A Nonlinear Parabolic Free Boundary Problem (x) (*%).

JoHN R. CANNON (Austin) - ANrToNIo FasaNo (Firenze)

Summary. — When two immiscible fluids in a porous medium are in contact with one another,
an interface is formed and the movement of the fluids resulls in a free boundary problem for
determining the location of the interface along with the pressure distribution throughout the
medium. The pressure satisfies a nonlinear parabolic partial differential equation on each
side of the imterface while the pressure and the volumetric velocity are continuous across the
interface. The movemenl of the interface is related lo the pressure through Darcy’s law.
Two kinds of boundary conditions are considered. In Part I the pressure is presoribed on
the known boundary. A weak formulation of the classical problem is obtained and the existence
of a weak solution is demonsirated as a limit of o sequence of classical solutions lo certain
parabolic boundary value problems. In Part II the same analysis is carried oul when the
flux is specified on the known boundary, employing special techniques to oblain the uniform
parabolicity of the sequence of approximating problems.

Part I

FIRST BOUNDARY VALUE PROBLEM

71. — Introduction.

Furxs and GUENTHER, in a recent paper [1], describe an extension of Muskat’s
model which concerns the motion of two incompressible and immiscible fluids in a
porous medinm. In the Russian literature [2] such a problem bears the name of
Verigin. FULks and GUENTHER considered the case in which the coefficients in the
equation of motion were considered constants. The resulting problem was that of
two heat equations with differing diffusivities in respective domains which are sep-
arated by a curve, the interface between the liquids, acrogs which it was assumed
that the pressures and the volumetric velocities were continuous. The motion of
the interface was related to the volumetric velocities of the fluids. The resulting
free boundary problem was solved using potential theoretic methods similar to those
of FRIEDMAN [3].

(*) Entrata in Redazione il 29 novembre 1975.
{**) This research was supported in part by the National Seience Foundation, the Senior
Fellowship Program of the North Atlantic Treaty Organization, the Italian Consiglio Nazionale
delle Ricerche, and the Texas Tech. University.



120 J. R. CANNON - A. FagaNo0: A nonlinear parabolic free boundary problem

In this paper, we shall consider a generalization of the differential equations
involved in the Pulks-Guenther extension of Muskat’s model. Before stating the
exact mathematical model, it is informative to reconsider some of the physics of
the problem which are discussed at length in [4]. We shall assume the flow to be
one-dimensional and horizontal. We shall assume that capillary effects and the
effects of gravity are negligible (*). Since the fluids are assumed to be incompressible,
and immiscible, there is a well defined interface, x= s(f), which separates them,
where z denotes the spatial variable and ¢ denotes the time variable. To the left
of the interface, we shall denote the volumetric velocity of the fluid by wu, == u,(x, )
and its pressure by p=p(2,t). To the right of the interface, we shall denote
the volumetric velocity of the other fluid by wu,=u.(x,¢) and its pressure by
g=qlx,1). The pressures and volumetric velocities are related by Darcy’s law:

op b oq

(1.1) ulm—aa_a;’ u2=~ a—w,

where a=a{z, p) and b=>b(x, g) are positive valued functions which are the ratios
of the permeability of the medium to the viscosity of the respective fluid. Note that
we are assuming the temperature as a fixed congtant. The equation of conservation
of mass and the constancy of the densities yields the equations of motion

3<P(03£P)+5“1:07 o<a<s(t), 0<t<T,

2 o
(1.2) N
gz, 2
5 T =0, sih<e<l, 0<i<T,

where u,, i==1,2 are given by (1.1), g==¢(», -) is a positive valued function
which represents the porosity of the medium which iy assumed to be of finite length.
Across the interface, we shall assume the continuity of the pressures and the vol-
umetric velocities. Thus,

p(s(t) — 0, ) = q(s(t) + 0, 1),

(1.3)
uy(s(1) — 0, 1) = uy(s(t) + 0, 1) .

(learly, the motion of the interface is related to the volumetric velocity at the
interface through the equation

(1.4) o (s00), p(s(1), 1)) 3() = w(s(t), 1)

where the dot above the s denotes differentiation of that function with respect to 7.

(*) The neglect of capillary effects iz quite significant [5, 6, 7] and limits the utility of
the model here to fluids having similar capillary behavior.



J. R. CAnNON - A. FasaNo: A nonlinear parabolic free boundary problem 121

The discussion above motivates the statement of our free boundary problem
which is to find functions p, ¢ and s which as a triple (p, g, s) satisfy

0 3¢(§£p):%[a(w,p)gg}, O<e<s(t), 0<t<T,
(@) aq”(;’;’ 0 _ %[b(m, 9 %{] , ay<w<l, 0<t<T,
$(0) =8y, 0<<ge<1,

(3) Z’(wy O) =h1(m)7 O\<-w<807
(1.5) 4) q(x,0) = i), Sy,

(8) p(0,1) =f(t), 0<t<T,

(6) 4(1;” :‘M'“fz(t)7 O<t<T’

(M) p(s®),8) = q(s(),1), 0<i<T,

(8) afs(t),p(s(t), 1) %’; (s(0), 1) = b(s(t), g(s(8), 1) -gg (s0,1), o0<i<T,
and

. ?

W) (s, p(s0),8))30) = — als(®), p(s1), 1) - (59, 1),  0<t<T,

where the functions ¢, a, b, ky, h,, f; and f, are given functions of their respective
arguments and the s,, 0 < 5,<C 1, is a specified constant. With respeet to the fune-
tions ¢, « and b, the physical situation suggests the following assumptions:

{A;) there exist positive constants ¢, and g, such that for 0<ae<1 and £§:0,

o .
(1.7 0< po<o(@, &)<1, 0<~a¥§<x, £ <,

and for each positive constant M, there exists a positive constant u(M) such that

D

(1.8) 0<u(M)<=L(x, & when O<a<l and 0<E<M;

0§
(B,) there exist positive constants » and », such that for 0 <wr <1 and £>0,
(1.9 0 <v<alz, §), bz, £) <y, .
Under these assumptions equations {1.5)-(1) and (2) are nonlinear parabolic partial
differential equations. Moreover, it should be noted that the physical assumption (1.7)

implies that the problem must be nonlinear. We shall add additional assumptions
on the data later.
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In the next section we ghall define what is meant by a clasgical solution of
problem (1.5)-(1.6), and we shall derive a weak formulation of it. The remaining
sections are devoted to the demonstration of the existence of a weak solution. This
is aecomplished by retarding the argument in the weak formulation of (1.6) and by
applying the Ascoli-Arzela Theorem to sequences of solutions of a family of prob-
lems which formally approximate the weak formulation of (1.5)-(1.6).

Remarx 1. — For any given continuous function s(t), 0 <s{i) <1, 0<ti<T,
the problem (1.5) is an example of a diffraction problem in the sense of [8], Chapter ITI,
section 13.

