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Summary. — Under study is the existence of averaging operalors determined by measurable maps ¢
from a measure space (S, X, p) into an arbitrary Hausdorff topological space T. The map ¢
induces a continuous map ¢° from the space Co(T) into the normed (Banach) function space
L, = Ly(8, Z, n) defined by ¢*(f) = fop for all f& Ou(T). An integral represeniation for such
operators is first studied. The existence is then determined by the existence of an averaging
operator U, for the restriction of ¢ to a certain measurable subset B, of 8. Utilizing a rep-
resentation of Ly(S, X, u) as a Banach function space over a compact extremally disconnected
Hausdorff space S, we are able to give a definition for the concept of plural points and
irreducible map. A significant upper bound is given for the operator U,. Finally conditions
are considered wnder which no bounded pro;ection from L, onto the range of ¢* may ewist.
From a topological poini of view the development is pursued in a general setling. Averaging
operators have recently been used for the study of injective Banach spaces of the type C,(T)
and in non-linear prediction and approximation theory relative to Tshebyshev subspaces of L.

1. ~ Introduction.

Let ¢ be a measurable map from the measure space (S, 2, ) into the arbitrary
Hausdorff topological space 7. Let us assume that ¢ induces a continuous map
from the space Cy(7) of bounded real valued continuous functions on 7 (with the
sup norm topology), into the (as defined below) complete normed Kothe space
L= Ly(8, X, u) defined by ¢*(f)==fop for all fe C,(T). If U is a bounded linear
operator from L, into C,(T) then U is called an averaging operator for the measurable
map ¢ or it is said that ¢ admits the averaging operator U if

Uoge(f) =
for all fe Cy(T) (*).

In Theorem 3 we show that the existence of an averaging operator for the
measurable map ¢ from S into 7, with ¢¢ injective, is determined by the existence
of an averaging operator for ¢, which is the restriction of ¢ to a certain measurable
subset B, of §. This extends the literature (?) to a larger class of spaces.

(*) Entrata in Redazione 1’11 settembre 1975.

(') This definition could readily be made by replacing Oy(T) or L, by other spaces of
functions defined on T’ or § respeetively. For example as in [18], the case is studied for I,
replaced by C(S) where 8 and T are compact Hausdorff spaces.

(2) See [4], [5], [6], [12], and [18]. The analogy of course with our work, is that we have
under investigation, the existence of projections from I,(8, Z, y) onto the range, R(g?).
Results for the historically interesting L (8, 2, #) case are herein obtained.
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Before we can obtain this result (Theorem 3 in Section 3), we first show in
Section 2 how any bounded linear operator from L, into C,(7) may have a so-called
integral representation. This leads to an interesting characterization (Theorem 1) of
averaging operators U as well ag some computational assistance (Proposition 2)
for such operators. In Section 4, significant upper bounds are obtained for the
« representing » finitely additive set functions {y,},.» of U and a significant inequality
is obtained between the norm of U and the norm of its restrietion U, as given in
Theorem 3. This depends much on Theorem 4, which tells us that these set func-
tions may be replaced (via an isomorphism) by regular Borel measures {f},., over
a «relatively nices» exiremally disconnected compact Hausdorff measure space
(S, £, i) with fi a regular Borel measure on the field £ of clopen subsets of S. In
fact L,(8, X, p) and L-(8, f’, &) are isometric and lattice isomorphic. Finally in
Section B, we give conditions on ¢ under which no bounded procection from L, onto
the range of ¢* may exist.

The spaces Lo= L,(S, X, u) on which we base our considerations have had con-
siderable interest (see for example, the many papers in [14]). If M is the collec-
tion of scalar valued u-measurable functions on the measure space (8, X, u), then the
function norm ¢ from M into the extended reals Rt is defined for all f,ge M as

(i) O<olfy<oo; o(f)=0 if and only if f =1 (u almost everywhere) where £ is
the constant function on § taking all s 8 to 0.

(i) o(f) = |wlo(|f]) for all finite scalars o.

(i) o(f+ g)<el(f) + el9)-
(iv) [fl<|g| (@ almost everywhere) on M implies that o(f)<e(y).

