6:) l<lu~, 0 < x < l ,  -- 00< ~ <  c~, 

I + 1 ~-~-~(x,~) </z~, O < x < l ,  - 0 o < 6 : <  oo, (3.2) 

and 

(3.3) 

(B,) 

(3.4) 

and 

(3.5) 

(G~) 

(3.6) 

and 

(3.7) 

~ < # 4  (x,~) , 0 < x < l ,  - - ~ < $ <  ~ ;  

there exist positive constants v~ and v3 such that 

~x (x,6:) l<,~, 0<x< 

l <n,  ~(x,~) <v~, 0 < x < l , - ~ < ~ < ~ ;  

the data h is bounded, positive and Lipschitz continuous; in other words, there 
exist positives constants Mo, M1, So such that  

O < M ° < h ( x ) < M 1 ,  0 < x < l ,  

lh(xl)-h(~)l<~olXl--x~l , x .  x,e[O, X]; 
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and 

(C2) there exists a positive constant  Go such tha t  

(3.8) lgl(t)l , Ig2(t)l < Go, 0 < t <  T ,  

and the g~ are measurable in the sense of Lebesgue. 

T~EO~]~3L - Under  the assumptions (A~), (A2), (B~), (B~), (C~) and (C~) upon the 
data  of, a, b, h, g~, g~ and so, 0 < s 0 < l ,  it  follows tha t  for any (~ such tha t  
0 < (~ < so < 1 -- 5 there  exists T. > 0 such tha t  in Qr there exists at  least one weak 
solution (w, s) to the free boundary  problem (1.1)-(1.2) such tha t  

(5 <s(t)  < 1 - -  (~, 0 < t < T .  

4 .  - A s e q u e n c e  o f  a p p r o x i m a t i o n s .  

We begin as in Pa r t  I by  extending the functions % a, and b to the domain 
{(x, ~): -- c o <  x <  c % -  o o < ~ <  oc}. The extension can be carried out so tha t  
the  extended functions satisfy (A1), (A~), (BI) and (B~), where some of the  constants 
apt)earing in these conditions ma y  have been modified slightly. For  any continuous 
funct ion s=s(t), 0 < t . < T ,  s (0 )=s0 ,  we extend it b y  setting s(t)~so for t < 0  and 
s(t) =_s(T) for t >  T. Recalling now the definition of y=~(x,  ~; s) given b y  (2.2), 
we utilize the extensions above to extend 7 vi~ (2.2) over the  domain {(x,t, ~): 
- - c ~ < x <  co, - - c ~ < t <  oo, a n d - - o o < ~ <  c~}. 

Next ,  we must  define a modified porosi ty ~*(x, ~). Pick a constant  

(4.1) P > M1 , 

where M1 is defined in (C1) and define 

(4.2) ?*(x, ~) = 

~ 0 ( , , - - P - - 1 )  + ( ~ + / ) +  1)~-~ ( x , - - / ) -  1),  --  ~ < x <  c~, 

- -  c ~ < ~ < - - P - - 1 ,  

~(x,~), - ~ < x < ~ ,  l ~ l < P ÷ l ,  

~v(x, P ÷ 1) ÷ (~ --  P --  1) ~ (x, P ÷ 1) 
vg  

P + I < ~ <  ec.  

l~rom (1.3) and (1.4), i t  follows tha t  

(4.3) # = min {1, # ( P  + 1)} < ~ <lb. 
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We mollify [3; 9. 274] ~* and y to obtain sequences {~0"} and (?~} of C ~ func- 
tions which satisfy (A~), (A~), (B~) and (B2) with the exception that  ~o*, m =  1,2,  ... ,  
are not  bounded  and tha t  the  F*, m = 1 , 2 ,  ... ,  satisfy (4.3). Moreover, the  ~0", 
m =  1, 2, . . . ,  converge uniformly to q* on compact  subsets of {(x, ~ ) : -  c ¢ <  x <  0% 
- - c ¢ < ~ <  co} while the k~, m = 1 , 2 , . . . ,  converge uniformly to 7 on compact  
subse t s  of ( ( x , ~ , t ) : - - c ~ < x < c ~ ,  - - c ¢ < ~ < c ~ ,  - - c ~ < t < c ¢ }  which do not  
intersect the  surface x =  s(t). Note that the mollification can be achieved by inte- 
grating the ]unctions ~o* and y against C ~ kernels which have support in balls o/ 
radius 1/2m. 

