On subvarieties of a Picard variety.

Memoria di Leonard Roth (a Londra)

To Enrico Bompiani on his scientific Jubilee

Summary. - See the following Introduction.

INTRODUCTION

In all that follows we shall denote by $V_{r}(r \geq 1)$ an algebraic variety which is non singular (i. e. irreducible and free from multiple points) and which lies on a Pioard variety $V_{q}(q \geq r)$; we suppose always that V_{q} is in normal form, i. e. free from multiple points and exceptional manifolds. It is well known that the number $g_{i}\left(V_{r}\right)$ of linearly independent simple integrals of the first kind attached to V_{r}, cannot exceed q; the case where $g_{1}\left(V_{r}\right)<q$ is discussed in n. 2

We shall denote by W_{r} a non singular algebraic variety of superficial irregularity q, i. e. such that $g_{1}\left(W_{r}\right)=q$. With these notations we sketch the background to the present work.

The earliest result in this field dates back to 1900 when - according to Enriques ([14], p. 368) - Castelnuovo proved the theorem: if the surface W_{z} has geometric genus $P_{g}\left(W_{2}\right)$ zero, then it contains an irrational pencil of curves. This theorem was later extended and made precise by Severi [25], who showed that, if $P_{g}\left(W_{r}\right)=0(r \geq 2)$, then W_{r} contains a congruence (system of subvarieties of index unity) of superficial irregularity q.

A second result, likewise due to Castelnuovo [5], asserts that V_{q} cannot contain any rational curves. More generally, Severi [25] showed that, for any V_{r}. of $V_{q}, P_{g}\left(V_{r}\right)>0$.

In the third place, Castelnuovo [4] proved that, if W_{2} contains no irrational pencil, then $P_{g}\left(W_{2}\right)>2(q-2)$. Subsequently Comessatti [7] extended this theorem to any variety W_{r} (see n. 9). The demonstrations of these results are analytical and ingenious, but, for $r \geq 3$, are somewhat complicated (${ }^{1}$); however, in 1950 d'Ongeval [17] gave a simple geometrical proof of the Castelnuovo inequality which extends immediately to the case $r \geq 3$ ([22]).

Now it is an interesting fact that all these results form part of a general theory which is based on the study of the subvarieties of V_{q}. In the

[^0]present paper three aspects of this theory are considered:
(i) An improvement of the above theorems, which is effected by introducing the notion of pseudo-Abelian variety, first treated by Dantonc [11].
(ii) An extension of the results, which deal only with canonical systems of highest dimension $r-1$, to those of any dimension.
(iii) Applications to the study of the varieties W_{r}.

For the general theory of the Pioard variety which we require here, we refer the reader to the posthumous book by Conformo [9]. For more particular results the monograph [22] may be consulted. Other applications of the present methods will be found in the note [21].

1. General properties of V_{q}. Continuous systems, pseudo-Abelian varieties. We begin by recalling the main facts concerning V_{q} which will be needed here. In the first place we note that V_{q} admits a parametric representation by means of theta functions of q independent complex variables $u_{i}(i=1$, $2, \ldots, q$) which may be taken as universal coordinates on V_{q}. Denoting by u the vector whose components are u_{i}, we can find $n+1$ theta functions $\theta_{0}(u)$, $\theta_{1}(u), \ldots, \theta_{n}(u)$ of the same order such that a projective model of V_{q} in space S_{n} is represented by

$$
\begin{equation*}
x_{0}: x_{1}: \ldots: x_{n}=\theta_{0}(u): \theta_{1}(u): \ldots: \theta_{n}(u) . \tag{1}
\end{equation*}
$$

A first consequence of this result is that V_{q} admits a group G_{q} of automorphisms which is continuous, commutative and completely transitive over V_{q}; this group is represented by the equations

$$
\begin{equation*}
u_{i}^{\prime}=u_{i}+c_{i} \quad(i=1,2, \ldots, q) \tag{2}
\end{equation*}
$$

where the c_{i} are arbitrary constants; for any given set of values c_{i} the equations define a transformation of the first kind on V_{q}. It is important to note that the group G_{q} serves to characterise V_{q}.

A second consequence is the so-called Appell-Humbert theorem: any hypersurface V_{q-1} of V_{q} can be specified by the parametric equations (1) together with a single equation $\theta(u)=0$. From this we can calculate the freedom of the complete linear system $\left|V_{q-1}\right|$ defined by V_{q-1}; we find that, excepting the case where V_{q-1} belongs to an irrational (elliptic) pencil, the system has positive freedom, and is withont base points. Hence, by Bertini's theorem, the general member of the system is non singular.

