Averaging Operators on Normed Köthe Spaces (*).

RICHARD A. ALÒ (Beaumont, Texas) ANDRÈ DE KORVIN - CHARLES ROBERTS (Terre Haute, Indiana)

Summary. – Under study is the existence of averaging operators determined by measurable maps φ from a measure space (S, Σ, μ) into an arbitrary Hausdorff topological space T. The map φ induces a continuous map φ^e from the space $C_b(T)$ into the normed (Banach) function space $L_\varrho = L_\varrho(S, \Sigma, \mu)$ defined by $\varphi^e(f) = f \circ \varphi$ for all $f \in C_b(T)$. An integral representation for such operators is first studied. The existence is then determined by the existence of an averaging operator U_1 for the restriction of φ to a certain measurable subset B_1 of S. Utilizing a representation of $L_\varrho(S, \Sigma, \mu)$ as a Banach function space over a compact extremally disconnected Hausdorff space \hat{S} , we are able to give a definition for the concept of plural points and irreducible map. A significant upper bound is given for the operator U_1 . Finally conditions are considered under which no bounded projection from L_ϱ onto the range of φ^e may exist. From a topological point of view the development is pursued in a general setting. Averaging operators have recently been used for the study of injective Banach spaces of the type $C_b(T)$ and in non-linear prediction and approximation theory relative to Tshebyshev subspaces of L_ϱ .

1. - Introduction.

Let φ be a measurable map from the measure space (S, Σ, μ) into the arbitrary Hausdorff topological space T. Let us assume that φ induces a continuous map from the space $C_b(T)$ of bounded real valued continuous functions on T (with the sup norm topology), into the (as defined below) complete normed Köthe space $L_{\varrho} = L_{\varrho}(S, \Sigma, \mu)$ defined by $\varphi^{\varrho}(f) = f \circ \varphi$ for all $f \in C_b(T)$. If U is a bounded linear operator from L_{ϱ} into $C_b(T)$ then U is called an *averaging operator* for the measurable map φ or it is said that φ admits the averaging operator U if

$$U \circ \varphi^e(f) = f$$

for all $f \in C_b(T)$ (¹).

In Theorem 3 we show that the existence of an averaging operator for the measurable map φ from S into T, with φ° injective, is determined by the existence of an averaging operator for φ_1 which is the restriction of φ to a certain measurable subset B_1 of S. This extends the literature (²) to a larger class of spaces.

^(*) Entrata in Redazione l'11 settembre 1975.

⁽¹⁾ This definition could readily be made by replacing $C_b(T)$ or L_{ϱ} by other spaces of functions defined on T or S respectively. For example as in [18], the case is studied for L_{ϱ} replaced by C(S) where S and T are compact Hausdorff spaces.

⁽²⁾ See [4], [5], [6], [12], and [18]. The analogy of course with our work, is that we have under investigation, the existence of projections from $L_{\varrho}(S, \Sigma, \mu)$ onto the range, $R(\varphi^{e})$. Results for the historically interesting $L_{\infty}(S, \Sigma, \mu)$ case are herein obtained.

^{3 -} Annali di Matematica

Before we can obtain this result (Theorem 3 in Section 3), we first show in Section 2 how any bounded linear operator from L_{ϱ} into $C_{b}(T)$ may have a so-called *integral representation*. This leads to an interesting characterization (Theorem 1) of averaging operators U as well as some computational assistance (Proposition 2) for such operators. In Section 4, significant upper bounds are obtained for the « representing » finitely additive set functions $\{\gamma_i\}_{i\in T}$ of U and a significant inequality is obtained between the norm of U and the norm of its restriction U_1 as given in Theorem 3. This depends much on Theorem 4, which tells us that these set functions may be replaced (via an isomorphism) by regular Borel measures $\{\beta_i\}_{i\in T}$ over a « relatively nice » extremally disconnected compact Hausdorff measure space $(\hat{S}, \hat{\Sigma}, \hat{\mu})$ with $\hat{\mu}$ a regular Borel measure on the field $\hat{\Sigma}$ of clopen subsets of \hat{S} . In fact $L_{\varrho}(S, \Sigma, \mu)$ and $L_{\uparrow}(\hat{S}, \hat{\Sigma}, \hat{\mu})$ are isometric and lattice isomorphic. Finally in Section 5, we give conditions on φ under which no bounded provection from L_{ϱ} onto the range of φ^{e} may exist.

The spaces $L_{\varrho} = L_{\varrho}(S, \Sigma, \mu)$ on which we base our considerations have had considerable interest (see for example, the many papers in [14]). If M is the collection of scalar valued μ -measurable functions on the measure space (S, Σ, μ) , then the function norm ϱ from M into the extended reals \mathbb{R}^+ is defined for all $f, g \in M$ as

- (i) $0 \leq \varrho(f) \leq \infty$; $\varrho(f) = 0$ if and only if $f \equiv \mathfrak{L}$ (μ almost everywhere) where \mathfrak{L} is the constant function on S taking all $s \in S$ to 0.
- (ii) $\rho(\alpha f) = |\alpha| \rho(|f|)$ for all finite scalars α .
- (iii) $\varrho(f+g) \leq \varrho(f) + \varrho(g)$.
- (iv) $|f| \leq |g|$ (μ almost everywhere) on M implies that $\varrho(f) \leq \varrho(g)$.

We will denote by $L_{\varrho} = L_{\varrho}(S, \Sigma, \mu)$ the normed linear space of all functions $f \in M$ with $\varrho(f) < \infty$: The norm on L_{ϱ} is given by $||f||_{\varrho} = \varrho(|f|)$ and is called the ϱ -norm of L_{ϱ} . The spaces L_{ϱ} are called normed Köthe spaces.

In general the spaces L_{ϱ} are not complete. However under rather weak conditions, such as the weak Fatou property they may be made complete (see [14]). We will assume that L_{ϱ} has this property, that is, the spaces L_{ϱ} are complete in the ϱ -norm. Such complete normed Köthe spaces are called *Banach function spaces*. They include as examples the well-known Lebesgue spaces $\mathfrak{L}^p(S, \mathfrak{L}, \mu)$ $1 \leq p \leq \infty$ and the less well-known but equally important Orlicz spaces (see [15], [14], [10], [2]).

2. - Integral representations of operators.

Before proceeding to find conditions under which there exists (or fails to exist) a bounded projection from L_{ϱ} onto the range of φ^{ϱ} , we need to first give some general results about bounded linear operators and their integral representations.