In  a manner similar to tha t  in Par t  I, we can obtain C ~ approximations g,,~ 
of g, and h,~ of h such tha t  

T 

(4.4) lim jlg,,~(~)-- g,(~)t& = O, i = ~, 2 ,  

I h ' l < ~ o ,  o < x < l ,  

g~(0) = 7~(0, h~(0), O) h~(0), 

g2~(0) = y~(1, h~(1), 0) h~( i ) .  

(4.5) 

(4.6) 

(4.7) 

Now, set 

(4.8) s~(t) ~-so, O < t < ~ ,  

and use this definition of s in 
the problems 

(4.9) 

7 to calculate the  7~ for O<t<l/2m.  Then, consider 

~ ( x ,  ~ )  ~ [ ~w~] 
~t ~x y,~(x,w~,t) ~x j '  0 < x < l ,  0 < t < 2 - ~ ,  

7~(o, w.(o,  t), t) ~w~ (0, t) = gl,~(t), 0 < t < £ ,  

7~(1, w~,(1, t), t) -~-~ (1, t)=g2,,~(t), 0 <: t < ~ m  m , 

w~(x, o) = h , (x ) ,  0 < x < l ,  m =  1, 2, . . . .  

In  order to obtain the existence of a clussical solution of (4.9), we write our differ- 
ential equat ion in the  form considered in Chapter V, Section 7, of [8; p. 475]: 

(V) 
In  order to apply theorem 7.4 [1; p. 491], we note tha t  a modification of the term 
(3~/3~)(~w~/3x) ~ must  be made. This is accomplished b y  replacing the coefficient 
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~y~/~  by  l(~)(~y~/~), where / is identically equal to one for l~] < if,  identically 
equal to zero for I~[ > 2P,  and varies smoothly between one and zero elsewhere 
in such a way as to form a smooth function. Hence, we ma y  apply theorem 7.4 
[8; p. 491] to obtain a classical solution w~ of the modified equation. We note  tha t  
when Iw~l <_P, w~ satisfies (4.9). Also, we note tha t  P is a parameter  which is ours 
to choose. In  the remainder  of the paper  it  is convenient  to select P > 2P,  
where P is the parameter  which is used to modify the funct ion % With  this choice 
of _P, the function / will never again appear below since we shall restr ict  our 
~ttention to values of w~ which are less than  2 t  ) in absolute value. 

Following the procedure of section 4, Pa r t  I,  we select a positive constant  (~ 

such tha t  

(4.10) O <  ~ < so< 1 -  

and define s~ via 

sm(t + l /m) so t 

0 0 0 

for as long as sm satisfies 

(4.12) ~ < s ~ < l - - ~  

and if ever s ~ = ~  or s ~ = l - - 6 ,  then  we define s ~ ( ~  or s ~ l - - ~  for all t fol- 
lowing tha t  of at taining the value of (~ or 1 -  ~. Having obtained the definition 
of s~ over 1/m<<.t<l/m+l/2m, we can obtain the ~* and ~m for O<.t<l/m and 
solve the equations in (4.9) up to t =  1/m. Returning to the discussion following 
(4.10), we can extend s~ up to t-----1/mq--2(1/2m) and re turn  to (4.9). In  this 
manner  we can assume tha t  sm has been defined for 0 < t <  T and tha t  there exists 
a smooth classical solution of (4.9) in 0 < x < l ,  0 < t < T .  

5 .  - U n i f o r m  e s t i m a t e s  o n  wm a n d  s ~ .  

We begin by  demonstrat ing the following result. 

I m ~ A  1. - There exists a positive constant  To, which is independent  of m, 
and there exists a positive integer mo such tha t  for m>mo, 

(5.1) Iw,~(x,t)l<P, O<x<l, O<t<To, 

where P is a constant  independent  of m which is chosen sufficiently larger then M1, 

P~ooF. - Since the w,~(x, t) are continuous, set 

(5.2) T,~(P)----- max {t: 0 < t < T ;  w,,(x, ~ ) < 2 P ,  0 < x < l ,  0 < T < t }  , 



J. 1~. C~_~ON - A. FAS).~o: A nonlinear parabolic ]ree boundary problem 145 

m----1, 2, 3, .... Since P is taken l~rger than M~, it follows that  T~(P)> O. Next 
we consider the function 

