The Internal Sphere Condition and the Capillary Problem (*) (+*).

RoBERT FINN (Stanford) - Craus GERHARDT (Heidelberg)

Sunte. - In un importante lavoro [1], M. Emmer ha dimostrato Uesistenza di superfici di equi-
librio capillari, definite in domini con frontiera Lipschitziana, quando la costante di Lip-
schitz L e Uangolo di contatto y soddisfano la relazione L < |tg y|. Questa condizione, che é
noto essere mecessaria in generale, pud essere lroppo restrittiva in alcuni casi particolari.
In questo lavore la condizione di Emmer & sostituita da una « condizione di sfera interna »,
che conduce ad una larga classe di domini che non rientrano nel risultato di Emmer. Lesi-
estenza di una soluzione & dimostrata anche nel caso y = 0, che non pud essere tratlato con
il metodo di Emmer.

1. = In a recent paper [1], EMMER proved that if a domain £ has Lipschitz
boundary 2, with Lipschitz constant L < [tany|, and if % > 0, then the functional

) B(f) EJ.(W—{—%%fZ)dw—fffcosy i,
X

2
W= Vit [ViE,

admits a unique minimizing function () in the class BV({2}), the elements of which
are functions in L!(£2) whose first distributional derivatives are Radon meagures
of bounded variation over £. The function u(z) is real analytic interior to Q (see
also Pepe [2]) and has a trace on X in the class L1(X).

Although EMMER assumed y = const on 2, the situabion in which y is preseribed
and continuous on X requires no significant change in the demonstration, and we
shall discuss the problem in that generality. Emmer’s condition then becomes
L < mjn|tany|.

In dimension »n = 2 the variational problem for (1) arises from the physical prob-
lem of finding a capillary free surface over £2, which meets the bounding cylinder Z
over 2 in a contact angle y. For background motivation and discussion see, e.g., [3]
or [4]. In this paper we permit » to be arbitrary, n>1.

The restriction L < [tany| is not accidental to the method. It ean be shown
that under conditions for which 2 is smooth except at a single point where the

(*) Entrata in Redazione il 26 agosto 1975.

{(**) This work was initiated while the former author was at Universitdt Bonn and at
Universitdh di Genova, and the latter author at Université de Paris VI as a Fellow of the
Deutsche Forschungsgemeinschaft.
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inequality is reversed, E(f) may not be bounded below, and there will be no function
for which E(f) is stationary and finite (see the discussion in [4]).

Nevertheless, the restriction as it appears excludes cases for which a solution
would be expected on physical grounds to exist. For example, if X' is smooth one
would expect to find a solution where y=0. This case is however excluded by
Emmer’s condition; the relation

B(f) =f(W+%xIZ) dr < 0)< oo

2

for any sequence minimizing E(f), which is basic to Emmer’s method, is then not
evidently satisfied.

Perhaps a more serious drawback is that the method excludes not only boundary
corners with small angles (which is to be expected) but also corners with large open-
ing angles, for which there is no a priori reason to expect difficulty.

Even in the case of a boundary corner with small angle, when no solution of
Emmer’s problem can exist, capillary surfaces are observed physically, and it is
desirable to encompass them in the mathematical theory. We shall do this in § 7 ix).

Our principal achievement in the present work is to replace the condition
L< |tany| by a different, but related requirement (internal sphere condition) and
we show (roughly speaking) that the variational problem admits a solution in the
- sense of EMMER whenever this condition holds. We are led to a clasg of domains
in some ways much broader than has previously been considered, and to less restric-
tive conditions on boundary data.

It has been our aim to obtain existence, uniqueness and & priori estimates for
solutions without explicit hypotheses on boundary regularity. In this respect we
have not entirely succeeded, and (for fechnical resons) we have had to impose a
segment condition on the boundary. This is, however, the only explieit restriction
we make, and the essential features of our results are obtained under implicit global
geometric conditions. The requirements are verified readily in particular cases, some
of whieh are discussed in § 7. They are in certain senses weakest possible for the
results obtained.

