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Summary. - Under study is the existence o/averaging operators determined by measurable maps q~ 
/rom a measure space (S, Z, re) into an arbitrary Hausdor]] topological space T. The map 
induces a continuous map ~ / tom the space Cb(T) into the no~'med (Banach) /unction space 
L o = Lq(S, 2:, #) de/ined by q f ( ] ) = / o ~  /or all ]~ Cb(T). A n  integral representation/or such 
operators is first studied. The existence is then determined by the existence o/ an averaging 
operator b~ /or the restriction o/ ~ to a certain measurable subset B 1 o / S .  Utilizing a rep- 
resentation o/Le(S,  2, tt) as a Banach /unction space over a eompaet extremally disconnected 
Hausdor]/ space ~, we are able to give a de/initiou /or the concept o /p lura l  points and 
irreducible map. A signi/icant upper bound is given/or the operator U1. Einally conditions 
are considered under which no bounded pr%eetion ]rom Lq onto the range o/ q~ may exist. 
From a topological point o /v iew the development is pursued in a general setting. Averaging 
operators have recently been q~sed /or the study o/in]eetive Banaeh spaces o/ the type Cb(T ) 
and in non-linear prediction and approximation theory relative to Tshebyshev subspaees o/Y~.  

1 .  - I n t r o d u c t i o n .  

Le t  T be a measurable  m a p  f rom the measure  space (S, ~ ,  #) into the  a rb i t r a ry  
Hausdorf f  topological  space T. Le t  us assume t h a t  cf induces a continuous m a p  

f rom the space Cb(T) of bounded  real va lued continuous functions on T {with the  
sup n o r m  topology),  into the  (as defined below) complete  no rmed  KSthe  space 

Lq~-L0(S,  X, #) defined b y  ~0~(f)~ fo~0 for all ] ~  Cb(T). I f  U is a bounded linear 
opera tor  f rom Lo into C~(T) then  U is called an averaging operator for the  measurab le  

m a p  ~ or i t  is said t ha t  ~ admi ts  the averaging operator U if 

~ro~ ( l )  = t 

for all f e C~(T) (1). 

I n  Theorem 3 we show t h a t  the  existence of an averaging opera tor  for the  

measurable  m a p  ~ f rom S into T, with ~ injective, is determined b y  the  existence 
of an  averaging opera tor  for g1 which is the  res t r ic t ion of ~ to u certain me~surable  

subset  B~ of S. This extends the l i terature (~) to a larger class of spaces. 

(*) Entrata in Redazione 1'11 settembre 1975. 
(1) This definition could readily be made by replacing Cb(T) or ~ by other spaces of 

functions defined on T or S respectively. For example as in [181, the case is studied for JLQ 
replaced by C(S) where S and T are compact Hausdorff spaces. 

(2) See [41, [5], [61, [121, and [181. The analogy of course with our work, is that we have 
under investigation, the existence o~ projections from Lo(S, X,/~) onto the range, R(~). 
Results for the historically interesting L¢~(S, 2:, #) case are herein obtained. 

3 - Anna~i eli Matematica 
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Before we can obtain this result (Theorem 3 in Section 3), we first show in 
Section 2 how any bounded linear operator from L~ into Cb(T) may have a so-called 
integral represer,.tation. This leads to ~n interesting characterization (Theorem 1) of 
averaging operators U as well as some computational assistance (Proposition 2) 
for such operators. In  Section 4, significant upper bounds are obtained for the 
~ representing ~ finitely additive set functions {Yt}t~r of U and a significant inequality 
is obtained between the norm of U and the norm of its restriction U~ as given in 
Theorem 3. This depends much on Theorem 4, which tells us tha t  these set func- 
tions may  be replaced (via an isomorphism) by regular Borel measures {flt}t~T over 
a (~relatively nice ~> extremally disconnected compact Hausdorff measure space 
(~, ~,  ~) with ~ a regular Borel measure on the field 22 of clopen subsets of ~q. In  
fact L~(S, X, #) and L-(~, ~,  ~) are isometric and lattice isomorphic. FinMly in 
Section 5, we give conditions on ~? under which no bounded proeection from L~ onto 
the range of ~0 ~ may  exist. 

The spaces Le-~ L~(S, ~, #) on which we base our considerations have had con- 
siderable interest (see for example, the many papers in [14]). I f  M is the collec- 
tion o] scalar ~aIued #-measurable ]unctions on the measure space (8, 2:, #), then  the 
/unction norm q from M into the extended reals R + is defined for all ], g e M as 

(i) 0 < ~ ( / ) < o o ;  ~ ( ] ) = 0  if and only if ] ~ C  (# almost everywhere) where ~ is 
the constant  function on S taking all s ~ 8 to 0. 

(ii) ~(a])----[,ko(I][) for ~11 finite scalars ~. 

(iii) ~ ( ] +  g)<~o(]) + ~(g). 

(iv) It]<lg[ (# almost everywhere) on M implies tha t  #(])<~o(g). 

