
The Internal Sphere Condition and the Capillary Problem (*) (**). 

lgOBE~T F I ~ -  (Stanford) - CLA~zS GE~=A~D~ (Heidelberg) 

Sunto. - I n  un  importante lavoro [1], M. E m m e t  ha dimostrato l'esistenza di su~er]ici di equi- 
librio eapillari, de]inite in  domini  con ]rontlera J~ipsehltziana, quando la costante di L ip -  
sehitz L e l' angoIo di contatto y soddis]ano la relazione L < [tg r]. Questa condizione, ehe 
noto essere necessaria in  generale, pad essere troppo restrittiva in  alcuni  casi particolari.  
I ~  questo tavoro la condizione di E m m e t  ~ sostit+t.ita da una (~ eondizione di s]era inter'ha ~, 
che conduce ad qtna targa classe di domini  the non rientrano nel risultato di Eu~v~er. JL'esi- 
estenza di una soluzione ~ dinwstrata anehe nel caso ? == O, che non pu~ essere trattato con 
il 'metodo di E m m e t .  

1. - I n  a recent  pape r  [1], ]]MSIER proved  t h a t  if a domain  D has  Lipschi tz  

boun da ry  Z,  wi th  Lipschi tz  constant  L <  t tanyt ,  and  if u >  0, t hen  the  funct ional  

w =  v'i-+ IvP, 

admi t s  a unique minimiz ing  funct ion u(x)  in the  class BV(~9), the  e lements  of which 

are funct ions in LI (~ )  whose first d is t r ibut ional  deriYatives are Radon  measures  
of bounded  var ia t ion  over  D. The funct ion u(x) is real  ana ly t i c  inter ior  to •2 (see 

also Pepe  [2]) and  has  a t race  on X in the  class LI(X).  
Al though ~E~IER assumed  y ~- const  on X, the  s i tuat ion in which y is p rescr ibed  

and cont inuous on Z ~ requires  no significant change in the  demonst ra t ion ,  and we 
shall  discuss the  p rob lem in t h a t  general i ty .  Emmer~s  condition then  becomes 

L <  m in l t~ny  t. 

I n  d imension n = 2 the  var ia t iona l  p rob lem for  (1) arises f rom the  physica l  prob-  

lem of finding ~ capi l la ry  free surface over  t~, which meets  the  bounding cyl inder  Z 
over  2: in a contact  angle y. For  background  mot iva t ion  and discussion see, e.g., [3] 
or [4]. I n  th is  p a p e r  we p e r m i t  n to be a r b i t r a r y ,  n > l .  

The res t r ic t ion  L <  I tanyI  is not  accidental  to the  method.  I t  can be  shown 
tha t  under  condit ions for which 2: is smooth  except  at  a single poin t  where  the  

(*) Entrata in Redazione il 26 agosto 1975. 
(**) This work was initiated while the former author was at Universit~it Bonn and at 

Universit~ di Genova, and the latter author at Universit6 de Paris VI as a Fellow of the 
Deutsche Forsehungsgemeinschaf~. 
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inequal i ty  is reversed,  E(]) may  not be bounded below, and the re  wilt be no funct ion 
for which E(J) is s ta t ionary  and finite (see the  discussion in [4]). 

Nevertheless,  the  res t r ic t ion as it  appears excludes cases for which a solution 
would be expected on physical  grounds to exist .  For  example,  if X is smooth one 
would expect  to find a solution where ~ ~-0.  This case is however  excluded b y  
E m m e r ' s  condit ion;  the relat ion 

2(1) =f(W+ ½-~f~) ax< ¢~< 

for any  sequence minimizing E(]), which is basic to E m m e r ' s  method,  is then  not  
evident ly  satisfied. 

Perhaps  a more serious drawback is tha t  the method  excludes not  only boundary  
corners with small angles (which is to be expected) bu t  also corners with large open- 
ing angles, for which there  is no a pr ior i  reason to expect  difficulty. 

Even  in the  ease of a boundary  corner with small angle, when no solution of 
Em mer ' s  problem can exist,  capillary sm'faces are observed physically,  and it  is 
desirable to encompass them in the  mathemat ica l  theory.  We shall do this  in § 7 ix). 

Our pr incipal  achievement  in the  present  work is to  replace the  condit ion 
/~<  ltan),I b y  a different,  bu t  re la ted requi rement  (internal sphere condition) and 
we show (roughly speaking) tha t  the  var ia t ional  problem admits  a solution in the 
sense of E~vIEI~ whenever  this condition holds. We are  ted to a class of domains 
in some ways much broader  than  has previously been considered, and to less restric- 
t ive conditions on bounda ry  data .  