(5.3) z(x , t )~--At+B~x~+B~x-~B~,  A > O ,  

and we sh~ll determine the coeffmients A, B~, i-~ 1, 2, 3 in such a way that  

(5.4) ~z ~=o Go ~--~ < - - -  
,p 

(5.5) ~ rain z(x, O) > M~ , 
O~x~l  

(5.6) 

and 

z ~ , t  > 2 P ,  

~z I ~ "  (x, ~) ~ (x ,  z, t) Fx~ + L ~x (x, z, t) + (x, z, t) ~x ~x  " (5.7) ~ >  [ ~ 

Then, it will follow from the lemma of Westphal-Prodi [2; p. 52] that  

(5.s)  w,~(x, t) < z(x, t) 

for 0<x<(~/2 and 0 < t < T ~ .  
Condition (5.4) can be satisfied by selecting 

(5.9) B~ = -- 2 Go. 
v 

Next, with the aim of obtaining z(0, t ) <  P, we select 

(5.10) B s =  21P, 

where 21< 1. Now, we consider (5.6) and determine B~ from 

Go 
(5.1],) B1 - -V 

where 22>2.  Solving (5.]1) for B1, we obtain 

(5.12) B1 ---- {()-2-  ,~.1) P -~- G o ~ - l }  * 

10 - A n n a l i  d t  M a t e m a t i c a  
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Since the minimum of z(x, O) occurs at x ~ - G o u - I B ~  1, we obtain 

(5.13) z(x, O)~z(Gov-I  B~ 1, O ) ~  -- G~v-I B-~I ~ ~I P . 

From (5.12) we see tha t  B1 is an increasing function of P.  Consequently, we can 
select P sufficiently large so tha t  

(5.14) -- G ~ - I B ~ I ~  - ~IP > M 1 . 

Hence, (5.5) is satisfied. In  order to satisfy (5.7) we first observe t ha t  for all 
m > too= [1/~] .4-1, the derivatives of y .  are uniformly bounded by the constants 
in (B~) and (B~) since the domains of integration for the mollification do not  inter- 
sect s . .  Thus, for 0<x<($/2  and 0 < t < T ~ ( P ) ,  

0z 
< {~( f  + 1)} -1 {2~,~B~ + [~,~ + ~(B~O + 2~,-~ G.)] • (B~O + 2~,-~Go)} < A = ~--{ 

can be achieved by selecting a constant  A sufficiently large. Note tha t  the choice 
can be made independently of m. From such a choice of A it follows tha t  (5.8) is 
valid for 0 < x < d / 2  and O < t < T ~ ( P ) .  In  particular 

(5.15) w~(0, t) < At  + B~ 

and since B 8 < /~ ,  i t  follows tha t  

w~(O, t)<~P, 0 < t < T * ,  (5.16) 

where 

(5.17) 

and 

(5.18) 

T*---- rain (T~(P), T1) 

G = A-~(P - -  B~) . 

By a similar analysis, it follows that 

(5.19) w~(1, t ) < P ,  0 < t < : I  TM . 

A straigh forward application of the maximum principle implies tha t  

(5.20) w ~ ( x , t ) < P ,  0 < x < l ,  0 < t < T * ,  
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and tha t  

(5.21) ~ ( . P )  > I '~. 

By  an argument  similar to the one above we can show tha t  for m > m o  

(5.22) --.P<w,~(x,t),  0 < x < l ,  0 < t  <:T2, 

where Tu is independent  of m. Setting. 

(5.23) To = min (T,, T=), 

the  result (5.1) is obtained. 

~E~/IAI~K. - -  From the definition of {0' we see tha t  mollification of ~0 and 9* with 
respect to kernels having support  contained in balls of radius 1/2m will yield the 
same functions ~.~ whenever  I~I<P since 9 agrees with ~0" for I ~ I < P +  1. Conse- 
quently,  it  follows from (4.1), (4.2), and (4.3) t h a t  our selection of P and the result  
of the Lemma  imply tha t  ~*~ in (4.9) can be replaced by  %,: 

Using the analysis of Lemma  2 of P~r t  I we obtain a similar result. 

LEM2CIA 2. -- There  exists a positive constant  C which depends only upon 5 and 

the parameters  in the set ff = {%, #(P), t*~, #~, #3, !*~, v, v~; v~, v~, 2111, Lo, Go, L~} 
such t ha t  for m > too, 

(5.24) lI~tl~,°(~)< c .  