Let U be a bounded linear operator from L_{ϱ} into $C_b(T)$. Then for each $t \in T$, the operator U gives rise to the *point linear functionals* $U_t \in (L_{\varrho})^*$ defined by $U_t(f) = (U(f))(t)$ for all $f \in L_{\varrho}$. In [17] it is shown that there exists a unique finitely additive scalar valued set function γ_t defined on Σ , where γ is in the dual space $(L_{\varrho})^*$, such that $U_t(f) = \int f d\gamma_t$ for all $f \in L_{\varrho}$: If δ_t represents the *point mass* at $t \in T$ then in [17], it is shown that for all $f \in L_{\varrho}$

$$U_i(f) = (U(f))(t) = \langle U(f), \delta_i \rangle = \langle f, U^*(\delta_i) \rangle.$$

Thus

$$\langle f, U^*(\delta_i) \rangle = \langle f, \gamma_i \rangle$$

for all $f \in L_{\varrho}$, that is, $U^*(\delta_i) = \gamma_i$ (3). It is easy to see that the map now defined taking $t \in T$ to $\gamma_i \in (L_{\varrho})^*$ is continuous when the weak* topology is placed on the dual space $(L_{\varrho})^*$.

If U is now an averaging operator for the measurable function φ from S into T then for $f \in L_{\varrho}$,

$$\langle f, \delta_t \rangle = \langle U(\varphi^e(f)), \delta_t \rangle = \langle \varphi^e(f), U^*(\delta_t) \rangle = \langle f, [\varphi^e]^*(\gamma_t) \rangle.$$

Consequently $[\varphi^{e}]^{*}(\gamma_{t}) = \delta_{t}$ for all $t \in T$. Thus U is an averaging operator for φ if and only if $[\varphi^{e}]^{*}(\gamma_{t}) = \delta_{t}$ for all $t \in T$.

For such γ_i , we need to designate its decomposition as yielded in [17] by $\gamma_{i,1} + \gamma_{i,2}$: The (scalar) valued set function $\gamma_{i,1}$ is finitely additive, defined on $\Sigma_0 = \{A \in \Sigma : \varrho(\chi_A) < \infty\}$ (χ_A represents characteristic function of A), vanishes on μ -null sets and $\varrho'(\gamma_{i,1}) < \infty$ (⁴). The set function $\gamma_{i,2}$ is purely finitely additive, (scalar) valued, defined on Σ , vanishes on μ -null sets and its support is contained in the support of some $f \in L_2 \setminus M^2$ designates the closure of the span of all Σ_0 -simple functions in L_e .

Thus we have almost shown completely the following theorem.

THEOREM 1. – If U is a bounded linear operator from L_{ϱ} into $C_{\mathfrak{b}}(T)$, then for each $t \in T$ there is a unique $\gamma_t \in (L_{\varrho})^*$ such that $\gamma_t = U^*(\delta_t)$. The operator U and the in-

⁽³⁾ The operator U^* represents the adjoint of U which takes the dual space M(T) of $C_b(T)$ into the dual space $(L_q)^*$. Any appropriate M(T) will do (dependent on the topological structure of T, naturally) just as long as the point mass $\delta_t \in M(T)$. Of course $\delta_t \in M(T)$ if and only if the *point evaluation map* ξ_t from $C_b(T)$ into the scalars, defined by $\xi_t(f) = f(t)$, is continuous.

⁽⁴⁾ As in the case of the Lebesgue spaces \mathfrak{L}^p it is natural to define for L_ϱ an associate norm ϱ' as either for $f \in L_\varrho$, $\varrho'(f) = \sup \{ \int |fg| d\mu : g \in L_\varrho$, $\varrho(g) \leq 1$ or $\}$ for γ a finitely additive set function on Σ_0 as $\varrho'(\gamma) = \sup \{ |\int f d\gamma| : f$ in unit ball of $M^\varrho \}$. Of course if $g \in L_\varrho$ and if $d\gamma = g d\mu$ then $\varrho'(\gamma) = \varrho'(f)$ (see [17]). Analogously $L_{\varrho'} = \{ f \in L_\varrho : \varrho'(f) < \infty \}$ is a Banach function space (see [14]).

tegral representation from t to γ_t are related by

$$(U(f))(t) = \gamma_t(f) \quad \text{for } t \in L_{\varrho} \text{ and } t \in T$$

with

$$||U|| = \sup \{||U_t|| : t \in T\}.$$

This map from t to γ_t is weak* continuous.

If φ^{e} is continuous (5) then U is an averaging operator for the measurable function φ from S into T if and only if $[\varphi^{e}]^{*}(\gamma_{t}) = \delta_{t}$. If the range $R(\varphi^{e})$ of φ^{e} is contained in M^{e} then U is an averaging operator for φ if and only if $\gamma_{t1} \circ \varphi^{-1}_{0} = \delta_{t}$ (as elements f the dual space of $C_{b}(T)$).

PROOF. – The last part is all that is left to check. If $R(\varphi^e) \subset M^e$ then $\int F(\varphi^e(f)) d\gamma_{t,2} = 0$ (see [17]). Thus for $f \in L_e$

$$\langle f, \delta_t \rangle = \langle \varphi^{\mathfrak{o}}(f), \gamma_t \rangle = \int f(\varphi(s)) \, d\gamma_{t,1} = \int f(t) \, d(\gamma_{t,1} \circ \varphi^{-1}) \, .$$

Thus as elements of the dual of $C_b(T)$, $\delta_t = \gamma_{t,1} \circ \varphi^{-1}$. This completes our proof.

We should remark, that the above result is somewhat similar to that of PELCZYNSKI in [16]. Also the above proof will be established for even more general situations. In particular $C_b(T)$ may be replaced by even more general spaces, for example, by a Banach space F(T) of functions on T where the map from f to f(t) is continuous. Such is the case for the space of bounded functions on T under the supremum norm.

For the case where φ^e maps just C(T) into C(S) (as in [18]) where φ is a continuous map of S onto T, the points $t \in T$ for which the fiber $\varphi^{-1}(t)$ is a subset in S of more than one point play an important role in studying averaging operators. Such points t have been called *plural points in* T (see [18]). In our study where φ_e is defined on L_e and φ is a measurable map, the concept as defined, is not satisfactory. Shortly we will redefine this taking into account the measure μ . For the time being let P_w be that subset of T such that

$$P_{\omega} = \{t \in T : \operatorname{card}(\varphi^{-1}(t)) > 1\}$$
.

Let B be a Borel subset of T containing P: and let $B_1 = \varphi^{-1}(B)$. We assume that φ is measurable with respect to Σ_0 , that is $\int f d\gamma_{i,1}$ exists (as defined in [9]). We now may give some formulas to compute $\langle \varphi^e(f), \gamma_1 \rangle$ when φ^e has values in M^e .

⁽⁵⁾ Since we have assumed that φ induced a continuous map φ^e from $C_b(T)$ into $L_\varrho(S, \Sigma, \mu)$ by $\varphi^e(f) = f \circ \varphi$ for all $f \in C_b(T)$ we have $\varrho(f \circ \varphi) < \infty$. Hence φ^e is a bounded linear operator. Such a situation is rather easy to construct. For example if φ is a measurable map then the map φ^e defined above from $C_b(T)$ into the Lebesgue space $\mathfrak{L}^{\infty}(S, \Sigma, \mu)$ is a bounded linear operator. If $\mu \varphi^{-1}$ is of finite variation (with respect to Borel partitions T) then the map φ^e defined from $C_b(T)$ into the Lebesgue space $\mathfrak{L}^p(S, \Sigma, \mu)$, $1 \leq p < \infty$, is again a bounded linear operator.

