Geometry Developed by the Electromagnetic Tensor Field (*).

K. L. DuveeAL (Windsor, Ontario, Canada)

Summary. — The well-known algebraic classification of the electromagnetic tensor field is used
to provide the space-time manifold of general relativity with the latest technique of differential
geometry.

1. — Introduction.

Consider the 4-dimensional space-time manifold V, of general relativity, with
the gravitational symmetric tensor field & of rank four. This tensor is said to be
of index of inertia 0, 2 or 4 according as its signature (1) is (+ + ——), (+ + + —)
or (+ -+ -+ ). Let 'F be the electromagnetic tensor field (skew symmetric) of
type (0,2). Using h, one can get a tensor field I of type (1, 1) defined by

(1a) WFX,Y)="FX,Y),
where X and Y are arbitrary vector fields. Let us put
(1d) 4K = trace(F?), k=det(F), D=K?—k.

It is well-known [5] that F satisfies its own characteristic equation (minimum
recurrent relation of F):

(1c) Fs L 2K+ K[ =0,

I is the identity operator. V, or F is said to be of the

(@) first clags if k=~ 0,

(b) second class if k=0 and K30,

(¢) third class if k=0, K =0 and F2s£0,
(&) fourth class if k=0, K =0 and F?=0.

(*) Entrata in Redazione il 2 agosto 1976.
(*) Physically, % is necessarily of signature (+ + -+ —).
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It is easy to see that (le¢) reduces to F* 4 2KF =0, F*=0 or F*=0 ac-
cording as V, is of the second, third or fourth class. F is said to be non-null or null
field according as it belongs to the first two classes or the last two classes.

For the non-null field there are exactly four linearly independent null eigen-
vectors ¢, (1<«a<4) of F which satisfy

Fo,=iVVD+ ke,, Fez=—'i\/\/5+kez, i=v—1
Fe,= VVD-—tke,, Fe,=— VVD—ke,.

For the third class, since all roots of the characteristic equation (1¢) of F are
equal to zero, any set of four eigenvectors can not be linearly independent. However,
it is known [6] that for this class, there exists a set of four linearly independent
vectors U, (U, is the only eigenvector belonging to the single eigenvalue 0) which
give rise to a nonholonomic frame (3) such that U,, U, are complex conjugate null
vectors and U,, U, are real null vectors. They satisfy the following relations.

(2)

VE2FX = v X)}{U, + Us} + {(uM(X) + v¥(X)} U,

(3a) X =u¥X)U,.

Consequently,

(3b) V2FU,=+2FU,=U,, +2FU,=U,-+ U,
(3¢) X =wXx)U,, FU,=0, uwF=0,

where {u*} is the dual of {U,}. Rank F =4 or 2 according as F is of the first
or second class. For the third class rank F = 2 and rank F2? = 1. Physically, the
fourth class does not exist as h must be of index 2 which means that F* = 0. How-
ever, for the geometric interpretations, all the four classes can be discussed.

In this paper, we create a differentiable structure, called almost contingent [11-14]
on V, by the help of F and h. The importance of this structure is bourne out by
the fact that it inherits the properties of now well-known structures such as almost
complex [ 1, 7], almost product [4], globally framed [10], G,—[9] and almost tangent [8]
all are obtained as its particular cases. The wealth of these struetures has eon-
tributed many new and exciting results which we could not have obtained by clas-
sical way. The objective of this paper is to enrich the space-time manifold V, with
this inherited geometry of substantial meaning by the technique of contingent
structures.

(?) Hravary [3] showed the existence of such a frame by the use of line geometry.
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2. — Abmost contingent structures.

(I) Non-null kind. Consider a 4-dimensional differential manifold M on which
there exists a tensor field J of type (1, 1), two linearly independent vector fields U
and V, two 1-forms « and v and two arbitrary non-zero scalars 4 and e such that

X X+ (X)) U+ (X)) V=0,
(4a) JU=PV, JV=—PU, P=Vite,
2grank J <4,
for arbitrary vector fields X and ¥ on M.
In the above case, we say that M is endowed with an almost contingent strue-

ture of non-null kind [12], briefly denoted by (J, U, V, u, v, 4, ¢)-structure. Fol-
lowing relations can be deduced from (4a):

(4d) u =—Pv, vJ=Pu, uw(U)=oT)=1, wV)=oU)=0.