The  nex t  result  is an immediate  consequence of Le mma  1 and Theorem 1.1 

in [8; p. 419]. 

LEMMA 3 .  - -  There  exist positive constants H and ~, 0 < g <  1, which depend 
only upoI1 ~, the  parameters  in 7, and the positive distance d, f rom the  boundaries 

x = 0 ,  x = l  such tha t  for m > m o  and (x ' , t ' ) ,  ( x " , t " ) e { ( x , t ) : O < d < x < l - - d ,  
o<t<~o}  

(5.25) Iw,~(~', t ' )  - w~(x" ,  t")t < ~ { I x ' -  x"l% it'- t"t~} • 

We note  t h a t  Lemma  3 here  differs f rom Le mma  3 of Pa r t  I since we do no t  

obtain a uniform HSlder cont inui ty  in Q~o. Consequently, we must  use a different 
argument  here to obtain the equi-H51der-continuity of the s~. 

LEPTA 4. - There exists a positive constant  C, which depends only upon (~ and 
the parameters  in ~ such tha t  for m > too, 

(5.26) Is,~(t')--s,~(t")]<C]t'--t'q ~j2 , t', t" e [0, To], 

where a is defined in Lemma 3 for d=/~14. 
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t?ROOF. - From the construction of the s,~, it is clear tha t  we may  restrict our 
a t tent ion to the t ime interval in Which (4.11) holds. We see t ha t  

(5.27) 
s,~(t" + lira) sm(t" + I/m) t" 

0 0 t" 

This can be rewrit ten as 

s,~(t' + 1Ira) sm(V + lira) t" 

sin(t" + l /m) 0 t" 

Using (A1) and (C,), we obtain 

< Golt'-- t" 1 + 
sm(t ~ + l /m) 

q-- f ]q~.~(x, w,.(x,t'))--q~.,(x, w..(x,t"))[dx 

~/4 

+ f { ~ ( x , w ~ ( x , t ' ) ) - % o ( x , w ~ ( x , t " ) ) }  dx .  
0 

From (Ai) and Lemma 3, we obtain 

sin(t" + 1/m) 

(5.30) f I%.(x, w,~(x, t')) -- %.@, w.~(x, V) ) Idx<#~t t l t ' - -  t"I ~ , 
6/4 

where d in Zemma 3 has been taken as ~[4. Next,  by integrating the differential 
equation in (4.9) over the region O<<x<~/4, t~=min(t',t")<~t<max(t',t")~t2, 
we obtain 

614 t~ t2 

(5.31) f {~ (x ,  w.~(x, t,)) -- ~ (x ,  w~.(x, t~))} dx = j~, ~ ~ i '  
0 tl tl 

From Theorem 3.1 [8; p. 437] and (A1), (A~), (B1), and (B2) it follows tha t  there exists 
a positive constant  C~ which depends only upon the parameters in the set ff and 

such tha t  

(5.32) ~-x ~ '  ' " 

Using (5.32)~ the result (5.26) follows from (5.31), (5.30), and (5.29). 
As a consequence of Lemma 4, we obtain the following result. 
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LEM~IA 5. -- There  exists a posi t ive  c o n s t a n t  T <  To such t h a t  

(5.33) ~ < s,~(t) < 1 -- ~ . 

holds for  all m > m o  ~nd 0 ~< t < T. 5~oreover, for 1 /m < t < T, s~ is de t e rmined  b y  (4.11). 

6.  - E x i s t e n c e  o f  a w e a k  s o l u t i o n .  

The  results  of the  previous  sect ion imp ly  t h a t  t he  w~ and  s,~ sut isfy the  com- 

pac tness  cr i ter ion of Ascoli-Arzela~. Consequent ly ,  there  exist  subsequences  (w~,} 

~nd (s~,} such  t h a t  t he  s,~/, ~/~>mo, converge  un i fo rmly  to  a, HSlder  con t inuous  

func t ion  s ~- s(t) defined on 0 ~< t ~< T and  t h a t  the  w,~,, m'>~ too, converge  subun i fo rmly  

to  a I tS lder  con t inuous  func t ion  w and  weak ly  in the  n o r m  of WI'°(QT ) to  w. B y  an 

analysis  similar  to  t h a t  of Sect ion 6, P a r t  I ,  it  follows t h a t  (w, s) is a weak  solut ion 

of p rob l e m  (1.1)-(t .2).  
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