PROPOSITION 2. – Assume that $R(\varphi^{e}) \subset M^{\varrho}$ and that φ admits an averaging operator. Then the following hold.

(1) If
$$t \in B$$
 then $\langle \varphi^{e}(f), \gamma_{i} \rangle = \int_{B_{1}} \varphi^{e}(f) d\gamma_{i,1}$.
(2) If φ is surjective and if $t \notin B$ then $\langle \varphi^{e}(f), \gamma_{i} \rangle = \int_{B_{1}} \varphi^{e}(f) d\gamma_{i,1} + f(t)$.

PROOF. – If $t \in B$, then $\delta_t(\mathbb{C}B) = 0$ (6). Thus $\gamma_{t,1}(\varphi^{-1}(\mathbb{C}B)) = 0$. Moreover if H is measurable and $B \cap H = \emptyset$ then $\gamma_{t,1}(\varphi^{-1}(H)) = 0$. Consequently for $t \in B$,

$$\langle \varphi^{\mathfrak{o}}(f), \gamma_{\mathfrak{i}} \rangle = \int_{B_1} \varphi^{\mathfrak{o}}(f) \, dk_{\mathfrak{i},1} + \int_{CB_1} \varphi^{\mathfrak{o}}(f) \, d\gamma_{\mathfrak{i},1} = \int_{B_1} \varphi^{\mathfrak{o}}(f) \, d\gamma_{\mathfrak{i},1} \, .$$

This shows statement (1). For statement (2), if $t \notin B$, then $\varphi^{-1}(t)$ is a singleton in S. Partition T into the Borel sets B, $\{t\}$, and the set A. Then S is partitioned into sets $B_1, B_2 = \{\varphi^{-1}(\{t\}\})$, and $\varphi^{-1}(A)$. On A, $\gamma_{t,1} \circ \varphi^{-1} \equiv \mathbf{0}$, so

$$\langle \varphi^{e}(f), \gamma_{t} \rangle = \int_{B_{1}} \varphi^{e}(f) \, d\gamma_{t,1} + \int_{B_{2}} \varphi^{e}(f) \, d\gamma_{t,1} \, .$$

The last integral is just f(t) for $\gamma_{t,1} \circ \varphi^{-1} \equiv 1$ on $\{t\}$. This completes the proof.

The assumption in our proposition (and in other results) that $R(\varphi^e)$ be contained in M^e is reasonable. For example in the class $L = L^{\varphi}$ of Orlicz spaces where φ satisfies the so called Δ_2 condition, one has that $M^e = L_e$ (see [15]).

The result in Proposition 2 for $\varphi^{e}(f)$ may be given more generally for any $h \in L_{e}$. If $t \in B$, then

$$\langle h, \gamma_t \rangle = \int_{B_1} h d\gamma_{t,1} + h \varphi^{-1}(t) .$$

3. - Existence of averaging operators.

Let us now consider the question of the existence of an averaging operator for φ in terms of the existence of an averaging operator for the restriction φ_1 of φ to B_1 .

In particular let *B* be a Borel subset of *T* (it need not contain P_{φ} at all!) and let $B_1 = \varphi^{-1}(B)$. Since φ is measurable, $B_1 \in \Sigma$. A new Banach function space $L_{\varrho_1}(B_1, \Sigma_1, \mu_1)$ may be defined as follows. Let $\Sigma_1 = \{A \cap B_1 : A \in \Sigma\}$ and let μ_1 be the restriction of μ to Σ_1 . For *f* a function defined on B_1 and measurable with bepect to μ_1 , we may define \overline{f} on *S* by $\overline{f} \equiv f$ on B_1 and $\overline{f} \equiv \mathbf{0}$ on CB_1 . Now ϱ_1 may be defined for such *f* by $\varrho_1(f) = \varrho(\overline{f})$.

Clearly L_{ϱ_1} is a Banach function space. Let φ_1 mapping B_1 into B be the restriction of φ to B_1 .

⁽⁶⁾ By CB we mean $T \setminus B$.

For U a bounded linear operator from L_{ϱ} into $C_b(T)$, we will need the following two concepts for the next theorem. We will say that the operator U is *B* extendable if for every $g \in C_b(B)$, the map $U(\varphi_1^e(g))$ in $C_b(T)$ is an extension of g. In particular if U is *B*-extendable then $\varphi_1^e(g) \in L_{\varrho}$. Motivated by this we will say that φ is determined by B_1 if for every $f \in L_{\varrho}$ such that $f|B_1 = \varphi_1^e(g)$ for some $g \in C_b(B)$ there is $g' \in C_b(T)$ such that $f = \varphi^e(g')$. Note that in this case g' need not be an extension of g.

What may be said if B does definitely contain the subset P_{φ} of T? In this case, as we will see in the next theorem, the fact that φ is determined by B_1 , may be replaced by the following somewhat weaker statement. We will say that φ is weakly determined by B_1 if for all $f \in L_{\varrho}(S, \Sigma, \mu)$ there is $g \in C_b(B)$ such that $f|B_1 = \varphi_1^e(g)$ and if g' is defined on T to be g'(t) = g(t) for $t \in B$ and $g'(t) = f(\varphi^{-1}(t))$ for $t \in CB$ then $g' \in C_b(T)$. Let us note that if S and T were both compact spaces and if B is a closed Borel subset of T containing P_{φ} then φ is always weakly determined by B_1 .

THEOREM 3. – Assume that $R(\varphi^e) \subset M^e$. If φ admits an averaging operator U that is B-extendable, then φ_1 admits an averaging operator U_1 from $L_{e_1}(B_1, \Sigma_1, \mu_1)$ into $C(B_1)$.

Conversely if φ_1 admits an averaging operator U_1 and if φ^s is injective with φ determined by B_1 then φ admits an averaging operator. However if $P_{\varphi} \subset B$ then φ need not be determined by B_1 but need only be weakly determined by B_1 .

PROOF. – Let U be an averaging operator for φ that is B-extendable and let $\{\gamma_t\}_{t\in T}$ be the family of associated set functions as described for Theorem 1. The operator U from $L_{\varrho}(S, \Sigma, \mu)$ into $C_b(T)$ induces an operator U_1 from $L_{\varrho}(B_1, \Sigma_1, \mu_1)$ into $C_b(B)$ defined by $(U_1(f))(t) = \int \overline{f} d\gamma_t$ for all $f \in L_{\varrho_1}$ and $t \in B$. Since $\varrho_1(f) \leq 1$ implies $\varrho(\overline{f}) \leq 1$, it follows that $||U_1|| \leq ||U||$, that is U_1 is a bounded linear operator. It is clear that $(U_1(f))(t) = (U(\overline{f}))(t)$ for all $t \in B$. Thus we have $U_1[\varphi_1^e(g)] = U[\varphi_1^e(g)]|B$ where the right side represents restriction to B. Since U is B-extendable, it follows that $U_1[\varphi_1^e(g)] = g$ for all $g \in C(B)$. Thus U_1 is an averaging operator for φ_1 .