We shall say that, M is almost contingent metric manifold, when Riemannian
metric (3) k on M gatisfies:
(Ba) w(X)=nU, X), oX)=WV,X),
(6b) MJX,JY)= 12X, Y) + ew{X)u(Y) -+ ev(X) v(Y).

From defining equations (4) minimum reeurrent relation of J is:
(5¢) Jr+ (A2 P)J2+ 2P =0,

M or J is said to be of the

A) first class if P=£0,
B) second class if P =20.

It is obvious that for the second class (5e¢) reduces to J3 4- A2J = 0. If we set
P=—2)and J =J -+ J(w(X)V —0o(X)U), then it is easy to see that J2 = — 221
Thus M has an underlying almost complex [1, 7] or an almost product[4] structure
according as A2=1 or 12=—1 and rank J=4. If A=1, e=—1 and rank
J =2, then the equations (4) define a globally framed structure [10] on M.

Consequently, we assume that (J, U, V, u, v, 4, ¢)-structure would inherit the
geometry developed by above mentioned well-known structures.

(®) In general, b may be of index 0, 2 or 4.

16 — Annali di Matematica
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{(IT} Null-kind. M is said to have an almost contingent structure of null-
Lind [12], briefly (J, &, &, n%, %?, 0, y)-structure, if there exists on M a tensor
field (4) J of type (1,1), two vector fields &, and &,, two 1-forms %' and #2 and two
arbitrary scalars ¢ and o such that:

J2X 4 o2 X + yni(X)E + A X)E, =0,

(6a)
J& =0, J&E=0, 5d=0, u:J=0, rank J=2.

Minimum recurrent relation for the powers of J is:
(6b) J34-02d =0.

Riemannian metric & on M satisfies conditions similar to (5ab). M or J is said to be
of the

(C) third class if ¢ =0 and y =0,
(D) fourth class if 0 =0 and y =0.

It is obvious that (6b) reduces to J>=0 or J2 =0 according as M is of the
third or fourth class. As examples, M has a G,-structure [9] or an almost tangent
structure [8] according as it belongs to the third or the fourth class. In general,
the structures of this nature for an arbitrary nilpotent operator J satisfying J™+1 =0
are called @,-structures [9]. Thus, we assume that the (J, &, &, 5%, 52, 0, »)-structure
would inherit the geometry developed by the @,-structures. For further details
on the almost contingent structures, we refer to [11-14].

3. — Central idea.

In this section, we show how the differential geometric objects which define
an almost contingent structure can be related to the gravitational and the electro-
magnetic tensor fields of general relativity. Assume that M is the space-time mani-
fold V, with » and 'F satisfying all the relations (1)-(3). Let k be used as the funda-
mental metric tensor of V,. It is evident from (le) that there exists a tensor
field F of type (1,1) on V,. We wish to show that F gives rise to an almost con-
tingent structure on V,.

(I) Non-null fields. Tet us consider two operators I and I defined by

(Ta) 2VDl=—F—(K—+D)I, 2vDl=F+ (K4 VvD)I,

(*) For the sake of simplicity, J is used for both kinds.
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I being the identity operator, to the tangent space T, at a point # of V,. These
are complementary projection operators. Indeed, I 4= I and using (l¢) one can
show that 1/ =0. Thus, there exist complementary distributions L and L cor-
responding to  and [ such that dim L = dim L = 2. Assume that L is paralleliz-
able [10] which allows us to take an ordered set of vector fields U and V spanning L
at each point. Thus, there exists uniquely an ordered set of 1-forms « and » such that
U X)=uwX)U+9X)V, w(U)=0o(V)=1, w(V)=vU)=0, F2U=—(K +VD)U
and F:V= — (K -+ D) V. Using these results and the first equation of (7a), we
get

X4+ (E—VD) X+ 2VDuX) U+ v(X)V}=0,
(7b) -

FU=VE+VDY, FV=—VE4+VDU, 2<rankF<d.

