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INTRODUCTION

In all that follows we shall denote by V, (r==1) an algebraic variety which
is non singular (i. e. irreducible and free from multiple points) and which
lies on a PI0ARD variety V, (¢q=r); we suppose always that V, is in normal
form, i. e. free from multiple points and exceptional manifolds. It is well
known that the number g¢,(V,) of linearly independent simple integrals of
the first kind attached to V, cannot exceed ¢; the case where g,(V,) < g is
discussed in n. 2

We shall denote by W, a non singular algebraic variety of superficial
irregularity g, i. e. such that g (W,)=¢. With these notations we sketch
the background to the present work.

The earliest result in this field dates back to 1900 when — according
to ENRIQUES ([14], p. 368) — CASTELNUOVO proved the theorem : if the surface
W, has geowmetric genus P, (W,) zero, then it contains an irrational pencil of
curves. This theorem was later extended and made precise by SEvERT [25],
who showed that, if P, (W,)=0 (r=2), then W, contains a congruence (sys-
tem of subvarieties of index wunity) of superficial irregularity g.

A second result, likewise due to CASTELNUOVO [B], asserts that V, cannot
contain any rotional curves. More generally, SevERI [25] showed that, for
any V, of V,, P,(V,)>0.

In the third place, CAsTELNUOVO [4] proved that, if W, contains no irra-
tional pencil, then P, (W,) > 2(¢ — 2). Subsequently CoMessaTTI [7] extended
this theorem to any variety W, (see n. 9). The demonstrations of these results
are analytical and ingenious, but, for =3, are somewhat complicated (!);
however, in 1950 & OmreEVAL [17] gave a simple geometrical proof of the
CASTELNUOVO inequality which extends immediately to the case r = 3 ([22]).

Now it is an interesting fact that all these results form part of a gene-
ral theory which is based on the study of the subvarieties of V,. In the

(1) In fact COMESATTI gives a detailed proof only for the case r=3,
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266 L. Rota: On subvarieties of ¢ Picard variety

present paper three aspects of this theory are considered:

{#) An improvement of the above theorems, which is effected by intro-
ducing the notion of pseudo-Abelian variety, first treated by Daxront {11},

(#9) An extension of the results, which deal only with canonical systems
of highest dimension » — 1, fo those of any dimension.

(¢¢) Applications to the study of the variefies W,.

For the general theory of the PIcARD variety which we require here,
we refer the reader to the posthumous book by Conrorro [9]. For more par-
ticular results the momnograph [22] may be consulted. Other applications of
the present methods will be found in the note [21].

I

1. General properties of V,. Continuous systems, psendo-Abelian varieties.
We begin by recalling the main facts concerning V, which will be needed
here. In the first place we note that V, admiis a paramefric representation
by means of theta functions of ¢ independent complex variables u; (i=1,
2, ..., q) which may be taken as universal coordinates on V,. Denoting by u
the vector whose components are #;, we can find n--1 theta functions 0.(u),
0,(u), ..., 0,(u) of the same order such that a projective model of ¥, in space
S, is represented by

(1) @y 13, 3w s 0y == 0g(ut) 1 0, (0) 1 ... 2 0, (00).

A first consequence of this result is that V, admits a group G, of auto-
morphisms which is continuous, commutative and completely transitive over V,;
this group is represented by the equations

{2) ui = u; + ¢ t=1, 2, .., Q)a

where the ¢, are arbitrary constants; for any given set of values ¢; the
equations define a fransformation of the first kind on V,. It is important to
note that the group G, serves to characterise V,.

A second comsequence is the so-called Appell-Humbert theorem: any
hypersurface V,—, of V, can be specified by the parameiric equations (1) foge-
ther with o single equation O(u)=0. From this we can calculate the freedom
of the complete linear system | V,_, | defined by V,_,; we find that,
excepting the case where V,_, belongs to an irrational (elliptic) pencil, the
system has positive freedom, and is without base points. Hence, by Bertini’ s
theorem, the general member of the system is non singular.
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Applying the transformations of G, to any non singular V,_, we obtain
a continuous system { V,_,} of birationally equivalent hypersurfaces, the ge-
neral member of which is likewise non singular. Moreover the characteristic
(linear) system associated with any complete linear system |V, ;| of {V,_.}
is incomplete.

Similarly, the transformations of G, applied to any non singular variety
Vi 1 <<r<gq— 2), generate a continuous system {V,} of birationnally equi-
valent varieties, the general member of which. is non singular. In general
this system is oc?; it will be of lower dimension if, and only if, V, admits
a continuous group of automorphisms contained in G,. The obvious case is
that in which V, is a PIcARD variety; the system {V,} is then oot. Sup-
posing instead that the group in question has dimension ¢{ (I1<<i<<r— 1),
its trajectories on V, form a congruence {V;} of birationally equivalent
ProArD varieties; in this case V, is a pseudo-Abelian variety of type . We
may then prove ([11, 19, 20)) that V, contains a second congruence {V,_;!
whose members are birationally equivalent.