I t  has been our a im to obtain existence, uniqueness and a pr ior i  est imates for 
solutions wi thout  explici t  hypotheses  on boundary  regular i ty .  In  this respect  we 
have  not  ent i re ly  succeeded, and (for technical  resons) we have had to impose a 
segment condit ion on the  boundary .  This is, however,  the  only explici t  res t r ic t ion 
we make, and the  essential features of our results are obta ined under  implici t  global 
geometr ic  conditions. The requirements  are verified readi ly  in par t icu lar  cases, some 
of which are discussed in § 7. They  are in cer ta in  senses weakest  possible for the  
results obtained.  

Not  every  domain tha t  verifies E m m e r ' s  conditions satisfies om's (el. § 7 iv)) 
but  our condition does include a number  of eases of special interest  tha t  are excluded 
by  E m m e r ' s  hypotheses .  In  par t icular  we find the  existence of a unique solution 
in domains with opening corners (§ 7 vii)), and also in the  ent ire  range 0<~y~<s, 
whenever  2:~ C 2. I f  Z is any  Lipschitz bonnda.ry, a var ian t  of our me thod  extends 
E m m e r ' s  result  to the  l imiting ease L <  ttan~,I, which is impor tan t  in some situa- 
tions. Thus,  our results can be said to ex tend  all those of E m m e t ,  a l though not  b y  a 
unified approach.  

Vf'e base our discussion not  on the  var ia t ional  integral  bu t  on the  var ia t ional  
condit ion satisfied b y  a s ta t ionary  function.  The condition is defined in a general 
s i tuat ion under  minimal  regular i ty  hypotheses  near  2:, because of the  par t icular  



I~0BERT FINN - CLAUS GERHARDT: The internal sphere~ etc. 15 

nonl inear i ty  in the  problem. Our procedure  then permi ts  us to consider also cases~ 
us indicated above, in which no solution with finite var ia t ional  integral  can exis t  (§ 7). 

Our proofs use basical ly existence and regular i ty  results of E~f)~E]~ and of ]?EPE; 
we note,  however,  t ha t  we need these results in less general i ty  than  appears  in the i r  
papers.  For  example~ for our principal  purposes Emme r ' s  existence theorem is used 
only for a domain  with smooth boundary ,  in which case his procedure  can be sim- 
plified~ see, e.g., [4~ pp. 133-4]. We obtain our present  results b y  an approximat ion  
procedure,  using ~n a pr ior i  est imate for the solutions due to CoNcus and FINN [5]. 

2. - Ze t  £2 be a bounded  domain in R ~, whose boundary  Z e  C ~. Le t  Z denote  
the  ver t ica l  cyl inder  over  X. Le t  B ~ c R  ~ be ~ ball  of radials ~ , / ' ~  ~B~, and let  S~ 
be the  ver t ica l  cyl inder  o v e r / ~ .  Le t  S~ be a lower hemisphere  inscribed in E~. 
S~ will meet  Z in an angle ~(x) over  Z~ see Figure  ] .  We normalize ~ so tha t  0 <~  ~<~/2 

Figure 1 

]] 
x 

- /  

/ 
DEFINITION. -- ~ wilt be said to satisfy an internal sphere condition with radius 

A and angle Yo, 0 ~ y o < z / 2 ,  if every  x E ~  lies in a ball  B~, such tha t  Y(~)-~Fo(~) at  
eve ry  ~ ~ X • B~. 
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We write  ~QclSC~,./. In  c~se Yo= 0 this  means every  x ~ 9  lies in a ball B ~ c ~ .  
We then  say 9 s~tisfies ~n intcrnM sphere condit, ion wi th  radius (~, 9 c ISCo. 

The following resul t  appenrs in [5]. 

L]~)I~iA 1. - Let X e  C ~ and suppose 9 c I S C ~ ,  n. .Let u(x) be a solution in f2 of 
the Euler equation 

1 
(2) div Tu = uu,  Tu = ~ - V u ,  ~¢ ~ 0,  

associated with (1), and suppose u(x) is of class C ~ up to X, defining an angle y(x)>~ 
>~},o(x) with Z on X. Then 

n 
(3) u ( x ) <: -~ -ff (~ in 9 .  

C0~OLLARY 1. -- Let ~-2clSCo. Then any solution u(x) of (2) in 9 satisfies (3). 

An Mternative proof of boundedness under  some conditions appears in [6]. 

3 . -  Le t  Q have Lipschitz boundary  X, with constant  Z ~  mjn] tany(a)[ .  We 

are then  assured by  [1, 6] of the  existence of a unique minimizing funct ion u(x) 
for (1), which is real  analyt ic  in f2, and has a t race ut(a)ELl(Z) .  Further~ there  
holds ~ ( u ) ~ o o ,  so tha t ,  in part icular ,  u~Hl.~(Y2). We note [7, 16] tha t  every  
f ~ H1'1(~2) has a t race It(a) ~ LI(X). 