We will denote by L~ ~ Le(S, 27, #) the normed linear space of all functions ] E M 
with ~o(])< oc: The norm on Lo is given by  II]lI~= ~(I]I) and is called the o~-norm 
of Le. The spaces Le are called normed KSthe spaces. 

In  general the spaces L~ are not complete. However under rather weak conditions, 
such as the weak Fa tou  property they  may  be made complete (see [14]). We will 
assume tha t  L~ has this property, tha t  is, the spaces LQ are complete in the ~o-norm. 
Such complete normed K6the spaces are called Banach function spaces. They in- 
clude as examples the well-known Lebesgue spaces £~(S, X, #) 1 < p  < oo and the 
less well-known but  equally important  Orlicz spaces (see [15], [14], [10], [2]). 

2. - Integral representations of  operators. 

Before proceeding to find conditions under which there exists (or fails to exist) 
a bounded projection from Le onto the range of ~e, we need to first give some general 
results about bounded linear operators and their integral representations. 
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Le t  U be a bounded linear opera tor  f rom Ls into C~(T). Then for e~ch t ~ T, 
the  opera tor  U gives rise to the  point linear ]unctionats U~e(Ls)* defined b y  
U,(])-~ (U(]))(t) for ~ll ]6L~°  I n  [17] it  is shown tha t  there  exists a unique fini- 
te ly  ~ddit ive scalar va lued set funct ion y~ defined on X~ where y is in the  dual  

space (Le)*, such t h a t  U~(])-~f]d~,~ for all f eLe :  I f  ~ represents  the point mass 
at t e T  then  in [17], i t  is shown tha t  for all ]eLs  

Thus 

~,(1)--- (v(t))(t)---  < ~Y(]), a,>---- <t, ~y,(a,)>. 

<t, v,(a,)> = <], r,> 

for all I s L e ,  t ha t  is, U*(~ ) -~  7t (~). I t  is easy to see t ha t  the m a p  now defined 
tak ing  t e T to yt ~ (Le)* is continuous when the  weak* topology is placed on the  
du~l space (Le)*. 

I f  U is now ~n ~veraging opera tor  for the measurgble  funct ion ~0 f rom S into T 

then  for f s Le, 

<], a,>--  <u(m~(t)), a ,>--  <m~(1), ~y,(a,)> = <t, [m~]*(r,)>. 

Consequent ly  [~0~]*(?~)= 8~ for all t E T. Thus U is an averaging opera tor  for 
if and  only if [q~]* (~ )=  ~ for all t e T. 

Fo r  such ?~, we need to designate i ts  decomposi t ion as yielded in [17] b y  
~ ,~+y~,~:  The  (scalar) va lued  set funct ion yt,x is finitely additive,  defined on 

27o = {A s X :  Q(ZA)< o~} (ZA represents  characteristic ]unction of A),  vanishes on 
g-nul l  sets and ~ ' (~ ,~ )<  oo (4). The set function yt,a is purely  finitely additive~ 

(scalar) valued,  defined on 27, vanishes on /,-null sets and its suppor t  is contained 

in the  suppor t  of some ] ~ Le~Me designates the  closure o] the span o] all Zo-simple 
]unctions in Ze. 

Thus we have  a lmost  shown completely  the  following theorem.  

TI=IEOI~E~I 1. - 1] U is a bounded linear operator ]rom Le into Cb(T), then ]or each 
t ~ T there is a unique y , s  (Le)* such tha{ ~'t---- U*(8,). The operator U and the in- 

(s) The operator U* represents the adjoint of U which takes the dual space M(T) of 
C0(T ) into the dual space (/)e)*- Any appropriate M(T) will do (dependent on the topological 
structure of T, naturally) just as long as the point mass a t E M(T). Of course ~, ~ M(T) if 
and only if the poi,nt evaluation map ~ from C~(T) into the scalars, defined by ~t(/) =/(t), 
is continuous. 

(4) As in the case of the Lebesgue spaces ~ it is natural to define for L e an associate 
~orm p" as either for ]~LQ, e'(])== sup{fl]gld#: g~Le, e(g)<1 or} for 7 a finitely additive 
set function on 270 as e'(Y) = sup {t~]d~,l: ] in unit ball of Me}. Of course if g e Z e and if 
dy = gdl~ then e'(Y) : P'(]) (see [17]). Analogously Lq,= {]eLq: p'(])< oo} is a Banaeh 
function space (see [14]). 
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tegral representation from t to yt are related by 

( U ( f ) ) ( t ) :  ~ ( f )  for t~Le  and t ~ T  

with 

II v i i  = s u p  {[I ll : t e T }  . 

This map from t to ~,~ is weak* continuous. 
I f  ~v" is continuous (5) then U is an averaging operator for the measurable function q~ 

from S into T if  and only if  [ ~ ] * ( ~ t ) =  (~t. I f  the range R(q~ ~) o] cf ~ is contained 
in Me then U is an averaging operator for ~ if and only i] yiPq)-%= Gt (as elements 
f the dual space of C~(T)). 