1t should be noted that a pseudo-Abelian variety V, which lies on V, is
somewhat parficular; in the general case, the congruence {V;} of trajectories
contains certain aggregates of trajectories. Vi, (s =2) such that the mul-
tiples sV, are algebraically equivalent to the generic V, ({19, 20}). When V,
lies on V,, however, there are no such varieties Vi,.

The case where V, is Picardian may be included in this scheme by de-
scribing V, as a pseudo-Abelian variety of type 7. In conclusion, the com-
plete continuous system {V,} associated with a given variety V, is in general
oof; it is oot if, and only if, V, is pseudo-Abelian of {fype (1 <<f<r). In
all cases, in view of the complete transitivity of the group G,, we see that
the system {V,} invades V, and is free from base points.

2. Speecial Picard varieties: the characteristic property. It is a well
known result (in the theory of reducible integrals) that, if ¥V, has general
moduli, it contains no PIcARD subvarieties. If, however, for particular values
of the moduli, V, contains one such variety V, (1 << p =g — 1), then it con-
tains a congruoence {V,!; this congruence is Picardian, and its members
are transforms of one another nnder G,. In fact { V,} is a continuous system
of the kind described in n. 1. In this case V, contains a second PICARD
congruence { V,,} of PICARD varieties V,—,, analogous to the first; and the
members of both these congruences are non singular. Also neither congruence
possesses singular points, through which pass an infinity of members.

In what follows we shall require the converse of this last result; If V,
contains a congruence {V.}, without base poinis, of (non singular) varieties
Ve, then V, and {V,} are both Picardion. (Here, and in the sequel, it is
understood that the case r = ¢ — 1 of an irrational pencil is included).
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The proof is a simple consequence of the following theorem due to
CasteLNUOVO [B]: if the variety V, has superficial irregularity p (0 <p <g),
then either V, is Picardian — in which case p =7 — or else V, lies on a
PicaRD subvariety V, of V,, and has the same superficial irregularity as V.

We first observe that the congruence { V,} =TI, say, is superficially irre-
gular, since otherwise any complete linear system | V,_,| of hypersurfaces
belonging to I' would have a complete characteristic system. It follows that
a certain number of the integrals u; attached to V, — g — p, say, where
0 <p <q — must be constant along each variety V,, and that V, has irre-
gularity p. Hence, by CASTELNUOVO’S -theorem, either V, is Picardian (in
which case r = p) or else V, lies on a PICARD variety V, which itself is a
member of a congruence free from base points. Now through every point of
V, there passes just one variety V,; hence those varieties V, which pass
through points of any such variety V, must be contained in it. Thus V; car-
ries a congruence, without base points, which, by a previous remark, must
be irregular. And the members V, of this congruence have irregularity p:
which is impossible. Hence only the first alternative can hold: both V, and
I' are therefore Picardian

‘We note the following corollary: if a conlinuous system {V.} is com-
pounded of a congruence, then V, is either Picardian or pseudo-Abelian.

For, on each variety V, we have a congruence of PIcARD varieties V!
{1<<t<r— 1) which are the trajectories of a continuous oo group of aufo-
morphisms,

3. On canonieal varieties. Let V; be any non singular variety of any
dimension d = 1, regular or irregular: then we may define on V,; a set of d
invariant varieties Xn(V4) (=0, 1,..., d — 1) which may be effective or vir-
tual, and which are called the canonical varieties of V4. Their definition is
by induction, as follows.

First, suppose that S is a non singular hypersurface of V, which.can
vary in a linear pencil of general character (*); then denoting by & the Jaco-
bian set of the pencil, we define X (V,), by induetion on d, by means of
the rational equivalence

{3) Xo(Va) = 8 — 2X,(S) — Xo(S?).
The aggregate {X(Vg)} is termed the Severi series of Vj.

Next, supposing that S is any non singular hypersurface of V4, we define

(?) This means that the base variety of the pencil is non singular (save when d=2),
that all members of the pencil are irreducible, and that the only members which possess
multiple points are nodal.
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Xn(Va), for h=1, by induction on d and %, by means of the rational
equivalences

e Xn(Va) = Aw(S) — Xa(S) h=1,2,..,d—1),
where Ax(S) is an adjoint variety, with the property
(5) Au(S)+» S = Xp— (S) (oniS) h=1, 2, .., d—1).

This definition obviously rests on a theorem (Topp [31, 33]). The elimination
of Ax(S) between (4) and (5) leads to the so-called adjunction law.

In (4) the variety X,;,(S) is simply 'S itself. Note also that it is customary
to write Aq—,(S) = S’; the hypersurface X47,(Vg) =8 — § varies in a linear
system, the canonical system of classical algebraic geometry.

For other definitions and results concerning the canonical varieties, we
refer to the work [23-4] of B. SEGRE, the monograph [3] by BALDASSARRI,
and the critical review [34] by Topp.

It should be observed that the above equivalences are established hy
ascending induction: in the applications that follow the induction we employ
is descending; the reason is that initially it is the variety Xz ,(8)=3S, of
highest dimension, that is given, while all the canonical varieties are deter-
mined from this.