LEM~A 2. - Under the above conditions, u(x) satisfies the variational condition 

27 

for any ~7(x)~H~,1(9) (1). 

PROOF. - Since u(x) minimizes Eft),  the re  holds 

5 E  - -  E ( u  -,4:- e~?) - E (u )  > 0 ,  

for  any  ~/~ H1.1(9) and s 6 R. We have 

(5) 
v 

(1) The existence of (4) in this generMity is assured by the uniform boundedness of 
u(x) in ~2. 
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with 

There  holds 

Ads; ~) =~W~,,(p + ~) d).. 
0 

ira W,,(p -~ 2~) = W~,(p), 
-+0 

for almost  all x e ~ ,  while [W~,(p q- 2~)1< 1 for all ,t. Thus,  the  bounded convergence 
theorem implies the  existence of 

aE I =f(W~,¢~÷auv)dx--~Vcosyda---lim E(u÷ev)-E(u) = 0  
(6 )  ~ ~ = o  ~+o s 

27 

since the  numera to r  is nonneg~tive for bo th  positive and negative s. 

4. - DEFINITION. -- A domain ~ will be called admissible if 

a) it  satisfies a segment condit ion (ef. [8]), and 

b) it  can be exhaus ted  b y  an expanding sequence tgJc D, such tha t  

(i) ZJ~ C ~, all j .  

(ii) aQJclSC~, n with  3, yo independent  of j ,  0<yoKaz/2,  3 > 0. 

(iii) the re  exists a fixed integer  iV such tha t  each X ~ can be covered b y  N 
local parametr iza t ions  x~k(o~), k =  1, ..., N, in the  ball  lal < 1, and such 
t ha t  the  0d k converge pointwise and in measure  in each ball. 

Some examples of admissible (and of inadmissible) ~ are considered in § 7. We 
note  for  later  reference tha t  if QclSC~,  n t hen  ~cISCo ,  r for  any  y satisfying 

Yo < Y < ~/2- 

DEFINITmN.-  A boundary  condi t ion y(a), a e X ,  will be called admissible if  
0 < y < a z ,  and if y is the  t race  (from /2) of a un i fo rmly  continuous funct ion y(x) sat- 
isfying 0 <  y <  ~z for x e t g .  We write  ~lso f l =  cosy and refer  to admissible ft. 

RE~ARK. -- Constant boundary  da ta  are always admissible. 

DEFINITION. -- We introduce the  class Q ( t g ) ~  Z~(~2)n H~.~(~9). 

The following max imum principle m a y  be of general interest,  and applies to a 
much broader  class of functions t h a n  those for which existence will be pro~ed (~). 

(2) The former author wishes to thank lVIario MIRAXDX for a number of discussions re- 
lating to the appropriate formulation of this principle. 



18 I~OBERT ~INI~ - CLAUS GERItARDT: The internal sphere, etc. 

LEY~YIA 3. - Zet Q~ exhaust ~2, let ~ > O, let u(x), v(x) be functions in H~oe(Q)~'~ 
for which 

(7) ~i~£nff{[w~,(p)- w~,(q)]¢, + ~(u-  v)v} ax<O, 
p---- Vu, q =  Vv, 

1,1 /or any ~ eL=(~)  (~ H~o¢(~) with ~>~0. Then 

(S) u(x)<<.v(x), a.e. in ~ .  

I f  ~ =  O, then either u(x)<v(x)  a.e. in f2, or u(x)-~v(x)  d-const ,  a.e. 
I f  u, v eH~,~(~2), it suffices to eonsider ~ Q ( ~ ) ,  ~>0.  

PROOF. -- Suppose there exists m > 0 such that  the set 

Qm= (xe~: O<u-v<m} 

has positive measure. Choose 

t 0 , u-- v~O 
~(x)-~ u - - v ,  O < u - - v < m ,  

Then, for j sufficiently large, the set ~ ( ~  ~ has positive measure, and 

(9) f {[W~,(p)-- W~,(q)] ~ _{_u~a) dx<e~  

with lira z~----0, for a suitable subsequenee {cq} c {j). But  in ~Q~, 
~--~oo 

1 

D 

wherever p, q are defined. One verifies that  W~,~,~>I~I*tW ~ for any choice of 
argument in W~,v~; thus the integrand in (9) is positive in f2~, the integral is increasing 
in j,  and from this the result follows. 

LE~a-MA 4. -- I] [2, fl are admissible, ~ > O, there is at most one ]unction u(x) 
e HI,I(Q) satisfying the variational condition 

,lo) 
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]or any ~?6Q(~). I]  in addition u(x)eQ(12), then u(x) minimizes the ]unetional E(]) 

in the sense that ]or any v(x)~Q(12), 

(11) lira sup (E;(v) - -  E¢(u)}/> 0 

where Ej(f) is the junctional (1) de]ined over Qj; equality holds in (11) only i] v ~ u 

a.e. in ~ .  I f  ~-~ O, then u(x) is determined by (10) up to an additive constant, and 
equality holds in  (11) only i] v ~ u--F const, a.e. in  ~ .  