Not every domain that verifies Emmer’s conditions satisfies ours (cf. § 7 iv))
but our condition does include a number of cases of special interest that are excluded
by Emmer’s hypotheses. In particular we find the existence of a unique solution
in domains with opening corners (§ 7 vii)), and also in the entire range 0<y<u,
whenever 2e 02 If 2 is any Lipschitz boundary, a variant of our method extends
Emmer’s result to the limiting case L < |tany|, which is important in some situa-
tions. Thus, our results can be said to extend all those of Emmer, although not by a
unified approach.

We base our discussion not on the variational integral but on the variational
condition satisfied by 2 stationary function. The condition is defined in a general
situation under minimal regularity hypotheses near X, because of the particular
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nonlinearity in the problem. Our procedure then permits us to consider also cases,
a8 indicated above, in which no solution with finite variational infegral can exist (§ 7).

Our proofs use basically existence and regularity results of EMMER and of PEPE;
we note, however, that we need these results in less generality than appears in their
papers. For example, for our principal purposes Emmer’s existence theorem is used
only for a domain with smooth boundary, in which case his procedure can be sim-
plified, see, e.g., [4, pp. 133-4]. We obtain our present results by an approximation
procedure, using an a priori estimate for the solutions due to CoNcus and FiINN [5].

2. — Let O be a bounded domain in R*, whose boundary 2e (% Let Z denote
the vertical cylinder over Z. Let Bs;c R* be a ball of radius §, I's= 0Bs, and let Zs
be the vertical cylinder over Is. Let 85 be a lower hemisphere inscribed in Zs.
Sswill meet Z in an angle $(x) over X, see Figure 1. Wenormalize { 8o that 0 <y <7/2

Figure 1

DEFINITION. — £2 will be said to satisfy an internal sphere condition with radius 0
and angle v,, 0<y,<7/2, if every xc 2 lies in a ball Bs, such that $(&)<y.(§) at
every £ 2N Be.
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We write 2cI8C;, . In case y,= 0 this means every x< £ lies in a ball Bsc Q.
We then say 2 satisfies an internal sphere condition with radius 8, Qc ISCs.
The following result appears in [5].

LEmMMA 1. — Let X'e O and suppose QC IS0, . Let u(z) be a solution in Q of
the Euler equation

(2) div Tu = »u , Tux%Vu, >0,

associated with (1), and suppose u(w) is of class C* up to X, defining an angle y(x)>
>yol®) with Z on X. Then

(3) u(w)<%+6 in Q.

COROLLARY 1. — Let 2cI8Cs. Then any solution w(z) of (2) in Q satisfies (3).

An alternative proof of boundedness under tome conditions appears in [6].

3. — Let £ have Lipschitz boundary Z, with constant L<mip|tany(o)l. We

are then assured by [1, 6] of the existence of a unique minimizing function w(x)
for (1), which is real analytic in £, and has a trace u!(c)e L*(X). Further, there
holds B(u)< oo, so that, in particular, we H** (). We note [7, 16] that every
feH () has a trace fHo)e L),

LeMMaA 2. — Under the above conditions, u(x) satisfies the variational condition

(4) I(Wpig‘i—%mm)dm-§ncosydo'z(), D=ty (=,
z

a
for any n(z)e H-HQ) (1).
Proor. - Sinee u(x) minimizes E(f), there holds
OB = B(u-+ en) — Bu)>0,

for any ne H+{(2) and ¢ R. We have

(6) 6E——f( ,17Ci+s%nu+e2-n)dm—s§ncosyd0

P

() The existence of (4) in this generality is assured by the uniform boundedness of
u(x) in Q.
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with
Aoy =W, o+ 20 .
0

There holds
ljm Wo(p + 42) = W, (p),

for almost all z € 2, while [W_ (p -+ A0)|< 1 for all &. Thus, the bounded convergence
theorem implies the existence of

ol

oL B(u + en) — B(u)
0¢

&

(6)

== 0

E=()

o= f (W Ci + wun) de— @ncos ydo = 161_190
2 z
since the numerator is nonnegative for both positive and negative &.