If it is assumed now that φ^e is injective then to show that φ has an averaging operator U, it is sufficient to show the existence of a projection P from $L_{\varrho}(S, \Sigma, \mu)$ onto the range of φ^e (since there exists a one-to-one correspondence between projections from L_{ϱ} onto $R(\varphi^e)$ and averaging operators from L_{ϱ} into $C_b(T)$. If U_1 is an averaging operator for φ_1 , define P_1 to be $\varphi_1^e \circ U_1$: Clearly P_1 is a bounded projection operator from $L_{\varrho_1}(B_1, \Sigma_1, \mu_1)$ onto $R(\varphi_1^e)$. Define a bounded linear operator T from $L_{\varrho}(S, \Sigma, \mu)$ into $L_{\varrho_1}(B_1, \Sigma_1, \mu_1)$ by $T(f) = f|B_1$ for all $f \in L_{\varrho}$. We now may define the required projection P. For $f \in L_{\varrho}(S, \Sigma, \mu)$, define

$$P(f) = f - \overline{P_1 T(f) - T(f)} \, .$$

Now $P^2(f) = P(f) - \overline{P_1 T(P(f))} - \overline{T(P(f))}$. For all $h \in L_{\varrho_1}(B_1, \Sigma_1, \mu_1)$, if $s \in \mathbb{C}B_1$, then $\overline{h}(s) = 0$. Consequently $(P^2(f))(s) = (P(f))(s)$ for all $s \in \mathbb{C}B_1$. Moreover for $s \in B_1$,

 $\overline{h}(s) = h(s)$. Thus

$$(P_1 TP(f))(s) = (\varphi_1^e U_1 TP(f))(s) = (TP(f))(s).$$

Consequently $(P^2(f))(s) = (P(f))(s)$ for all $s \in S$, that is, P is a projection.

The range of P and the range of φ^{e} coincide. For if P(f) = f then $P_{1}T(f) - T(f) = 0$. Consequently $T(f) \in R(\varphi_{1}^{e})$. If now φ is determined by B_{1} then $f \in R(\varphi^{e})$. Conversely if $f = \varphi^{e}(h)$ for some $h \in C(T)$, then $P(f) = f - \overline{P_{1}T(f) - T(f)}$. In this case $P_{1}T(f) = T(f)$ and thus P(f) = f. Therefore $R(\varphi^{e}) = R(P)$.

If we now assume that the subset P_{φ} of T is contained in B, then the above arguments show there is a $g \in C(B)$ such that $T(f) = \varphi_1^e(g)$. If φ is now weakly determined by B_1 , let g' be the function in $C_b(T)$ as defined in the definition. Hence $f = \varphi_1^e(g')$ and φ is now determined by B_1 . This completes our proof.

Thus the existence of an averaging operator has somewhat been characterized in terms of a smaller, so to speak, averaging operator defined on an appropriate function space. Let us now consider more of a reduction type theorem where the set functions $\{\gamma_t\}_{t\in T}$ may be replaced, in some cases, by regular Borel measures $\{\beta_t\}_{t\in T}$ defined over a compact space.

We need to assume that $L_{\varrho} = M_{\varrho}(7)$ and that $\varrho(\chi_S) < \infty$: The last condition is needed to insure that there is an $f_0 \in L_{\varrho}(S, \Sigma, \mu)$ such that $f_0 > \mathbf{0} \mu$ almost everywhere. This assumption permits us to make use of a spectral type theorem given in [17]. In particular, let $\hat{\Sigma}$ be the σ -field generated by the compact subsets of the locally compact Hausdorff space \hat{S} . Let $\hat{\mu}$ be a measure on $\hat{\Sigma}$ which is finite on compact sets. An adequate function norm $\hat{\varrho}$ is defined (see below) so that one may consider the appropriate function space $L_{\hat{\rho}}(\hat{S}, \hat{\Sigma}, \hat{\mu})$. Every element in $L_{\hat{\rho}}$ has σ -compact support. Further let B_{ϱ} be the algebra of essentially bounded functions in $L_{\varrho}(S, \Sigma, \mu)$ and let $cl_{\infty}B_{\varrho}$ be its closure in $L_{\infty}(S, \Sigma, \mu)$ (where $L_{\infty} = L_{\varrho}$ for $\varrho = \varrho_{\infty}$ as discussed in [14]). In [17], it is shown that

(1) there is a measure space $(\hat{S}, \hat{\Sigma}, \hat{\mu})$ (as defined above) such that $L_{\varrho}(S, \Sigma, \mu)$ is isometric and (lattice) isomorphic to $L_{\varrho}(\hat{S}, \hat{\Sigma}, \hat{\mu})$.

Moreover if there is an $f_0 \in L_{\varrho}(S, \Sigma, \mu)$ such that $f_0 > 0$, μ almost everywhere, then

(2) statement (1) holds where now \hat{S} is a compact extremally disconnected Hausdorff space and where μ is a regular Borel measure ($\mu(S) < \infty$) on the σ -field generated by the clopen subsets of \hat{S} .

(3) there is an isomorphism Φ from $\operatorname{cl}_{\infty}B_{\varrho}$ onto $C_{\flat}(\hat{S})$. Also $f \equiv \mathbf{0}$, μ almost everywhere if and only if $\Phi(f) \equiv \mathbf{0}$, $\hat{\mu}$ almost everywhere and $\|f\|_{\infty,\mu} = \|\Phi(f)\|_{\infty,\hat{\mu}}$. In addition Φ takes characteristic functions in $\operatorname{cl}_{\infty}B_{\varrho}$ into characteristic functions in $C_{\flat}(\hat{S})$.

⁽⁷⁾ As pointed out previously this is a reasonable assumption. The Orlicz space $L_{\varrho} = L^{\psi}$ with Δ_2 condition have this property (see [15]).

Let us note that the condition on $f_0 \in L_{\varrho}$ given above to demonstrate statements (2) and (3), does hold rather generally, for example, in any σ -finite measure space.

Let $\hat{\Sigma}_e$ denote those clopen subsets in $\hat{\Sigma}$ contained in the compact extremally disconnected space \hat{S} , which are in one-to-one correspondence with the sets $A \in \Sigma$. For every $t \in T$ we may define the finitely additive scalar valued set functions β_t by $\beta_t(A) = \gamma_t(\hat{A})$ for $\hat{A} \in \hat{\Sigma}_e$, $A \in \Sigma_0 = \Sigma$. Since we are assuming that $M^{\varrho} = L_{\varrho}$, it is clear that $\gamma_t = \gamma_{t,1}$. Note also that $\varrho'(\beta_t) = \varrho'(\gamma_t)$ where

$$arrho'(eta_i) = \sup\left\{ | \left[\widehat{f} deta_i| \colon \widehat{f} ext{ is a } \widehat{\mathcal{L}}_e ext{ simple function}; \ \widehat{arrho}(\widehat{f}) \! \leqslant \! 1
ight\}.$$

Now for $\hat{A} \in \hat{\Sigma}_{c}$, $\hat{\mu}(\hat{A}) = 0$ if and only if $\mu(A) = 0$. Consequently $\hat{\mu}(\hat{A}) = 0$ implies $\beta_{i}(\hat{A}) = 0$.