Applying the transformations of G_{q} to any non singular V_{q-1} we obtain a continuous system $\left\{V_{q-1}\right\}$ of birationally equivalent hypersurfaces, the general member of which is likewise non singular. Moreover the characteristic (linear) system associated with any complete linear system $\left|V_{q-1}\right|$ of $\left\{V_{q-1}\right\}$ is incomplete.

Similarly, the transformations of G_{q}, applied to any non singular variety $V_{r}(1 \leq r \leq q-2)$, generate a continuous system $\left\{V_{r}\right\}$ of birationnally equivalent varieties, the general member of which is non singular. In general this system is ∞^{q}; it will be of lower dimension if, and only if, V_{r} admits a continuous group of automorphisms contained in G_{q}. The obvious case is that in which V_{r} is a Picard variety; the system $\left\{V_{r}\right\}$ is then ∞^{q-r}. Supposing instead that the group in question has dimension $t(1 \leq t \leq r-1)$, its trajectories on V_{r} form a congruence $\left\{V_{t}\right\}$ of birationally equivalent Pramd varieties; in this case V_{r} is a pseudo-Abelian variety of type t. We may then prove ([11, 19, 20]) that V_{r} contains a second congruence $\left\{V_{r-t}\right\}$ whose members are birationally equivalent.

It should be noted that a pseudo-Abelian variety V_{r} which lies on V_{q} is somewhat particular; in the general case, the congruence $\left\{V_{t}\right\}$ of trajectories contains certain aggregates of trajectories. $V_{t, s}(s \geq 2)$ such that the multiples $s V_{t, s}$ are algebraically equivalent to the generic $V_{t}\left([19,20]\right.$. When V_{r} lies on V_{q}, however, there are no such varieties $V_{t, s}$.

The case where V_{r} is Picardian may be included in this scheme by describing V_{r} as a pseudo-Abelian variety of type r. In conclusion, the complete continuous system $\left\{V_{r}\right\}$ associated with a given variety V_{r} is in general ∞^{q}; it is ∞^{q-t} if, and only if, V_{r} is pseudo-Abelian of type ($1 \leq t \leq r$). In all cases, in view of the complete transitivity of the group G_{q}, we see that the system $\left\{V_{r}\right\}$ invades V_{q} and is free from base points.
2. Special Picard varieties: the characteristic property. It is a well known resnlt (in the theory of reducible integrals) that, if V_{q} has general moduli, it contains no Pigard subvarieties. If, however, for particular values of the moduli, V_{q} contains one such variety $V_{p}(1 \leq p \leq q-1)$, then it contains a congruence $\left\{V_{p}\right\}$; this congruence is Picardian, and its members are transforms of one another nuder G_{q}. In fact $\left\{V_{p}\right\}$ is a continuous system of the kind described in n. 1. In this case V_{q} contains a second Picard congruence $\left\{V_{q-p}\right\}$ of Proard varieties V_{q-p}, analogous to the first; and the members of both these congruences are non singular. Also neither congruence possesses singular points, through which pass an infinity of members.

In what follows we shall require the converse of this last result; If V_{q} contains a congruence $\left\{V_{r}\right\}$, without base points, of (non singular) varieties V_{r}, then V_{r} and $\left\{V_{r}\right\}$ are both Picardian. (Here, and in the sequel, it is understood that the case $r=q-1$ of an irrational pencil is included).

The proof is a simple consequence of the following theorem due to Castelndovo [5]: if the variety V_{r}, has superficial irregularity $p(0<p<q)$, then either V_{r} is Picardian - in which case $p=r$ - or else V_{r} lies on a Picard subvariety V_{p} of V_{q}, and has the same superficial irregularity as V_{p}.

We first observe that the congruence $\left\{V_{r}\right\}=\Gamma$, say, is superficially irregular, since otherwise any complete linear system $\left|V_{q-1}\right|$ of hypersurfaces belonging to Γ would have a complete characteristic system. It follows that a certain number of the integrals u_{i} attached to $V_{q}-q-p$, say, where $0<p<q$ - must be constant along each variety V_{r}, and that V_{r} has irregularity p. Hence, by Castrlunoovo's theorem, either V_{r} is Picardian (in which case $r=p$) or else V_{r} lies on a Pidard variety V_{p} which itself is a member of a congruence free from base points. Now through every point of V_{q} there passes just one variety V_{p}; hence those varieties V_{r} which pass through points of any such variety V_{p} must be contained in it. Thus V_{p} carries a congruence, without base points, which, by a previous remark, must be irregular. And the members V_{r}. of this congruence have irregularity p : which is impossible. Hence only the first alternative can hold: both V_{r} and I are therefore Picardian

We note the following corollary: if a continuous system $\left\{V_{r}\right\}$ is compounded of a congruence, then V_{r} is either Picardian or pseudo-Abelian.