4. — DEFINITION. — A domain £ will be called admissible if
a) it satisfies a segment condition (cf. [8]), and
b) it can be exhausted by an expanding sequence £2c £2, such that
(i) 2= 0t all §.
(ii) &cI8C,, with J,y, independent of j, 0 <y, <m[2, 6> 0.

{(iii) there exists a fixed integer N such that each X7 can be covered by N
local parametrizations #™(a), k=1, ..., N, in the ball |«|< 1, and such
that the 2 converge pointwise and in measure in each ball.

Some examples of admissible {and of inadmissible) £ are considered in § 7. We
note for later referemce that if QcI8C;, then QcISC,, for any y satisfying
Yoy <m[2.

DEFINITION. — A boundary condition y(c), 0 Z, will be called admissible if
0<y<m, and if y is the trace (from £) of a uniformly continuous funetion y(x) sat-
isfying 0 <y <z for ze Q2. We write alse = cosy and refer to admissible 8.

REMARK. ~ Constant boundary data are always admissible.

DEFINITION. — We introduce the class @(£2) = L*(2) N H1.}(L).
The following maximum principle may be of general interest, and applies to a

much broader class of functions than those for which existence will be proved (?).

(®) The former author wishes to thank Mario MiraNDA for a number of discussions re-
lating to the appropriate formulation of this prineciple.
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LEMMA 3. — Let £/ ewhaust Q, let x>0, let u(x), v(x) be functions in Hpi(Q),
for which
(M) tign inf [ {(Wo(p) — Wan(@)1Li + #(u— o)} do<0,
“ p=Vu,qg=Vo,
for any ne L™(Q2)N HLL(R2) with n>0. Then
(8) u(z) <v(®), a.e, in Q.

If »=0, then either uw(x)<v(®) a.e. in £, or u(z) == v(x) 4 const. a.e.
If u,ve H-Y{Q), it suffices 1o consider neQ(), n>0.

PROOF. — Buppose there exists m >0 such that the set
Q,={re2:0<u—v<<m}

has positive measure. Choose
0 , u—wv<0,
)=} u—v, O<u—v<m,

m o, uU—V=Mm.
Then, for j sufficiently large, the set ;N £, has positive measure, and

(9) [ W)= W, @18+ o} dw<e,,

Qa0

with lime, = 0, for a suitable subsequence {a;}c {j}. But in Q,.,

1
W, (0) — Wy (@) = &5 W, 0+ 0 — 0)) @2
L]

wherever p,q are defined. One verifies that W, ££,>|E[*/W* for any choice of
argument in W, ; thus the integrand in (9) is positive in £2.., the integral is increasing

in j, and from this the result follows.

LuMMA 4. — If Q2,8 are admissible, x>0, there is at most one function wu{w)e
e H»(Q) satisfying the variational condition

(10) ligzonf 1 J‘(Wm& + wum) de — §,83? do l ==
@24 P
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for any neQ(R2). If in addition u(x)e@Q(L), then u(x) minimizes the functional B(f)
in the sense that for any vix)eQ(Q),

(11) lim sup {Ey(v) — Bw)} >0

where E(f) is the functional (1) defined over £;; equality holds in (11) only if v=wu
a.e. i Q. If =0, then w(z) is determined by (10) up to an additive constant, and
equality holds in (11) only if v =u - const. a.e. in 2,

Proor. — For given e @(£2), denote by «; and §; minimizing sequences for (10),
corresponding to solutions u(x), o(x). We may assume % ¢ 0%, Since Q satisfies a
segment condition, any e HV(£2) can be approximated in H'! by a function 4
uniformly continuous in £ [8, 9]. For given 7 and prescribed ¢ >0, we may (since
[W,|< 1) choose # so that