REMARK 2. — The notation and definitions of LADYZENSKAJA, SOLONNIEOYV, and
UrAL/CEVA’S book on Linear and Quasilinear Equations of Parabolic Type [8] will
be used extensively in this paper. As an aid to the reader, we shall list a few items
here. Let Q= {(x,1): O0<w <], 0<ti<T}. Then,

a) W3%(Q,) denotes the Hilbert space with scalar product

o1 0v
(’M, /U)W;,O(QT): f(uv + 'a-; 5&‘) dx dt,
Qr

while W4%(Q,) denotes the subspace of W5%(Q,) whose elements vanish when »=0
and w==1;

b) Wil(Q,) denotes the Hilbert space with scalar product
2 T

ow oY ou oV

(u, @>W§’1(QT}: f(u@ + "a;; é; + g gt-) dx dt,
Qr

while Vci”é’l(QT) denotes the subspace of W'(Q,) whose elements vanish when »=10
and @==1;

¢) H2*='**%((),) denotes the Banach space of functions whose second » deriv-
ative is uniformly Holder continuous with exponent « and whose first ¢ derivative
is uniformly Holder continuous with exponent /2. The norm consists of the sum
of the uniform norms of the function, its first two x derivatives, its ¢t derivative,
the ¢-Holder semi-norm of the second » derivative, and the «/2-Holder semi-norm
of the first ¢ derivative.

2. — A weak formulation of problem (1.5) - (1.6).

We begin with the definition of a classical solution of problem (1.5)-(1.6).

DBFINITION. — A classical solution of problem (1.5)-(1.6) is a triple of fune-
tions (p, ¢, s) such that

i) s==s(t) is continuous in 0 <t< T and continuously differentiable in 0 <t < T';
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il) p=plx, ) is continuous in O<w<s(t), 0<t<T, Op/ox is continuous in
0<a<s(t), 0<i<T, 2*p/ox? and op /ot are continuous in 0< o< s(f),
0<t<T;

iii) ¢=gl#,t) is continuous in s(f)<er<«l, 0<i<T, 0¢/0z is continuous in
sh<o<l, 0<t<T, 0%¢/ox* and 0g/ot are continuous in s(f)<az< 1,
0<t<T;

iv) the equations in (1.5)-(16.) are satisfied by p, g and s.

Obviously, the definition imposes some minimal assumptions upon the data.

REMARK 3. -~ For a given continuously differentiable s, a classical solution
of (1.5) is a pair of functions (p, ¢) which satisfies ii), iii) above and the equations
in (1.5).

Suppose now that there exists a function F'= F(x, ) which is defined and con-
tinuous in 0<w<1, 0<i<T and possesses continuous derivatives o0F/[dx, 02F]ox?,
and 0F /ot in 0 << 2 <1, 0<<t< T. Furthermore, suppose that for 0 <<t< T, F(0,t)=f,(t)
and F(1,1)=/,(t). For a given continuously differentiable s, 0 <<s<<1, s(0)=s,,
let (p, q) denote a classical solution of (1.5). Defining the funclions p and g via

(23) P, t)=p@, ) — Flo, 1), O<r<st), O0<i<T,
and
(2.2) gz, 1) = q(z, 1) — Flz, 1), sh<o<l, 0<i<T,

we see that p(0,?)=g(1,?)=0, 0<t<T, and we can now formulate the weak
version of (1.5).

Selecting a funetion 5= (z,?) from Why( (@), where Q= {(w,1): 0< <1, 0<t< T}
and gz, T)=0, we multiply both sides of (1.5)-(1) by 7, substitute p=7-+ F and
integrate over the domain 0<x<Cs(t), 0<<f<<T. Integrating by parts we obfain

Ts (&)

s(t)
(2.3) ff agg(x,p+pd dt__—ff olo, b+ F)dedt—

fn(w,()) (0, by (o x—] yn(s () pis(t), 1)+ F(s(t),t))dt,
and ’
T s(ty
(2.4) f (@, 1) — [ P+ F) (p”*“ }dmdt:
T s(t)
—f fa(w,p+F) <pj;F) g"dmdt+

Ap+ F
+ f n(s(0), Da(s(0, B30, 1) + 0, 0) “Too | ar.

(s(t,1)




124 J. R. CANNON - A. FASANO: A nonlinear parabolic free boundary problem

In a similar manner with respect to (1.5)-(2), we obtain

T 1 1

(2.5) ffn(m,t)—iafl—é%-t—lclmdt=—f f—glt7¢(m,q+F)dwdt~

[ 0] o ()

~ [nte, 0)0(0, hta)) as + f s0m(s0), )p(s(0), a(s), 6) + F(s(0), 8) dt,
0 0

and
ol ) G+ F
(2.6) ffn(w,t)%[b(m,Q—l—F) —-(-q—;;—)] dodi —
0 s{t)
F 1 - T
= [ Jon 2+ 0 XD T awar— [niscr, o(ac0, 26,9
0 s 8('—§—F) 0
7
+ F(s(t), t)) - dt .

Equating the right hand sides of (2.3) and (2.4) and the right hand sides of (2.5)
and (2.6) and adding the resulting equations, it follows from (1.5)-(7) and (1.5)-(8)
that the integrals along the curve x= s(f) cancel each other. Hence, we obtain

T s

_f{f 2,5+ F) d.z:—lrf ﬁdm}dt—%

s(t)
s(1)

1

_ o(p -+ F) o £
f{fa(w,p—i—ﬁ')ﬁ)-; )él;dw—Q—fb(w,q—}—F) 4l a_; )agd }dt
8 O (6

So 1
= fn(w, 0)p(w, hy(2)) de + fn(m, 0)p{z, hy(x)) dax .
0 8¢

Defining
plo, t O<aos(t), 0<t<T
(2.8) v(m,t}: g?( 3 )7 ()9 ’
gz, 1), s<e<l, 0<I<T,
(2.9) w(z, t) = v{z, )+ Flz, 1), O<e<l, 0<igT,
alz, &), O<z<s(l), £>0,
2.1 H ]
and

Miz), 0<z<s,,
ho(w), se<w<l,
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‘We can rewrite (2.7) as

T 1
2 F)s
(2.12) ff{—<p(w,@+ﬁ)—alt7+y(m,w+ﬂ; s)%%}dwdt:
¢ 0

1

f n(x, 0) (e, hix))dz .

0

From the above calculations we have shown that any classical solution of (1.5),
where s=s(t) is continuously differentiable, satisfies (2.12) for every ne W.'(Q,)
sueh that #(z, T)=0. Note that if v==120(x,1) is a solution of ({2.12) in the sense
that v satisfies (2.12) for every ne WLQ,), nlz, T)=0, and if v possesses the
smoothness of a classical solution, then » can be employed in an obvious way to
define p and ¢ which form a classical solution (p, q) of (1.5). The analysis is ele-
mentary and is omitted.

Returning now to the free boundary problem (1.5)-(1.6), suppose that (p, g, 8)
is a classical solution. Then, p and ¢ in the form of v along with s must satisfy (2.12)
for all e Wé'l(QT), n(@, T)=0. Recall that the condition (1.6) was not employed
in the formation of (2.12). We shall use it now to obtain a weak formulation of
the free boundary condition. Consider (1.5)-(1) and multiply both sides by .
Integrating over the domain 0<z<s(t), 0<< v < ¢, where t&(0,7] it follows that

a(t) 3
(2.13) fwzp(a;, P, b)) doe — |op(w, hy(z)) de —
0 0
[ t s(1)

. 0
[ s@smp{scm), 6, ) ar =~ [ [ atw, p) Lavar +
[} 00

¢

[ ste,afstm, w0, ) 22

0

dr .