We will denote by L,== L,(8, 2, u) the normed linear space of all functions fe M
with o(f) < co: The norm on L, is given by [fl.= o{|f]) and is called the g-norm
of L,. The spaces L, are called normed Kothe spaces.

In general the spaces L, are not complete. However under rather weak conditions,
such as the weak Fatou property they may be made complete (see [14]). We will
assume that L, has this property, that is, the spaces L, are complete in the g-norm,
Such complete normed Kothe spaces are called Banach function spaces. They in-
clude as examples the well-known Lebesgue spaces L%(8,2,u) 1<p<co and the
less well-known but equally important Orliez spaces (see [15], [14], [10], [2]).

2. — Integral representations of operators.

Before proceeding to find conditions under which there exists (or fails to exist)
a bounded projection from L, onto the range of ¢, we need to first give some general
results about bounded linear operators and their integral representations.
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Let U be a bounded linear operator from L, into C(I). Then for each tc 7,
the operator U gives rise to the point linear functionals U,e(L,)* defined by
Uf)= (Uf)(@¢) for all fe L,. In [17] it is shown that there exists a unique fini-
tely additive scalar valued set funetion y, defined on X, where y is in the dual
space (Lg)*, such that Uf)= f fdy, for all feL,: If J, represents the point mass
at te T then in [17], it is shown that for all fe L,

Ut(,f) = (U(f))(t) = <U(f)7 5t> = <f’ U*(61)> .
Thus

<f7 U*(‘st» = <f7 yt>

for all fe L,, that is, U*d,) =y, (3). It is eagy to see that the map now defined
taking teT to y,e(L,)* is confinuous when the weak* topology is placed on the
dual space (Lp)*.

If U is now an averaging operator for the measurable funetion ¢ from § into T
then for feL,,

fy 8= {U(*(f)), 0.0 = Lp*(f), U*(0:)> = <f, [T (p0)> -

Consequently [p¢]*(y,) =6, for all teT. Thus U is an averaging operator for ¢
if and only if [@°*(y:) =6, for all teT.

For such y,, we need to designate its decomposition as yielded in [17] by
Yi1-F yi.: The (sealar) valued set function y,, i3 finitely additive, defined on
Zy={AeX: o(y,)< oo} (y, represents characteristic function of A), vanishes on
p-null gets and g'(y.,) << oo (*). The set function y,, is purely finitely additive,
(scalar) valued, defined on 2, vanishes on g-null sets and its support is contained
in the support of some fe L, Me designates the closure of the span of all Xi-simple
functions in L,.

Thus we have almost shown completely the following theorem.

TaeoREM 1. — If U is o bounded linear operator from L, into C{T), then for each
teT there is a unique y, € (Lo)* such that y,= U*(8,). The operator U and the in-

(*) The operator U* represents the adjoint of U which takes the dual space M(T) of
Oy(T) into the dual space (L,)*. Any appropriate M(T) will do (dependent on the topological
strueture of 7, naturally) just as long as the point mass d, M(T). Of course 6, M(T) if
and only if the point evaluation map &, from C,(T) into the scalars, defined by E&,(f) = f(i),
is continuous.

() Asg in the case of the Lebesgue spaces £ it is natural to define for L, an associate
norm @' as either for feL,, o'(f) = sup{f}fg]du: g€ Ly, olg) <1 or} for y a finitely additive
set funetion on X, as o'(y) = sup {{fdy|:} in unit ball of Me}. Of course if g€ L, and if
dy == gdu then ¢'(y) = o'(f) (see [17]). Analogously L, = {feL,: ¢'(f) < oo} is a Banach
function space (see [14]).
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tegral representation from t to y, are related by

(UD)Y®)= pdf) for te L, and teT
with
|U|=sup{|U.|:teT}.

This map from t to y, is weak*® continuous.

If @ is continuous (5) then U is an averaging operator for the measumble function ¢
from 8 into T if and only if [¢T*(y.)=96,. If the range R(gp of * 18 contained
in Me then U is an averaging operator for ¢ if and only if yﬂoqp L==0, (as elements
f the dual space of O4(T)).