(12) [UW, ) =~ W@ 16— B+ el — o] fp — A} dz < e
2

JUW, @)1 16— 2+ #lul In — 4]} do< e
2

with a corresponding inequality in v(x).
For fixed 4, we have
],LIE)‘ f#ﬁndo’wi; /37707()“:0

pC7] ZBy

becauge of the uniform continuity of f,% and the convergence pointwise and in
measure of the 2Y Also

lim [ {Wa(p) = Wa@|E] — #lu—vlfdo=0.

QB Q%5

We conclude

ti [ {Wolp) = Wal )16+ et — vy da=0
Loty

and hence, using (12), the same relation with 4, Z replaced by 4, {. From Lemma 3
now follows both « < v and »<u almost everywhere, thus establishing the uniqueness.

To prove the minimizing property, let v(z) € Q(2) and set y(x) = v(x) — u{z). We
verify as in the proof of Lemma 2 that

(13) [ Wit o= §pndo = G Bt |,
J, Y |a=0

D*



20 ROBERT FINN - CLAUS GERHARDT: The internal sphere, etc.

with

E, = f (W+~g~u2) do — fﬁﬂ%da.
P2

o

Thus, given &> 0, we will have |(d/dA)E;|;_,< e for a suitable sequence £/, for all
§>jole). But as in the proof of Lemma 3, we find

aE,
Byfv) — Byfu) =

A=0

-+ JP[%; v]dx
ol

with Plu; v]>0 almost everywhere unless # =v. Choosing

£ fP[u; v]dx
o

for some fixed j,, we obtain the result.

5. — Here and in the remainder of this paper we assume x > 0; for our principal
results this condition is necessary, cf. [17, Corollaries 3.2, 3.3], also [4, pp. 136-7].

Let XYe C? and let Bs be a ball of radius 6, with 2N Bs= Q4= 6. .The boundary
of Qs consists of piecewise smooth portions Zsc X and I'sc 02,N 2. Let § be con-
tinuous on X, 0 < |B]< f<<1, and let u(x) be the minimizing funetion for B(f) in L.
By [1, 21, w{z)e C(2)N H*{2) and by Lemma 2, u(x) satisfies the variational con-
dition (4) in Q. Since clearly 2c ISCs for some 6'> 0 whenever X' C?, there holds,
by Corollary 1, u(x)e L™(Q). Hence u(x)€Q(f2). Denote by » the exterior normal
to Xs or to I's.

LeMMA B, — Under the above conditions, let f=v-Tu on I's. Then u(x) satisfies
(4) in Qs, with data B on Zs and § on Ts.

Proor, — Choose k> 0. Take the origin of coordinates at the center of Bs,
and set

1, r<d

Ay = 1—";5, d<r<d-+h

0, r=0+h

If e H(Q), set 5i= Ay. Then yc H11(Q), and (4) becomes, for the domain £,

$nip do= f (W, 2yt wun) do+ [ [W,(dn),, -+ nhun)do
£

Zosn 2,
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where &;ig an annular region of width h (see Figure 2). We obtain the stated result
by letting h—0. (No contributions can appear from neighborhoods of the intersec-
tion sets 2N I, since |W, |<<1 for all values of its arguments.)

Figure 2

LEMMA 6. — Let £ be a family of domains such that Xe C* and Qic I8C,, .
Let 4’ be the unique minimizing function for E{fy in £, with data ¢’ such that
lyi —:f2] < |lyo—m/2]. Then \ui(@)|<nfxd-+ 0, uniformly in j and in L9,

PrOOF. — In what follows we suppress the index j. Let ze £, let B;, be a
ball containing @ such that a lower hemisphere S (represented as the graph of a
function v over B, ) meets the cylinder over X in angles y;<y,: Then £s=0N
NB,, #0, and 0= ZsUls, with Zsc 2, I'c 2N 0Qs. In s, v satisfies the
relation