PROOF. - For  given ~ ~Q(12), denote by  a~ and fi~ minimizing sequences for (10), 
corresponding to solutions u(x), v(x). W e  mgy gssume ~ ' c  12~. Since ~ satisfies a 
segment condition, any  ~eH~.~(12) can be approximated in H L~ by  ~ function 
uniformly continuous in 12 [8, 9]. For  given ~/ and prescribed e > 0, we may  (since 
IW~, t<I)  choose ~ so tha t  

with a corresponding inequal i ty in v(x). 
For fixed ~, we have 

2:e~ 2:~j 

~ 0  

because of the uniform cont inui ty  of fl, ~ and the convergence pointwise and in 
measure of the X ~. Also 

lim f ~--+ ¢)a 
{IW~,(p) - W~,(q)]]~l - zlu - v]Cl} dx = O . 

We conclude 

~ J  

and hence, using (12), the same relat ion with ~, ~ replaced by  7, $. From Lemma 3 
now follows both u < v and v < u almost everywhere, thus  establishing the uniqueness. 

To prove the minimizing proper ty ,  let v(x) ~ Q(12) and set V(x) --~ v(x) -- u(x). We 
ver i fy  as in the proof of Lemma 2 tha t  

(13) f d I 
D~ Zq 
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with 

19$ ~$ 

Thus, given e > 0 ,  we will have [(d/d)OEjI~=o< e for a suitable sequence 12~, for all 
j> j0 (e ) .  But  as in the proof of Zemma 3, we find 

÷ f P[u; v]dx Ej(v) -  Ej(u)= d+Z ~=o 
O~ 

with Pin; v ] > 0  almost everywhere unless u ~ v .  Choosing 

e< f _P[u; v] dx 
DJ, 

for some fixed jo, we obtain the  result. 

5. - Here and in the remainder of this  paper we assume z > 0; for our principal 
results this  condition is necessary, cf. [17, Corollaries 3.2, 3.3], also [4, pp. 136-7]. 

I~et X e  C ~ and let Ba be a ball of radius 6, wi th  12N B~-- 12a¢ O..The boundary  
of 12~ consists of piecewise smooth portions X~c2: and /~+c ~Q+~ 12. Le t  fl be con- 
t inuous on F_,, 0 < Ifll </~0< 1, and let u(x) be the minimizing function for E(f) in 12. 
By  [1, 2], u(x) e 0~(~2) N HL1(12) and by  Lemma 2, u(x) satisfies the variat ional  con- 
di t ion (4) in 12. Since clearly 12c INCa, for some 6 '>  0 whenever X e  C~ there holds, 
by  Corollary 1, u(x)e L~(12). Hence u(x)eQ(12). Denote by  v the exterior normal 
to S+ or to F~. 

LE~_~[A 5. - Under the above conditions, let ~ =  ~. Tu on 1~. Then u(x) satisfies 
(4) in 12~, with data [3 on Xa and ~ on Fa. 

PROOF. - Choose h > 0. 
and set 

2(r )  = 

Take the origin of coordinates at  the center of Ba, 

1 ,  r<(~ 

O, r>~q-h 

I f  ~eHl.l(O), set ~ =  2~. Then ~7~Ht'~(12), and (4) becomes, for the domain 12, 

÷ 

X'a + n .Oa ~ a 
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where Ao is an annular  region of width h (see Figure  2). We obtain the  stated result  
by  le t t ing h -> 0. (No contr ibut ions can appear  f rom neighborhoods of the intersec- 
t ion sets Zf3  Fe, since tW.o~] < 1 for all values of its arguments .)  

Figure 2 

LE~I~A 6. - ]Let DJ be a ]amily o/ domains such that "ZJ~ C ~ and Y2~c ISCo# .. 
Let u j be the unique minimizing ]unction ]or 1~(]) in Y2J, with data ~ such that 
l y J - z / 2 I <  Iyo-7~/2 t. Then tuJ(x)l <~ n/zS ÷ 6, uni]ormly in j and in Y2~. 