P R o o f . -  The last  p a r t  is all t ha t  is left  to check. I f  R(~e) c M e  then  

fF (~° ( f ) )d r t ,~=  0 (see [17]). Thus for f s L e  

<f, r,> dr,,, 

Thus  as elements of the dual  of Cb(T), (5t = yl,p~v-L This completes our proof. 
We s h o e d  remark ,  t ha t  the  above  result  is somewhat  similar to t ha t  of 

PELCZYSSXZ in [16]. Also the  above  proof will be established for even more  general  
situations. I n  par t icular  Q(T) m a y  be replaced b y  even more  general spaces, for 

example ,  b y  a Banach  space F (T)  of functions on T where the  m a p  f rom f to f(t) 
is continuous. Such is the  case for the space of bounded  functions on T under  the  
sup r em um  norm. 

Fo r  the  case where g~ maps  jus t  C(T) into C(S) (as in [18]) where ~ is a con- 

t inuous m a p  of S onto T, the points t ~ T for which the fiber ?-:( t)  is a subset  in S 
of more  than  one poin t  p lay  an i m p o r t a n t  role in s tudying averaging operators.  
Such points  t have  been called plural points in T (see [18]). I n  our s tudy  where qe 

is defined on Zq and ~ is a measurable  map ,  the  concept  as defined, is not  sat isfactory.  
Short ly  we will redefine this taking into account  the  measure  ~. For  the  t ime being 
let  P~ be  t h a t  subset  of T such t h a t  

= {t e T :  > 

Le t  B be a Borel  subset  of T containing P :  and  let  B~= ~-~(B). We assume 

tha t  ~ is measurable  wi th  respect  to 270, t h a t  is f/dy,,~ exists (as defined in [9]). 
We  now m a y  give some formulas  to compute  (~o(f), y~) when ~ has values in Me. 

(5) Since we have assumed that ~ induced a continuous map ~ from C~(T) into Ze(S, 2, I~) 
by ~(]) = ]o~ for all / ~  Cb(T) we have e(/o~) < 0o. Hence ~0 ~ is a bounded linear operator. 
Such a situation is rather easy to construct. For example if ~ is a measurable map then 
the map ~0 ~ defined above from C5(T) into the Lebesgne space £~(S, 27,/~) is a bounded linear 
operator. I f / ~ - 1  is of finite variation (with respect to BoreI partitions T) then the map ~ 
defined from Cb(T ) into the Lebesgue space £~(S, Z,/~), 1 < p  < co, is again a bounded linear 
operator. 
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PRoyosz~zo~ 2. - Assume that R(qo ~) c _Me and that qa admits an averaging oper- 
ator. Then the following hold. 

(1) I f  t e B  then (~ ( f ) ,  7~) :f~o(f)dy~.l. 
B~ 

is and then (f) d (2) I f  q~ surjective if t ~ B  <~(1) ,7~)=f9~ y ~ + f ( t ) .  
B~ 

PRooP. - I f  f e B ,  then 5~(CB)---- 0 (~). Thus y~,~(~0-~(~B)) ~ 0. Moreover if H is 
measurable and B (3 H ~ 0 then ~t,1(q~-l(H))~ O. Consequently for t e B ,  

This shows s ta tement  (t) .  Fo r  s ta tement  (2), if t ~ B, then  ~-~(t) is ~ singleton in S. 
P~rt i t ion T into the Borel  sets B, {t}, and the set A. Then  S is par t i t ioned into sets 

B~, B2 : {~0-~({t}}), and cy-l(A). On A, 7 t ,p~  -~ ~ 0, so 

B~ B2 

The last integral is just  ](t) for ~,~,1o~-1~ 1 on (t}. This completes the proof. 
The assumption in our proposit ion (and in other results) tha t  R(~ ~) be contained 

in Me is reasonable. For  example in the class Z :  L v of Orticz spaces where 
satisfies the  so called d~ condition, one has tha t  M e ~  Le (see [15]). 

The  result  in Proposit ion 2 for ~ ( f )  ma y  be given more generally for any  h E Le. 
I f  t e B, then 

B~ 

3. - Existence of  averaging operators. 

Let  us now consider the question of the existence of an averaging opera tor  for 
in terms of the  existence of an averaging operator  for the restrict ion ~1 of ~ to B1. 

In  par t icular  let  B be ~ Borel  subset of T (it need not  contain P~ at  alt!) and 
let  B I :  ~-I(B). Since ~ is measurable, B I 6 Z .  A new Ba.nach funct ion space 

LQt(B~, ~ ,  I~) m a y  be defined as follows. Le t  2:1 ~-- {A N BI: A ~ 27} and let  #1 
be the restrict ion of # to 271. For  ] a function defined on B1 and measurable with 
bepect  to /~i, we may  define ] on S by  ) ~ ]  on B1 and ] _ ~ 0  on CB1. 5Tow ~1 
m ay  be defined for such f by  e~(f)-~ ~(]). 