Let $|\beta_i|$ represent the variation of β_i , that is,

$$|\beta_i|(\hat{S}) = \sup\left\{|\sum \gamma_i(A_i)| : (A_i)_{i \in I} \text{ finite partition in } \Sigma\right\}.$$

Now this variation is finite. In fact if $(\alpha_i)_{i \in I}$ are a finite set of scalars such that $|\alpha_i| = 1$ and such that $\alpha_i \beta_i(A_i) = |\beta_i(A_i)|$ then

$$\sum |\gamma_t(A_i)| = \int \left(\sum \alpha_t \chi_{A_i}\right) d\gamma_t \leq \varrho(\chi;) \varrho'(\gamma_t) < \infty$$

It is also clear that β_t is regular on $\hat{\Sigma}_c$. Let us see now how β_t may be extended to a regular Borel measure on $\hat{\Sigma}$. Since $\varrho(\chi_s) < \infty$ the ring $\hat{\Sigma}_e$ is *dense* in the power set of \hat{S} , that is, if K and G are respectively compact and open subsets of \hat{S} , then there is $\hat{A} \in \hat{\Sigma}$ such that $K \subset \hat{A} \subset G$. In [8], it is shown that such a situation yields β_t as countably additive on $\hat{\Sigma}_e$ and that a unique extension to $\hat{\Sigma}$ of β_t exists as a regular Borel measure. Furthermore the variation of the extension (considered as a Borel measure) is finite and coincides on $\hat{\Sigma}_e$ with the variation of β_t . For simplicity let us retain β_t as notation for this extension.

Let ψ be the correspondence that takes Σ simple functions into $\hat{\Sigma}_{e}$ simple functions as now

$$\int \left(\sum \alpha_i \chi_{A_i}\right) d\gamma_i = \int \left(\sum \alpha_i \chi_{\hat{A}_i}\right) d\beta_i.$$

Since $M^{\varrho} = L_{\varrho}$, ψ may be extended to all $f \in L_{\varrho}$ as f is then in the closure of Σ -simple functions. Since $\varrho'(\gamma_t) = \varrho'(\beta_t) < \infty$, a final limit argument will show that $\int f d\gamma_t = \int f d\beta_t$ where $f = \psi(f)$.

Note that what we have just proceeded to do, could be applied to more general situations. What is crucial here is that in addition to $M^{\varrho} = L_{\varrho}$, we need the variation $|\beta_t|$ finite, the field $\hat{\Sigma}_c$ dense in the power set of \hat{S} and the existence of an $f_0 \in L_{\varrho}$ such that $f_0 > 0$, μ almost everywhere. If $M^{\varrho} \neq L_{\varrho}$, then the above arguments may be applied to $\beta_{t,1}$. More formally we have shown

41

THEOREM 4. – If $L_{\varrho} = M^{\varrho}$ and if $\varrho(\chi_S) < \infty$ then there is an extremally disconnected compact Hausdorff space \hat{S} with $\hat{\Sigma}$, its field of clopen subsets, and $\hat{\mu}$, a regular Borel measure on Σ , such that $L_{\varrho}(S, \Sigma, \mu)$ is isometric and lattice isomorphic with $L_{\varrho}(\hat{S}, \hat{\Sigma}, \hat{\mu})$. If ψ is this isomorphism and if U is an averaging operator for φ then for every $t \in T$ there exists a regular Borel measure β_t on $\hat{\Sigma}$ such that

$$\int f d\gamma_t = \int f d\beta_t$$

where $\hat{f} = \psi(f)$ for $f \in L_{\varrho}$ and γ_t is the additive set function associated with U as determined for Theorem 1.

4. - Upper bounds.

We are now in a position to give a reasonable definition of plurality as was indicated earlier. The above result also leads to a definition, for the present context, of the concept of an irreducible map (see [18] for the concepts in the more restricted cases).

Again we need to assume that $L_{\varrho} = M^{\varrho}$ and the existence of an $f_{0} \in L_{\varrho}$ such that $f_{0} > 0$, μ almost everywhere. Let U be an averaging operator for φ .

DEFINITION 5. – For $t \in T$, if $\varphi^{-1}(t) \in \Sigma_0$, let $\hat{\varphi}^{-1}(t)$ be the associated clopen set in the Stone space \hat{S} . The point $t \in T$ is called a *plural point* if

(a) whenever β_t is positive on subsets of $\hat{\varphi}^{-1}(t)$ then there is a set $\hat{A} \in (\hat{\Sigma}_c)_0$ such that $\hat{A} \subset \hat{\varphi}^{-1}(t)$ and $0 < \beta_t(\hat{A}) < 1$.

(b) whenever β is not positive on $\hat{\varphi}^{-1}(t)$ then for the part N of $\hat{\varphi}^{-1}(t)$ on which β_t is negative there is a subset $\hat{A} \in (\hat{\Sigma}_c)_0$ such that $\hat{A} \subset N$ and $0 < \beta_t(\hat{A}) < 1$.

Let Pl_{φ} be the set of plural points of T. The measurable map φ will be called *irreducible* (*) if for $A \subset S$, with $\mu(A) > 0$ there is a $t \in T$ such that $\emptyset \neq \varphi^{-1}(t) \subset A$.

Let us recall that since φ has an averaging operator and since $M^{\varrho} = L_{\varrho}$. Theorem 1 says that $\beta_i(\hat{\varphi}^{-1}(t)) = 1$. Also let us note that as we have defined it, saying that t is a plural point amounts to saying that $\hat{\varphi}^{-1}(t)$ is not an atom for β_t . An interesting relation between non atomicity and the Darboux property may be found in [8].

We now make use of our ideas to establish an upper bound for the variation of the set functions γ_t in terms of the norm for U.

⁽⁸⁾ Our measure theoretical concept has its topological analogue as the following: the continuous map φ from the topological space S onto the topological space T is *irreducible* if for every non-empty open set G is S there is a point $t \in T$ such that $\emptyset \neq \varphi^{-1}(t) \subset G$.

THEOREM 6. – Let φ have an averaging operator U and assume that

- (1) $M^{\varrho} = L_{\varrho};$
- (2) $\varrho(\chi_s) < \infty;$
- (3) t is plural;
- (4) φ is irreducible;

then $|\gamma_t|(S) < \varrho(\chi_S) || U || - 1$.

