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Summary. - We prove: Let S be o closed n-dimensional surface in an (n -+ 1)-space of con-
stant-curvature (n=2); k, = .. =k, denote its principle curvatures. Lef o(&;, ..., &,) be
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general conditions (those (I1,) or (II) #° 1), S is a sphere.

such that 0. Then if ok, ... k) ==const on S and S is subject to some additional

I. Phe Formulation of Theorem. - Consider an n~dimensional, differen-
tiable, oriented closed surface § in an (# <4 1) space B which is either
Euclidean, or Lobochewskian, or spherical. In the last case S is supposed to
be inclosed in an open halfspace, i.e. in a hemisphere, and all further con-
siderations pertain to such a hemisphere. We suppose that the space R is
oriented and therfore the orientation of the surface determines the directions
of its normals.

Let § be of class C° and let k, = ... =k, denote its principal curvatures,
at an arbitrary point X € 8.

Introduce two following conditions imposed on S.

{I) There exists such a function ¢(&,, ..., &,) of class C' with the
condition

?

(1) :

% >0 G=1,..,m)

that o(k,, ..., ky) = const on S.

(IL,) There exists in B a bounded domain G° with the smooth boun-
dary S° and a smooth mapping % of G°- S° into B which maps S° onto S.
(S° is oriented so that % transforms its orientation into that of S).
In the simplest case the surface S itself has no multiple points and therefore
bounds a domain in E.
Instead-of the condition (II,} we impose on S the following more ge-
neral condition.

(IL) fhere exists in B such an n-dimensional, oriented, smooth closed
surface S° that
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(@) §° bounds an open set G° so that G° 4 S° is compact and S° lies
on the boundary of G° 4 §°;
(It is not excluded that S° has multiple points and that some parts of
S° do not belong to the boundary, of G°; such parts of §° are, at least,
twice covered).

{b) each part S of S° which bounds a component G° of G° is orien-
ted so that all normals to it are simultaniously directed either into G or
out of it;

(¢} there exists a smooth mapping 2 of G°- S° into B which maps
S° onto § with orientation;

‘We shall prove the following

THEOREM. - The surface S of class C? subject to the conditions (1), (1L}
is a sphere.

2. Some remarks to the Theorem. - (1) The simplest form of the fun-
ction ¢ is ¢ =&, 4 ... &, and then the condition (I} reduces to that of
the constancy of mean curvabure.

In general, the function ¢ can be non symmetrical and it suffice to
consider it for & =.. =&, in an s-interval a priori prescribed for the cur-
vatures k; of the surface S. In particular, if S is supposed to be of positive
curvature (all %; > 0), it is sufficient to suppose (1) only for & > 0. In this
case v can be, for instance, an elementary symmetric funetion.

(2) In the simplest particular case, when S has no multiple points and
therefore bounds a domain, our Theorem was proved in [1]. If in addition
to this simplest form of the condition (II) the condition (I) reduces to
ki + ... + k, = const, our Theorem asserts that a domain bounded by a sur-
face of constant mean curvature is a sphere. Thus the only possible form
of an, even unstable, soap-bubble is a sphere.

Other particular cases of our Theorem can be found in the papers by
H. Hopr and K. Voss [7, 9. We don’t quote results got by diverse authors
especially for convex surface. There takes place H. Hopr's result [6] which
is not covered by our Theorem and which, in its essence, consists of the
statement that in the 3-space a surface which is a regular image of a sphere
and is subject to the condition (I} is a sphere.

(8) The condition (II) is not void: there is no difficulty in finding
examples of closed surfaces which do not satisfy it.
It does not seem improbabile that any kiud of the condition (II}) is su-
perfluous so that sny closed surface subject to the only condition (I} is,
necessarily, a sphere; but we have no proof for that.
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(4} As we do not exclude the existance of the multiple points (selfin-
tersection or selfcontacts) of the surface S as well as these of the surface
§° in the condition (II), the above formulation of this condition is not
entirely precize. We have to distinguish between a surface and the point-set
covered by the surface, as well as between a point of the surface and a
point of this set. (The surface can be defined by means of a mapping of a
compact n-maifold M into R, and then its point is a pair: a point of M
plus its image in R). The precize formulation of the condition (II) offers
no difficulties and we omit it. As well we shall not explicitely distinguish
in our exposition between the surface and the set covered by it, between
the points of the surface and the points of this set.