(14) div T — %,
with fg=v-Tv>cosy, on X;, fy=1 on I';, We may choose v so that v(w,) = n/xd

at the center @, of B,,. Then v(x)<n[xd- 06 in s Applying Lemma 5, we ob-
tain after an integration by parts

(15) an-(Tu-—Tv)dw~—§(ﬂ*—ﬂs)ndo—}—xfn(u-;%)d:c:o
25 25 25
for any 5 e H.YL), where
g f, on Zs
B, on T,

(cf. Lemma 5). Choosing # = max(« — v, 0) we conclude as in the proof of Lemma 3

() <o(r) < ;—:% + 48
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gince f*— f<0. Similarly, consideration of an upper hemisphere leads to the esti-
mate from below.

6. — THEOREM 1. — Let 2, be admissible, with |y — n/2|<|yo—n/2] on Z. Then
there exists a unique minimizing function uec@Q(LQ) for E(f), in the sense implied by
Lemma 4, and w{z) can be chosen io be real cmalytw. If Xe Ct and there ewists a
strict solution v of (2) in Q with v-To=8 on 2, then uw=2v in Q.

Proor. —~ Let £24 be an admissible family exhausting £ and satisfying a uniform
condition £'cISC;,. Let u’ denote the corresponding solutions, with data y(x)
on 27, whose existence i proved in [1]. By Lemma 2, each u’ satisfies the varia-
tional condition (4). Since Qic I8C;, , each z€ (¥ is in some B, , and we obtain,
from Lemma 6, [ui(w)|<n/xd -+ 6 in 4. In particular, ui(z)c@(2%), allj. By Lemma 2,

(16) §;77/3 do —f o, LT Uiy
for any e Ht1(£¥). Choosing n = u¥{x) yields

an [+ epeigas < (5 + o) iz + 12,
fey

since W1 for all values of its arguments. Thus £(u) is bounded independent of j.

We may now either repeat (essentially) the procedure of [1] or we may apply
to the u’ the result at the end of [10] together with general results on elliptic equa-
tions with divergence structure [11]. We obtain the existence of a subsequence of
the 27 (not relabled) such that the corresponding u’ converge, uniformly in any
fixed %, to a solution u(z) of (2) in L.

We now note any ne H11(Q) is in H**(£7) for every j. Bince (16)holds foreach j,
since any n€ HY1(£2) can be approximated in H'' norm by functions uniformly
continuous in £ (see [8, 9]), and since |W,|< 1 for any choice of its arguments,
we conclude (16) holds also for the limit function wu({x), in the sense of a limit as
j—> oo, for any ne H-Y(2). Using (17) we find without difficulty

J=>00
o

lim | W(p?) da =dem
2

lim | ()2 de = fuzdm.
G0 3

of

The uniqueness and minimizing property are obtained from Lemma 4, and the
final statement of the theorem from Lemma 4 and the observation that (10) holds
for o(») in £, with f=v» Tv on X.
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7. - We consider some examples:

i) if X' C? the solution of Emmer ¢wists for any continuous y(c) on X, with
0<y(o)<m. In fact, we may in this case shorten the procedure by dealing directly
with the Emmer solution in £, corresponding to a sequence of data y?—y, 0 < pi< 7:

ii) if 2e 0" the result of Emmer yields the existence of a solution for any y,
0<y<m In this case the corresponding {2 satisfies the following variant of the
internal sphere condition:

Let Q be a bounded O-domain. Then, for any choice of vy, 0<y,<m/2, £ can
be covered by a finite number of balls f,j such that Bf,j meets the cylinder over X in
angles vi, with yi<y,, and 6;>0>0 all j.

Proor, — Let z,€ X, and suppose that in a neighborhood of 2, 2 can be specified
to be the graph of a C'-function ¢

p: @' |l<r—=Ry, o=@, 27, (@, p))eX

and @,= (0, #}), 5> 0, and 0€ Q. Let v be a lower hemisphere over a ball Bs(y,)
containing x,

v(w) = — (62— jw — g ?)* .