PnooF.  - In  what  follows we suppress the  index j .  Le t  x e Y2, let  B~,ro be 
ball  containing x such tha t  a lower hemisphere  S (represented as the  graph of a 
funct ion v over B~,v°) meets  the  cyl inder  over X in angles ?s<Yo: Then Y2o--= ~ ( ~  
~ B ~ , r ¢ 0  , and ~ o = Z o U F o ,  with X o c Z ' , F o c ~ o .  In  ~Qo, v satisfies the  
re la t ion 

(14) div Tv = n ,  
O 

with f ls= v. Tv>cos~, o on -to, f ls= 1 on F~. We ma y  choose v so tha t  v(xo)-= n/n6 
at the  center  xo of Bo, n. Then v(x)< n[n6 ÷ 6 in ~2~. Applying L e m m a  5, we ob- 
ta in  af ter  an integrat ion by  par t s  

(15) f vn.(T~- Tv)a~- ~ (fl*-- fis)vda ÷ g f v ( u-- dx= O 
DO 8D6 D6 

for  any  ~eHl . l (~o ) ,  where 

(cf. L e m m a  5). Choosing ~ = ma x  (u -- v, 0) we conclude as in the  proof  of Le mma  3 

n 
u(~)<~(x)< ~ ÷ 
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since fl*--fl  ~< 0. Similarly, consideration of an upper  hemisphere  leads to the esti- 
mate  f rom below. 

f t .  - T~EoRE~ 1. - Let ~2, fl be admissible, with ]~,-- z~/21 < ]Yo-- ~/2] on X. Then 
there exists a unique minimiz ing /unction u e Q ( D )  /or E(/), in the sense implied by 
Lemma 4, and u(x) can be ehosen to be real analytic. I /  X ~  C ~ and there exists a 
strict solution v o/ (2) in D with v. Tv-~  fl on X, then u ~ v  in ~ .  

P~oo~'. - Let  ~2 j be an admissible family  exhaust ing I2 and satisfying a uniform 
condit ion ~ c l S C ~ , 7 .  Let  u s denote  the  corresponding solutions, wi th  da ta  7(x) 
on X ~, whose existence is p roved  in [1]. By  Lemm~ 2, each u ~ satisfies the  varia-  
t ional  condit ion (4). Since D~clSC~,Vo, each x e  ~ is in some Bt,r° , and we obtain, 
f rom L e m m a  6, ]u~(x)t< n/~(~-~ ~ in 9~. In  part icular ,  u~(x)eQ(f2~), al l j .  By  L e m m a  2, 

X~ D t 

for  any  ~ e Hl.~(f2J). Choosing ~ ~ uJ(x) yields 

(17) f DJ 

since W > I  for all values of its arguments .  Thus ~ (u  j) is bounded independent  of j .  
We m a y  now ei ther  repeat  (essentially) the  procedure  of [1] or we m a y  apply  

to the  u~ the  resul t  at the  end of [10] together  with general results on elliptic equa- 
t ions with divergence s t ruc ture  [11]. We obtain the  existence of a subsequence of 
the  X j (not relabled) such tha t  the  corresponding u s converge, un i formly  in any 
fixed D ~°, to a solution u(x) of (2) in K2. 

We now note  any  ~ e Hl'l(f2) is in Hl.~(f2 ~) for every  j .  Since (16) holds for each j ,  
since any  ~HI,~(~2)  can be approx imated  in H ~,~ norm b y  functions uni formly  
continuous in Q (see [8, 9]), and since IW~I < 1 for any  choice of its arguments ,  
we conclude (16) holds also for the  l imit  funct ion u(x), in the sense of a l imit  as 
j ~ 0% for any  ~ e H~,~(D). Using (17) we find wi thout  difficulty 

f W(p ) dx = f W 
D~ D 

]im f (us),dx = f u~dx. 
D~ D 

The uniqueness and minimizing p rope r ty  are obtained f rom Le mma  4, and the  
final s ta tement  of the  theorem from L e m m a  4 and the  observat ion tha t  (10) holds 
for v(x) in £2, with f i =  v. Tv on X. 
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7. - We consider some examples :  

i) i] Z e  C ~ the solution o/ Emmet  exists /or any continuous y(a) on ~, with 
0 < y ( a )  < z .  In  fact ,  we may  in this  case shor ten the  procedure  b y  dealing di rect ly  
with the  E m m e r  solution in f2, corresponding to a sequence of data  y~-> y, 0 < y~< ~: 

ii) if X e  C x the  result  of E m m e t  yields the  existence of a solution for a n y  y, 
0 < ~,< z .  In  this  case the  corresponding ~ satisfies the  following var ian t  of the  
in ternal  sphere condi t ion:  

.Let f2 be a bounded Cl-domain. Then, /or any choice o/ Yo~ 0<y0~<n/2 ,  Q can 
be covered by a /inite number o] balls B ~ such that B ~ meets the cylinder over X in 

angles Y~s, with Ys<~'o, and (~.>(~>0 all j .  

PROOF. - Le t  xoe X, and suppose tha t  in a neighborhood of xo, X can be specified 
to  be the  graph of a C~-function 

~: Ix ' t<r~R+, x=(x',x'~), (x',q~(x'))eZ 

and xo=(O,x~),  x~>O, and 0 e.Q. Let  v be a lower hemisphere  over a ball  Bdyo) 

containing xo 

v ( ~ ) = - @ -  lx-yoi9 *. 