Suppose now that Vy has superficial irregularity ¢ = d: then in certain
cases we can give a transcendental definition of Xu(V4), due to Kemr [13],
which generalises a method of SEVERI's for the case d = 2. Taking any
h 4 1 linearly independent integrals u; of the first kind on V,;, we consider
the Jacobian locus J(#,, #,, ..., #py,); in the case where this is an h-dimen-
sional variety, with simple components only, we may show it to be identical
with Xu(Vg — which is thus effective (though possibly null).

For a self-contained exposition by transcendental methods, one actually
requires ¢ > d; if, however, the existence and properties of X(Vg4 have first
been established geometrically, the present method can be applied provided
that ¢ = d.

We now wish to make such an application to the PICARD variety V,:
indentifying V; with V,, we may prove by the transcendental method that
all the varieties Xp(Vy) are the null varielies of the corresponding rational
equivalences on V,: we write Xz(V) =0 (h=0, 1, .., ¢—1). SEVERI has
conjectured that this property is characteristic of V,, but the question is
still open.

4. The canonical varieties of complete intersections. We next apply the

above results to the subvarieties of V,. Consider a continuous system {V, !

of hypersurfaces on V,; we denote the complete intersections Vi_;, Vi, ...,
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by Vy—2, Vg—s, ... With this notation we have

TuroreEM [. - The canonical varielies of the sequence (Vi) are given
by the equivalences

. —h— 1\
©) Ve = (15" ) h (lek=g—1; 0=h=g—F)

First, let £k =1; then from (4) and (5), using the fact that Xu(Vy =0,
we obtain

An(Vos) = Xh(Vq—l) (on V)

(h: —], "'-:2,...,1.
AnVors) + Voos = Xna(Vors) (00 V) T )

From these relations we deduce the equivalences
Xn(Vo) = VL h=q—1, g—2,.., 0.
Next, inserting these results in (4) and (5), we have

Vg:? = An(Vo—s) — Xn(Vy—o) (on Vo)
Ah(Vq_z) . Vq—z = Xh—l(Vq—Z (011 Vq__z).

Hence Xu(V,—o) = (g — h — 1)V h=q—2, qg—3..., 0)

The general result now follows by induction; in fact the algorithm re-
presented by the adjunction law of n. 3 follows the law of formation of
Pascar’s arithmetieal friangle.

5. On the varieties Xx(V,). Given any non singular variety V, of V,, we
associate with it a sequence (Vo—x) (k= 1, 2, ..., ¢ — r) constructed as follows.
First, let V,—, be any hypersurface chosen generically from the continuous
system {V,} to which V, belongs; next, we choose for V,_, a member of the
characteristic system on V,_,; then we take V,; to be a member of the
characteristic system on V,_,; and so on. We thus obtain a succession V¢4,
Vgezy oy Ve, of varieties which are non singular and which are all gene-
rated by varieties V,. Finally, after these we have a variety V., say, which
is in general reducible, consisting of a certain number of varieties V..

‘We now prove

TugoreM 1I. - The canonical varieties Xu(Vy) (h =0, 1,.., r—1) are
all effective (possibly null).
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Consider V, as a hypersurface on the variety V,,, just defined. By Theo-
rem I, Xp(V,4,) =0 (all B =0}; hence, by the equivalences (4), and with a
descending induction on %, the required result is established.

CoRr. 1. = Py(V,)> O _(this result is due to CASTELNUOVO and SEVERI).

CoRr. 2. - V, is free from exceptional manifolds. For any such manifold
is a locus of rational .curves; and we have just seen that V, cannot contain
such curves.

6. The inequalities for Py V,). More expressive inequalities than the
above Corollary 1 can be found as follows. In the first place we prove

TueoreM III. If V. is not pseudo-Abelian, then PyV,} > r(r —r); and
if further q > v 4 1, then Py(V,) >m!(r + I)ig — ).

By Theorem I, the variety V; adjoint to V,, namely

17;' = Xr—1(f7r) +- _Vr (on Vr-l-l);

is given by the equivalence

(7) V= (q — 1)V, (on V,,).

It follows from this that the canonical system | X, 4(V,)| is cut on V,
by warieties of the characteristic system, each counted (q—r) times; thus,
in order fo find a lower bound for P4V,), we have to estimate the dimension
of this characteristic system.

Suppose first that r=¢ —1; then since, by hypothesis, V,_, belongs
to a continuous system {V,_,} of oo? linear systems, the characteristic system
has freedom ¢ — 1 at least.

Next, assuming that r << q — 1, we follow the method given by Enriques
([14], p. 449) in the case » = 2. Consider a hypersurface V,_, defined as in
n. b; any such V,_, is generated by oct—"—1 V,’s, and belongs to a complete
linear system | Vo, | of freedom p, say, contained in a continuous system
{Vy—1}; thus there are oott¢ V,_/’s in {V,_,}. Denoting by x the freedom of
those V,_,’s which contain a given V,, we thus have

rSig—r—1)+@g+pe)}—gq
whence

r<qg+p—r—1L

Since the characteristic system cut on V,_, has freedom ¢+ p — 1, the
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characteristic system cut on’V, has freedom at least
g+o—1—(@k—1)=r+1,

whence the result. The inequality Py(V)> r(g — r) was established by CAsTEL-
Nvovo and COMESSATTI on the hypothesis — unduly restrictive — that V,
contains no irregular congruence whatever. The above geometric proof of
their result was first given by d’ OrervAL [17] for the case r = 2 ; the obvious
extension was noted in [22].