{(a(),7)

Since (1.6) implies the cancellation of the integrals along s, it follows from (2.8)-(2.11)
that (2.13) can be written as

#(t) 34 ¢t slz)

(2.14) f 2p{z, v+ Fydo = fw(p(w, h(z)) dz —J. f vz, v+ Fy ) (g—}— oF
H ] 0 9

5{5) dedr .

We conclude this section with our definition of a weak solution of the free boundary
problem (1.5)-(1.6).
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DEFINITION. — A pair of functions (v, ), v=19(2, t) and s==s(t), is & weak solu-
tion to the free boundary problem (1.5)-(1.6) provided that:

i) s=s(?) is continnous in [0, T, 0<s<1, and s(0)= s,;
if) ve Wi°(Qy,) and o is bounded;

iii) the pair (v, s) satisfies (2.12) for every ne Wi Q,) that vanishes at 1= T,
and the pair (v, 8) satisfies (2.14),

where F is a bounded function belonging to W%°(Q,) with traces F(0,?)=7/,(f) and
F(1, t)=fyt).

3. — Statement of an existence theorem.

We shall present here our assumptions on the data and the statement of our
result. Recalling assumptions (A,) and {(B;) in seetion 1, we add the following:

{(A,;) there exist positive constants pu., u, and u, such that

o
(3.1) -E%(w, 5);<,u2, 0<w<l, £>0,
Oty
(32) 'é-.’);é;(m, 5) MUz, 0<.’L‘<1, §>0,
and
0%
(3.3) ¥ (, §)l<,u4, O<a<l, §20;

(B,) there exist pogitive constants v, and v, such that

o ob
(3.4) = @,8) | <n, [z (@, 6| <n,  0<e<l, €50,
and
o ob
(3.5) —ag(w, §) <y |7z (@ 8) |<w,  0<<d, §505

(Q,) the data f,, f,, and b are bounded, positive, and Lipschitz continuous; in other
words, there exist positive constants M,, M,, L, and L, such that

(3.6) 0< Mo<f.() < M,, O0<i<T, i=1,2,

3.7 0< My<him)<M,, O<w<l,

(3.8) [filts) — Falta)| < Lilti—2o] b1y 1,€[0,T], i=1,2,
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and

3.9) |h(ay) — M) | < Lafars— @], 22 2,€[0,1];

and

(Cy) the data f,, fy, and h match in the corners; in other words
(3.10) f(0)="h(0) and £,(0)=A(1).

TaEEOREM. — Under the assumptions (A;), {A,), (B.), (Ba), (Cy) and (C,) upon the
data ¢, a, b, fi, fo, b, and s,, 0<<sy<<1, it follows that for any & such that
0< §<s,<<1— 0, there exists a T,>0 such that in Qr, there exists at least one
weak solution (v,s)} to the free boundary value problem (1.5)-(1.6) such that
d<s®)y<1 —4, 0<t< Ty,

The proof of the existence theorem will be given in section 6. In section 4 we
derive a family of approximations (v,, s,) which are solutions to problems which
tend formally to the weak formulation of (1.5)-(1.6) as m tends to infinity. In
section 5 we obtain uniform estimates upon the (v,, s,) which enable us to utilize
arguments of the Ascoli-Arzela type in section 6 to demonstrate the existence of at
least one weak solufion to (1.5)-(1.6).

4. — A sequence of approximations.

We begin by extending the functions ¢, , and b to the domain {(z,£):
— co<< &< 00, — co< £< oo}. The extension can be carried out so that the extended
functions satisfy (A;), (A.), (By), and (B;), where some of the constants appearing
in these conditions may have been modified slightly. For any continuous function
s=8{t), 0<i< T, s(0)=2s,, we extend it by setting s{f) =s, for t<<0 and s(t)=s(T)
for 1> 7. Reecalling now the definition of y=1y(x, £; s) given by (2.11), we utilize
the extensions above to extend y via (2.11) over the domain {(x, ¢, &): — co<l@ < co,
— o<t 00, and — co< £ < oo},

Next we mollify [3; p. 274] ¢ and p to obtain sequences {g,} and {y,} of C¥
functions which satisfy (A;), (Ay), (B1) and (B,) and which are such that the g,
converge uniformly to ¢ on compact subsets of {(#,£): — co<< @< 00, — co<C &< 00}
while the y,, converge uniformly to y on compact subsets of {(#,&,%): — co<< @< oo,
— o< &< 00, — 0o {< co} which do not intersect the surface x=s(t). Note that
the mollification can be achieved by integrating the functions ¢ and y against C* kernels
which have support in balls of radius 1/2m. This will be used in the discussion below.

In what follows, it iy essential that we smooth the boundary and initial data in
such a way as to be able to utilize the existence theorems of LADYZENSKAJA, SOLON-
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NiK0V, and URAL'CEVA [8]. Consider f,, i=1, 2, and define

1
f:(0) 4 '_‘°°<t<—77b,
1y 1
4.1) ﬂ’m(t): fz'(t"“;b),;q;<t<fl7,

fz-(fl’——%), T<i< oo,

m==1,2,..,. The functions ﬁm can be mollified to obtain C* functions f,, which
satisfy the conditions stated in (C,). Moreover, the conditions

(4.2) fin0)=0, m=1,2,...,

can be achieved if the support of the mollifying kernel for each m is an interval
of length 1/2m. Clearly, the uniform convergence of the f,,, to the f, follows from the
Lipschitz continuity of the f,. The transformation o'== (1 —2/m)x -+ 1/m maps the
interval [0,1] 1-1 and onto the interval [1/m, (1—1/m)]. Considering the inverse
transformation, we define

1
Moy, — °°<m<M

(4.3) Fon(@) = 1"(( "9%)"1( _%))’%5%‘( “%z)’

m=3,4,5,.... The functions A,(x) can be mollified to obtain ¢ functions h,(x)
which satisfy the conditions stated in (C;), where the Lipschitz constant L, must
be replaced by 2L, for m>4. Obviously the %, eonverge uniformly to % and,
moreover,

(4.4) hn(0) = T, (0) = Ry (1) = By (1) = 0
ean be obtained if the support of the mollifying kernel for each m is an interval
of length 1/2m.

We begin now the discussion of the procedure for generating the approximate

solutions {(v,, s.)}. Set

: 1
(4.5) 8nll) = 8, 0<t<g .

For this s=s,(f), we can obtain a smooth y, in the strip 0<?¢<1/2m. Consider
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the problems

0Py W) . 0 0wy, 1
ot max ym(xywmst)—a‘a‘;' 3 0<(L’<1, O<t<2m’

1

wM(()? t) =;fl,'m(t)7 0<t<2—-,

(4.6) m

1

We(l, t) = f2,m(t) s 0< t<é—?~n—,

We(@, 0) = hu(®), O<2<1,

m=4,5,6,.... By the maximum principle [8; p. 23], it follows that

(4.7) 0< My<wp(@, )< M, .

Hence, we can set

(4.8) p= (M) >0,
and obtain

0P
4.9) 2 <ﬁ5§—< Ha .

Algo, since there exist functions
7@, 1)e 0 in 0<o<l, 0t T

such  that  u(0,1) = foml(®), sm(Ly 0)=fom(t)y and (@, 0)=hy(@), and (4.2),
(4.4) imply that the differential equation in (4.6) is satisfied for w,=y, at
=0, =0 and x=1, t=0, it follows [8; p. 452] that for each m there is a
unique classical solution in a Holder class in the closed rectangle 0 < <1, 0<t<1/2m.