Then v meets  the cyl inder  over X in angles Ys sat isfying 

n-- 1 X t ~ . X~ n - -  Yo 1 - -  Yo n ~  + . _ _  
(20) c o s ~ , ~ = - ~  ~ - ~  ~ Ix-y°t w 

at  points  x = (x', x ~) e Z,  where W--- (1 -f- IV~i~) ½. 
We m a y  assume LV~v(O)f= O. Thus,  to given e > O  there  exists ~ such tha t  

[V~o(x')[ <e  for all Ix--  xo] <2(3o. 

Le t  ~, 0 < e <  1, be given and choose (5o, 0 < Oo< x~, appropria te ly .  Then consider 
the  bait  Ba(yo) , with  Yo = (0, x~-- 5/Tt), )~ = 1 -- s, ~ -= ~o, and the  corresponding lower 
hemisphere  v. 

Le t  x e Bdyo). Then 

(21) I x -  xd < ]xo- yol + I x -  yoi < 7 +  ~ < 2~. 

Hence  we have  IV~(x')l<e for  all xe~ ,v~Bdyo)  , and 

(22) lx " -  x~l <~. Ix'- Xol <~. Ix - Xol < 2 ~  
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for those x. 

(23) x" -- y o > x o - -  Yo-- tx ~ --  xo[ > ~ - -  2e~ 

we deduce f rom (20) 

I x'  -- Y~t e 5/), -- 2e(~ 
(2~) cosys> - I~ - yot " V Y - - ~  + l~-  vol + 

In  view of these relations and in view of the est imate  

1 

V 1  +-ei > 

1 _ .  - - 2 e - - e  > _ _ l + e ~  
V~ +-~-~ 

or all x e X n  Bo(yo). Since a finite number  of such balls covers X, the  assert ions 
of the theorem are proved.  

This resul t  establishes a new proof (el. [6]) for the boundedness of the E m m e t  
solution in this  case. 

iii) if X¢  C 1 then  it  is a Lipschitz boundary  for any  constant  L > O, hence 
by  E m m e r ' s  theorem there  is a unique minimizing funct ion for any  y, 0 < 7 <  z.  
~¥e show tha t  ]or 0 < y < 7 ~  there is still a solution in the sense ~)] the variational condi- 
tion (4). To do so, set fl = cosy, flo= max{fl, -- 1 + co}, 0 < Co< 1, and ~ =  min {flo, 
1--e~}, d + l < e ~ < l ,  d - + 0 .  We consider the  solution u~o of E m m e t  in the  (fixed) 

domain  O, with data  fiJo on X. For  each UJo we have 

Z D 

for any  ~ e H l ' 1 ( ~ ) ,  b y  L e m m a  2, and also /~(UJo)< c~, each j.  For  any  compact  
K c¢ Q, we have K c ISCo for some 5 > 0, hence lu~o(x) l < n/;~ + 8, all x e K.  Thus, 

(again denoted b y  u~o) can be found, which converges, nni- a subsequence of the  u o 
fo rm!y  on any  K c c f 2 ,  to  a str ict  solution uo(x) of (2) in O. 

We examine the  t rans i t ion in (25), for fixed ~. We m a y  suppose ~>O, since 
any  ~ can be expressed as the  sum of its posit ive and negative par ts .  Since flJo-+ flo 
uniformly,  we have  

Z 

Also, since IWv,]< 1 and ~ e H I ' I ( Q ) ,  

, i ~ r  ' f ~-~ oW~,(po)¢,dx= gApo)¢,ax. 
D D 

I t  follows tha t  

exists,  and Lo=/= ± ~ .  

f ~ d  Jim ~uo X = L o  
~--> oo d 

D 
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We now applyI~emma 3. Sineefi~o+~>fl~o, there follows ~+~ u o > u o in/2. We conclude 
from the monotone convergence theorem that  

f !~m Zuo~dx= xuo~dx 
J--->cO d 

and hence (25) holds with the superscript deleted. 
Now, let so--> 0. We obtain a nonincreasing sequence of solutions, for which we 

again pass to the limit under the integral sign, obtaining the stated existence. 
We note the corollary to the method of construction of u(x), that  u e Lt(~) (3 C*(~). 

iv) The boundary illustrated in Figure 3 satisfies a Lipschitz condition with 
constant L =  cota. Without changing this constant, the corners can be rounded 
so that  X has a uniquely defined normal at each point. 

~2 

f f 

/ 

w 

P 

Figure 3 

/ 

' \  
.i \ 

\ 
\ 

One verifies readily that  if a closed ball B~ contains the point p, then there exist 
boundary points at which a lower hemisphere over Bo meets the cylinder over 27 
in angles 0 satisfying 1 ~ / 2 - 0 I < e  for any e > o ;  hence there will be points on 27 
at which ltan0l is arbitrarily large. 