() The condition (I) can be replaced by the following one

(I.) If at two points X', X” €8 at least two curvatures are diffe-
rent, e.g. k' > k", then there are the differences k' — k", k;/ — k;” of oppo-
site signs. And there exists such a constant 4 > 0 that for any pair of such
points

(2) A > —

The connection between the conditions (I), (I,) is established in [2].

(6) Onr supposition that S is of class C° can be replaced by a weaker

one: the upper curvatures of the normal sections of § are everywhere finite.

This implies that § is twice differentiable in a generalized sense almosst

everywhere and therefore has almost everywhere generalized principle curva-

tures k;. {The generalized second differential meant here is defined in [6]).
Accordingly, the condition (I) is to be replaced by the following one

(L) oik:, ..., ku) = const almost everywhere on S and ¢ is of class O
and sach that

2
(3) const > Ol v Gl > const > 0 E=1,..,n),

28
at least on S, i.e. for & =% (i =1,.., n).
If S is of ctass C® this condition is implied by (I).

It § is sabject to the condition (IL,), it can be supposed to be not of
class C® but having generalized SOBOLEFF’ s second derivatives summable
with n-th power. Then %, are to be understood in thé above mentioned ge-
neralized sense and the condition (I) is to be replaced by (I,) or (I,).
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3. Basie Lemma. - Let S', 8" be two oriented surfaces smooth up to
their bounderies B, B”. We say that they touch each other from one side
at a point X, if the following conditions are fulfilled.

(1) Either X is a common inner point of §" and §”, or it belongs to
B and B".

(2) The normals to S’ B, §” -4 B" at the point X coincide.

{3} Introduce in a neighbourhood U of X the coordinates «;,..., @,
Zygs = 2 SO that z-axis be directed along the common normal at X. Then in
U S’, 8" are represented by the equations

(4) 2=y, e, Xn), 2 ==2"(81, e, )

The condition demands that in U ¢ =2" (or 2 <2").

Leumma 1. - Let the surfaces S', 8" with the bounderies B’, B"” be subject
to the following conditions.

(1) 8+ B, 8" 4+ B" are of the class C*? (in other words. S', S" are of
class C® up to their boundaries);

(2) B’, B"” are of class C*;

(3) S', 8" are subject to the condition (1) with the same value of v, i.e.
olky 5oy ki) = 9k, .o, Ba") = comst.

(4) 8', 8", touch each other from one side af a point X.
Then S', 8" coincide in a neighbourhood of X.

This lemma is an immediate corollary of two following statements.

{A) Let the surfaces 8, §” or some their parts be represented by the
equations (3). Denote

Az == 2"y, oy Bn) — (01, e, X)),
Ag = ok, .., k) — ol ooy R}

The following theorem takes place {for the proof of. [3]).
The diffecence Ay is representable in the form

5) Ap = Z an Azxi " + X b; Azwi 4 cAz

and, if ¢ satisties the inequalities (3), the expression on the right side has
bounded coefficients and is elliptic, i.e. there exist such a positive constant
A that

1
AZE> 2 aikai€k>z‘2 E2.
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(B) Let in a domain D with a boundary I' of class (® there be given

a linear ellidtic operator L like the right side of () and a function 2w, ..
..., %) of clags O? in the closed domain D +4-T. Suppose that everywhere in
Dz =0, L(z) <0 and there exists at least one point X, €D T where z and
all its derevatives vanish: z = By, T TS By = 0. Then #=0 identically in D.
(It X, €D the condition zwi(Xo) = ... :zmn{Xo) =0 follows from #2=0 in D,
#(X,) = 0, but if X, € this condition, obviously, is not superfluous).

This theorem is due fo K. HopF and GIrauD and can be found in 8
though in somewhat differenf form.

The statements (A), (B) imply our Lemma 1.