Clearly Le~ is a Banach function space. Le t  ~1 mapping B~ into B be the restric- 
t ion of ~ to B1. 

(e) By CB we mean TN.B. 
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F o r  U a bounded linear operator  from L~ into Cb(T), we will need the following 
two concepts for the next  theorem. We will say tha t  the operator  U is B extendable 

if for every g e C~(B), the  map U(9~(g)) in C~(T) is an extension of g. In  part icular  
if U is B-extendable  then  ~,~ (g)~ L~. ~Iotivated by  this we will say tha t  ~ is 
determined by B1 if for every / e L e  such tha t  /IBI-~ ~(g) for some ge C~(B) there  
is g'e C~(T) such tha t  / =  ~(g ' ) .  l~ote tha t  in this case g' need not  be an exten- 
sion of g. 

W h a t  m a y  be s~id if B does definitely contain the subset P~ of T? In  this case, 
as we will see in the next  theorem, the fact  tha t  ~ is determined by  B1, may  be re- 
placed by  the following somewhat weaker s ta tement .  We will say tha t  ~ is weakly 
determined by BI if for all /~LQ(S,X~#) there  is g ~ C~(B) such t h a t / I B ~ - ~  ~(g) 
and if g' is defined on T to be g'(t)-~ g(t) for t e B  and gqt)=/(q~-~(t)) for  t~  CB 
then g ' e  C~(/'). Le t  us note  tha t  if S and T were both  compact  spaces and if B is 
a closed Borel  subset of 1 ~ containing P~ then ~ is always weakly determined by  B~. 

TEEO~EI~I 3. - -  Assume that R(~ ~) c Me. I / ~  admits an averaging operator U that 
is B-extendable, then of 1 admits an averaging operator U~ from Lo~(BI~ ~,1~ #1) into C(B,). 

Conversely i /91 admits an averaging operator U1 and if 7> ~ is injective with q~ deter- 
mined by B1 then cf admits an averaging operator. However i/_P~ c B then ~ need not 
be determined by B~ but need only be weakly determined by B1. 

PnooF.  - Le t  U be an averaging operator  for ~ tha t  is B-extendable  and let 
{~2t}te T be the family of associated set functions as described for Theorem 1. The 
operator  U from Le(S~ X~ #) into C~(T) induces un opera, tor  U1 f rom Le(B1, L],/~1) 
into CgB) defined by  (U~(/))(t)----~]dyt for all / ~ L ~  and t e B .  Since Z~(/)-<] im- 

B~ 
plies ~(])~<1, it follows tha t  liUlll< ]IUI!, t ha t  is U1 is a bounded linear operator.  
I t  is clear t ha t  (Ul(]))(t) ~- (U(])}(t) for all t e B. Thus we h~ve U~[~(g)] = U[~(g)]IB 
where the right side represents restr ict ion to B. Since U is B-extendable,  i t  follows 
tha t  Ul[~(g)]-----g for all ge  C(B). Thus U1 is an averaging operator  for %. 

I f  it  is assumed now tha t  ~ is injective then to show tha t  ~ ha.s ~n averaging 
operator  U, it is sufficient to show the existence of a projection P from L~(8, X, #) 
onto the range of ~s ~ (since there  exists ~ one-to-one correspondence between pro- 
jections f rom L o onto R(~ ~) and averaging operators f rom L~ into C~(T). I f  U1 is an 
averaging operator  for %,  define P1 to be ~ o  U~: Clearly P1 is a bounded project ion 
operator  f rom Le~(B1, X1, ft~) onto R(F~). Define a bounded linear operator  T f rom 

Le(S, X, #) into Ls.(B1, X1, #1) by T(/) = fIB1 for all / ~ Le. We now may  define 
the required project ion P.  For  f ~Le(S, X, #), define 

P(f) = / -  P1T(/) -- T( / ) .  

~ o w  P~(/) = P( / )  - P1 2 (P ( / ) )  - T ( P ( / ) ) .  F o r  all h e L,~(B1, 21, #1), if s e CB1, t h e n  

h ( s ) = 0 .  Consequently (P~(/))(s)= (P(/))(s) for all s ~ C B ,  ~[oreover for s e B l ,  
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h(s)-= h(s). Thus 

(P~TP(f))(s) = (~ G T~(f))(s)= (T~(/))(s). 

Consequently (P~(f ) ) (s )=  (P(f))(s) for all s ~ S, tha t  is, P is a projection.  
The  range of P and  the range of ~ coincide. For  if P(f) ~ f then P, T ( f ) -  T(]) = O. 

Consequently T(f )~  R(q~). I f  now ~ is determined by  B, then  ] 6 R(~ 0. Conversely 

if ] = ~ ( h )  for some h~C(T) ,  then  P(f) ~-- ] - -  t), T(f) -- T(]). I n  this case 
P,T( f )  = T(f) and t h u s  P(]) -~ f. Therefore  R(~ °) = R(P) .  