On the other hand, Emmer's  theorem assures the existence of a unique solution 
u(x) of (2) in ~2, for any data ~ satisfying Itan~,I>cotc¢. Thus Emmer's result 
applies to situations for which the sphere condition fails, so that  ~ will not be 
admissible in the sense of the present paper. 

v) In the situation just discussed, Lemma i cannot be applied to obtain a 
bound for the solution. We do have ~(u) < 0% as follows from the procedure in [1]. 
The solution is in fact bounded; this follows from the results of [6]. 

vi) The method of iii) can be applied to the above situation, yielding the 
existence of a solution in the sense of (4) under the (weakened) hypothesis [tan~[ >L.  
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vii) In  the  domain  of Figure 4, E m m e r ' s  method  fails if c o t a >  l tan?l.  :Never- 
theless, Theorem 1 yields the  existence of a unique solution for any  choice of ~. 
Thus,  the  present  resul t  is not  included in tha t  of Emmer ,  even if lcos?l sa 1. 

Figure 4 

viii) In  Figure  5, the  two sides of the <(spine ~) are  not identified if n ~ - 2 ,  
while if n > 2 the spine becomes a singular (lower dimensional) pa r t  of the boundary.  
The domain ~2 is however  admissible in the sense of this paper  for any  n>2,  and 

hence a unique solution exists for any  y, 0 < y < x .  

I f  n > 3 ,  the  ~ spine ~ can be enclosed within ~ b y  a surface of a rb i t ra r i ly  small 
area. W'e may  thus  apply  the  general ma x i mu m principle of [5] to conclude tha t  
the  solution is identical  to the  one obtained when the  spine is removed {Figure 6). 

26 

Figure 6 
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In  par t icular ,  the  da ta  ? on the  spine will not  in general  be achieved s t r ic t ly  in this 
c a s e ,  

ix) We consider the  domain of Figure  7, with a conical boundary  s ingular i ty  
of h~lf angle ~. I f  I ~ - - z / 2 1 < a ,  then  ~clSC~,r, in the  sense t h a t  it  can be ap- 
p rox imated  f rom the interior  by  domains with smooth boundaries  and in this class. 
Thus,  Theorem i assures the  existence of a unique solution. (Emmer ' s  theorem 
requires  ] ~ - - z / 2 ] < a . )  I f  I ~ - - z / 2 1 > a ,  Theorem 5 in [5] shows tha t  no solution 
with finite energy integral  can exist ,  and thus  E m m e r ' s  me thod  cannot  be applied 
direct ly.  ~ever theless ,  a solution does exist  in the  sense of the  var ia t ional  condi- 
t ion  (4). To show this,  we approximate  ~ as in Figure  8 and solve the  corresponding 
prob lem in .g2 j wi th  da ta  / ~ = 1  on F ~. Since each QJclSC~j for  some ( ~ > 0 ,  the  
solutions inter ior  to any  fixed ~J° are un i formly  bounded.  B y  L e m m a  3, the se- 
quence u j is monotonical ly  decreasing, hence b y  the  est imates of [10, 11] we find 
convergence to a s tr ict  solution u(x) of (2), uni formly  in any  K c ¢ ~ .  

Figure 7 Figure 8 

For  each j, the  var ia t ional  condition (4) holds in ~ for any  ~eQ(~2~), hence 
in par t icu lar  for  any  ~eQ(~g2). We have  also (~J>r tana ,  where r is t he  min imum 
distance in ~ to the  ver tex ,  so tha t  ]uJ[ < (n)/(krtana) ~- rtanc¢. I t  follows tha t  ]u j] 
is bounded by  an integrable  funct ion in (4), as j--> oo. 

The l imit ing t ransi t ion is now immediate ,  and we obtain the var ia t ional  condi- 
t ion  (4) for u(x), for any  ~]eQ(~). 

Since u(x)~Hln(~2), the  uniqueness does not  follows direct ly  f rom L e m m a  4. 
To prove  it, we use again tha t  ~¢clSC¢, hence any  solution v(x) is bounded in T2~. 
In tegra t ing  over  a fixed ~° ,  we find 

1 ~v2)dx=~v(v.Tv)d a 

the  surface integral  being unders tood as a l imit  of integrals over interior  boundaries .  
Since ITvl < 1, IWI > 1, there  follows 

f (W+zv ~) dx< Co< oo ; 

thus  v e Q(f f ' ) .  
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Given two solutions u, v, we find 

I{[w~,(p)  - w~,(q)] ~ + ~(u - v)~} ax = o 
~J 

for  any  ~ e Q ( ~ ) .  If ,  for some M, the  set {x~/2;  0 <  u - - v <  M} has posi t ive meas- 
ure, we proceed as follows: Choose e > 0 ,  and set 

~ ( r ) =  

0~ r ~ 8  

r - - 8  

s 
1,  r>~ 2e. 