Then » meets the cylinder over X in angles y, satisfying

o=y Dy o —yo 1
20 =y — 40 R
(20) o8 ¥s igl !w—yof w + [ — o] w

at points » = (', 2") e X, where W= (1 |Vg[?)i.
We may assume |Ve(0)|=0. Thus, to given ¢> 0 there exists J, such that

Vo@<e for all |o—x,|<26,.
Let &, 0 <e< 1, be given and choose d,, 0 < J,< 5, appropriately. Then consider
the ball B,(y,), with yo= (0, 25— 6/A), A=1—¢, d = §,, and the corresponding lower

hemisphere o.
Let 2 ¢ Bs(y,). Then

8
(21) | — 0| < |20 — Yol +- | — o] < 5+ 6 < 26

Hence we have |{Vo(o')|<e for all we 2N Bo(y,), and

(22) o — af| <& |’ — wg| < e+ o — my| < 260
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for those . In view of these relations and in view of the estimate
" n n n n " a
(23) T ““yg>wo—‘y0— !w —x0[>}_ 286

we deduce from (20)
" — 9o & O[A — 266 1
1 8 -— . . S— >
(@4 > T ] Vige  b—wl Vife

—~1 '{1-——26-—8} > ——-—-—1__.__ 3¢
Vife A YT

or all xe 2N Beoly,). Since a finite number of such balls covers 2, the assertions
of the theorem are proved.

This result establishes a new proof (cf. [6]) for the boundedness of the Emmer
solution in this case.

iii) if X'e O then it is a Lipschitz boundary for any constant L >0, hence
by Emmer’s theorem there is a unique minimizing function for any y, 0 <y < m.
We show that for 0 <y < there is still a solution in the sense of the varialional condi-
tion (4). To do 8o, set f= cosy, fo=max{f, —1+ &}, 0<g<1, and )= min{f,
1—¢f}, el eic 1, 67— 0. We consider the solution w) of Emmer in the (fixed)
domain @, with data £, on X. For each %), we have

(25) $Bn do — (W, &,+ iy dw =0
= (7]

for any ne H*{(Q), by Lemma 2, and also E(u))< oo, each j. For any compact
K cc £, we have K c IS0, for some 6 > 0, hence |ui(x)|<n/xd 6, all e K. Thus,
a subsequence of the %} (again denoted by %)) can be found, which converges, uni-
formly on any Kccf, to a strict solution wy(x) of (2) in £.

We examine the transition in (23), for fixed . We may suppose %>0, since
any 7 can be expressed as the sum of its pogitive and negative parts. Since B — Bo
uniformly, we have

lim § Bondo = § Bondo .
>0
z z
Also, since |W,|<1 and ne H*(Q),
}L% f Wa?s(pé) ci dm - f Wpi(pg) Cg d$ .
4 Q

It follows that
}irg f xuén dr == L,
o

exists, and Lys% 4 oo.
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We now apply Lemma 3. Since 5> i, there follows 4} >4} in Q. We conclude
from the monotone convergence theorem that

lim xuén do = fxuon dx
>0

0 2

and hence (25) holds with the superscript deleted.

Now, let g,—0. We obtain a nonincreasing sequence of solutions, for which we
again pass to the limit under the integral sign, obtaining the stated existence.

‘We note the corollary to the method of construction of (), that ue LY{(Q)N CQ).

iv) The boundary illustrated in Figure 3 satisfies a Lipschitz condition with
constant L= cota. Without changing this constant, the corners can be rounded
so that 2 has a uniquely defined normal at each point.

Q

Figure 3

One verifies readily that if a closed ball Bs contains the point p, then there exist
boundary points at which a lower hemisphere over Bs meets the cylinder over X
in angles § satisfying |n/2 — 6] < ¢ for any &> 0; hence there will be points on 2
at which |[tanf| is arbitrarily large.