PROOF. – To simplify the notation in this proof we will replace the operator $\hat{\varphi}^{-1}$ by ξ . As noted above $\beta_t(\xi(t)) = 1$. Plurality of t finds a clopen set $\hat{A} \subset \hat{S}$ such that $1 = \beta_t(A) + \beta_t(\xi(t) - A)$ where $0 \neq |\beta_t(\hat{A})| \neq 1$, $0 \neq \beta_t[\xi(t) - \hat{A}] \neq 1$. Thus, in short, there is a clopen set \tilde{A} (which may be either \hat{A} or $\xi(t) - \hat{A}$) such that for $\varepsilon > 0$, $\beta_t(\tilde{A}) < \varepsilon + \frac{1}{2}$. Actually there is a compact set $K \subset \tilde{A}$ such that $0 < \beta_t(K) < \frac{1}{2} + \varepsilon$ and $|\beta_t(K)| = |\beta_t|(K)$. If β_t is positive on $\xi(t)$, the regularity of β_t assures the existence of a compact set $K \subset \tilde{A}$ such that

$$|\beta_t(K) - \beta_t(\tilde{A})| < \varepsilon + \frac{1}{2} - \beta_t(\tilde{A}).$$

Since $0 < \beta_i(\tilde{A}) < 1$, K may be chosen so that $\beta_i(K) \neq 0$. In addition $\beta_i(K) = \beta_i(\tilde{A}) + \beta_i(K) - \beta_i(\tilde{A}) < \varepsilon + \frac{1}{2}$. Clearly $\beta_i(K) = |\beta_i(K)| = |\beta_i|(K)$ as β_i is countably additive. If β_i is not positive on $\xi(t)$, let N be the negative part as in the definition. Again by the regularity of β_i , a compact set $K \in N$ may be obtained so that $|\beta_i(K) - \beta_i(N)| < \frac{1}{2}$. Again it may be assumed that $\beta_i(K) \neq 0$. Now $\beta_i(K) < \beta_i(N) + \frac{1}{2} < \frac{1}{2}$. Since $-\beta_i$ is positive on $N, -\beta_i(K) = |\beta_i|(K)| = |\beta_i|(K)$.

Now the regularity of $|\beta_i|$ permits us to pick a clopen set $C \subset \hat{S}$ such that $K \subset C$ and $|\beta_i|(C \setminus K) < \varepsilon$. Incidentally $\chi_C \in C(\hat{S})$ and $\hat{\varrho}(\chi_C) < \infty$. A finite pairwise disjoint family of clopen sets $C_i \subset \hat{S} \setminus C$, $i \in I$, may be chosen such that

$$|\beta_i|(\hat{S} \setminus K) - \varepsilon < \sum_{i=1}^n |\beta_i(C_i)|$$

Of course $\hat{\varrho}(\chi_{C_i}) < \infty$.

Let α_i be scalars such that $|\alpha_i| = 1$ and $\alpha_i \beta_i(C_i) = |\beta_i(C_i)|$. Now

(1)
$$|\beta_t|(\hat{S} \setminus C) - \varepsilon < \int \left(\sum \alpha_t \chi_{C_t}\right) d\beta_t;$$

(2)
$$\int \chi_C d\beta_i \leq \beta_i(K) + |\beta_i(C \setminus K) < \beta_i(K) + \varepsilon (7).$$

Since the map from t to γ_t is weak* continuous (Theorem 1), it follows that there is some neighborhood V of t such that for all $y \in V$

(3)
$$|\beta_i|(\hat{S} \setminus G) - \varepsilon < \int \left(\sum \alpha^i \chi_{C_i}\right) d\beta_y;$$

(4) $\int \chi_c d\beta_y < \beta_t(K) + \varepsilon .$

If $D \in \Sigma$ is the correspondent of C, then $\mu[\varphi^{-1}(V) \cap D] > 0$. In fact $\varphi^{-1}(V) \cap D \supset \varphi^{-1}(t) \cap D$. The last set corresponds to $\xi(t) \cap G$ which contains K. Now $\hat{\mu}(K) > 0$ or else $\beta_i(K) = 0$ which is a contradiction. Thus

$$\hat{\mu}[\xi(t) \cap G] > 0$$
 and $\mu[\varphi^{-1}(V) \cap V] > 0$.

The irreducibility of φ assures $q \in T$ such that $\varphi^{-1}(q) \neq 0$ and $\varphi z^{1}(q) \subset \varphi^{-1}(V) \cap D$. Hence $q \in V$ and

$$|eta_t|(S \setminus G) - \varepsilon < \int \sum lpha_i \chi_{C_i} deta_a \,; \quad \int \chi_C deta_a < eta_t(K) + \varepsilon \,.$$

Since $\varphi^{-1}(q) \in D$, $\xi(q) \in G$ and

$$\int \chi_C d\beta_v = \int_{C-\xi(q)} \chi_C d\beta_q + \beta_q [\xi(q)].$$

Consequently $\beta_q(C) = \beta_q(C - \xi(q)) + 1$, and by (4)

$$\int_{C-\xi(q)} \chi_C d\beta_q = \beta_q(C) - 1 < \beta_t(K) + \varepsilon - 1.$$

Recall that $0 < |\beta_t(K)| = |\beta_t|(K) < \frac{1}{2} + \varepsilon$. If $\beta_t(K) < 0$ for sufficiently small $\varepsilon < 0$ then

$$|\beta_{\mathfrak{q}}|[C \setminus \xi(\mathfrak{q})] > |\beta_{\mathfrak{l}}(K) + \varepsilon - 1| > |\beta_{\mathfrak{l}}(K)| - 3\varepsilon.$$

If $0 < \beta_t(K) < \varepsilon + \frac{1}{2}$ for sufficiently small $\varepsilon > 0$, then

$$|\beta_{\mathfrak{q}}| \big(C \setminus \xi(q) \big) \leqslant |\beta_{\mathfrak{q}}[C \setminus \xi(q)]| > \frac{1}{2} - 3\varepsilon > |\beta_{\mathfrak{t}}(K)| - 3\varepsilon$$

since

$$|\beta_{\mathbf{q}}[C \setminus \xi(q)] < \beta_{\mathbf{i}}(K) + \varepsilon - 1 < \frac{1}{2} + 2\varepsilon$$

Thus in all cases for sufficiently small $\varepsilon > 0$

$$|eta_{a}|[C \setminus \xi(q)] > |eta_{i}|(K) - 3arepsilon$$
 .

