
Geometry Developed by the Electromagnetic Tensor Field (*). 

1i2. L. DUGGAL (Windsor, Ontario,  Canada) 

Summary. - The well-known algebraic classi]ieation of the electromagnetic tensor ]ield is used 
to provide the s~)ace-time mani]old o] general relativity with the latest technique of d/iNerential 
geometry. 

1. - Introduction. 

Consider the  ~-dimensional space-time manifold V4 of general relat ivi ty,  with 
the  gravi ta t ional  symmetr ic  tensor  field h of rank  four. This tensor  is said to be 
of index of iner t ia  0, 2 or 4 according as its signature (1) is (~- -~ - -  --),  (@ ~- ~- --)  
or (-~ ~- -~ ~-). Le t  i~  be the  electromagnetic  tensor  field (skew symmetric)  of 
t ype  (0, 2). Using h, one can get a tensor  field /~ of t ype  (1, 1) defined b y  

(la) h(/TX, Y ) =  '/7(X, ~ ) ,  

where X and ~ are a rb i t ra ry  vector  fields. Le t  us p u t  

(lb) 4K = t race(F  2) , k = d e t ( F ) ,  D = K 2 - -  k .  

I t  is well-known [5] tha t  /7 satisfies its own characterist ic  equat ion (minimum 
recur ren t  relat ion of /7): 

(lc) 

I is the iden t i ty  operator .  

(a) first class if k ~  0, 

(b) second class if k = 0 and K ~  0, 

(c) th i rd  class if k = 0, K = 0 and H 2 ~  0, 

(d) four th  class if k = 0, K = 0 and 172= 0. 

y4 @ 2K.F2 _[_ kI  = 0 , 

]74 or /7 is said to be of the  

(*) Entrata in Redazione il 2 agosto 1976. 
(1) Physically, h is necessarily of signature (+ + + - - ) .  
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I t  is easy to see tha t  (le) reduces to F a ÷ 2 K - E - - 0 ,  -Es__0 or - E ~ = 0  ac- 
cording as V4 is of the  second, th i rd  or four th  class. -E is said to be non-null or null 
field according as it  belongs to the  first two classes or the  last two classes. 

For  the  non-null field there  are exact ly  four l inearly independent  null eigen- 
vectors  e~ (1< ~ 4 4 )  of -E which satisfy 

(2) 
-E e~ = i ~ +  ~ e~ , 

-Eva= % / ~ - -  k e3 , 

-E e~ --- - i ~ ÷  ~ e~. , 

-Ee, = - V V i )  - ~ e~ . 

For  the  th i rd  class, since all roots of the  characterist ic equat ion (lc) of -E are 
equal to zero, any  set of four eigenvectors can not  be l inearly independent .  However ,  
i t  is known [6] t ha t  for this class, there  exists a set of four l inearly independent  
vectors U~ (U4 is the  only eigenvector belonging to the single eigenvalue 0) which 
give rise to a nonholonomic frame (2) such tha t  U1, U2 are complex conjugate  null 
vectors and U3, U4 are real  null vectors.  They  satisfy the following relations. 

(3a) 

v~-Ex = ua(X){Vl ÷ us} + {u~(X) + us(X)} v , ,  

x -= u~(X)  u ~ .  

Consequently,  

(3b) 

(3e) - E ~ X = u a ( x )  u , ,  - E U 4 = o ,  u ~ - E - = o ,  

where {u ~} is the  dual of {U~}. Ra n k  F = 4 or 2 according as -E is of the  first 
or second class. For  the th i rd  class rank  -E = 2 and rank  -E~ ----- 1. Physically,  the 
four th  class does not  exist as h mus t  be of index 2 which means tha t  -E~- ¢ 0. How- 
ever, for the  geometric interpreta t ions ,  all the  four classes can be discussed. 

In  this paper ,  we create a differentiable s t ructure,  called almost cont ingent  [11-14] 
on V4 by  the help of -E and h. The impor tance  of this s t ructure  is bourne  out  b y  
the  fact t ha t  it  inherits  the  propert ies  of now well-known structures such as almost 
complex [ 1, 7], almost p roduc t  [4], globally f ramed [10], G~--[9] and almost t angent  [8] 
all are obta ined as its par t icular  eases. The wealth of these s t ructures  has con- 
t r ibu ted  m a n y  new and excit ing results which we could not  have  obta ined b y  clas- 
sical way. The object ive of this paper  is to  enrich the space-time manifold V~ with 
this inher i ted geomet ry  of substantial  meaning b y  the  technique of cont ingent  

s tructures.  