Let  r denote  dista~nce f rom the  ver tex ,  and choose 

0 ~ U - - V ~ 0 ~  

2 ( u - - v ) ,  O < u - - v < M ,  

AM , M < u - - v .  

Then ~ e Q(E2) for each e, and a formal  est imation,  using the bound IW~,I < 1, leads 
to a contradict ion.  

x) The notion of in ternal  sphere condition can be in t roduced for genera] 
IApschitz domains, by  requiring tha t  the condition be satisfied at all boundary  points 
for  which a normal  vector  is defined. We show now tha t  if ~(2 is a Lipschitz domain 
and i] [2 c ICS~,r°, then ]or any ~ > ~'o, X can be approximated ]rom wi th in  ~ by 
boundaries ~ e  C ¢~, which bound domains ~clCS~,~. 

PROOF. - I f  zPcISC~,n, then  ~ can be covered b y  a finite number  of balls B~ 
with the  p rope r ty :  if we choose the  origin at the  center  of any  B~ and let  
F(x~, . . . ,  x~)-=0 be a representa t ion  of 2: wi thin  B~, there  holds 

Xi ~m~ 
J V F  I - -  cos 7 ) e O S ? o  

at almost  all points x e Z  in B~: In  par t icular ,  r ~  lx [ )6cos~o ,  hence r is bound- 
ed f rom zero. 

For  any  such x at which the  normal  to X is defined, let  a be the  angle between 
the  radius vector  f rom the  origin to x, and the  normal  to Z at x. In t roducing  now 
local spherical  coordinates ~ and represent ing X in the  form r ~ r(~) near  x, we find 

~v/1 - -  COS 2 
tan:¢ = 1 IVrl 

r cOs N 
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Bu t  

hence 

c o s  ~ - -  ~ -  ~ c o s  
r lWl 7 

_ v ~ r / o ~ '  - cos '  ~,o l IVrl = V ( r / ~ ) '  - c o s ' r <  
r c o s  ~' c o s  ~'o 

which bounds IVrl uniformly in terms of the sphere condition. 
The above relat ion yields 

Set tVr[---- ~. 

(26) 

(~) ' r 2  
C O S ~ 7  ~--- r' + IVr? 

For  fixed ~, there holds 

3 cos' 7 1 
3r~ < ~ " 

Given x e  X and s > 0, denote by  V~:~ the  closed neighborhood ]~-- xI<5~e. We 
choose s sufficiently small t ha t  V~;~cB~, and set 

~ : . =  1.u.b. 2(~). 
s z  

In  view of the above est imate for IVrl we conclude 

hence 

so tha t  by  (26) 

at all values of r in V~:~. 

(r ÷ ~ )  v / f i r  ÷ ~'s)/~)~ - cos~ro 
cos y0 

c°s '7°  < (r ÷ ~%)~+ ~*~:, 

We m a y  now choose a mollifier Q and ~-neighborhoods U~:~c Vx; ~ 
x e 2:, such t h a t  suppQ c U~:~ and 

]r(~v) -- f Qr dq~ 1 < ½~% 

of the points 
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throughout U~:~/~. We set 

~(~) --  f Qr d~ - ½~.~ 
U~ 

iu Ux:~/. 2 . 

so that  

The image of 2: under this mapping then lies interior to £2, and 

r e =  - - frVQ d ~ =  f Q Vr d~o 

[V¢l< sup IVrt<~.. 

I t  follows that  on the image of 2:~ U~.,/2 there holds 

(;)" cos.~ = ~ ]  ~. + iv~l ~ > ~ + ~ . - - - - ~  

A finite number of such neighborhoods U~.~ will cover 2:, and the proof is com- 
pleted by piecing together the local mappings, using a partition of unity. 

We conclude from the above result that  any Lipschitz domain £2 satis/ying a 
sphere condition is admissible, and hence that Theorem 1 applies. The criterion for 
existence of a solution is obtained not from the Lipschitz constant (as in the result 
of Emmet) but from the angle 7o. 

xi) For any Lipschitz domain satisfying a sphere condition, the procedure of 
this paper permits a simplification of Emmer's existence proof, in the sense that  
his result need be demonstrated only for domains with smooth boundary. In this 
situation, the technical difficulties arising in the proof of Emmer's basic JJemma 1.1 
can be avoided, cf. the remarks in [4, pp. 133-4]. 

xii) We remark finally that  if 7 is smooth in some smooth neighborhood JV on 2:, 
then 7 is achieved in the strict sense in ~W. We refer the reader to recent important 
contributions by URALTSEV)~ [13], by SPRUCIC [12], by Sr~o~ and SPRUCK [14] and 
by GERHARDT [15]. 
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