I f  we now assume tha t  the subset  P~ of T is conta ined  in B, then the above  

a rguments  show there is a g e C(B) such tha t  T ( f ) :  ~(g).  I f  ~0 is now weakly de- 
te rmined  b y  B, ,  let g' be  the funct ion in Cb(T) as defined in the definition. Hence  

e( f~ f ~ ~01 g ) and ~0 is now determined by  B,.  This completes our proo]. 
Thus the  existence of an averaging opera tor  has somewhat  been character ized 

in t e rms  of a smaller, so to speak, averaging opera tor  defined on an appropr ia te  

funct ion space. L e t  us now consider more  of a reduct ion t ype  theorem where the  
set  functions {Yt}l~ m a y  be replaced, in some cases, b y  regular Borel  measures  

{flt}i~T defined over  a compac t  space. 
We  need to assume that L e - -  Ms (7) and that P(Zs)< oo: The last  condition is 

needed to insure t ha t  there  is an fo6Lo(S, X, #) such t h a t  f o >  0 # a lmost  every- 
where. This assumpt ion  permits  us to make  use of a spectral  t ype  theorem given 

in [17]. I n  part icular ,  tet  ~ be  the  s-field genera ted by  the  compac t  subsets  of the  
locally compac t  Hnusdorff  space ~. Le t  ~ be  a measure  on ~ which is finite on com- 

pac t  sets. An udequate  funct ion norm 6 is defined (see below) so t ha t  one m a y  

consider the appropr ia te  function space L~(~, 2_. ~, ~). E v e r y  element in L~ has 

s -compac t  support .  Fu r the r  let Be be the algebra of esse~tially bounded functions 
in I, dS ,  X, #) gnd let cl~Bo be its closure in L~(S, ~Y, #) (where L~ ~ Ls for ~ ~- ~ 

as discussed in [l~j).  I n  [17], i t  is shown tha t  

(1) there is a measure space (S ,~ ,  ~) (as defined above) such that Lo(S, X, #) 
is isometric and (lattice) isomorphic to Ls(S, ~Y,̂  #)." 

Moreover if there is an fo E Le(S, ~Y, #) such that fo ~> O~ # almost everywhere~ then 

(2) statement (1) holds where now S is a compact extremally disconnected Haus- 
dorff space and where # is a regular Borel measure (#(S)< oo) o~ the ~-field gener- 
ated by the clopen subsets of ~. 

(3) there is an isomorphism ~ ]rom c lubs  onto C~(S). Also ] ~ 0 ,  /~ almost 
everywhere i] and only i] q)(]) 0, p almost everywhere and Ii]1[ ~.~ ~- 1[ qb(f)I~ oo,,. In  ad- 
dition q5 takes characteristic ]unctions in cl¢oBe into characteristic ]unctions in C~(S). 

(~) As pointed out previously this is a reasonable assumption. The Orlicz space L e = /5  ~ 
with A 2 condition have this property (see [15]). 
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Let  us note tha t  the condition on ]0 e Lq given above to demonstrate state- 
mcnts (2) and (3), does hold rather generally, for example, in any a-finite measm'e space. 

Let  2~ c denote those clopen subsets in ~, contained in the compact extremally 
disconnected space ~, which are in one-to-one correspondence with the sets A ~2:. 
For  every t a T we may  define the finitely additive scalar valued set functions fl~ 
by  fit(A)= y~(-~) for ~ a ~ ,  A e Z o =  2:. Since we are assuming tha t  M e =  L~, i t  
is clear t ha t  ~, ~ ~,.~. Note also tha t  @'(fit)= @'(yt) where 

@'(fit) = sup {]ffdfl,]: ] is a ~ simple function; ~(])<1}.  

:Now for ~ e~¢ ,  ~ ( ~ ) =  0 if and only if #(A)= O. 
plies f~()±)= 0. 

Let  Ifltl represent the variation of ft, tha t  is, 

Consequently ~(A)-= 0 ira- 

If~l(~) = sup {I~(A~)I= (A~)~ finite partition in 27}. 

Now this variation is finite. In  fact  if (~)~x are a finite set of scalars such tha t  
]~] = 1  and such tha t  ~f~(A~)-----]fit(A~)l then 

I t  is also clear tha t  f t  is regular on ~ .  Let  us see now how ~, may  be extended 
to a regular Borel measure on ~. Since @(Xz)< oc the ring 2~ is dense in the 
power set of ~, tha t  is, if K and G are respectively compact and open subsets of ~, 
then there is ] E ~  such tha t  K c ~  c G. In  [8], it is shown tha t  such a situation 
yields f~ as countably additive on 2~ and tha t  a unique extension to ~' of f ,  exists 
as a regular Borel measure. Fur thermore  the variation of the extension (considered 
as a Bore] measure) is finite and coincides on 2~ with the variation of f , .  For  sim- 
plicity let us retain f ,  as notat ion for this extension. 