Cor. - If PyV,) <rlg—r), then V,%is either pseudo-Abelian or Picardian.
Tu the case where V, is pseudo-Abelian we have

TuroreM IV. - If V, is pseudo-Abelian of type ¢ (1 <<it<<r — 1}, then
PyVi) > (r — g — 7).

Here the equivalence (7) again holds, but the variety V, and all its tran-
sforms under the group G, (n. 1) belong to a PICARD congruence {V:}. The
above calculation has therefore to be modified. Or we can reason as follows,
Regarding the congruence {V:} as a PICARD variety whose points are the
V: ’s, we have on it a continuous system of varieties V,_; which are the
images of the V, ’s. By fhe previous result, the charactcristic system on such
a V,_: has freedom # — ¢ at least; whence the result {?).

Cor. 1. - For any V, on V,, the canonical system | X, (V.)| is free from
base points.

This follows from (7), which holds in all cases.

Cor. 2. - A necessary and sufficient condition that V, should be pseudo-
Abelian is that | X,—(V.)| should be compounded of a congruence.

The necessity is well known ([19-20]); the congrnence in question is that
of the trajectories. The sufficiency is a consequence of (7) and the theorem
of n. 2 (more precisely, the corollary)

OoRr. 3. - A necessay and sufficient condition that V, should be a Picard
variety is that Py(V,) == 1.

The necessity follows from the last theorem of n. 3.

(*) If V, can be regarded as pseudo-Abelian in more than one way, we choose the
least possible value of £
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With regard to the sufficiency, by the corollary to Theorem III, V,
must be either pseudo-Abelian or Picardian, and the former possibility is
excluded by Theorem IV.

7. Charaeterisation of pseudo- Abelian varieties. It is an important pro-
perty of pseudo-Abelian varieties that the canonical varieties of any dimen-
sion less than that of the trajectories are all null ([19-20]). On a Picarp
variety V, this result can be inverted: we have

THEOREM V. - A mnecessary and sufficient condition that V, should be
pseudo- Abelian or Picardian is thai, for some value of h O<h<r —1),
Xn (Vi) =0.

(i) Suppose first that =g — 1, so that, by Theorem I,
(Vo) =V 0O<h<gqg—1).

If, for some value of I, Xu(V,_.) =0, we deduce that ViZ*=0, and hence
that Vi = Vit =... =0. Thus the continuous system {¥,_,}, which is
effectively free from base points, is such that its characteristic manifolds of
every dimension less than % + 1 are all null. Hence the system belongs to
a congruence, which proves the resuli (n. 2).

(ii) Next, let » << g — 1; and consider the succession (V,_;) defined in
n. 5, On V,., we have, by (4) and (),

AlVe) = XalVewa) + Vi) g g 9 1).

Ah(Vr) V= Xh—1(vfr)
Suppose that X 4(V,)==0; then since all the varieties which appear in the
above equivalences are effective, it follows that

Xh(Vfr) . Vy: 07 Xh(,,-+1) . V,r g O (On VT+J)-

Now since V, is variable in an oco! system on V,.,, the latter result shows
that either X;(V,.,) belongs to a congruence of which V, is a member or is
compounded, or else that Xu(V,.) = 0.

In the first case, considering the members of the sequence (V,_i) in
turn, we arrive at the conclusion-that the system {V,_.} is compounded of
this same congruence; whence the result.

In the second case, we have, exactly as before,

XntalVegs) « Vera =0 (on Vyp,)-
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Again there are two possibilities : either Xj4.(V,;.) belongs to a congru-
ence of which V,., is a member or is compounded, or else Xj.,(V,.;)=0.

Continuing in this way, either we obtain a congruence on V, of which {V,}
is compounded, or else we conclude that

Xq_¢+h+2 (Vq_l) =0 (1 <h <y — 1)

And in this latter case the result follows from (i).
Recalling the details of the proof of Theorem II, we now have

Cor. 1. - Except when V, is pseudo- Abelian or Picardian, the varielies
X.u(V,) are all effective, h-dimensional and of positive order. In particular, the
generic element of the Severi series {X,(V,)| consists of a positive number of
points.

In n. 2 we defined a special variety V, as one containing a PICARD
subvariety. By virtue of the previons theorem we can say that: In order
that Vo should be special, it is necessary and sufficient that V, should contain
a variety V, such that, for some value of h =0, XuV,) =0. For such a V,
is either Picardian or pseudo-Abelian, and in the latter case the trajectories
of V, are PicARD variefies.