REMARK. - The statement (B) remains valid if T is only smooth [4]. In
accordance with this it is sufficient to suppose in Lemma 1 that the boun-
daries B’, B” of the surfaces S§’, §” are smooth.

If the surfaces §’, §” are not supposed to be of class C? but subject
to the weaker condition mentioned in n.© 2 (6), i.e. if their upper curvatures
are everywhere finite, and B, B” are supposed to be smooth, Lemma 1 re-
mains valid. So it does if S, §” have SoBOLEFF's second derevatives sum-
mable with n-th power, provided B, B” are of class O

These generalizations are based upon corresponding generalizations of
the statement (B). Cf. [5].

4. The proof of the Theorem with the condition (IF;). - The presen-
tation of the proof of our Theorem will be given in terms which pertain to
the Huclidean or Lobachevskian space. In the case of the spherical space
the proof is the same; few necessary changes in ifs presentation are so
obvious that it would be superfluous to mention them.

In this and two following paragraphs we give the proof of our Theorem
when the condition (II) is replaced by the stronger one (II;). The proof re-
duces to that of following

Lemma 2. - The surface S subject {o the conditions (1), (11,) has a plane
of symmelry of any direction, 4. e. perpendicular to any given line. This, ob-
vicusly, implies that S is a sphere.

Let G° be the domain bounded by S° and % the smooth mapping de-
fined over G° - S° which maps S° onto S. Let @ = B{(G°). Then @ is open
and bounded and its boundary is contained in §S.

Take a line ! and draw a supporting plane P, to G- S perpendicular
to I. Move this plane so that it starts to cross @, retaining its perpendicula-
rity to /. Thus we have a variable plane P perpendicular to I/, which cuts
from S a part -a « hump » H which grows as P moves further.

Reflecting the hump I in the plane P we get the «reflected hump » F.
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As the plane P, in its movement, reaches and passes a given point X €S,
there appears on F the corresponding point ¥ which moves along a line 7).
This line proceds from X into G, as far as the desplacement of the plane P
from its initial position is sufficiently small. (T, is a straight line parallel
to 7, if the space is Euclidean, and it is an equidistant, if the space is
Lobachevskian).

Consider the total counter-image H° of the hump H: H°=h~HL
Take a point X°€ H®; then A(X°) = X € H. As the line T, proceeds from X
into @ and the mapping A is locally homeomorphic, there exists in a neigh-
bourhood of X° in G° an uniquely determined line 7'}, ~ the counter-image
of the line T,. The mapping & being locally homeomorphie, each line I,
can be prolonged in a unique manner. To the point Y € F, which corresponds
to X, there corresponds the point Y°€ T'g,. All such points Y° corresponding
to a definite position of the plane P form a set F°(C G° which corresponds
to H° as F corresponds to H. And evidentely; F = h(F°). (Although F° is
nof, in general, the total counter image of F).

When the plane P moves, the points Y%, move along their trajectories
Ty, and, correspondingly, the set F° varies in a determined manner. At each
moment it consists of surfaces which lie in G° and have common boundaries
with the corresponding parts of the set H° With the part S° — H® of S° if
bounds a part of the set G° which becomes smaller as the plane P moves
further.

Buf, sooner or later, the set F° must cease to exist, for, the displace-
ment of the plane P being big enough, the reflected hump F leaves the set
G and then the points of F lying beyond G have no counter-image sin G° at all.

We follow the change of the set F° till it exists, i.e. till to each point
X € H there corresponds the point Y° on trajectory T,. We fix the extreme
plane P, which, with the initial plane P,, bounds the set of planes P for which
the set F° exists, For this plane one of two following situations takes place.

(1) The set F° ceases to exist when the plane P reaches the position P;.

{2) The set F° still does exist, but it ceases to as soon as the plane P
moves beyond P;.

Further we consider these two cases separately.

5. The first case. - Let the first case take place. It means that at least
one of the points Y° has reached the end of its trajectory at a point be-
longing to S° — H°. In other words the limit F,° of the sets F'° corresponding
to the planes P— P, tonches S°— H,° at an inner point 4° from inside of G".