Let  ~ be the correspondence tha t  takes Z simple functions into ~.~ simple func- 

tions as now 

Since Me-~Le ,  F may  be extended to all ] e L e  as ] is then in the closure of 
Z-simple functions. Since @'(~)= @'(fit)< c¢, a final limit argument will show tha t  

where ?=  
lqote tha t  what  we have just  proceeded to do, could be applied to more generM 

situations. W h a t  is crueiM here is t ha t  in addition to Me = Le, we need the 
variation ]ftl finite, the field Z~ dense in the power set of • and the existence of 
an ]o ~ L~ such tha t  ]o > 0, # almost everywhere. I f  Me ~ L~, then the above ar- 
guments may  be applied to f,.1. l~Iore formally we have shown 
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THEO~E~ 4. -- I] LQ-~- Me and i/ @(Zs)< c ~  then there is an extremally discon- 
nected compact Hausdor~] space ~ with ~, its ]ield of clopen subsets, and ~, a regular 
Borel measure on ~ such that Lq(S, Z~ #) is isometric and lattice isomorphic with 
Le(~, ~, ~). I] ~f is this isomorphism and i] U is an averaging operator/or q: then/or 
every t ~ T there exists a regular Borel measure fi~ on ~ such that 

where f :  ~f(/) /or /~  Le and yt is the additive set ]unction associated with U as de- 
termined ]or Theorem 1. 

4. - Upper bounds .  

We are now in a posit ion to give a reasonable definition of plm'al i ty  as was in- 
dicated earlier. The above  result  also lends to a definition, for the  present  context ,  

of the  concept  of an irreducible m a p  (see [18] for the concepts in the  more  res t r ic ted 

caseS). 
Again we need to assume tha t  Z~ = Me and the existence of an io + Le such 

t ha t  ]0 > 0, # a lmost  everywhere.  Le t  U be un averaging operator  for ~. 

DEFIi~ITIO~ 5. -- ~ o r  t e T ,  if ~-~( t )eZo,  let  q~-l(t) be  the  associated clopen set  

in the  Stone space S. The  point  t e T is called a plural point if 

(a) whenever  fl, is posi t ive on subsets of ¢-~(t) then  there is a set 2: e (~)o  

such t h a t  ~ c @-~(t) and  0 < fl~(A) < 1. 

(b) whenever  fl is not  posit ive on @-~(t) then for the p a r t / V  of @-l(t) on which fit 

is negat ive  there is a subset  A e (~)o such t ha t  ~ c 2i and 0 < fit(A) < 1. 

Le t  PI+ be the set o] plural points o] T. The measurab le  map  ~ will be  called 
irreducible (s) if for A c S, with #(A) ~ 0 there is a t e T such t ha t  0 ¢ ~-l(t) c A. 

L e t  us recall t h a t  since ~ has an averaging opera tor  and  since Me ~ L.e, The- 

orem 1 says t h a t  fit(¢-l(t)) -~ 1. Also let  us note  t h a t  as we have  defined it, saying 

t ha t  t is a p lural  point  amounts  to saying t ha t  ¢-1(t) is not  an a t o m  for fit. An in- 
terest ing relat ion be tween non a tomic i ty  and  the  D a r b o u x  p rope r ty  m a y  be 

found  in [8]. 
We  now m a k e  use of our ideas to establish an upper  bound for the  var ia t ion  of 

the  set functions yt in te rms  of the norm for U. 

(s) Our measure theoretical concept has its topological analogue as the following: the 
continuous map ~ from the topological space S onto the topological space T is irreducible 
ii for every non-empty open set G is S there is a point t ~ T such that O ¢ ~-l(t)c G. 
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THEOlCE~ 6. -- Let 9 have an averaging operator U and assume that 

(1) M~-~ L~; 

(2) q(zs) < o~; 

(3) t is p lura l ;  

(4) ~0 is irreducible; 

then IytI(S) < Q(y.~v)II Uil - 1. 

PBOOF. - To simplify the notat ion in this proof we will replace the operator q~-J 
by ~. As noted above fit($(t))~--1. Plural i ty of t finds a clopen set _~ c S such 
tha t  1 ----- fit(A) + fit(~(t) --  A )  where 0 va [fit(3~)[ ~= ], 0 ve fitlY(t) -- ~ ]  v e 1. Thus, in 
short, there is a elopen set A (which may  be either A~ or ~ ( t ) -  ~ )  such tha t  for 
s > 0, fit(~) < e + ½. Actually there is a compact set K c ~ such tha t  0 < f i t(K) < 
< ½ + e and Ifit(K)I -~ lfitl(K). I f  fit is positive on ~(t), the regularity of fit assures 
the existence of a compact set K c . 4  such tha t  

Ifit(K) - -  ~t(~)l < ~ + ½ -  fit(~) . 