Next, we extend the boundary x=s,(f) to the interval 1/m<i<1l/m-1/2m via
a modification of the free boundary condition (2.15). First, we note that for
0<t<1/2m the equation

oft)
(4.10) f 2@, Wal, 1)) dov = H(1)

0

defines a continuous funetion o(¢) for any given continuous function H(t) since @,
is positive. Let § denote a fixed positive constant chosen so that
(4.11) 0<d<sy<<(1—9).

Setting

EN t 3m(7)

4.12) H,h= fw¢m(x, hal)) dac——f fym(x, W2, T), T) %’f (2, T)dzdr,
0 0 0

9 ~ Annali di Malematica
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m=4,5,6,..., we solve (4.10) with H(t) replaced by H,(t) for o(t) and define
4.13 ; é—i——l—- = ¢{{)
(4.13) Sm wml = o

for 0<t<1/2m. If there is a f,, such that s,(t) -+ 1/m)=8(or s, (1} - 1/m)= (1 —98)),
then we set

{4.14) sm(t) =0  (or 8,(t)=1—19)

for t}t;—{a 1/m. In the cases of (4.14) the coefficients y,, can be defined up to t= T
and problem (4.6) can be solved up to ¢=17. In the event that

0< 6<sm(t+%)<(1-—6)

for 0 <t<1/2m, then the boundary z=s,({) can be defined in 0 <i<1/m -+ 1/2m via

(4.15) §,,(1) =

Thus, the function y can be defined up to {=1/m-+1/2m and the function v,
obtained for 0<i<1/m. Note that y, here coincides with the y, in (4.6) for
0<t<1/2m. Consequently, we can replace 1/2m in (4.6) with 1/m and obtain a clas-
sical solution w, in 0<a <1, 0<i<ljm. Considering (4.10) and (4.12) again along
with (4.13) and (4.14), we see that the boundary can be extended to the interval
m+12m<t<1/m-+2(1/2m). By induection, we obtain a sequence {(w,, s,)} such
that s,, are continuous and satisfy

(4.16) 0<d<sficl—6, O<i<T, m=4,5,86, ...
and that there exists an «,, 0 <a«,<{1, such that
(4.17) w, € Hitmlteml2(( y - =45, ...,

and w, satisfies (4.6) with 1/2m replaced by T and y, defined from yp(z, &; s,,).

5. — Some uniform properties of w,, and s,.

We begin with the following lemma which will be used in obtaining a uniform
estimate of w,, in Wy%Q),.
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LeMMA 1. ~ There exists a positive constant O and an integer m, which depend
on ¢ and the parameters in the sef = {%, [y iy fhoy iy Phas Vs Y1y Vo ¥y Mo, My, Ly, Ln}
gsuch that for any m>m,,

W ! awm
(5.1) =0, t)] =, t)} C, O0<t<T.
ProOF. — Set
1 1

fx(OH—;Qj, 0<(w<§"@7t;
5.2 2 (@) = 1 1 1
:2) : Lyt 4 00) b= STl o w0y,

M, +1, @a<x<d/2,
where
(5.3) L, = max {L,, 86*1(M,+ 1)},

1 1

(5.4) By == Lg‘{Ml 41 m%-—«fl(O) -+ La%},

n=1,2,3,..., and m==m,-++1, my+2,..., where m, is a positive integer which
satisfies

(5.5) my > 461 .

Let 2" (#) denote the mollification of 25" (») a,gainst a positive smooth kernel which
has support in an interval of length less than 1 1 min (L;, 1/2m). Clearly, all of
the derivatives of 2, vanish at #=0 and #=4/2. Moreover, elementary consid-

erations yield the fact that
(5.6) 2om(@) > Ry (@)

For all n=1,2,... and m > m,. Note also that the first derivative of 2", is bounded
by a constant that depends only on Z; and d.
We consider now

0P, 2 Zn) 0

Dalm 1 é
Py way(ym(w 2, 1) )+— 0<w<§, 0<t<T,

INE
280, 1) = f; u(f) 0, f i, O0<i<T,
. 9 f,(++[(f<> n)] <i<

N 5
z;n’(2 ) Mp14t [65( M1+1)-l t, 0<t<T,

2w, 0) = 2i"n(@), O<w<d/2.
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Referring to the discussion following (4.6), we see that a unique classical solution 2(
exists. For m > m,, it follows that the coefficient y, and its derivatives oy,/ox
and 0y, [0z, can be estimated in terms of the bounds given in (B;) and (B,) since
the boundary s, is 6/2 units away from the domain under consideration. Hence,
we may apply the Lemma 3.1 [8; p. 5356} and Theorem 4.2 [8; p. 444] to conclude
that there exists a positive constant C, independent of m and »n such that

oz,

P <0, O0<x<d/2, Oo<i<T.

(5.8)

Moreover, Theorem 1.1 [5; p. 419] implies that the funections z;’;) are equi-Holder-
continuous in 0 <x<8/2, 0<t< T with respect to n. Since the maximum prineiple
can be applied to obtain a uniform bound for the ¢, it follows that for fixed
m > m, there exists a subsequence {z"’} which converges uniformly to a Holder
continnous funetion z,=2.(z,?). From (5.8) it follows that 2, is Lipschitz continuouns
with respeet to z with Lipschitz constant C,. Applying the lemma of WESTPHAIL-
ProvI [3; p. 52] to & and w,, we obtain

(5.9) N, 1) >w, (2, 1), O<a<d/2, 0<i<T,

which implies

(5.10) Zal, N2 wy(2, 1), O<w<d/2, O0<i<T,
while
(5.11) (0, 1) = wn(0, 1) = frm(t), O<t<T.

Thus, 2, i a barrier for w, at each point of the boundary x=0. Consequently,

0,
(5.12) -é“‘;-;(o,t)gc,, 0<t<T, m>m,.

By similar arguments, the remaining inequalities in (5.1) can be demonstrated.

Lemwma 2. — There exists a positive constant ¢ which depends only upon 6 and the
parameters in the set § such that for m > m,,

(5.13) 10,0l rusian < O -

Proor. — We multiply both sides of the differential equation in (4.6) by
(%, wal, 1)) and integrate over 0 <2< 1 and 0< 7 <{. An integration by parts
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on the right hand side yields

1 1
1
B14) [ giloy i, 0)ds—3 [ o, Bt s =
0 0
£

[4
- f Pl Fom(T) T2 (1, 7) AT — f PO, frn() 22 (0, 7) dr —
0

a’wm aqﬁm a(pmawm
_ffmam{ ’wm)+'¥-—a—; dxdr .

Using the assumptions (A,), (A,) and (B,) it follows from (5.1), (5.14) and Schwartz’s
inequality that

(5.15) ,waf( )dwdr< +2TO+M2vl\/T{ff(aw’”>d dr}%;

whenece, we conclude that

£ 1 2 H VLA 2T - ol 1 ATO
(5.17) {ff(%’g’l) dwdt} <,”2 VI 4+ Vi, v) + 2up(1 + 1)‘

Suv

Combining (5.17) with (4.7). We obtain the result (5.13).
Writing the differential equation for w, in the form

OWn 0 P\ Ot OPm\* [0Wn [P | gm0
(5.18) “é’i“a?&{” (85) 8x}+ym(8§) { [axaﬁ B2 %"”

it follows from the assumptions (Ay), (4,), (By) and (B,) and from (4.7) that
Theorem 1.1 of [8; p. 419] can be applied to obtain the following result.