(2) HLAVATY [3] showed the existence of such a frame by the use of line geometry. 
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2 .  - A l m o s t  c o n t i n g e n t  s t r u c t u r e s .  

(I) iVon-nq~ll kind. Consider a 4-dimensional differential manifold M on which 
there  exists a tensor  field J of t ype  (1, 1), two l inearly independent  vector  fields.U 
and V, two 1-forms u and v and two a rb i t ra ry  non-zero scalars 2 and ~ such tha t  

J~X ÷ 2~X ÷ ~u(X) Y ÷ ~v(X) V = 0,  

(da) J U  = P V ,  J V  = -- P U ,  t ) = V/2 ~ ÷ e,  

2 < r a n k  J~<4,  

for  a rb i t r a ry  vec tor  fields X and Y on M. 
In  the  above case, we say tha t  M is endowed wi th  an almost  cont ingent  struc- 

tu re  of non-null  k ind[12] ,  briefly denoted  b y  (J, U, V, u, v, ~, s)-structure.  Fol- 
lowing relations can be deduced f rom (da): 

(4b) u J - ~ - - P v ,  v J - ~ P u ,  u ( U ) : v ( V ) - ~ l ,  u ( V ) : v ( U ) - ~ O .  

We shall say tha t ,  M is almost cont ingent  metr ic  manifold, when l~iemannian 
metr ic  (8) h on M satisfies: 

(5a) 

(5b) 

u(2;) --- h(Y, X ) ,  v(X) -= h(V, X ) ,  

h(JX,  J Y )  -~ 22h(X, Y)  -+- ~u(X)u(~)  ~ ev(X) v(Y) . 

F r o m  defining equations (4) min imum recur ren t  relat ion of J is: 

(5c) j4  ~_ (23 ~_ p2) j2_~  22p2 i  ~ 0 .  

M or J is said to be of the  

A) first class if LP¢ 0, 

B) second class if P - ~  0. 

I t  is obvious t ha t  for the second class (5c) reduces to js_}_ 2 2 j _  0. I f  we set 
P = - - 2 2  and J =  J ~  2 ( u ( X ) V - - v ( X ) U ) ,  then  i t  is easy to see tha t  j 2 _ _ 2 3 1 .  
Thus M has an under lying almost complex [1, 7] or an almost product [4] s t ructure  
according as 2 2 ~ 1  or ~-------1 and rank  J - -~4 .  I f  2 2 ~ 1 ,  s ~ - - i  and rank  
J ~ 2, then  the  equutions (4) define a globally ]rained s t ruc ture  [10] on M. 

Consequently,  we assume t h a t  (J, U, V, u, v, 2, e)-structure would inheri t  the  
geomet ry  developed b y  above ment ioned well-known structures.  

(3) Ia general, h may be of index 0, 2 or 4. 

1 6  - Annali  di iVlatematica 
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(II)  Null-kind. M is said to have  an almost cont ingent  s t ruc ture  of ~ull- 
kind [12], briefly (J, $~, ~2, N 4, N 2, o, y)-structure,  if there  exists on M a tensor  
field (4) j of t ype  (1, 1), two vector  fields ~ and ~2, two 1-forms ~7 ~ and ~2 and two 
a rb i t ra ry  scalars ~ and y such tha t :  

(6~) 
J~X ÷ ~ x  ÷ ~,~1(x)~4 + ~v~(x)~ = o,  

rank J - =  2 .  

Minimum recur ren t  relat ion for the  powers of J is: 

(6b) j s  _~_ a ~ j  = 0 . 

l~iemannian metr ic  h on M satisfies conditions similar to (5ab). M or J is said to be 
of the  

(C) th i rd  class if a - =  0 and y=~ 0, 

(D) four th  class if a = 0 and 7----0. 