Since 0 < fi,(~) < 1, K may  be chosen so tha t  fit(K) ~ 0. In  addition fit(K) = fit(~) + 
+ f i t (K)- - f i t (A)< e -[- ½. Clearly fit(K)---- tfit(K) l = Ifltt(K) as fit is countably addi- 
tive. I f  fit is not positive on $(t), let N be the negative part  as in the definition. 
Again by the regularity of fit, a compact set K c N  may  be obtained so tha t  
Ifit(K) --  fit(N)I < ½. Again it may  be assumed tha t  f i t(K) =/= O. Now f i t(K) <f i t (N)  
+ ½< ½. Since --fi t  is positive on _~T, - - f l ~ ( g ) :  l f i , (K)l-~ lflt[(K). 

:Now the regularity of lfitt permits us to pick a clopen set C c ~ such tha t  
K c C and ]f i~[(C\K)< e. Incidentally Z c e  C(S) and ~(Zc)< co. A finite pairwise 
disjoint family of clopen sets C, c ~ \ C ,  i e I ,  may be chosen such tha t  

J f i t I ( 3 \K)  - ~ < ~ Ifit(Ct)J • 
i = l  

Of course ~(Zc,)< oo. 
Let  a~ be scalars such tha t  ] ~ ] = 1  and ~tfi,(C~)= ]fi~(C~)]. Now 

(I) 

(2) f Zcdfi~<fi,(K) + ffi~(CNK) < fidK) + ~ (7). 

Since the map from t to St is weak* continuous (Theorem 1), it follows tha t  there 
is some neighborhood V of t such tha t  for all y e V 

(4) [-z~afi~ < fi,(K) + ~ . 
,) 
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I f  D e X is the correspondent  of C, then  #[~-I(V) n D] > 0. In  fact  ~-I(V) n D o 
o ~-l(t) n D. The last set corresponds to ~(t) (~ G which contains K. Now /~(K) > 0 
or else f i t (K)=  0 which is a contradiction. Thus 

pE~(t) n G] > 0 and ~[~-l(V) n V] > 0.  

The irreducibili ty of ~ assures q e T such tha t  ~- l (q)ve0 and Cz~(q)c~o-l(V)n D. 
t t ence  q e V and 

Since ?-~(q) c D, ~(q) c G and 

c-~(q) 

Consequently fl~(C) = fi~(C-- ~(q)) @ 1, and by  (4) 

f z~d~o=  ~ ( o )  - z < ~,(K) + ~ -- 1 .  
¢-~(q) 

Recall t ha t  0 < [fi,(K)[ == [/~,l(K) < ½ ÷ e. I f  fi,(K) < 0 for sufficiently small e < 0 
then 

IflqI[6~'..~(q)] > tf?~(K) ÷ s -- 11 > I f i , (K) t -  3e. 

I f  0 < fl~(K)< e ÷ ½ for sufficiently small e > 0, then 

Ifl~l(C\~(q)) < Iflo[c\~(q)] 1 > ½ - 3 ~  > Ifl,(K) I-- 3~ 
since 

l f l , [C~(q)]  < fi,(K) ÷ e -- 1 < ½ ÷ 2e 

Thus in all cases for sufficiently smaU e > 0 

:Now 

UI] > sup {I f l drql : ] e M~} = I] 

= sup {t5 fi~(A~) g~ I: f = 5 a~gL ~ ~ ' s t e p  function, e(f) < oo}. 

Picking scalars fl~, tfid = 1 and /~,ro(A~)= Iy,(A,)I we have 

< q(Zs) = q (Xs ) .  
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Since ~'~ is dense in the power set of ~, we have  

!l G]t ~o(zs) 

Thus 

1 

I t  finally follows tha t  ly~l(S)<@(Zs)[] U I ] -  1 and our proof is now complete.  
We  now have  the answer to a ra ther  na tura l  question. W h a t  is the  relat ion 

between the  n o r m  of the  averaging opera tor  U and the  norm of U~ as defined above.  
We  quickly obtain  it  below. 

COROLLA~¥ 7. -- Assuming the hypotheses o] Theorem 8 and assuming that q~ 
and qJ~ admit the averaging operators U and U~ respectively, then 

II u~q)t] < Ilill~b(x~)I1 ui] - 1] 

where B ~ clPl~ as needed ]or U~. 

PRoofs. Following through the proof of Theorem 3 we see t ha t  (Ul(J))(t)-= 
-~f]d7,. Then pick d e  C(~), 0 < f <  1 with ffdfi~> II#~ll- ~ where e > 0 is given, 

t is a fixed point  in B1, and lift,l] = lfl~l(S) • l~ow if G is an open set containing t 
and  if r e G n _Pl,, then the  theorem yields 

@(Xs)[i Uil - -  1 > 1fi, I (8 )>  f f d f l , .  

The weak* cont inui ty  of the map  tha t  takes r to ~,, (restricting to G if necessary) 
yields 

q(z~)H u ] l  - i >f]d#, > I]#,11 - 

for all rEG. l~ow for every  t e c l P l ~  i t  follows t h a t  !i/~,II<@(Zs)itUiI-1. 