This result may also be expressed as follows:

CoR. 2. - The existence on V, of a single variely V., such that, for some
value of h =0, Xu(V,) =0, implies the existence of an invariani subgroup in
the group Gg¢; and conversely.

It is interesting to consider the above theorem in the light of what we
may call the generalised SEVERI conjecture (cf. n. 3); according to this,
any algebraic variety U, such that X,(U,) =0 (0<h = { - 1), while Xy(U,) >0,
is pseudo- Abelian of type ¢ Evidently a far stronger result holds when U,
lies on V,. In that case U, is of course superficially irregular. A first step
towards proving the conjecture would be to establish this property in the
general case.

I1

8. The Picard-Severi variety. Consider a varieti W, of superficial irre-
gulation ¢ >0; and let u; (=1, 2,..., g) be the corresponding simple
integrals of the first kind attached to W,. These define a period matrix o
which is a Riemann matrix; denoting by V, the PICARD variety, in normal
form, belonging to o, we say that V,is the Picard - Severi variely {or second
Picardian) associated with W,.

Assuming u; to be the universal coordinates on V,, we suppose V, fo



L. Rorit: On subvaricties of « Picard variety 275

be represented by the parametric equations (1); then denofing by x a general
point of W,, we obtain a mapping of W, on V, by means of the equations

(8) ?M(a‘) = Y (?/ :,1, 2, ey Q) .

We first enquire under what conditions this yvields a proper model of W,,
i.e. an irreducible r-dimensional variety V,, in simple or multiple corre-
spondence with W,. The answer, due to SEVERI [26-7] is as follows: fhe
proper model V. of W, on V, exists if, and only if, W, contains no congru-
ence of superficial irregularity ¢. When r>>gq, such a congruence always
exists, as we shall now see. In fact, to construct the model V, we have to
consider the relations (modulo the periods)

©) uil) = wly) (=1, 2,..., q),

where x, y are points of W,, the former chosen generically and the latter
to be determined. If (9) admit one and only one solution, namely y ==, we
obtain a model V, which is birationally equivalent to W,. If instead (9)
admit v(>1) solutions, we have a V, which is the image of an involution I,
on W,, whieh is called the fundamental involution on W,, and then V, is
a v-fold model of W,. In every other case the relations (9} represent a con-
gruence, of superficial irregularity ¢, of algebraic varieties along which the
integrals u; all remain constant in this case the proper model is non-exi-
stent.

Supposing now that the model V, exists, we still do not know whether
it is necessarily non singular. At present the question can be answered {(in
the affirmative) only in certain special cases. In all that follows we shall
make the assumption that, whenever W, admits a proper model, there is
also a proper model which is free from multiple points (But see n. 12).

9. First applications. The first applications of the mapping of W, on
V, are immediate consequences of the preceding theorems, together with the
remark that, whether the model V, is simple or multiple, we always have
P,(W,) = Py(V.).

To begin with, it follows from Theorem III that if W, admits a model
V. which is not pseude-Abelian, then in all cases P,(W,) > rig — 7); if also
g>v+1, Py{W,) > (r 4+ 1)}lg — r). Whence

TaporEM VI. - If Py Wi <7(g —#) (q=7), or if PyWy) < (r+ 1jig—7)
(g >r 1), then either W, confains a congruence of (superficial) irregularity
q, or else V. is pseudo-Abelion; and in the lotter case W, — in correspondence
with V. — contains two congruences of complementary iw*éguiarities,
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Cor. ~ If Py W,) =0, then W, conlains a congruence of irregularily q.
As already stated, this resulf is due to CASTELNUOVO and SEVERI

Theorem VI is an improved form of the inequality due fo CASTELNUOVO
and CoMESSATTI. We may add that CoMESSATII [8], using an ingenious idea
in the differential geometry of line sysfems, has determined all the surfaces
for which P, W) << 2(¢ — 2); such surfaces reduce to a few types. CoMEs-
SATTL’ 8 results have been confirmed by Norrrr [16]. The analogous problem
for threefolds has been attacked by RoseENBLATT [18], employing the same
methods, but only partial results have been obtained.

In the original version of Theorem VI, the sole inference made from
the inequality was to the effect that W, must contain an irregular congru-
ence. It is interesting to compare this form of the resulf with one obtainable
from the theory of differential forms ([24]) If we assume that W, contains
no irregular congruence whatever, we know that none of the differential
forms such as du,du, ... du, can vanish identically on W,. Hence the number
of differential forms of the first kind and of degree r attached to W, is at
least (3) whence the theorem ([29]): If Py(W,) <(%), then W, contains an
irregular congruence. We may remark that the case r =2 of this theorem
was proved by CASTELNUOVO [6] many years before (*) the general result was
published by SEVERI. CASTELNUOVO’S proof was different in character.

Using Theorem IV in the same way as Theorem III, we have

TaeorEM VII. - If W, is pseudo-Abelian of type ¢ 1 <t<r—1), and
if Py(W,)<<(r— t)(q— 1), then W, contains a congruence of irregularity q.