Now

$$\begin{split} \| U \| > \sup \{ |\int f \, d\gamma_q| \colon f \in M_1^\varrho \} &= \\ &= \sup \{ |\sum \beta_q(\hat{A}_i) \alpha_i| \colon \hat{f} = \sum \alpha_i \chi_{\hat{A}_i} \text{ a } \hat{\Sigma}_c \text{-step function}, \ \varrho(\hat{f}) < \infty \} \,. \end{split}$$

Picking scalars β_i , $|\beta_i| = 1$ and $\beta_i \gamma_q(A_i) = |\gamma_q(A_i)|$ we have

$$\varrho\left(\sum \chi_{\widehat{A}_i} \circ \beta_i\right) \leqslant \widehat{\varrho}(\chi_{\widehat{S}}) = \varrho(\chi_S) \,.$$

Since $\hat{\Sigma}_{e}$ is dense in the power set of \hat{S} , we have

$$||U|| > \frac{1}{\varrho(\chi_s)} \left[|\beta_{\mathfrak{q}}| (\hat{S} \setminus C) + |\beta_{\mathfrak{q}}| (C \setminus \xi(q)) + 1 \right].$$

Thus

$$\| U \| > \frac{1}{\varrho(\chi_S)} \left[\int \left(\sum \chi_{C_i} \alpha_i \right) d\beta_a + 1 - 4\varepsilon \right] > \frac{1}{\varrho(\chi_S)} \left[|\beta_t| (\hat{S}) + 1 - 5\varepsilon \right].$$

It finally follows that $|\gamma_t|(S) \leq \varrho(\chi_S) || U || - 1$ and our proof is now complete.

We now have the answer to a rather natural question. What is the relation between the norm of the averaging operator U and the norm of U_1 as defined above. We quickly obtain it below.

COROLLARY 7. – Assuming the hypotheses of Theorem 8 and assuming that φ and φ_1 admit the averaging operators U and U_1 respectively, then

$$\|U_1(f)\| \leq \|\overline{f}\|_{\infty} [\varrho(\chi_s) \|U\| - 1]$$

where $B = \operatorname{cl} Pl_{\varphi}$ as needed for U_1 .

PROOF. Following through the proof of Theorem 3 we see that $(U_1(f))(t) = = \int_{B_1}^{\tilde{f}} d\gamma_t$. Then pick $\hat{f} \in C(\hat{S})$, $0 \leq \hat{f} < 1$ with $\int \hat{f} d\beta_t > \|\beta_t\| - \varepsilon$ where $\varepsilon > 0$ is given, t is a fixed point in B_1 , and $\|\beta_t\| = |\beta_t|(\hat{S})$. Now if G is an open set containing t and if $r \in G \cap Pl_{\varphi}$, then the theorem yields

$$\varrho(\chi_s) \| U \| - 1 > |\beta_r| (\hat{S}) \ge \int \hat{f} d\beta_r \, .$$

The weak* continuity of the map that takes r to γ_r (restricting to G if necessary) yields

$$arrho(\chi_S) \| \, U \| - 1 \! > \! \int \!\! \hat{f} deta_{ extsf{r}} \! > \| eta_t \| - arepsilon$$

for all $r \in G$. Now for every $t \in \operatorname{cl} Pl_{\varphi}$ it follows that $\|\beta_t\| \leq \varrho(\chi_s) \|U\| - 1$. Since

$$(U_1(f))(t) = \int_{B_1} \overline{f} d\gamma_t = \int_{B_1} \overline{f} d\beta_t$$

it follows that

$$\|U_1(f)(t)\| \le \|\tilde{f}\|_{\infty} \sup \{\|\beta_t\| : t \in \operatorname{cl} P1_{\varphi} \{\le \|\tilde{f}\|_{\infty} [\varrho(\chi_S) \|U\| - 1] \}$$

This completes the proof.

5. – Projection problem.

We are now led to the consideration of obtaining conditions on φ with which we will know that no bounded projection will exist onto the range of φ^e . For this remaining section we will need to assume that L_e is reflexive.

A function $f \in L_{\varrho}$ is said to be of *absolutely continuous norm* if the sequence $\{\varrho(f_n)\}_{n\in\mathbb{N}}$ is monotonically decreasing and convergent to zero whenever the sequence $\{f_n\}_{n\in\mathbb{N}}\in L_{\varrho}$ is monotonically decreasing and pointwise convergent μ almost everywhere to zero with $f_1 \leq |f|$.

Let L_{ϱ}^{a} represent all $f \in L_{\varrho}$ which are of absolutely continuous norm. It can be shown that L_{ϱ}^{a} is a norm closed order ideal in L_{ϱ} (see [19], Chapter 15 for its significance). For our purposes, its significance will be in its determination of the reflexivity of L_{ϱ} .

The function norm ϱ is said to be absolutely continuous if $L_{\varrho} = L_{\varrho}^{a}$. The space L_{ϱ} is reflexive if and only if both ϱ and ϱ' are absolutely continuous and ϱ has the weak Fatou property.

Now we will assume that L_{ϱ}^{a} is identified with $L_{\varrho'}^{a}$ and $R(\varphi^{e})$ is considered as a subset of $L[L_{\varrho}^{a}, \mathbb{C}]$ the set of bounded linear operators from L_{ϱ}^{a} into the complex scalars \mathbb{C} , or as a subset of L_{ϱ}^{a} . The following operators will be needed.

Let U be an arbitrary element of $L[L_{\varrho}^{\alpha}, \mathbb{C}]$. For E in a partition \mathcal{E} of Σ_{0} and for $f \in L_{\varrho'}^{\alpha}$, define the operator $U_{E} \in L[L_{\varrho}^{\alpha}, \mathbb{C}]$ by

$$U^{E}(f) = U\left[\left(\int_{E} f \, d\mu\right) \chi_{E}\right]$$

and define the linear operator $A_{\xi} \in L^{a}_{\rho'}, L^{a}_{\rho'}$ by

$$A_{\mathfrak{E}}(f) = f_{\mathfrak{E}} = \sum_{E \in \mathfrak{E}} \left(\int_{E} \frac{|f|}{\mu(E)} \, d\mu \right) \chi_{E} \, .$$

We may also define

$$A_E(f) = rac{1}{\mu(E)} \left(\int\limits_E f \, d\mu
ight) \chi_E \, .$$

The function norm ρ is said to be *weakly leveling* if for each partition \mathcal{E} in Σ_0 , $\rho(f_{\mathcal{E}}) \leq \rho(f)$. All well known Banach function spaces such as the Orlicz spaces (and in particular the Lebesgue spaces) have weakly leveling function norms. In [11] this concept was referred to as ρ having property (J). The present terminology appropriate in comparison to the concept of *leveling* as discussed in [10].

If $R(\varphi^e)$ is closed, we will let P be a bounded projection of $L[L^a_{\varrho'}, \mathbb{C}]$ onto $R(\varphi^e)$. Thus if P^* is the adjoint of P, then P^* is a bounded linear map from L^a_{ϱ} into L^a_{ϱ} . Asking that $R(\varphi^e)$ be closed is not much of an assumption. Specifically this occurs when φ admits an averaging operator.

Any linear operator K from L_{ϱ}^{a} into L_{ϱ}^{a} may be written (see [19]) as $K(f) = \int gf d\mu$ for some $g \in L_{\varrho'}^{a} = L_{\varrho}^{a}$. The important assumption here is that for a certain class of operators K, g may be chosen in $R(q^{e})$.