ProoF. —~ The last part is all that is left to check. If R(p°jc Me then
fF () dya=0 (see [17]). Thus for fe L,

<y 8y = <)y 7> = [1(p(6) Apoa = [H) Ay 097 .

Thus as elements of the dual of Cy(T'), 6,= y.i0¢~'. This completes our proof.

We should remark, that the above result is somewhat similar to that of
PrrozyNsx1 in [16]. Also the above proof will be established for even more general
sitnations. In particular C,(T) may be replaced by even more general spaces, for
example, by a Banach space F(T) of funections on 7 where the map from f to f()
is continuous. Such is the case for the space of bounded functions on T under the
supremum norm.

For the case where ¢ maps just C(T) into C(8) (as in [18]) where ¢ is a con-
tinuous map of 8 onto T, the points ¢ € T for which the fiber ¢~1(¢) is a subset in §
of more than one point play an important role in studying averaging operators,
Such points ¢ have been called plural points in T (see [18]). In our study where g,
is defined on L, and ¢ is a measurable map, the concept as defined, is not satisfactory.
Shortly we will redefine this taking into account the measure y. For the time bemg
let P, be that subset of T such that

P, = {teT: card(p~(1)) >1} .

Let B be a Borel subset of T containing P: and let B, = ¢~(B). We assume
that ¢ is measurable with respect to X,, that is f fdy.. exists (as defined in [9]).
We now may give some formulas to eompute {¢*(f), y;> when ¢* hag values in Mo,

(5) Since we have assumed that ¢ induced a continuous map ¢* from Cy(7) into Ly(8, Z, p)
by @¢(f) = fop for all f& C,(T) we have g(fop) < co. Henee ¢ is a bounded linear operator.
Such a situation is rather easy to construct. For example if ¢ is a measurable map then
the map ¢ defined above from O0,(T) into the Lebesgue space £7(S, X, u) is a bounded linear
operator. If up~ is of finite variation (with respeet to Borel partitions 7') then the map ¢°
defined from O,(T) into the Lebesgue space £2(8, X, u), 1 <p < oo, ig again a bounded linear
operator.
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PrOPOSITION 2. — Assume that R(p®)c Me and that ¢ admiis an averaging oper-
ator. Then the following hold.

(1) If te B then <pr(f)y yo> = [0(H) dyea-

B,

(2) If ¢ is surjective and if t¢ B then <(p“(f),‘yt>———f<pe(f) dy.1+ ft).
B,

Proor. — If te B, then 6,(CB)=0 (¢). Thus y,,(¢p~*(CB)) = 0. Moreover if H is
measurable and BN H =0 then y,,(¢~*(H)) = 0. Consequently for {e B,

Py ve> = [() Aon + [92(f) Ao = [0 s
B: (62:) By

This shows statement (1). For statement (2), if ¢ ¢ B, then ¢~(f) is a singleton in 8.
Partition T into the Borel sets B, {¢}, and the set A. Then § is partitioned into sets
B, B,= {p~*({t}}), and ¢~} (4). On 4, y, 0971 =0, s0

Lp*(f)y vy fopg(f) dyia "i“f(Pe(f) dyia.
B, By

The last integral is just f(t) for y,;007*=1 on {t}. This completes the proof.
The assumption in our proposition (and in other results) that E(¢p°) be contained
in Me is reasonable. For example in the class L= L¥ of Orlicz spaces where y
satisfies the so called 4, condition, one has that Me= I, (see [15]).
The result in Proposition 2 for ¢¢(f) may be given more generally for any ke L,.
If i€ B, then

Chyyey ::fhdym + ho=i(t) .
By

3. — Existence of averaging operators.

Let us now consider the question of the existence of an averaging operator for ¢
in terms of the existence of an averaging operator for the restriction ¢, of ¢ to B;.

In particular let B be a Borel subset of T (it need not contain P, at all!) and
let B,= ¢~%B). Since ¢ is measurable, B,€X. A new Banach function space
Lo (By, 21y 1) may be defined as follows. Let X,={ANB;: AeX} and let g
be the restriction of y to Z,. For f a function defined on B; and measurable with
bepect to u;, we may define f on § by f=j on B, and =0 on CB,. Now g,
may be defined for such f by o,(f) = e(f).