LEMMA 3. — There exist positive eonstants H and «, 0 < ¢« << 1, which depend
only on the parameters in the set ¥, such that

(5.19) [wn(@'y 1) — w(®”y t")| < H{|x' — 2" |*4 |t —t"|*/%}

holds for all m==1,2,..., and (2',1), (2",1") €Q,.
Based upon the results of Lemmas 1, 2 and 3, we can demonstrate the fol-
lowing lemma.

LeEMMA 4. — There exists a positive constant €, which depends only on the para-
meters in the set § and on J, such that for each m>m, and any ¢/, t"&(0, T},

(5.20) [smlt') — sm(t")| < Ot/ — 872,

where « is the exponent in (5.19).
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Proor. — Recalling the construction of s,, it is clear that we can restrict our
attention to the time interval [1/m,t,] in which s, is defined via (4.10), (4.12)
and (4.13). Selecting ¢’ and ¢’ from [1/m, i;], it follows from {4.10), (4.12) and (4.13)

that
smll) 8m(t)

;1 L1
(5.21) f TP (m, wm(az, i —47»)) da — f TP, (m, Wy (gg,t —7—’-@)) dz
4] 0

—1fm  smlT)

OWr
= Yk @y W, T), T) % (#,7)dedr .
V—1lm 0
Hence,

sml(t’)

(5.22) ‘fﬂpm(m,wm(w,t’—-%))dw

smlt”)

<

1
;1 1
f P (m, Won (m, A ;n—)) — P (w, Wi (m, t— E)) da
0 1/t 8m(t) R
W,y
+ f fym(x, Wy T), T) ﬁ(”’ dedr |=1,+1,.

Vedfm D

Considering the left hand side of (5.22) and recalling assumption (A;) and (4.11)
we see that
sm(t')

(5.23) ! f ZQp, (m, Wy (m, 3 %)) dx

sm{t")

Po

22 Isn(t)]F — [snt)]

=

> 0qo|sm(t’) — sult’)] .

From lemma 3 and (1.7), I; the first term on the right hand side of (5.22), can be
estimated to yield

{5.24) L<u, H|t' — "2,
Applying Sechwartz’s inequality to I, and using Lemmsa 2, we obtain
(5.25) L<n O —t"]F.

Consequently, the result (5.19) follows from (5.22), (5.23), (5.24), and (5.25).
The following lemma is an immediate consequence of Lemma 4.

LeMMA 5. — There exists a time interval [0, Ty], T, > 0 and independent of m,
sueh that for 0<i< T, and m > my,

(B.26) 0 < $u(t)<<1 46,

where § satisfies 0 < 0 < so<< 1 — 9,
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6. — Proof of the existence theorem,

Set

(6.1) F(w, t)= (1 — @) fi(t) + afo(t), O<a<l, 0<i<T,,

and

(6.2) Fo(@,t) = (1 — &) fumll) + 8fomll), O<2<l, O0<t<T,,  m>my,

where T, is that of Lemma 5. Then, it is clear that {F,} is a sequence of C* func-
tions which converge uniformly to F. Moreover, {F,} converges strongly to F in
the norm of W}%Q,). If we multiply the differential equation in (4.6) by a test
function e W3'(Qy,) which vanishes when »=0, =1, and t=T,, perform the
usual integration by parts over @, , and define

(6.3) V== We,— oy

then we obtain

Ty 1
g IV + L) ©
04 [ [ pute,ont 20 2ot ey vt Py 22t ED B o
0 0

1

= fn(m, 0) @, hm(@))da .

[¢]

In addition the equations (4.10), (4.12), and (4.13) can be rewritten in the form

3+ 1/m) Sy

(6.5) f L@y V(@ 1) + Fr(w, 1)) do = fw¢m(w, ho()) daw
0
¢ sm(t} a F
~f f o, v 4 By ) L) g,

¢ ¢

From (6.2) and the results and analysis of section 5, it follows that the v,, m>mq,
form a sequence of functions which belong to Wy°(Q ) and which have their norms
uniformly bounded. Moreover, the v,, m > m,, are uniformly bounded and are
uniformly Holder continuous in (7;0 . From Lemma 4 and Lemma 5, we see that
the s, are equibounded and equicontinuous in 0<f{<T,. By the usual diagonal
process of the proof of the Ascoli-Arzela Theorem, there exist subsequences {v,}
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and {s,,; such that

(1) the sequence {v, ; converges uniformly in @;ﬁ to a Holder continuous
function v,

(2) the sequence {v,,} converges weakly to v in 137;0(@210) whieh implies

(6.6) that ve Wi°(Qy,), and

(3) the sequence {s, } converges uniformly to a Hélder continuous func-
tion s on [0, T,].

In what follows, we shall use (6.4), (6.5), and (6.8) to show that (v, s) satisfies (2.13)
and (2.15) and thus forms a weak solution of (1.5)-(1.6).

First, we relabel the subscripts of the sequences {v,} and {s,} to m, and note
that from (6.6) it follows that

(6.7) lim @2, vn + Fp) == @z, v+ F)

Ty 0

uniformly in Q. Next, for each ¢, 0<<e< d/4, select two piecewise linear func-
tions @ = s®(t) and s©'=s(¢) such that

(6.8) e<s(t)— W< 2e, O<i<T,,
and that

(6.9) e<s9) —st)<2e, O<t<T,.
Set

(6.10) Q= {(a, t): SO < w < s©t), 0<i< T}
and

(6.11) QP =Qr,— Q.

We remark that the measure of Q' satisfies
(6.12) mes Q)= 0(e) .
Since the s, converge uniformly to s, it follows that

(6.13) 1M yul®, O+ oy ) = yl@, v F; 8)

O3
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uniformly in Q. Consider the quantity

Ty 1

0 F
(6.14) J=f f{—¢(w,v+1”)5§+y(w,v+F;s)~———~—(v;; )g"}d dt
a o

1
- f’](af, 0)‘?(‘”, k{‘v)) dw ,
1]

where the v and s are the limits of the sequences {v,,} and {s,,} whose subscripts have
been relabeled. Using (6.4) we see that for each m,

(6.15) =dP4 JO L IO,
where
T, 1
(6.16) JO — f f{«;;,,,(x, O+ Fo) — 9@, v+ F)} = "dxdt
1] (1]
1
(6.17) 9= f (Dul®s hnls)) — p(, h)} e
0
and
Ty 1
(6.18) JP= f f{y(w, v+ F;p) 8(_1)(%;___@ —9 @y O+ Fy 1) ﬁ@%ﬁ’_m_)} g;—z dodt.
0 0

Now (6.7) implies that for m sufficiently large
(6.19) T3] TP <&

With respect to the contribution to JS,?;) from Q®, Lemma 2, and and application
of Schwarz’s lemma implies a contribution which tends uniformly to zero as & tends
to zero. Considering the contribution to J& from @, (6.13) and (6.6) imply that
for m sufficiently large that contribution in absolute value can be made less than e.
Hence,

(6.20) J = 0;

and we see that our limit pair (v, s) satisfies (2.13). With respect to equation (2.15)
we can define

s{t} 35 t s(z)

6.21)y I'= fmp(m,v-}—F)daz—quo(w, dm+ff (¢, 0+ Fys) ———
0 0

o(v 4 F)
7 dedr.
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Using (6.5) and an analysis similar to that above, it follows that
(6.23) =0,

and we see that our limit pair (v, s) satisfies (2.15). Consequently, (v, s) is a weak
solution to (1.5)-(1.6) in Q.