THEOREM 10. – Assume the following conditions

- (1) L_{ϱ} is reflexive with $(L_{\varrho}^{a})^{*} \simeq L_{\varrho'}^{a}$.
- (2) $R(\varphi^e)$ is closed;
- (3) ρ' has the weak leveling property;
- (4) For every $E \in \mathcal{E}$ there is $f_E \in C_b(T)$ such that

$$U_E(f) = \langle \varphi^e(f_E), f \rangle (= |\varphi^e(f_E) f d\mu) .$$

Then either φ^e is surjective or no bounded projection P exists from $L_2(S, \Sigma, \mu)$ onto $R(\varphi^e)$ such that

$$P[UA_{\mathfrak{E}}] = P(U)A_{\mathfrak{E}}.$$

In particular either φ^e is surjective or no bounded projection P from L_{ϱ}^a onto $R(\varphi^e)$ exists such that P^* commutes with A_E .

PROOF. – If φ^e is not surjective, let P be a bounded projection of $L[L^a_{\varrho'}, \mathbb{C}]$ onto $R(\varphi^e)$ with $P[UA_{\mathfrak{E}}] = P(U)A_{\mathfrak{E}}$. Now

$$\begin{aligned} UA_{\mathbf{\xi}}(f) &= U\left[\sum_{\mathbf{\xi}} \left(\frac{1}{\mu(E_i)} \int_{E_i} f \, d\mu\right) \chi_{E_i}\right] \\ &= \sum_{\mathbf{\xi}} \frac{1}{\mu(E_i)} U_{E_i}(f) = \sum_{\mathbf{\xi}} \frac{1}{\mu(E_i)} \langle \varphi^{e}(f_{E_i}), f \rangle \end{aligned}$$

Thus if $h = \sum_{\xi} (1/\mu(E_i)) f_{E_i}$ then $UA_{\xi}(f) = \langle \varphi^e(h), f \rangle$. Consequently $UA_{\xi} \in R(\varphi^e)$ and $P[UA_{\xi}] = UA_{\xi}$. Since ϱ' has the weak leveling property, we obtain from [11], that $A_{\xi}(f)$ converges to f in the ϱ norm as ξ gets finer. Thus

$$\lim_{\delta} P[UA_{\delta}](f) = U(f)$$

and so

$$\lim_{\delta} P[UA_{\delta}](f) = \lim_{\delta} P(U)A_{\delta}(f) = P(U)(f)$$

Hence P(U) = U which contradicts the assumption of φ^e being not surjective.

47

To complete the proof we need show that if P^* commutes with A_E then $P[UA_{\xi}] = P(U)A_{\xi}$. Now

$$\begin{split} \langle P[UA_{\mathfrak{E}}], f \rangle &= \langle UA_{\mathfrak{E}}, P^{\ast}(f^{\ast}) \rangle = \langle U, \sum_{\mathfrak{E}} \frac{1}{\mu(E_{i})} \int_{E_{i}} P^{\ast}(f) \, d\mu \chi_{E_{i}} \rangle \\ &= \langle U, \sum_{\mathfrak{E}} \frac{1}{\mu(E_{i})} A_{E_{i}} P^{\ast}(f) \rangle = \langle U, P^{\ast} \left[\sum_{\mathfrak{E}} \frac{1}{\mu(E_{i})} A_{E_{i}}(f) \right] \rangle \\ &= \langle P(U), \sum_{\mathfrak{E}} \frac{1}{\mu(E_{i})} \int_{E_{i}} f \, d\mu \, \chi_{E_{i}} \rangle = \langle P(U) A_{\mathfrak{E}}, f \rangle \,. \end{split}$$

Thus $P[UA_{\xi}] = P(U)A_{\xi}$.

BIBLIOGRAPHY

- R. A. ALO A. DE KORVIN L. KUNES, Topological aspects of q-regular measures, Studia Math., 48 (1973), pp. 49-60.
- [2] R. A. ALÒ A. DE KORVIN, Topologies associated with operators on normed function spaces, Proc. Conference on General Topology, Rome, 1973, Symposia Mathematica, 16 (1975), pp. 209-243.
- [3] R. A. ALÒ L. I. SENNOTT, Extending linear space-valued functions, Math. Ann., 191 (1971), pp. 79-86.
- [4] D. AMIR, Projections onto continuous function spaces, Proc. Amer. Math. Soc., 15 (1964), pp. 396-402.
- [5] D. AMIR, On projections and simultaneous extensions, Israel J. Math., 2 (1964), pp. 245-248.
- [6] R. ARENS, Projections on continuous function spaces, Duke Math. J., 32 (1965), pp. 469-478.
- [7] D. W. DEAN, Subspaces of C(H) which are direct factors of C(H), Proc. Amer. Math. Soc., 16 (1965), pp. 237-242.
- [8] N. DINCULEANU, Vector Measures, Pergamon Press, Berlin, 1967.
- [9] N. DUNFORD J. T. SCHWARTZ, Linear Operators, part I, New York, 1958.
- [10] H. W. ELLIS I. HALPERIN, Function spaces determined by a leveling length function, Canad. J. Math., 5 (1953), pp. 576-592.
- [11] N. GRETSKY, Representation theorems on Banach function spaces, Memoirs of the Amer. Math. Soc., 84 (1968), pp. 56.
- [12] J. R. ISBELL Z. SEMADENI, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc., 107 (1963), pp. 38-48.
- [13] S. KAKUTANI, Concrete representation of abstract (M) spaces, Ann. Math., (2) 42 (1941), pp. 994-1024.
- [14] W. A. J. LUXEMBURG A. C. ZAANEN, Notes on Banach function spaces, Proc. Acad. Sci. Amsterdam (Indag. Math.), Note I, A 66 (1963), pp. 135-147; Note II, A 66 (1963), pp. 148-153; Note III, A 66 (1963), pp. 239-250; Note IV, A 66 (1963), pp. 251-263; Note V, A 66 (1963), pp. 496-504; Note VI, A 66 (1963), pp. 655-668; Note VII, A 66 (1963), pp. 669-681; Note VIII, A 67 (1964), pp. 104-119; Note IX, A 67 (1964), pp. 360-376; Note X, A 67 (1964), pp. 493-506; Note XI, A 67 (1964), pp. 507-518; Note XII, A 67 (1964), pp. 519-529; Note XIII, A 67 (1964), pp. 530-543; Note XIV,

A 68 (1965), pp. 229-248; Note XV, A 68 (1965), pp. 415-446; Note XVI, A 68 (1965), pp. 646-667.

- [15] W. ORLICZ, Absolute continuity of set functions with respect to a finitely subadditive measure, Amer. Soc. Math. Polonae, Series I, 14 (1970), pp. 101-118.
- [16] A. PELCZYNSKI, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertations Math., 58 (1968).
- [17] M. M. RAO, Linear operations, tensor products and contractive projections in function spaces, Stud. Math., 38 (1970), pp. 131-186.
- [18] J. WOLFE, Injective Banach spaces of type C(T), Ph. D. Thesis, University of Califonia, Berkeley, 1971.
- [19] A. C. ZAANEN, Integration (Second Edition), North Holland, Amsterdam, 1967.
- [20] T. ANDO, Contractive projections in L^p-spaces, Pac. J. Math., 17 (1966), pp. 391-405.