Clearly L, is a Banach function space. Let ¢, mapping B, into B be the restric-
tion of ¢ to B,.

(®) By CB we mean T\ B.
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For. U a bounded linear operator from L, into C,(T), we will need the following
two concepts for the next theorem. We will say that the operator U is B extendable

if for every ge C,(B), the map U(gi(g)) in Cy(T) is an extension of g. In particular
if U is B-extendable then ¢f (g) € L,. Motivated by this we will say that ¢ is
determined by B, if for every fe L, such that f|B; == ¢5(g) for some ge Cy(B) there
is g'e O(T) such that f=¢@*(g’). Note that in this case g’ need not be an exten-
sion of ¢,

What may be said if B does definitely contain the subset P, of T? In this case,
a8 we will see in the next theorem, the fact that ¢ is determined by B;, may be re-
placed by the following somewhat weaker statement. We will say that ¢ is weakly
determined by B, if for all fe Ly(8, 2, u) there is ge Cy(B) such that f|B, = ¢i(g)
and if ¢’ is defined on 7' to be ¢'(t)= g(t) for 1€ B and ¢'(t)= f(¢~*(t)) for tc CB
then g'e Cy(T). Let us note that if § and T were both compact spaces and if B is
a closed Borel subset of 7' containing P, then ¢ is always weakly determined by B.

THEOREM 3. — Assume that R(p*)c Me. If ¢ admits an averaging operator U that
is B-extendable, then ¢, admits an averaging operator Uy from Lg (B, &\, p) into O(B)).

Conversely if ¢, admils an averaging operator U, and if ¢° is injective with ¢ deter-
mined by B, then ¢ admits an averaging operator. However if P,C B then ¢ need not
be determined by B, but need only be weakly determined by B;.

Proor. —~ Let U be an averaging operator for ¢ that is B-extendable and let
{¥.}ier be the family of associated set functions as described for Theorem 1. The
operator U from L,(8, X, u) into Cy(7) induces an operator U, from Lo(B,, 2, )
into Cy(B) defined by (U1(f))(t)=ﬁdyt for all fe L, and teB. Since g,(f)<1 im-

B

plies g(f)<1, it follows that | U1Hl< | Ull, that is U, is a bounded linear operator.
1t is elear that (U,(f))(t) = (U(H)(t) for all e B. Thus we have U,[¢i(g)]= Ulgi(g)]llB
where the right side represents restriction to B. Since U iz B-extendable, it follows
that U.¢;(g)]=g for all g C(B). Thus U, is an averaging operator for ¢,.

If it is assumed now that g° is injeetive then to show that ¢ has an averaging
operator U, it is sufficient to show the existence of a projection P from IL.(8, 2, )
onto the range of g¢ (since there exists a one-to-one correspondence between pro-
jections from L, onto R(p¢) and averaging operators from L, into Ci(T). If U, is an
averaging operator for ¢, define P, to be pjoU,: Clearly P, is a bounded projection
operator from L, (B;, 2y, u1) onto R{gp;). Define a bounded linear operator 7' from
Lo(8, 2, ) into L, (By, 2y, ps) by T(f)= f[B, for all feL,. We now may define
the required projection P. For fe L,(8, X, u), define

P(fy=f—P.T(f)— T(f).

Now P(f) = P(f)— P, T(P(f)) — T(P(f)). For all he L (By, Zi, m), it s€CB,, then
h(s)y=0. Consequently (P(f))(s)= (P(f))(s) for all s€ CB,. Moreover for se B,
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h{s)= h{s). Thus

(PLTP(f)(s) = (91 U TP(f))(s) = (TP(f))(5) .

Consequently (P2(f))(s)= (P(f))(s) for all se§, that is, P is a projection.

The range of P and the range of ¢° coincide. For if P(f) = f then P, T(f)— T(f)=0.
Consequently T'(f) e B(¢}). If now ¢ is determined by B, then fe R(g?). Conversely
it f=o(h) for some heC(T), then P{y=f—P,T{(fi—T{f). In this case
P I(fy= T{f)y and thus P(fy={. Therefore B(p*)= B(P).