Pant 11

SECOND BOUNDARY VALUE PROBLEM

1. — Introduction.

Referring to Part I for a discussion of the physics and symbols, we consider
in this paper the problem of finding functions p, ¢ and s which as a triple (p, ¢, s)
satisfy

~

1 a_(pi;;@: Uw[ a(w, p)z ], O<o<s(t), 0<igT, 0<s(t)<< 1,

Q)

f

ot ox ox

(3) px,0)="nhy(r), 0<T<Sy, 8(0)=25;,, 0<< g1,

2) ¥»9 i[b(m,q)a—q}, s)<w<1, 0<i<T,

(4) q(o, 0) = hy(z), o<1,

S @(0:?(0,3})52(0;3}:91(5), 0<it<T,

©) b0 B, n =g, 0<i<T,

(1) p(st), 1) =q(s(n), 1), O0<i<T,

8 alst0), pls(0), 0) 2L (s, §) = b(s(0), alo(0), 1) 22 (50, 1),  0<H<T,
and
(1.2) o(s(t), p(s(1), 1))é(t) = — a(s(), p(s(t), 1)) %’0 (s(t), 1), O0<t<T,

where the functions ¢, a, &, &y, hy, g, and g, are given functions of their respective
arguments and the s,, 0<<s,< 1, is a specified constant. As in Part I, the physical
situation suggests the following assumptions on the ¢, a, and b:
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(A;) there exist positive constants ¢, and g, such that for 0 <r<1 and — co<< £<C o0,
i

(1.3) 0<go<oplr, §)<1, 0<5§E (w, ) <t

and for each positive constant M, there exists a positive constant w(M) such that

(1.4) 0< /L'(M}<%?(m, &)

when 0<z<1 and |[E|< M;
{B,) there exist positive constants » and », such that for 0 <r <1 and — co<< £ < o0,

{1.5) O<w<a{n, &), blx, &<y .

Under these assumptions equations (1.1)-(1) and (2) are nonlinear parabolic partial
differential equations. Again, it should amphagized that the physical condition (1.3)
implies that the problem must be nonlinear. We shall add additional assumptions
on the data later.

In the next section we shall define what is meant by a classical solution of
problem {1.1)-(1.2), and we shall derive a weak formulation of it. As in Part I the
remaining sections are devoted to the demonstration of the existence of a weak
solution. Although much of the analysis used in PartT will apply tothe problem (1.1)-(1.2),
there is a delicate difference in that the maximum principle cannot be applied divectly
to oblain an a priori estimate on the solution so that (1.4) can be applied to obtain a
uniform parvabolicity. Different techniques are needed.

The structure of this paper follows that of Part I. In section 2 the definition
of a classical and weak solution of (1.1)-(1.2) is given. Section 3 is devoted to the
statement of the existence theorem along with the hypotheses on the data. Section 4
is devoted to the presentation of the derivation of a sequence of approximation via
a retarded argument method presented in Part I. In this paper the construction
of the approximating séquenee is considerably more delicate than in Part 1. In
Section 5 some estimates on the approximations are obtained which enable us to
conclude the proof of existence of a weak solution in Section 6.

As in Part I, we shall use the notation and definitions of LADYZENSKATA, SoLO-
¥ixov, and URAL/CEVA’s book on Linear and Quasilinear Equations of Parabolic
Type [8].

2. — A weak formulation of problem (1.1) - (1.2).

‘We begin with the definition of a classical solution of problem (1.1)-(1.2).

DerFINITION, — A classical solution of problem (1.1)-(1.2) is a triple of funetions
{p, q, 8) such that

i) s=1s(t) is continuous in 0 <t< T and continuously differentiable in 0 <t< T';
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ii) p=pla,t) is continuous in O<w<s(t), 0<t<T, Op/or is continuous in
O<o<s(t), 0 <t T, 0%/cx? and op/ot are continuous in 0 <z <s(t), 0<<i< T

iii) g=gq(#,t) is continuous in s(t)<r<l, 0<i<?, d¢/cx is continuous in
sit)<e<l, 0<t«T, o%/ox? and 0og/éf are continuous in s(f) < z <1,
O<t<T,

iv) the equations in (1.1)-(1.2) are satisfied by p, ¢, and s.

Obviously, the definition imposes some minimal assumptions upon the data.

ReEMARK 1. — For a given continuously differentiable s, a classical solution of (1.1)
is a pair of functions (p, ¢) which satisfies ii), iii) above and the equations in (1.1).

If we consider a classical solution of (1.1) for a given continuously differentiable
function s=s(t), and if we define

ple, )y, O<o<st), 0<i<?,
(2.1) w(w, ) =

q(w, 1), sh<e<l, 0<i<T,
9.9 a(w, &), O<w<s(t), — o< 0o,
(2.2) y(@; &5 8) = bz, &), sti<o<l, —oco< < oo,
and

h(x), O0<@<80,

2, =
#3 ) { hofm),  se<w<1,

then it can be shown as in section 2 of Part I that

T 1
(2.4) ff {—~ @l wiz, 1)) —g—?— + y(w, wiz, t); s) g—g :—Z} dw dt =
o B

1

T
ftp(% h(z)) (@, O)dw-!—f{gz(t)n(l, 1) — gu(t)5(0, 1)} dt
0

¢

must be satisfied for every ne W' (Q,) which vanishes when t=T.
Integrating equation (1.1)-(1) over the domain 0<z<s(t), 0<T<t and using
equation (1.2) and (2.1), follows that
s 8 ¢
(2.5) fcp(cv, w(w, 1)) dw = | (x, h(»)) do —J‘gl(r)dr.
0 0

0

Consequently, a classical solution of (1.1)-(1.2) must satisfy via (2.1), (2.2) and (2.3)
the equations (2.4) and (2.5). Thus, we are motivated to make the following definition.

DEPINITION, — A weak solution of problem (1.1)-(1.2) i8 a pair of functions (w, s)
such that

i) s==s(t) is continuous in [0, 77, 0 <s<1, and s(0)==sy;
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ii) we W3%Q,) and is bounded;

ili) the pair (w, s) satisfies (2.4) for every ye Wy'(Q,) that vanishes at t= T,
and the pair (w, s) satisfies (2.5).

REMARK 2. - Clearly any weak solution of (1.1)-(1.2) which has the necessary
smoothness of a classical solution ean be shown to generate a classical solution.

3. — Statement of an existence theorem.