On the other hand, Emmer’s theorem assures the existence of a unique solution
w(z) of (2) in Q, for any data y satisfying [tany|>cot«. Thus Emmer’s result
applies to situations for which the sphere condition fails, so that £ will not be
admissible in the sense of the present paper.

v) In the situation just discussed, Lemma 1 cannot be applied to obtain a
bound for the solution. We do have B(u) < co, as follows from the procedure in [1].
The solution is in fact bounded; this follows from the results of [6].

vi) The method of iii) can be applied to the above situation, yielding the
existence of a solution in the sense of (4) under the (weakened) hypothesis [tany|> L.
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vii) In the domain of Figure 4, Emmer’s method fails if cota> [tany|. Never-
theless, Theorem 1 yields the existence of a unique solution for any choice of y.
Thus, the present result is not included in that of Emmer, even if [cosy| 1.

‘
la
|
I
l

Figure 4

viii) In Figure 3, the two sides of the «spine» are not identified if »n=2,
while if # > 2 the spine becomes a singular (lower dimensional) part of the boundary.
The domain £ is however admissible in the sense of this paper for any »>2, and
hence a unique solution exists for any y, O<y<a.

If n>3, the «spine » can be enclosed within £ by a surface of arbitrarily small
area. We may thus apply the general maximum principle of [5] to conclude that
the solution is identical to the one obtained when the spine is removed (Figure 6),

Figure 5 Figure 6
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In particular, the data ¢ on the spine will not in general be achieved strictly in this
case.

ix) We consider the domain of Figure 7, with a conical boundary singularity
of half angle a. If |y —=/2|<a, then 2cI8C;,, in the sense that it can be ap-
proximated from the interior by domaing with smooth boundaries and in this class.
Thus, Theorem 1 assures the existence of a unique solution. (Emmer’s theorem
requires |y —m/2|<ea.) If |y —m/2|>«, Theorem 5 in [5] shows that no solution
with finite energy integral can exist, and thus Emmer’s method cannot be applied
directly. Nevertheless, a solution does exist in the sense of the variational condi-
tion (4). To show this, we approximate £ as in Figure 8 and solve the corresponding
problem in £ with data f=1 on IV Since each Qc ISC; for some />0, the
solutions interior to any fixed £” are uniformly bounded. By Lemma 3, the se-
quence %’ is monotonically decreasing, hence by the estimates of [10, 11] we find
convergence to a strict solution #{x) of (2), uniformly in any K cc Q.

Figure 7 Figure 8

For each j, the variational condition (4) holds in Q¢ for any 7€ @{£27), hence
in particular for any n@(£2). We have also 67> rtang, where r is the minimum
distance in £ to the vertex, so that |u/|<(n)/(krtanc)-+rtance. It follows that |uf|
is bounded by an integrable function in {4), as j— oo.

The limiting transition is now immediate, and we obfain the variational condi-
tion (4) for w(x), for any ne€Q(L).

Since u{w)¢ H*1(£), the uniqueness does not follows directly from Lemma 4.
To prove it, we use again that Q/c IS0, hence any solution v(») is bounded in £,
Integrating over a fixed 0%, we find

f(W— -%, + m)’) aw = §v(v~1’v} do

Qi 8050

the surface integral being understood as a limit of integrals over interior boundaries.
Since |Tw|< 1, |W|> 1, there follows

f(W-}— #0?) de << (p<< oo}
@i

thus veQ(Q™).
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Given two solutions u, v, we find
f{[Wm(P) — W, @18+ #(u—v)n} do=0
Q

for any neQ(2). If, for some M, the set {xe 2; 0 < u—v<< M} has positive meas-
ure, we proceed as follows: Choose £>0, and set

0, r<<g
P —

Ar) = —«——86, e r < 2
1, r>2¢.