Accordingly, in a neighbourhood of the point A = R(4°) the reflected
hump F, touches the part S — H, of the surface S at an inner point from
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one side. Hence applying Lemma 1 we conclude that F; and S — H, coincide
in a neighbourhood of A.

It means that F\° and S°— H,° coincide in a neighbourhood of A4°

This consideration applies to any point of the boundary of such a neigh-
bourhood, and so forth. Thus we conclude that the component of the reflected
hump F; which contains the point A lies, as a whole, on the surface § and
has no boundary except its common boundary with the corresponding compo-
nent of the hump H,.

Hence follows, at first, that these componenis of F; and H, exhaust the
surface S. Secoundly, F, and H, being symmetrical with respeect to the plane
P,, this plane is the plane of symmetry of the surface S.

Thus our Lemma 2 is proved in the first of two above cases.

6. The seeond ease. - Prove that the second of two above cases is im-
possible.

Take a point X° on the boundary B,° of the set F,° corresponding to
the position P, of the plane P. The point A(X°) = X lies on the- boundary
B, of the reflected hump F,, and therefore on the intersection P, S. Suppose
that the tangent plane @ to S at X is not perpendicular to P,.

The disposition of S, H,, F, and P, in a neighbourhood of X is sche-
matically repsesented in the Fig. 1. The h-image of a neighbourhood of the
point X° in G° lies at the right side of S in the Fig. 1.

S-H F

Fig. 1

From this picture one can easily conclude that a small displacement of
the plane P beyond P, (downwards in the Fig. 1) cannot interfere with the
existance of the set F'° at least in a neighbourhood .of the point X°.

The surface S being smooth, we conclude that, as soon as the displace-
ment of the plane P beyond P, is sufficiently small, the set F° will not
cease to exist (in the large) if at no point of B, the tangent plane § to S
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is perpendicular to P,. This contradicts the condition of the case under
consideration and therefore there exists a point X € B, where the tangent
plane @ to § is perpendicular to P;.

At sueh a point X the surface F - B is tangent to S— H and, in a
neighbourhood of X, it lies at one side of S; mamely, at that one which,
owing to the mapping %, corresponds to the set G°.

Thus the surfaces F and S — H touch each other from one side af the
boundary. (Their common boundary is regular because of its being the inter-
section of § and the plane P;). Hence Lemma 1 applies and gives that F
and § — H coincide in a neighbourhood of X.

It means that the set F°, in a neighbourhood of the point X,, must lie
on S° Buf according to the very definition of the set F'° it lies in G°. This
contradiction proves that the case under consideration is impossible.

Thus Lemma 2 and with it our Theorem, with the condition (II,) instead
of (II), is proved.

REMARK. - If S is not of class C? but is subject to one of two -weaker
conditions mentioned in n® 2 (6), the proof of Lemma 2 is the same with the
only difference that one has, instead of Lemma 1, fo apply its suitable
generalization quoted in a Remark at the end of n° 3.

7. On the multiple points of a surface. - A multiple point of a smooth
surface can be of three kinds.

(1) A point of selfintersection where two pieces of the surface cross
at an angle different from zero.

(2) A point X of selfcontact where two pieces of the surface have
common tangent plane but do not coincide in any neighbourhood of X.

{8) A point of selfcoincidence in whose neighbourhood two pieces of
the surface coincide.

A point can belong to two or all three of these classes, if more than

two pieces of the surface meet at it.

LeMMA 3. — The spherical representation of the set of poils of selfcontact
of a surface of class C* has wmo immer points.

The sperical representation being defined only in the Huclidian space, it
is necessary to define it in the LOBACHEVSKIAN space.

Take in the space a point 0. If T is a tangent plane to the surface, we
draw through O a line perpendicular to 7. Thus we get the spherical repre-
sentation with respect to 0, which is meant in our Lemma, O being arbitrary.

THE PROOF OF LEMMA 3. - Let M be the set of the points of selfcontact
of a given surface. The surface being of class C?, one can easily verify that
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in a neighbourhood of a point X € M the spherical representation of M has
no inner points. But a countable sum of sets without inner points have not
them either [5]. Hence follows Lemma 3.