From Cor. 3 to the same theorem we deduce

TrreorEM VIIL. - If PW,) =1, either W, contains a congruence of irre-
gularity q or else — in the case g =1 — W, can be mapped, simply or mul-
tiply, on a Picard variety V,.

The case r = 3 of this result was given by CommEssarTI [7].

CorR - If X, (W) =0, either W, contuins a congruence of irregularity
q or else is a Picard variety.

For supposing that V, exists, in the case v =1 there is nothing to prove.
If however v > 1, the fact that X, _,(W,) is null implies that in the mapping

(%) CasTELNUOVO’S work remained unpublished for a long time,
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on V, there can be no branch elements. Hence, as- ENRIQUEs ([14], p. 360)
has shown, W, admits fhe continuous group of automorphisms which cha-
racterises a PICARD variety (n. 1).

10. Characterisation of W, by means of subvarieties. An obvious way
of ensuring that W, must contain a congruence of irregularity ¢ is to impose
on W, a condition which will render the proper model V, nonexistent. One
such condition (Theor. VI. cor.) is PyW,)=0. We shall now consider con-
ditions of a different kind.

Suppose that W, contains a subvariety W, (1 <<s<C# - 1) which does
not admit a proper model on V,; this will be the case if, for example,
Py(Wy) ==0, or again if g,(W,) = 0. Then there are two possibilities: either
V, does not exist or eclse W, must correspond, in the mapping, to some
variety of dimension less then s, In the latter event this means that W, must
either be, or be on, an exceptional or a fundamental manifold, according as
v==1 or v>1. Since the number of such manifolds is necessarily finite,
we have

TaROREM IX. - If W, contains a system (continuous or discontinuous) of
varieties Wy which invade W, and for which either Py(W)=:0, or g.(W,) =0,
then W, carries o congruence of irregularity q.

Consider the particular case in which s=r—1, ¢(W,—;) =0. Here, by
hypothesis, W,., cannot carry a superficially irregular congruence of varieties
or involution of points, so the system { W,_;} to which W,_, belongs must
be contained in the congruence — mnecessarily unique — of irregularity ¢
on W,. Hence

TurorEM X. ~ If W, contains an oc* system (continuous.or discontinuous)
of superficially regular hypersurfaces, then this system wmust belong o the
unique congruence of irregularity ¢ on W,.

In the case where this congruence is a pencil, the system {W,_,} in
question consists of members of that pencil, so that if the system is discon-
tinuous a priori, it is actually continuous in fact. A classical instance of
this result is that of a surface W, which carries a system of rational curves;
here all the curves in question are contained in a pencil of genus q, and
W. is birationally equivalent to a scroll.

Consider next the case where PyW,)=1; if W, admits a proper model V;,
fhis is a simple or multiple PICARD variety, in which case (W) =3s
(Theorem VII). It follows that, if W, likewise possesses a proper model V,.,
this most be a simple or multiple pseudo- Abelian or Prcarp variety, for V,
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is a member of a congruence of PICARD varieties on V,. Hence

TuaroREM XI. - If W, confains a system {continuous or discontinuous) of
varieties Wy which invade W, and for which PyW,) =1, then either W,
carries o congruence of irregularity q or else the proper model V, is pseudo-
Abelian or Picardian.

An important instance of this result is afforded by a pseudo-Abelian
variety W, of type {; if this admits a model V,, then the congruence of
trajectories W; on W, is mapped by a congruence {V;} of PICARD varieties
on V,, which is likewise pseudo-Abelian. If when v > 1, there are branch
elements in the representation, these must consist exclusively of varieties
belonging to the congruence {Vy; for in thai case, and in that case only,
the gencric V, does not meet the branch manifold, and so corresponds to a
set of v PICARD varieties on W,.

11. Further applications. We must now examine the nature of the corre-
spondence between the varieties V, and W,. Suppose first that v=1: this
means that the congruences (9) in general admit just one solution y=w.
Thus to a point of TV, there always corresponds just ome point of V,; but
to a point of V, there may correspond a variety of W,. Now, by Theor. II, Cor.
2, V. is free from exceptional manifolds. Thus, If @ variety W, possesses a simple
model V, on ils Picardian V,, its exceptional manifolds can all be removed by
birational transformation. In other words, if the relations (9) in general
admit just one solution, we can find a birational transform of W, on which
the relations always admit just one solution.

1n the case v > 1, it is still true that V, is free from exceptional mani-
folds. But we do not kmow whether, for » > 2, the fundamental elements
(if any) in the correspondence between V, and IV, can be removed by sui-
table birational transformation of W,. It may be that such a transformation
cannot always be found.

The remaining preliminary remarks concern the transcendental definition
of the canonical varieties X3,{W,) which we have already mentioned in n. 3.
Consider first the case 5 =0; here the essential results for surfaces are due
to DE Frawouis [12] and Sever: [28]. As SEVERI has stated elsewhere ([30]),
they extend to any variety W, (r> 2J.