It is convenient here to present the remainder of our assumptions on the data
prior to the statement of our result. Reecalling assumptions (A,) and (B,) in section 1,
we add the following:

{A,) there exist positive constants u,, u;, and u, such that

0
(3.1) }—a—g(m,f)lgya, 0<a<l, — co< &< oo,
o0%p
(32) W(ﬁ,f) <Us, OQWQ:L, —0°‘<5< oo,
and
o%p
(3.3) @(w,é) <pyy V<<l — oo £<C 00

(B,) there exist positive constants v, and », such that

da b
(3.4) %(w,é) Vs, —é;;(w,é') <1y, 0oy — o< E<C 00,
and

da ob
(3.5) —az:(iv,é?) <¥3, a—f(w,f) <y, 0<a<l, —oo<é< o0}

(C,) the data h is bounded, positive and Lipschitz continuous; in other words, there
exist positives constants M,, M,, L, such that

(3.6) 0< Mo<h(n)< My, <ok,
and

3.7) [h{@,) — h(@y)| < Lolwy— @), @y w€[0, 1];
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and

(C,) there existy a positive constant &, such that

(3.8) @] 1g)|< Gy, o<ig?,

and the g, are measurable in the sense of Lebesgue.

TaroREM. — Under the assumptions {4;), (4,), (By), (B,), (C1) and (C,) upon the
data ¢, a, b, B, g, ¢, and s,, 0<s,<<1, it follows that for any & such that
0 <0< sy« 1—0 there exists 7 > 0 such that in @, there exists at least one weak
solution (w, s) to the free boundary problem (1.1)-(1.2) such that

S<s{ty<i—6, O0<t<T.

4. — A sequence of approximations.

We begin ag in Part I by extending the functions ¢, a4, and & to the domain
{(@,€): — co<<# << 00, — 0o E<C 00}, The extension can be carried out so that
the extended functions satisfy (A;), (A,), (By) and (B,), where some of the constants
appearing in these conditions may have been modified slightly. For any continuous
funetion s==s(t), 0<<t< T, s(0)==¢,, we extend it by setting s(f)=s, for t<< 0 and
s(t)=s(T) for 1> T. Recalling now the definition of y=1y(x, &; ¢) given by (2.2),
we utilize the extensions above to extend y via (2.2) over the domain {(,1,£):
— oo <L @< 00, — o<t 0o, and — co< < oo}

Next, we must define a modified porosity ¢*(«, £). Pick a constant

4.1) P>M,,
where M, is defined in (C,;) and define

§lo, = P 1)+ (E+ P+ 1) & (@, — P 1), — o< o< oo
——oo<§<~—P——l,

(4.2) ¢*(», &)= pl@,§), —oo<w< oo, [§|I<P+1,
W%P+U+@~P—D%MJH4% o<z oo,

PH+1<é< oo,

From (1.3) and (1.4), it follows that

a £
(4.3) 4 = min {1,M(P+1)}<ai;<m.
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We mollify [3; p. 274] ¢* and y to obtain sequences {¢,} and {y,} of ¢ func-
tions which satisty (A;), (A,), (B,) and (B,) with the exception that ¢, , m=1,2,...,
are not bounded and that the ¢, m=1,2,..., satisfy (4.3). Moreover, the ¢,
m=1,2,..., converge uniformly to ¢* on eompact subsets of {(z, &): — co<<w < o0,
— 00 < £« oo} while the k,, m=1,2,..., converge uniformly to y on compact
subsets of {(#,&,1): — o< @< 00, — c0o< &< 00, — 00 < oo} which do not
intersect the surface x=s(t). Note that the mollification can be achieved by inte-
grating the functions ¢* and y against C° Lkernels which have support in balls of
radius 1/2m.

In a manner similar to that in Part I, we can obtain C* approximations g,
of ¢, and h,, of h such that

T
(4.4) lim f Gim(T) — gi(@)dr =0, i=1,2,
m——>000
(4.5) fol<Lo, O<w<l,
(4.6) G1n(0) = yu(0, hn(0), 0) B, (0)
(4.7) Fam(0) = yu(1, (1), 0) (1) .
Now, set
1
(4.8) sull) =80,  0<I<—,

and use this definition of s in y to calculate the v, for 0 <#<1/2m. Then, consider
the problems

oo 0 g0, -
w_.—[m<w,wmt>——’“f’»~], O<w<l, 0<i<gl,

ot T oz o
0Wm _ 1
@) V(05 Wi(0, 1), £) e (0, )= g1u(t), 0< t<%,
1, w1, 1), 8) 2 (1, 0) = gonll), 0< i<
Vm(i m(1, 1), on = Jomll), <2m,

W, 0) = (@), O<aw<l, m=1,2,....

In order to obtain the existence of a classical solution of (4.9), we write our differ-
ential equation in the form considered in Chapter V, Section 7, of [8; p. 475]:

0wy dpn\"t 0w, e\t %me OV { W \2
F”(ag) Vo T\ ag) Voo a0 " & \2) |

In order to apply theorem 7.4 [1; p. 491], we note that a modification of the term
(0ym/0E)(Ow,,/Ox)? must be made. This is accomplished by replacing the coefficient
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OVm|0E by f(€)(Oyn/0€), where f is identically equal to one for |&] < P, identically
equal to zero for |£| > 2P, and varies smoothly between one and zero elsewhere
in sueh a way as to form a smooth function. Hence, we may apply theorem 7.4
[8; p. 4917 to obtain a classical solution w,, of the modified equation. We note that
when |w,| <P, w, satisfies (4.9). Also, we note that P is a parameter which is ours
to choose. In the remainder of the paper it is convenient to select P > 2P,
where P is the parameter which is used to modify the function ¢. With this choice
of P, the function f will never again appear below since we shall restriet our
attention to values of w, which are less than 2P in absolute value.

Following the procedure of section 4, Part I, we select a positive constant &
such that

4.10) 0<d<s,<<l1—6

and define s, via

8m(t+1/m)

ER t

(4.11) | i, wnla, 1)) do = [ (@, hn(a)) d& — [ gyl d0
0 0 0

for as long as s, satisfies

(4.12) §<8,<1—0

and if ever s,=4J or s,=1—0, then we define s,=06 or s, =1—4 for all ¢ fol-
lowing that of attaining the value of d or 1 — . Having obtained the definition
of s,, over 1/m<t<1/m-1/2m, we can obtain the ¢, and y, for 0<t<1/m and
solve the equations in (4.9) up to t=1/m. Returning to the discussion following
(4.10), we can extend s, up to t=1/m -+ 2(1/2m) and return to (4.9). In this

manner we can assume that s, has been defined for 0 <i< T and that there exists
a smooth classical solution of (4.9) in O<o<l, O<igT.

5. — Uniform estimates on w, and s,.

We begin by demonstrating the following result.

LEMMA 1., — There exists a positive constant T, which is independent of m,
and there exists a positive integer m, such that for m>m,,

(5.1) | w2, 8)| <P, I<r<l, o<t<T,,

where P is a constant independent of m which is chosen sufficiently larger then M;:

Proor. — Since the w,(z,t) are continuous, set

(5.2) T.(P)=max {{: 0<i<T; wulx, 7)<2P, O<w<], O<T<E},
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m=1,2,3,.... Since P is taken larger than M,, it follows that T,(P)>0. Next
we consider the function

(5.3) 2(r, 1) = At+ Byw2+4 Byx+ B, , A>0,

and we shall determine the coefficients 4, B,, i=1,2,3 in such a way that

0z | G,
(5.4) = m=0< —
(5.5) F min 2(z, 0)> M,,

0<o<<1
o]
(5.6) 2 §’t >2P,
and
A L -1 0%z Vo Vm 0z] 0z

(5.7) ﬁ> {-g)g— (@, z)} {ym(x, 2, 1) Fy + [%;0— (@, 2,8) 4 BLE (w,2, 1) %] %} .