Now, let 8° be the surface in the condition (11} of our Theorem. We
distinguish two kinds of its poins of selfcoincidence, if there are any.

(1) The points of the essential selfcoincidence which are characterized
by the following property. The pieces of the surface S° which coincide in
a neighbourhood of such a point do not belong to the boundary of the open
set G° bounded by S°.

(2) The point of non essential selfcoincidence, where two coinciding
pieces of the surface S° belong to the boundary of the open set G°. We
shall not consider such points as the multiple ones at all. Accordigly, the
points of the first kind will be simply called these of selfcoincidence.

‘We consider a multiple point of the surface § subject to the condition
(IL) of our Theorem as an essential one, if and only if it is the k-image of
a multiple point of the surface S°, (the points of the non essential selfcoinci-
dence of S° being excluded, in accordance with the above condition). In the

same sense we shall understand the points of selfintersection, of selfcontact
or of selfcoincidence.

Lemma 4. - Of the surface S satisfies the conditions (1), (I1) of our
Theorem the curvatures k., k, at each point of selfcoincidence have opposit signs.

Proor. - Let X° S be a limit point of the points of selfcoincidence. Then
it is a point of selfcontact and belongs to the boundary of the open set G°
bounded by S°. Owing to the condition (IIb) the normals to the part_of S°,
which bounds a component of G°, are all directed either into or out of it.
Hence follows that in any neighbourhood of X° there exist points of S° with
the normals which are almos opposite to each other,

Therefore the normals to the pieces of S° which coincide near X°, are
opposite, The mapping A transforms the orientation of S’ into that of S.
Hence at the point X = h(X") the normals to the pieces of S are opposite
and as these pieces coincide their principle curvatures have opposite signs:
kB = — kuN; ey n’ _—— k1N .

Thus either among k; — s there are those of opposite signs, or they are
all zeros. Otherwise, the function ¢ in the condition (I) being monotonous
the equality @&/, ..., k) = 9(k", ..., k") would be impossible.

But a closed surface always has points where all curvatures have the
same sign; e.g. such are point where a sphere which encloses the surface
touches it. The function ¢(%,, ..., k) in the condition (I) being monotonous
it can not have the same value at a point where all curvatures have the
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same sign and at a point where they are all zeros. This contradicts the
condition (I}, and thus our Lemma is proved.

8. The proof of the Theorem in the general case. - We shall prove the
following.

Lemma 5. - If the surface S is subject to the conditions of our Theorem,
there exists such a cone that for any straight line L € K the surface S has o
plane of symmelry perpendicular fo L.

Obviously, it implies our Theorem.

Let § be a surface subject to the conditions (I), (II) and let §° G°, &
have the meaning defined in the condition (IL).

In accordance with Lemma 3, a point O being arbitrary fixed, we can
take such a cone K with the vertex O that no line L € K is perpendicular
to the tangent plane to § at a point of selfcontaet. Take a line L €K and
prove that S has a plane of symmetry perpendicular to L.

Draw a supporting plane P, to S perpendicular to L. It can not touch §
at a maultiple point. In fact, such a point X €SP, obviously can not be one
of selfintérsection. Nor can it be a point of selfcontact becanse of the choise
of the cone K. It can not be a point of selfcoincidence for, owing to Lemma 4,
at such points there are curvatures of opposite signs.

In accordance with our definition of the multiple points of the surface §,
as it is given in n.° 7, the set M ° = h~}(SP,) — the fotal counter image M°
of the set P,S contains no multiple points of S° and so does a neighbour-
hood of this set.

Hence the considerations of n.° 4 apply. We move the plane P from its
initial position P, and cut off S the hump H. Reflecting it in P we get the
reflected hump F, and we define the set F°(C G° as it was done in n.° 4.

We move the plane P and follow the change of the sets F° and H'=
= h~YH) till F* exists and the plane P does not meet multiple points of S.
The last condition is equivalent to that one that neither H° nor its boundary
contains a multiple point of S°.