If we now assume that the subset P, of T is contained in B, then the above
arguments show there is a ge C(B) such that T(f)= ¢i(g). If ¢ is now weakly de-
termined by By, let ¢’ be the function in C,(T) as defined in the definition. Hence
f=¢{(g’) and ¢ is now determined by B,. This completes our proof.

Thus the existence of an averaging operator hag somewhat been characterized
in terms of a smaller, so to speak, averaging operator defined on an appropriate
funetion gpace. Let us now consider more of a reduction type theorem where the
set funetions {y,}.r may be replaced, in some cases, by regular Borel measures
{8} defined over a compact space.

We need to assume that L,= M, (") and that o(yg) < co: The last condition is
needed to insure that there is an f,eL(8, 2, u) such that f, >0 u almost every-
where. This assumption permits us to make use of a spectral type theorem given
in [17]. In particular, let £ be the o-field generated by the compact subsets of the
locally compact Hausdorff space S. Let /i be a measure on X which is finite on com-
pact sets. An adequate function norm § is defined (see below) so that one may
consider the appropriate function space LS(S, 5, ). Every element in LS has
g-compact support. Further let B, be the algebra of essentially bounded functions
in Ly(8, 2, u) and let cl, B, be its closure in L (S, Z, u) (where L= L, for p= g,
as discussed in [14]). In [17], it is shown that

(1) there is a measure space (S, f, 7y (as defined above) such that Lg(8S, X, u)
is isometric and (lattice) isomorphic to Lo(S, z, ).
Moreover if there is an f,e Lo(8, X, u) such that f,> @, u almost everywhere, then

(2) statement (1) holds where now S is a compact extremally disconnected Haus-
dorff space and where u is a regular Borel measure (u(8)<C oo) on the o-field gener-
ated by the clopen subsets of S.

(3) there is an isomorphism @ from el B, onio C(8). Also =0, W almost
everywhere if and only if O(f) =0, & almost everywhere and |f||., ,= [P(f) | In ad-

dition @ takes characteristic functions in ¢l Be into characteristic functions in Cy(N).

(") As pointed out previously this is a reasonable assumption. The Orliez space L, = L¥
with 4, condition have this property (see [15]).
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Let us note that the condition on f,el, given above to demonstrate state-
ments (2 )and(S) does hold rather generally, for example, in any o-finite measure space.

Let 2, denote those clopen subsets in % contained in the compact extremally
dlsconnected space §, which are in one-to-one correspondence with the sets A e,
For every te 1 we may define the finitely additive sealar valued set functions 8,
by ﬁ;(ﬁ):y,(ﬁ) for AcS, AeX,— X. Since we are assuming that Me= IL,, it
is clear that y,=y,,. Note also that ¢'(8;}==¢'(y,) Where

o'(f:) = sup {Iff'dﬂt|: fis a £, simple funetion; 4(f)<1}.
Now for Ael

¢?
plies B,(4)= 0.
Let |f,| represent the variation of §,, that is,

( y=0 if and only if w(4)=0. Consequently #A)=0 im-

18:(8) = sup {| 3y:(4,)|: (4,); finite partition in I}.

Now this variation is finite. In fact if (x),; are a finite set of scalars such that
la;]=1 and such that «,8,(4,)=|f(4,)] then

24| zf(zazmi) dy,<o(g:)e'(ys) < oo.

It is also clear that f, is regular on f Let us see now how /33 may be extended
to a regular Borel measure on £. Since p(ys) < co the ring 2L is dense in the
power set of S, that is, if K and & are respectively compact and open subsets of S,
then there is A € such that KcAc@. In [8), it is shown that such a situation
yields 8, as countably additive on Z and that a unique extension to 5 of B, exists
as a regular Borel measure. Furthermore the variation of the extension (considered
a8 a Borel measure) is finite and eoincides on f with the variation of f#,. For sim-
plicity let us retain f, as notation for this extension.

Let v be the correspondence that takes X simple functions into L simple fune-
tions as now

f(z &; ZA;) dy, =f(2 “tXA’;) ap,.