I t  is obvious t ha t  (6b) reduces to J a =  0 or J ~ =  0 according as M is of the  
th i rd  or four th  class. As examples, M has a G~-strueture [9] or an almost t angent  
s t ruc ture  [8] according as i t  belongs to the  th i rd  or the  four th  class. In  general, 
the  s t ructures  of this na tu re  for an a rb i t ra ry  ni lpotent  operator  J satisfying j~+l = 0 
are called G~-struetures [9]. Thus,  we assume tha t  the  (J, ~ ,  $2, ~ ,  ~ ,  0, y)-s tructure 
would inheri t  the  geometry  developed b y  the  G~-structures. 1%r fur ther  details 
on the almost cont ingent  s t ructures ,  we refer  to [11-14]. 

3 .  - C e n t r a l  i d e a .  

I n  this section, we show how the  differential  geometric objects which define 
an almost cont ingent  s t ructure  can be re la ted to the gravi tat ional  and the  electro- 
magnetic  tensor fields of general re la t ivi ty .  Assume tha t  M is the space-time mani- 
fold ]74 with h and '~  satisfying all the  relations (1)-(3). Le t  h be used as the  funda- 
menta l  metr ic  tensor of V~. I t  is evident  f rom (la) that there  exists a tensor  
f ie ld/~ of t ype  (1, 1) on Vd. We wish to  show tha t  ~ gives rise to an almost con- 

t ingent  s t ruc ture  on Vd. 

(I) Non-nuZl ]ields. Le t  us consider two operators 1 and [ defined b y  

(7a) 2 ~ I = - - E 2 - - ( K - - v T D ) I ,  2 V ~ [  = iw~ -~ (K + V ~ ) I ,  

(4) For the sake of simplicity, J is used for both kinds. 
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I being the identity operator, to the tangent space T~ at a point x of V4. These 
are complementary projection operators. Indeed, 12c ~ = I and using (le) one c~n 
show that  l~= 0. Thus, there exist complementary distributions L and /] cor- 
responding to 1 and 1 such that  dim L-----dimL----2. Assume that  L is paralleliz- 
able [10] which allows us to take an ordered set of vector fields U and V spanning Z 
at each point. Thus, there exists uniquely an ordered set of 1-forms u and v such that  
l(X) -= u(X) U -~- ~(X) V ,  u(U) = v(V) -~ 1, u(V) = v(U) -~ O, /73 U-~ -- (g  -~- ~ ) U  
and /7~V------ (K ~-V/D -) V. Using these results and the first equation of (7a), we 
get 

/7~X ~- (K -- %/D)X ~- 2 %/D{u(X) Y @ v(X) V} = O, 
(7b) 

/TU=%/K + V/--DV, /Tg=  --%/K + ~/-DU, 2 < r a n k / 7 < 4 .  

Now assume tha t /~  is parallelizable which is spanned by vector fields ~ and l? 
and ~, ~ are respectively 1-forms such that  ~(X) ---- ~(X) U -t- ~(X) V, ~(U) --= ~(I y) ---- 1, 
~2(~) = ~(U) -= 0, /7~U -=- -  ( g - - ~ / ~ )  ~r and /72~ = _ ( K - -  V~)  ~. Using these 
results and the second equation of (7a), we get 

(Te) 
/7~X-t- (K~- %/~) X - -  2 %/~{~(X)~+  ~7(X)?} = 0 

/7(J--=VK--V/-D~, /7~=--%/-K--~/-1)(] 2 ,.<rank/7-~< 4. 

Comparing (7b) and (Te) with (4a), we conclude that,  in general, there exist two 
almost contingent structures of non-null kind defined by (/7, U, V, u, v, K, v/-D) or 
(/7, ~,  ~, ~, ~, K, ~¢~) according as P = ~/K _]_ V/~ or _P ---- V/K-- V~.  This allows 
us to replace (la) by: 

(8a) h(JX, Y)--='/7(X, Z) .  