Now assume that L is parallelizable which is spanned by vector fields I and 7
and 4, ¥ are respectively 1-forms such that I(X) = #(X)U +#(X) ¥, &(0) = (V) =1,
WVy=o80)=0, 72U =—(K—+D)U and F:¥ =—(K—+/D)V. Using these
results and the second equation of (7a), we get

X+ (K+ VD)X —2VD@EX) U+ 5(X) V=0

(7o)
FO=VE—-VDV, FV=—VE-VDU 2<rankF<4.
Comparing (7b) and (7¢) with (4a), we conclude that, in general, there exist two
almost contingent structures of non-null kind defined by (¥, U, V,u, v, K, VD) or
(¥, U, 7, d, % K,+/D) according as P =Vg +4/D or P= VK —+/D. This allows
us to replace (la) by:

(8a) MJIX, Y)='F(X, Y).

Now we wish to find an explicit relationship (locally) between U, V, U, ¥ and
the eigenvectors of F. The existence of complementary distributions L and I
allows us to adjust so that {U, V} and {U, ¥} are in the plane of {e;, ¢,} and {e;, e,}
respectively. Thus, comparing (2) with (7bc), we get

et (e — ) A et 6y (65— €)
- V=" "= U=Tm e V=T
U—iv _U+iV O—iV _U+i7

01—-W, by = Vol 93—7—2‘_, 0y = V2

Thus, (7) and (8) relate the differential geometric objects (7, &, U, V, U,7) de-
fining almost contingent structures of non-null kind to the gravitational field &,
the electromagnetic field ‘F and the eigenvectors of F.
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(IT) Nwull fields. Let us assume that F is of class three. This means that
Fs=0, K=0, k=0, rank ' =2 and rank F?=1. We apply two operators =
and 7% defined by

(9a) yw=FAyl, yi=—F2,

y is an arbitrary non-zero scalar, to the tangent space T, at a point x of V,.
w+f=1, nF = Fn=F and #F = F#i = 0. Thus there exist two complementary
spaces € = Image (F') and 0= Image (F?) = Ker (F) corresponding to = and #% re-
spectively. Let us assume that there exists a vector field & and a 1-form # of €
such that #(X)=n(X)& TUsing this in (9a) FA4 =0 we get

(9b) FX) 4+ yp(X)E=0, F&=0, nF=0, rank F=2,

Comparing (9b) with (3¢) and (6a), we conclude that (F, 5, &, ) describes an almost
contingent structure of class three on V, such that Fis identified with J, § =& = U,
is the only eigenvector of F belonging to its eigenvalue 0, y =u?, y =—1 and &, =0.

Now let us assume that F is of class four. This means that F? = 0 and rank
F = 2. Thus, F of the fourth class admits an almost contingent structure of the
same class.

4. — (i) Index of inertia 4. Since h is of signature (4 + -+ +), det(k) is positive.
This means that k>0 and K > 0. Therefore, only the first two classes exist. For
the first class D may be non-zero or zero. If D=0 then there are two almost
contingent structures defined by (7b) and (7¢). If D = 0 then (7bc¢) reduces to
F2X 4+ KX = 0 which defines a generalized almost complex structure [2]. For the
gsecond class k=0 and D = K2> 0 provides only one almost contingent structure
defined by (7¢).

(ii) Index of inertia 2. Since h is of signature (+ -4 -+ —), det(h) is negative.
This means that k<0 and D >0. For the first class D > 0 which provides two strue-
tures defined by (7b) and (7¢). For the second class D > 0 and, therefore, the de-
fining equations for the structure are (7b) or (7¢) according as K << 0 or K > 0.
For the third class, the structure is defined by (9b). Fourth class does not exist.

(iii) Index of imertia 0. Since h is of signature (4 4+ — —), det(h) is positive
and k>0. As there is no restriction on K and D, all the four classes exist. The
properties of first and second class are identical with the respective classes of (i)
and (ii).
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