Let u be any simple integral of the first kind attached to W,. Then, if
the JACOBIAN set J(u) of the pencil is infinite, the set in question consists of
one or more algebraic varieties, along each of which u is constant. If instead
Jiu) consists of a finite set of points, then we have Ju) = X(W,); this last
result was established independently for > 2 by Topp |32] and Ecrr [13].
It may be deduced that a necessary and sufficient condition that J{u) be infi-
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nite for the general integral w of W, is that W, should conluin a congruence
of irregularity q. It follows that, if W, does not contain such a congruence,
the generic set X (W,) is effeciive and consists of a finite number of points.

We thus see thaf, in the (simple or multiple) correspondence between W,
and the model V,, whenever the latter exists, a set X (V,) transforms in ge-
neral into an effective finite set X (W,). Hence, if, for a variety W,, the set
X (W, is in general virtual or infinite, W, must carry a congruence of irre-
gularity q. This proposition, which is analogous to Theor. VI, Cor., genera-
lises one of Dantoni’s results for surfaces ([10). However, in the case r = 2,
one can be more precise; in faet the only surfaces — regular or irregular
— which possess this property are irrational scrollar (of genus greater than
unity).

In the case i =r — 1, the definition of X, ,(W,) by means of a JAcoBIAN
was likewise first given by SEVERI for surfaces. This generalises at once to
any variety V, of V,; if u,, u,,..., u, are linearly independent integrals
attached fo V., the Jacobian J(u,, u,,..., u,) is in general a hypersurface
on V,, and in that case it is identical with a variety X,_,(V,). The exceptio-
nal case is that in which V, carries an irregular congruence: we cannot
then employ in the definition any integral which is constant along members
of the congruence.

Instead of the Jacobian locus, we may introduce the concept of diffe-
rential form (n. 9), following an idea due to KAHLER [15] Consider, on V,,
the outer product dw, du,...dw,; unless this vanishes identically, it is a
differential form of the first kind and of degree r; there are in all P,V,)
linearly independent differential forms of this type. In the mapping of 7V,
on W,, the form in question corresponds to an analogous form

oy, Uy o ny Uy
Ay, ®yy vy )

da,de, . . . dx,,

where x,, #,,..., ®, are local coordinates on W,. We use this result in the
next section.

12. Coincidences in I,. Assuming now that v>> 1, we take »,, ,,..., @,
for local coordinates on W,, and u,, u,,..., u, for local coordinates on V,;
the remaining integrals u; (§ =+ 1, r+2,..., ¢ will then be holomorphic
functions of u,, u,...., u,.

A coincidence in the involution I, (and, correspondingly, a branch point
on V,) can occur when and only when the determinans

(10) 75 (u“u?,...,u,.)/a(m,,mz,..., xr)
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vanishes (n. 8). When this condition is satisfied, it is clear that every other
such determinant obtained by choosing any r different variables from the ¢
integrals u; will likewise vanish. As in the case r = 2 (AxDREOTTI [1-2]), we
may show that coincidences in I, cannot be isolated. We now prove

TaroreEM XII. - Coincidences in I, can occur only when V, is pseudo-Abe-
tian or Picardian (in which case q=r}; and-in all such cases the branch
locus on V, belongs to the congruence of trajectories.

{(In the case where V, is Picardian it is to be understood that the
« trajectories» in question are those of some subgroup of G, (n. 1)).

{¢9) First let g =1, in which case V, is a PICARD variety. If V, contained
no irregular congruence whatever, there could be no branching, since in that
case the Jacobian j defined by (10) would give rise to the camonical hyper-
surface X,_4(V,), which we know to be null (n. 3). It follows that V, must
contain at least one congruence represented by the equations u;=y¢; (i =1,
2,..., r—1{); and then the branch locus belongs to a congruence {Vy of
PicArD varieties.

(ii) Supposing that g >, we may also assume ihat PyV,) > ». For we
have r(g — r} > r, so that if PyV,)=vr, V, would be pseundo-Abelian (Theor.
111, Cor.) Thus the complete system | K | = | X,_,(V,) | has dimension r at
least.

We may also assume that the system | K | does not belong to a congruence,
since, if it did, it would again follow that V, is pseudo-Abelian {Theor. IV,
Cor. 2).

Suppose, if possible, that | KX | does not belong to a congruence. We may
then select from | K| at least » -+ 1 linearly independent members K, K,, ...,
K,4., given by Jacobians j whose arguments are chosen from the set (u;); for
otherwise it would follow from Comessatti’s work [7] that | K | must belong
to an irregular congruence on V,.

By what has been said before, if there exists a branch locus on V,,
this must be common to all the hypersurfaces K,, K,,..., K,;,. Now this
locns is identical with the Jacobian variety J(K) of the set (Kjj, provided
the Jacobian effectively exists — as, on our hypotheses, it certainly does.
But, from the classical linear equivalence ([30})

JK)—(@r+ 1)K =K,

it follows that J(K) = (r + 2)K is a pluricanonical variety, in confradiction

to the previous result that the branch locus must be contained in | K | .
Hence | K| must be compounded of a congruence {Vi, say (1 St=

< r —1), the members of which are PICARD varieties (n. 5); thus V, is
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pseudo-Abelian of type £ And we have shown incidentally that the branch
locus belongs to {Vil. This locus may be reducible and also pure or impure.