Since Me= L,, v may be extended to all fe L, as f is then in the closure of
Z-simple functions. Since o'(y,) = o'(8:) < oo, a final limit argument will show that
[fdy.=[fdp, where f= y(f)

Note that what we have just proeceeded to do, could be applied to more general
situations., What is crueial here is that in addition to Me=I1,, we need the
variation |8,] finite, the field 570 dense in the power set of § and the existence of
an f,€ L, such that f,>0, u almost everywhere. If Me= L,, then the above ar-
guments may be applied to f,,. More formally we have shown
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THEOREM 4. — If Ly,= Me and if o(yx5) << oo then there is an extremally discon-
nected compact Hausdorff space S with £, its field of clopen subsets, and i, a regular
Borel measure on X, such that Ly(8, 2, u) is isometric and lattice isomorphic with
Lo(S, £, ). If v is this isomorphism and if U is an averaging operator for g then for
every te 1 there ewisis a regular Borel measure f3; on £ such that

[1ay.=]fas,

where f = p{f) for f€L, and y; is the additive set function associated with U as de-
termined for Theorem 1.

4. — Upper bounds.

We are now in a position to give a reasonable definition of plurality as was in-
dicated earlier., The above result also leads to a definition, for the present context,
of the concept of an irreducible map (see [18] for the concepts in the more restricted
cases).

Again we need to assume that L,—= Me¢ and the existence of an f,e L, such
that f, >0, u almost everywhere. Let U be an averaging operator for ¢.

DerFINTTION 5. — For te T, if g~'(t)eX,, let ¢-'(f) be the associated clopen set
in the Stone space S. The point t & T is called a plural point if

(a) whenever f, is positive on subsets of ¢-'(t) then there is a set Ade (fc)0
such that 4 c@-i(f) and 0< f,(4)< 1.

(b) whenever § is not positive on ¢-(¢) then for the part N of ¢—*(t) on which f,
is negative there is a subset Ade (2'0)(, such that A c N and 0< ﬁt(AA)< 1.

Let Pl, be the set of plural points of T. The measurable map ¢ will be called
irreducible (°) if for Ac S, with u(A)>0 there is a teT such that 0 ¢~(f) C A.

Let us recall that since @ has an averaging operator and since Me¢ = L,, The-
orem 1 says that f,(¢-*(f)) = 1. Also let us note that as we have defined it, saying
that t is a plural point amounts to saying that ¢-'(f) is not an atom for f,. An in-
teresting relation between non atomicity and the Darboux property may be
found in [8].

We now make use of our ideas to establish an upper bound for the variation of
the set functions y, in terms of the norm for U.

(8) Our measure theoretical concept has its topological analogue as the following: the
continuous map ¢ from the topological space S onto the topological space T is irreducible
if for every non-empty open set G is § there is a point {€ T such that 0+ ¢ (1) CG.
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THEOREM 6. — Let ¢ have an averaging operator U and assume that
(1 MQ = Lg;

)

(2) olys) < o3

{3) t is plural;

(4) @ is irreducible;

then [y |(8) < olx)| U} — 1.

Proor. — To simplify the notation in this proof we will replace the operator ¢-’
by & As noted above 3,(&(t)) =1. Plurality of ¢ finds a clopen set A cS such
that 1= f(A4)+ fi(&(t) — 4) where 0+ |B:(A)| £ 1, 05£p,[&(1)— A]s=1. Thus, in
short, there is a clopen set 4 (which may be either A or &(#)— A4) such that for
>0, fd)<e-+ i Actually there is a compact set K c A such that 0< f,(K)<
< 34 e and |B{K)| = |B(K). If B, is positive on &(f), the regularity of f, assures
the existence of a compact set K c 4 such that

IBAE) — Bu(d)| < e+ 1 —Bud).

Since 0 < f,(4) < 1, K may be chosen so that §,(K) 0. In addition ,(K)= f(d) +
+ BUK)—Bd)< e + §. Clearly f(K)=|BK)| = |B.J(K) as B, is countably addi-
tive. If B, is not positive on &(f), let N be the negative part as in the definition.
Again by the regularity of 5,, a compact set K c N may be obtained so that
[BK)—B(N)|< L Again it may be assumed that §,(K)==0. Now §,(K)<f(N) -+
+4<{. Since —f, is positive on N, — f,(K)= |f{K)|= |p.|(K).