(vl(tl)(t) =fTdy =f]d   
ii~ Bl 

i t  follows tha t  

Since 

it Ul(f)(t)il < HJH ~ sup {iIfitit: t a c l P l ~ { <  ll]!t ~[@(zs)il u II - 1 ] .  

This completes the proo]. 



1~. A. AL5 - A. DE KORW~ - C. ROBERTS: Averaging operators, etc. 45 

5. - Projection problem. 

We are now led to the consideration of obtaining conditions on ~ with which 
we will know tha t  no bounded project ion will exist onto the range of ~o e. For  this 
remaining section we will need to assume tha t  Lo is reflexive. 

A funct ion ] e Lq is said to be of absolutely continuous norm if the sequence 
(~(/n)}n~ is monotonical ly decreasing and convergent to zero whenever the sequence 
(/~}~N e Lq is monotonical ly decreasing and pointwise convergent  /~ almost every- 
where to zero with ]~< []l. 

Le t  L~ represent  all [ e Lq which are of absolutely continuous norm. I t  can be 
shown tha t  L~ is a norm closed order ideal in Z~ (see [19], Chapter 15 for its signi- 
ficance). For  our purposes, its significance will be in its determinat ion of the reflexi- 

v i ty  of L~. 
The funct ion norm ~ is said to be absolutely continuous if LQ ~ L~. The space Zo 

is reflexive if and only if bo th  ~ and Q' are absolutely continuous and ~ has the 
weak Fa tou  property.  

a Now we will assume tha t  L~ is identified with Lq, and/~(~o ~) is considered as a 
subset of L[L~, C] the set of bounded linear operators f rom L~ into the complex 
scalars C, or as a subset of L ~  The following operators will be needed. 

Le t  U be an arb i t rary  element of L[L~, C]. ~or  E in a par t i t ion ~ of X0 and for 

] e Z~,, define the operator  U E e L[Lao, C] by  

E 

and define the linear operator  A s e L[~,, L~,] by  

We may  also define 

E 

The function norm ~ is said to be weakly leveling if for each par t i t ion ~ in 270, 
~(]s)<~(/)- All well known Banach function spaces such as the Orlicz spaces (and 
in part icular  the Lebesgue spaces) have weakly leveling function norms. In  [1]] 
this concept was referred to as ~ having property (J). The present  terminology ap- 
propriate  in comparison to the concept of leveling as discussed in [10]. 

I f  R(~ e) is closed, we will let  P be a bounded projection of L[L~,, C] onto R(q0e). 
a 

Thus if P* is the adjoint  of P ,  then P* is a bounded linear map from L~ into Zq. 
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Asking tha t  R(~ ~) be closed is not much of an assumption. Specifically this occurs 
when ~ admits an averaging operator. 

Any linear operator K from L~ into L~ may  be written (see [19]) as 
K(I) = f g f d #  for some g ~ L~,,=-L ~. The important  assumption here is tha t  for a 
certain class of operators K, g may be chosen in R(~) .  

TEEom~)~ 10. - Assume the following conditions 

(1) L~ is re]texive with (L~)* ~---L~,. 

(2) R(~ ~) is closed; 

(3) ~' has the weak leveling property; 

(4) For every E ~  g there is l ee  Cb(T) such that 

~( ? e( o = ( I )  = I=),  t=) t d#) . 

Then either qf is surjeetive or no bounded projection 1 ) exists from L~(S, X, #) onto 
R(c/) such that 

P [ U A , ~ ]  = P ( U ) A  8 . 

In  particular either q~e is surjective or no bounded projection I ) from La~ onto R(qf) 
exists such that P* commutes with A~. 

PROOF. -- I f  ~0 ~ is not surjective, let P be a bounded projection of L[L~,, C] 
onto R(? ~) with P[UA~]= P(U)A~. :Now 

: ~ E i )  U~,,(~)=~ 1 

Thus if h = ~ (1/#(E~)) ]E~ then UAg(f) = @e(h), f). Consequently UA~ e R(~ ~) and 
5 

P[UA~]= UA~. Since ~' has the weak leveling property, we obtain from [11], 
tha t  A~(J) converges to J in the ~o norm as ~ gets finer. Thus 

and so 

lira P [  UA~](J) = U(J) 
g 

l im P[ UA~](I) = l im P(U) A~(J) = P( U)(J). 
g 

Hence P(U)----- U which contradicts the assumption of ~o e being not  surjective~ 



R.  A.  AL6 - A.  DE KO~VIN - C. ROBERTS: Averaging operators~ etc. 47 

To c o m p l e t e  t h e  p r o o f  w e  n e e d  show t h a t  if P *  c o m m u t e s  w i t h  A ~  t h e n  

P[UAa]-~  P (U)A~ .  ~ o w  

1 

: f --~ ( P ( U ) ,  ~ #(E,) ]d# Z~,) = ( P ( U ) A ~ ,  f ) .  

Thus  P[UAg] = P ( U ) A g .  
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