Let P, be the extreme plane which, with the plane P, bounds the set
of the planes P for which the discribed situation takes place.

If P, does not contain multiple points of S, the situation is analogous
to that considered in n.° 4. Then the considerations of nn.° 5, 6 prove that
P, is the plane of symmetry of S. The a priori possible existance of multiple
points on S — H, does not interfere with these considerations.

Thus we are left to suppose that the plane P, contains multiple points of 5.

9. The eompletion of the proof. - Let the plane P, contain a multiple
point X of the surface S. It can not be a point of selfcoincidence. Otherwise,
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owing to Lemma 4, plane P, would cross § in a neighbourhood of X and
on both sides of P, there would be multiple points. But this contradicts the
definition of the plane P,.

Suppose X is a point of selfcontact and let @ be the tangent plane
at it. Owing to the choice of the cone K, which the line L belongs to, the
plane P, can not coincide with Q. We prove that it is perpendicular to @.

Suppose it crosses @ but is not perpendicular to ¢. Let X°€S8° be the
counter image of X, which is a point of self contact of the surface S° and
let S,°, S;° be two pieces of S° which touch each other at X° In a
neighbourhood of X° they enclose a part U° of the set G°.

Let 8; = WS, S: = n(S:%), U=nU". S, 8 having at X the common
tangent plane @, the situation is like that schematically represenfted in the
Fig. 2. It is not difficult to observe that in a meighbourhood of X the re-

Y

Py

Fig. 2

flected hump F corresponding to a plane P sufficiently near to P, can not
lie in U (if P is not perpendicular to Q). It means that there exists no
counerimage F° of F. It contradicts the definition of the plane P,. Thus
the plane @ is perpendicular to P,.

The plane @ being perpendicular to P,, the situation is like that consi-
dered in n° 6. If H,, H, are the parts of the hump H cut from the surfaces
S;, S and F,, F, are the corresponding parts of the reflected hump, F,, F,
thouch §; — H,, §; — H, at the point from one side. Thus, owing to Lemma
1, F,, F, coincide with S, — H,, S; — H; in a neighbourbood of X and this
coincidence spreads further up to multiple points and beyond the points of
selfocontact because of the above consideratious.

Let, now, X be a point of selfintersection of the surface S. Let X°
be the counterimage of X, which is a point of selfintersection of the sur-
face S° Two pieces S,°, S,° of S°, which cross each other at X° bound in a
neighbourhood of X° two parts U®, V° of the set G°. (It is not excluded that
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at X° there meet more than two pieces of the surface S°, but we always
can choose two of them so that the discribed situation takes place).

The h-himages Si, S, U, Vof §°, 8,", U° V® are situated in a neigh-
bourhood of X as it is schemafically represented in the IFig. 3. The inter-
section of the planes ¢, Q. tangent to &, and S, at X lies in the plane P;.
Otherwise on both sides of P; there would be the points of the intersection
8,8, what would confradict the definition of the plane P, .

~
- F
-
- !

Fig. 3

The plane P, bisects the angle between the planes Q,, Q.. Otherwise
one of two parts of the reflected hump ¥, would lie beyond the set U V
(Observe Fig. 8). It would mean that the set F° ceased to exist before the
variable plane P reaches P,. But it contradicts the definition of the plane P;.

As P, bisects the angle between S, and S; at X, either part of the refleted
hump F, touches the corresponding part of S— H,. These parts of F; liein
U and V respectively {for otherwise we would once more, have a contradiction
with the definition of the plane P,). Thus these parts of F, fouch the cor-
responding parts of S— H, from one side (Observe the condition (1Ib) about
the normals).

Hence Lemma 1 applies and we see that in a neigbourhood of X the
reflected hump F, coincides with S— H,.

An obvious consideration using Lemma 1 shows that this coincidence
spreads farther up to multiple points and beyond them too, as it is obvious
from above consideratious of the points of selfcontact and selfintersection.
Therefore the coincidence of the reflected hump F, with §— H, spreads over
the whole F,. Hence P, is a plane of symmetry of the surface S.

Thus the proof of Lemma b and at the some time the proof of our
Theorem is completed.
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