Now the regularity of |3,| permits us to pick a clopen set € c 8 such that
KcC and |B)(ONK)<e. Incidentally y,eC(8) and §(y,) < co. A finite pairwise
disjoint family of clopen sets C,c 8\, i, may be chosen such that

BN — o< S B0

Of course §(y,,) < co.
Let o, be scalars such that |e,|==1 and «;5,(C;)=]F,(C,)|. Now

) BISNO) — e < [(Z o 20,) 38:;
(@) [ 208B.< BB + |BAONE) < BUE) + & (7).

Since the map from ¢t to ., is weak* continuous (Theorem 1), it follows that there
is some neighborhood V of ¢ such that for all yeV

(3) 1BI(S\G) — 8<J(Z G‘iXm) ag,;
) JroaB, < BB+ e
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If DelX is the correspondent of O, then ulp~ V)N D]>0. In fact o= (V)N D>
Sty N D. The last set corresponds to £(f) N ¢ which containg K. Now f(K)>0
or else §,(K)=0 which is a contradiction. Thus

AEHNGI>0 and  ule (V)N TV]>0.

The irreducibility of ¢ assures g€ T such that p~*g)£0 and ¢zi{(g)ce (V)N D
Hence gV and

BUSNG) —e<[TozoBes  [rodBy< BIE) + .

Since g~ g)c D, &q)c G and

[reab,= | 100+ BulE@)]

C—&(a)

Consequently f,(0)= ,(C—&(g)) + 1, and by (4)

| 2088,=BA0)~ 1< BE) +e—1
O—&a)

Recall that 0 < |B,(K)| == |f:|(K)< 3+ ¢&. If §,(K)< 0 for sufficiently small & < 0
then

BllONE@]> B K) + & — 1| > |flK)| —

If 0< B (K)<e-+ % for sufficiently small &> 0, then

IBl(ONE(D) < IBLONE@]] > § — 3e > [B(K)| — 3¢

since

BLONE@ < BAKE)+e— 1< §+2e

Thus in all cases for sufficiently small ¢> 0

[BJIONE(@)] > |84/ (K

Now
|0 > sup{|[fay,|: fe Mg} =
= sup {|3 Bl A )a|: f= S, a Z.-step tunction, o(f)< oo} .

Picking sealars f,, |f;]=1 and f,p{(4,)= |y,(4,)] we have

(E XAPﬁ) 003 = elxs) -
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Since &, is dense in the power set of J, we have

1) > -(—;—5 [18(8N0) -+ [Bal(ONE(@) +1].
Thus

1
o(xs)

17 >—1~) [ [ (Sras) a1~ 46]> 2= [188) +1~ 5¢]..

olxs

It finally follows that |v,{(8)<e(ys)}| U] —1 and our proof is now complete.

We now have the answer to a rather natural question. What is the relation
between the norm of the averaging operator U and the norm of U, as defined above.
We quickly obtain it below.

COROLLARY 7. — Assuwming the hypotheses of Theorem 8 and assuming that @
and g, admit the averaging operators U and U, respectively, then

10O <[tz 1U] —1]

where B = elPZq) as needed for U,.

Proor. Following through the proof of Theorem 3 we see that (Uy(f))(t)=
=|[fdy,. Then pick fe 0(S), 0<f<1 with [fd,>|B.| —e where &> 0 is given,
B,

¢t is a fixed point in By, and |8, = |8./(S). Now if G is an open set containing ¢
and if re G N Pl,, then the theorem yields

o4 U] —1>18,1(8)> [fap,

The weak* continuity of the map that takes r to v, (restricting to & if necessary)
yields

oz 1T —1>[fag, > 18| —e
for all re@. Now for every teecl Pl, it follows that |B.]<o(xs)|U|—1. Since
(Ut = [Fay,= [Fap.
B, By
it follows that
1T < IFlesup {IB,]: te d P1{< |f|a[o(xs)| U] —1] .

This completes the proof.
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5. — Projection problem.