Let r denote distance from fthe vertex, and choose

o U—0v<<0,
n==1{ Mu—0v), O<u—o< M,
AM M<u—wv.

Then 5 €@(£2) for each &, and a formal estimation, using the bound |W, [< 1, leads
to a contradiction.

x) The notion of internal sphere condition can be introduced for general
Lipschitz domains, by requiring that the condition be satisfied at all boundary points
for which a normal vector is defined. We show now that if 2 is a Lipschitz domain
and if QclIC8,, , then for any $>y,, X can be approvimated from within Q by
boundaries £ € C°, which bound domains .QCIG’S,,&.

Proor. — If 2cI8C;,, then £ can be covered by a finite number of balls Bs
with the property: if we.choose the origin at the center of any Bs and let
F(wy,...,2,) = 0 be a representation of X within Bs, there holds

zi T, = O8> CO08

5 [VE] (V=008

at almost all points ze X in Bs: In particular, r= |z|>d cos d,, hence 7 is bound-
ed from zero.

For any such # at which the normal to X is defined, let « be the angle between
the radius vector from the origin to @, and the normal to 2 at #. Introducing now
local spherical coordinates ¢ and representing X in the form r = r(p) near z, we find

V1—costa

1
tane =~ [Vr|=
7 cos o
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But

z; F
CoS o = — —=%

r |VF|

——é—cos
...7. v

hence

V(r[d)® — costy _ V(r]8)% — cos?y,
cosy 08 ¥,

L v =
i

which bounds |Vr| uniformly in terms of the sphere condition.
The above relation yields

. 7 2 :’»2
oy = (5) 57 o
Set |Vr|= A. For fixed 4, there holds

1

0 cos? y
égtzw

or?

(26)

Given #e X and &> 0, denote by V,,, the closed neighborhood |§ —x|<d%e. We
choose ¢ sufficiently small that V. c Bs, and set

Aze= Lub. A&).
0] <0%
seX

In view of the above estimate for |Vr| we conclude

(r-+ 62&) V ((r - 6%¢)/0)2 — costy,

-
wie < o8y,

H

hence

-+ 8%\ (r-+ o)
C°SSV“<( 3 ) L 0oy + A2

so that by (26)

r2

Co82y, — £ n_r_
8] 12+ Aue

at all values of r in V.

(4

We may now choose a mollifier @ and g-neighborhoods U, c V., of the points
z€ X, such that suppQc U, and

Ir(g) — [ Qrag| < 3o

Uzh
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throughout U, .. We set
)= [ Qrdg — yo%

Uzie

in U,,,. The image of X under this mapping then lies interior to £, and

Vﬁz—frVQd(pzfQVrdcp
so that

|VA < sup [Vri< A, .

%36

It follows that on the image of 2N U, , there holds

o f\2 2 F\2 f2 e
cos?y = -g ;—~2+1V7¢12> —5 TT—Z—I-Zm;e}GOS 0o—&.

A finite number of such neighborhoods U,, will cover 2, and the proof is com-
pleted by piecing together the local mappings, using a partition of unity.

We eoncilude from the above result that any Lipschitz domain Q2 satisfying a
sphere condition is admissible, and hence that Theorem 1 applies. The criterion for
existence of a solution is obtained not from the Lipschitz constant (as in the result
of Emmer) but from the angle y,.

xi) For any Lipschitz domain satisfying a sphere condition, the procedure of
this paper permits a simplification of Emmer’s existence proof, in the sense that
his result need be demonstrated only for domains with smooth boundary. In this
sitnation, the technical difficulties arising in the proof of Emmer’s basic Lemma 1.1
can be avoided, cf. the remarks in [4, pp. 133-4].

xii) We remark finally that if y is smooth in some smooth neighborhood N on 2,
then y is achieved in the strict sense in N°. We refer the reader to recent important
contributions by URALTSEVA [13], by SPRUCK [12], by SimoN and SPRUCK [14] and
by GERHARDT [15].
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