The above theorem generalises Andreotti”s results [1-2] for the case
r = 2. In that case, however, it is possible to go on to assert that the surface W,
is elliptic, i. e pseudo-Abelian of type 1. For » > 2, the immediate conclusion
is less precise: we observe that, since the generic element V; of the congru-
ence {V; does not meet the branch locus, it must correspond to a set of v
varieties W; on W,, each of which is birationally equivalent to V;. It fol-
lows that W, [Ulikewise contains a congruence of birationally equivalent
Picard varieties W;; there is of course a complementary congruence corre-
sponding to that carried by V,. But in the mapping of W; on V; there are
in general exceptional features — in other words, W, is nof in normal form.
At any rafe, we see from fhe correspondence between W, and V, that W,
admits a continuous group of oo automorphisms the trajectories of which
are the varieties ;. But in the general case the transformations of the
group are not completely transitive over W;. If, as seems plansible, the
exceptional elements in the correspondence could be removed, it would then
follow that W, is pseudo-Abelian (of type ¢).

One important feature of this mapping should be noted. Consider a va-
riety Vi s of the congruence {V;} which is an s-fold component (s =2) of
the branch locus, or which lies on such a component. To it there corresponds
on W, a member W, . of the congruence of « quasi-trajectories» such that
the multiple sW; ; is algebraically equivalent to the generic W; of {W,}. The
varieties W; ,, for a given value of s, may be isolated or they may generate
a cerfain number of manifolds belonging to the congruence {Wy. If in par-
ticular W, is pseudo-Abelian, then we must expect such submultiple varie-
ties to occur in the congruence of trajectories, When, however, W, lies on
a PICARD variety these submultiples are always absent (c.f. n.1).

It is worth remarking that whenever a variely W, adwmils a proper model
V, (simple or multiple) which is pseudo-Abetian, then the hypothesis of n. 8
is superfluous. In particular, then if the involution I, possesses coincidences,
there always exists a non singular model V, of W,.

13. The ease v > 1. We have seen that, when v >> 1, and there are branch
elements in the correspondence, then V, must be pseudo-Abelian. The que-
stion now arises: what can be said concerning the case v > 1 when bran-
ching is absent? Here we have a formula, established by AxprEOTTI [2] for
surfaces, but of general validity. Considering the fundamental groups of 7,
and. W,, he shows that the SEVERI divisors of the two varieties are connected
by the relation o{V,) = vo(W,). It thus follows that o(W,) << o(V,). Whence
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TuaroreEM XIIL. - If W, adwmils a proper wmodel V., then this model can be
wmultiple if, and only if, one of the following alternatives holds :

(i} V, is pseudo-Abelian ;

(if) The divisor of W, is less than the divisor of V,.
In all other cases V, and W, are birationally equivalent. Condition

(ii) is obviously satisfied whenever V, is free from torsion.

14. Some unsolved problems. In conclusion we draw aftfention to some
of the questions raised and left unanswered in the present work.

(i) We have used throughout II the working hypothesis that, wheunever
the variety W, admits a proper model V,, then it admifs a non singular model.
This assumption is needed even in the case v=1; for although we have
seen that in that case the variety V, is certainly free from exceptional
manifolds, it is not necessarily free from multiple points.

(ii) In the case v =1, we know that any exceptional elements in the corre-
spondence between V, and W, can be removed. When, ‘however, v> 1, we
do not know whether the elimination can always be effected. When V, hap-
pens to be pseudo-Abelian this seems likely; if so, we should then be able
to conclude that W, is pseudo-Abelian if, and only if, V, is pseudo-Abelian.
But even so, no light is shed on the remaining cases, i.e. all those in which
the correspondence has no branch elements.

(iii) Given a variety W, which carries no congruence of irregularity ¢, we
may wish to know in what circumstances it will possess a simple model V..
Theorem XIII answers this question, but the hypotheses entail some know-
ledge of the model itself. It would be interesting to obtain a statement invol-
ving only properties of W,.

(iv) All our results concerning W, in relation to V, require the hypothesis
that W, carries no congruence of irregularity ¢. When this condition is
unfulfilled, we have a mapping of W, on a Picardian of dimension less
than 7, and the various question we have discussed cannot (it seems) be
broached with the present methods. Other problems, such as classification,
cannot be attempted either. The question of finding some alternative approach
is important, since various significant classes of irregular varieties, e.g. the
pseudo - Abelian varieties of geometric genus zero, fall within this category.

{(v) In n. 3 we bave mentioned SEVERI's conjecture concerning V,. It is
natural to ask whether our methods would suffice fo establish a weaker
form of this conjecture: any wvariety W, for which g (W,)=q > 0, X;(W,)=0
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(all h) is necessarily Picardian. By Theorem VIII, any such variety W, is
either Picardian or else contains a congruence of irregularity ¢; we have
therefore to eliminate the latter possibility. However, in order fo do so, it
appears that we must use the original SEVERI conjecture as applied to
varieties of any dimension less than 7!
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