Now we wish to find an explicit relationship (locally) between U, V, Cr, ~ and 
the eigenvectors of /7. The existence of complementary distributions L and L 
allows us to adjust so that  {U, V} and {U, V} are in the plane of {el, e2} and {e~, e4} 
respectively. Thus, comparing (2) with (7be), we get 

(8b) 

U = el ~- e~ i(el - -  e~) ~ _ ea + e4 ? = i(ea - -  e~) 
v ~  ' v -  V ~  ' V 2  ' V ~  

- i v  ~ + i v  ~ -  i ?  ~ + i ~  
e l - ~ - - ~ - - - ,  e , - -  ~ , e 3 - -  ~f2 ' e4---- 

Thus, (7) and (8) relate the differential geometric objects (J, h, U, V, U, 17) de- 
fining almost contingent structures of non-null kind to the gravitational field h, 
the electromagnetic field '/7 and the eigenvectors of /7. 
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( I I )  ~Yull fields. Le t  us assume t h a t  /7 is of class three.  This means  t h a t  
/73 ___ 0, K ---- 0, k --~ 0, r~nk  /7 - -  2 and  r a n k  /73 ___ 1. We app ly  two operators  

and  ~ defined b y  

(9a) y z  -~/7~ ~- ~ ' I ,  ~ ~ __/72, 

is an a rb i t r a ry  non-zero scalar, to the  t angen t  space T ,  a t  a poin t  x of V4. 

-~ ~ -~ I,  ~/7 -~/7~ =-/7 and ~/7 = / 7 ~  = 0. Thus there  exist  two c o m p l e m e n t a r y  
spaces C = I m a g e  (/7) and  C = I m a g e  (/73)_~ Ker  (/7) corresponding to ~ and  ~ re- 

spect ively.  Le t  us ~ssume t h a t  there  exists a vector  field ~ and  a 1-form ~ of C 

such t h a t  ~ ( X ) - ~  w(X)~. Using this in (9a) /7~----0 we get  

(9b) /72(X) ~- y~(X)~ =- 0 ,  /7~ -~ 0 ,  V/7 ---- 0 ,  r a n k  /7 = 2 .  

Compar ing  (9b) wi th  (3e) and  (6a), we conclude t ha t  (/7, ~, ~, y) describes an  a lmost  
cont ingent  s t ruc ture  of class three  on V4 such t h a t / T i s  identified wi th  J ,  ~ = ~1 = U4 

is the  only eigenvector  o f /7  belonging to  its e igenvatue 0, ~ = u 3, ? -~ - - 1  and  $3 = 0. 
l~ow let  us assume t h a t  /7 is of class four. This means  t h a t  /72 _ 0 and  r ank  

/7 ---- 2. Thus,  /7 of the  four th  class admi ts  an  a lmost  cont ingent  s t ruc ture  of the  

same class. 

4. - (i) Index o/inertia 4. Since h is of s ignature  ( ~  ~- ~ ~-), det(h) is posit ive.  
This means  t h a t  k >  0 and  K ~ 0. Therefore,  only the  first two classes exist. For  

the  first class D m a y  be non-zero or zero. I f  D ¢ 0 then  there  are two a lmost  
cont ingent  s t ructures  defined b y  (Tb) and  (7e). I f  D = 0 then  (7be) reduces to 
F 2 X - ~  K X - ~  0 which defines a general ized a lmost  complex  s t ruc ture  [2]. l~or the  

second class k = 0 and  D - ~  K 3 >  0 provides only one a lmost  cont ingent  s t ruc ture  

defined b y  (Te). 

(ii) Index of inertia 2. Since h is of s ignature  (-~ + ~ --) ,  dot(h) is negat ive.  
This means  t h a t  k < 0 and  D > 0. For  the  first class D > 0 which provides two struc- 
tures  defined b y  (7b) and  (7e). Fo r  the  second class D > 0 and,  therefore,  the  de- 
fining equations for the  s t ruc ture  are (Tb) or (7c) according as K ~  0 or K > 0. 
For  the  th i rd  class, the  s t ruc ture  is defined b y  (9b). F o u r t h  class does not  exist.  

(iii) Index of inertia O. Since h is of s ignature  ( ~  - ~ - - - ) ,  det(h) is posi t ive 
and  ~ > 0. As there  is no res t r ic t ion on K and  /) ,  all the  four  classes exist .  The 
proper t ies  of first and  second class are identical  wi th  the  respect ive  classes of (i) 

and  (ii). 
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