We are now led to the consideration of obtaining conditions on ¢ with which
we will know that no bounded projection will exist onto the range of ¢°. For this
remaining section we will need to assume that L, is reflexive.

A function fe L, is said to be of absolutely continuous norm if the sequence
{o(f.)}uex 1s monotonically decreasing and convergent to zero whenever the sequence
{futnew € L, is monotonically decreasing and pointwise convergent u almost every-
where to zero with fi<|f].

Let Lj represent all fe L, which are of absolutely continuous norm. It can be
shown that L is a norm closed order ideal in I, (see [19], Chapter 15 for its signi-
ficance). For our purposes, its significance will be in its determination of the reflexi-
vity of L,.

The function norm ¢ is said to be absolutely continuous if L,= Lj. The space L,
is reflexive if and only if both o and ¢’ are absolutely continuous and ¢ has the
weak Fatou property.

Now we will assume that L, is identified with Ly and R(¢®) is considered as a
subset of L[L7, C] the set of bounded linear operators from Lj into the complex
scalars C, or as a subset of Lj: The following operators will be needed.

Let U be an arbitrary element of L[L;, C]. For E in a partition & of 2, and for
fe Ly, define the operator Ugze L[L,, C] by

UR(f) U[gfdu) A

and define the linear operator Age L[y, Ly] by

Ee§

Il )
As(i=fe= 2\ |—= .
8(f) =Ts (E‘M(E)d‘u XE
We may also define

Ax(f) = l;(-lﬁ(ffdy) 5.

E

The function norm p is said to be weakly leveling if for each partition & in 2,
o(fe)<e(f). All well known Banach function spaces such as the Orlicz spaces (and
in particular the Lebesgue spaces) have weakly leveling function norms. In [11]
this concept was referred to as ¢ having property (J). The present terminology ap-
propriate in comparison to the concept of leveling as discussed in [10].

If R(g®) is closed, we will let P be a bounded projection of L[Lj, C] onto R(¢).
Thus if P* is the adjoint of P, then P* is a bounded linear map from L7 into Lg.
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Asking that R(¢°) be closed is not much of an assumption. Specifically this occurs
when ¢ admits an averaging operator.

Any linear operator K from L} into L, may be written (see [19]) as
K(f)y= f gfdu for some g€ Ly, = L;. The important assumption here is that for a
certain class of operators K, g may be chosen in R{¢f).

THEOREM 10, — Assume the following conditions
(1) L, is reflewive with (Ly)* = Lg,.
(2) R(¢") is closed;
(3) o' has the weak leveling property;
(4) For every B & there is fye O(T) such that

Talf) = <o (fa), (= [9*(Fe) )
Then either ¢° is surjective or no bounded projection P exists from L8, 2, u) onto
R(¢®y such that
PlUAgl=P(U)Ag.

In particular either ¢° is surjective or no bounded projection P from Ly onto R(¢°)
exists such that P* commutes with Ay.

Proor. — If ¢ is not surjective, let P be a bounded projection of L[Ly, C]
onto R(¢®) with P[UA¢]= P(U)4g. Now

Udg(f)=U [% (;,‘(%”jff i ) ”E’]
By

1 1
= zs:,u(Ez) Ug(f) =%m <p(fu), 1)+

i

Thus if A= 3 (1/u(B,)) f5, then UAg(f)= {¢’(h), f>. Consequently UAge E{¢®) and
I3

P[UAg]= UAg. Since ¢’ has the weak leveling property, we obtain from [11],

that Ag(f) converges to f in the ¢ norm as & gets finer. Thus

lién PIUAgIf)y = U

and so

li{{’n PLUAsI() :lism P(U) Ag(f) = P(U)() .

Hence P(U)= U which contradicts the assumption of ¢° being not surjective.
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To complete the proof we need show that if P* commutes with A4, then
P{UAgl= P(U)4g. Now

(PLUAgL, 1 = (Udigy P> = (U, S — f P dugm>
3 H(Ez)

Ei

1 " N " 1
= (U, 3 i AnPH > = U, P [3 w5

1
— B0, 35 i Fau > = (P(U) Ags 1.

Thus P[UAg]= P(U)4g.

i
(2]
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