Then, it will follow from the lemma of Westphal-Prodi [2; p. 52] that
(5.8) Wa( 2y 1) < 2(2, 1)

for 0 << 6/2 and 0<i<T,.
Condition (5.4) can Dbe satisfied by seleeting

G
(5.9) &:azf.

Next, with the aim of obtaining #(0,?) << P, we select
(5.10) B,=M,P,
where 1, < 1. Now, we consider (5.6) and determine B, from

0N @
(5.11) &G)—f+LP=AR

where 4, >2. Solving (5.11) for B,, we obtain
4
(5.12) By= 5 {(l— M) P+ Gy}

10 -~ dnnali di Matematica
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Since the minimum of #(z, 0) occurs at o= G,»~ " B]*, we obtain
(5.13) 2w, 0)>2(Gyy 1By, 0)=—Gov 'B'+ 4, P.

From (5.12) we see that B, is an increasing function of P. Consequently, we can
select P sufficiently large so that

(5.14) ~ Gy B+ L, P> M,.

Hence, (5.5) is satisfied. In order to satisfy (5.7) we first observe that for all
m > my==[1/0]+ 1, the derivatives of y, are uniformly bounded by the constants
in (B,) and (B,) since the domains of integration for the mollification do not inter-
sect s,. Thus, for 0<e<d/2 and 0<i< T,(P),

Bg*m -1 022 [0ym Y 02 o2
{””'aza_“ (@, z)} {?’,m(“, Hl) o+ [% (,2,1) + TE (r,2,1) B—x] %}

oz

< {u(P+ 1)} {20 By + vy -+ v5(B16 + 2971Gy)]- (Bi6 4 2971 G<Ad= F

can be achieved by selecting a constant A sufficiently large. Note that the choice
can be made independently of m. From such a choice of A it follows that (5.8) is
valid for 0<2<8/2 and 0<t< T,(P). In particular

(5.15) w0, 1)< At + B,

and since B, << P, it follows that

(5.16) wu(0, 1)< P, O<tcT™*,
where

(5.17) T* = min (T,.(P), T,)
and

(5.18) Ty=A"Y(P—B,).

By a similar analysis, it follows that
(5.19) wa(l, ) <P, O<i<T*,
A straigh forward application of the maximum prineiple implies that

(5.20) W, 1) < P, O<e<«l, 0<t<T*,
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and that
(5.21) TPy>T,.
By an argument similar to the one above we can show that for m > m,

(5.22) — P<wa(o, t), O<e<l, 0<t< Ty,

where T, is independent of m. Setting.
(5.23) T,=min (T, T,),
the result (5.1) is obtained.

REMARK. — From the definition of ¢* we see that mollification of ¢ and ¢* with
respect to kernels having support contained in balls of radins 1/2m will yield the
same functions g, whenever |§|<P since ¢ agrees with ¢* for |§{<P- 1. Conse-
quently, it follows from (4.1), (4.2), and (4.3) that our selection of P and the result
of the Lemma imply that <p’fn in (4.9) can be replaced by ¢,,.

Using the analysis of Lemma 2 of Part T we obtain a similar resuit.

LEMMA 2. — There exists a positive constant ¢ which depends only upon J and

the parameters in the set &= {g,, u(P), i1y Yoy Mss Has ¥y V1 Vay Vay Myy Loy Gy Ly}
such that for m > m,,

(5.24) R .22

The next result is an immediate consequence of Lemma 1 and Theorem 1.1
in [8; p. 419].

LEMMA 3. — There exist positive constants H and e, 0<< e<C 1, which depend
only upon 8, the parameters in &, and the positive distance d, from the boundaries
#=0, =1 such that for m >m, and (2',?), (2",1")e{(z,1): 0<d<r<l~—d,
0<t< T}

(5.25) (3, 1) — wo(@”, ") | < H{|w'— a"|"+ [t'—t"|"%} .

We note that Lemma 3 here differs from Lemma 3 of Part I sinee we do not
obtain a uniform Holder continuity in @, . Consequently, we must use a different
argument here to obtain fthe equi-Hélder-continuity of the s,.

LEMMA 4. — There exists a positive constant O, which depends only upon 4 and
the parameters in ¢, such that for m > m,,

(5.26) |$m(t') — $ult")| < Ol — "2, ¢, 170, Ty]

where a is defined in Lemma 3 for d= 6/4.
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Proor. — From the construction of the s,, it is clear that we may restrict our
attention to the time interval in whieh (4.11) holds. We see that

smlt’ +1/m) sm(t”+1/m)

v
(5.27) J Py W, 1)) dec — f (pm(m,wm(m,t”))dw=—fgl,m(r)dr.

0 0 g

This can be rewritten as

8t +1/m) 8m(t” +1/m) 14
(5.28) f Py W, ') i = — f (@5, (2, 1)) — @2 w,,,(w,t"))}dw—fgm(r)dr.
$m(t” +1/m) 0 1’

Using {4A,) and (C,), we obtain

(5.29) ¢,

Bl e
Sm(t-”‘l‘l/m)
-+ f @@, Wi, ) — @ul, wa(w, t"))|de
84
84

+ f{(pm(m7 w’m(w7 t/)) - ¢m(w, wm(w’ t”))} dm *
0
From (A;) and Lemma 3, we obtain
sm{t” +1/m)
{5.30) f (@, Wi, 1)) — P05 Wi, 37)) | do <y H |~ 2,

o/4

where d in Lemma 3 has been taken as /4. Next, by integrating the differential
equation in (4.9) over the region 0<z<d/4, t,=min(t',")<i<max(t,t")=1,,
we obfain
54 ty s
w,, (0
(5.31) | {@m(®, walz, t,)) — @ul®, walew, 1))} do = Ym0 dr — | gim(t)dT .
0

) [

From Theorem 3.1 [8; p.437] and (A,), (A,), (By), and (B,) it follows that there exists
a positive constant ¢, which depends only upon the parameters in the set ¥ and &
such that

(5.32)

A » §
%(Z,r)]gﬂl, O0<r<T,.

Using (5.32), the result (5.26) follows from (5.31), (5.30), and (5.29).
As a consequence of Lemma 4, we obtain the following result.
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LEMMA 5. — There exists a positive constant T< T, such that
(5.33) O s{t)<1—0.

holds for all m>m, and 0 <t < T. Moreover, for 1/m<t< T, s,, is determined by (4.11).

6. — Existence of a weak solution.

The results of the previous section imply that the w, and s, satisfy the com-
pactness criterion of Ascoli-Arzela. Consequently, there exist subsequences {w, .}
and {s,} such that the s, m' >m,, converge uniformly to a Holder continuous
function s= s(?) defined on 0 <t< T and that the w,, m' >m,, converge subuniformly
to a Holder continuous function w and weakly in the norm of W;%(@Q,) to w. By an
analysis similar to that of Section 6, Part I, it follows that (w, s) is a weak solution
of problem (1.1)-(1.2).
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