For, on each variety V_{r} we have a congruence of Pioard varieties V^{t} $(1 \leq t \leq r-1)$ which are the trajectories of a continuous ∞^{t} group of automorphisms.
3. On canonical varieties. Let V_{d} be any non singalar variety of any dimension $d \geq 1$, regular or irregular: then we may define on V_{d} a set of d invariant varieties $X_{h}\left(V_{d}\right)(h=0,1, \ldots, d-1)$ which may be effective or virtual, and which are called the canonical varieties of V_{d}. Their definition is by induction, as follows.

First, suppose that S is a non singular hypersurface of V_{d} which can vary in a linear pencil of general character $\left({ }^{2}\right)$; then denoting by δ the Jacobian set of the pencil, we define $X_{0}\left(V_{d}\right)$, by induction on d, by means of the rational equivalence

$$
\begin{equation*}
X_{0}\left(V_{d}\right) \equiv \delta-2 X_{0}(S)-X_{0}\left(S^{2}\right) \tag{3}
\end{equation*}
$$

The aggregate $\left\{X_{0}\left(V_{d}\right)\right\}$ is termed the Severi series of V_{d}.
Next, supposing that S is $a n y$ non singular hypersurface of V_{d}, we define

[^1]$X_{h}\left(V_{d}\right)$, for $h \geq 1$, by induction on d and h, by means of the rational equivalences
\[

$$
\begin{equation*}
X_{h}\left(V_{d}\right) \equiv A_{h}(S)-X_{h}(S) \quad(h=1,2, \ldots, d-1) \tag{4}
\end{equation*}
$$

\]

where $A_{h}(S)$ is an adjoint variety, with the property

$$
\begin{equation*}
A_{h}(S) \cdot S \equiv X_{n-1}(S) \quad\left(o_{2}^{T} S\right) \quad(h=1,2, \ldots, d-1) . \tag{5}
\end{equation*}
$$

This definition obviously rests on a theorem (Tond [31, 33]). The elimination of $A_{h}(S)$ between (4) and (5) leads to the so-called adjunction law.

In (4) the variety $X_{d \rightarrow 1}(S)$ is simply S itself. Note also that it is customary to write $A_{d-1}(S)=S^{\prime}$; the hypersurface $X_{d-1}^{*-1}\left(V_{d}\right)=S^{\prime}-S$ varies in a linear system, the canonical system of classical algebraic geometry.

For other definitions and results concerning the canonical varieties, we refer to the work [23-4] of B. Segre, the !monograph [3] by Baldassarri, and the critical review [34] by Tond.

It should be observed that the above equivalences are established by ascending induction: in the applications that follow the induction we employ is descending; the reason is that initially it is the variety $X_{d-1}(S)=S$, of highest dimension, that is given, while all the canonical varieties are determined from this.

Suppose now that V_{d} has superficial irregularity $q \geq d$: then in certain cases we can give a transcendental definition of $X_{h}\left(V_{d}\right)$, due to Éger [13], which generalises a method of Severi's for the case $d=2$. Taking any $h+1$ linearly independent integrals u_{i} of the first kind on V_{d}, we consider the Jacobian locus $J\left(u_{1}, u_{2}, \ldots, u_{h+1}\right)$; in the case where this is an h-dimensional variety, with simple components only, we may show it to be identical with $X_{h}\left(V_{d}\right)$ - which is thus effective (though possibly null).

For a self-contained exposition by transcendental methods, one actually requires $q>d$; if, however, the existence and properties of $X_{h}\left(V_{d}\right)$ have first been established geometrically, the present method can be applied provided that $q \geq d$.

We now wish to make such an application to the Picard variety V_{q} : indentifying V_{d} with V_{q}, we may prove by the transcendental method that all the varieties $X_{h}\left(V_{q}\right)$ are the null varieties of the corresponding rational equivalences on V_{q} : we write $X_{h}\left(V_{q}\right)=0(h=0,1, \ldots, q-1)$. Severi has conjectured that this property is characteristic of V_{q}, but the question is still open.
4. The canonical varieties of complete intersections. We next apply the above results to the subvarieties of \boldsymbol{V}_{q}. Consider a continuous system $\left\{V_{q-1}\right\}$ of hypersurfaces on V_{q}; we denote the complete intersections $V_{q-1}^{2}, V_{q-2}^{3}, \ldots$,
by $\nabla_{q-2}, V_{q-3}, \ldots$. With this notation we have
Theorem I. - The canonical varieties of the sequence $\left(\nabla_{q-k}\right)$ are given by the equivalences

$$
\begin{equation*}
X_{h}\left(V_{q-k}\right) \equiv\binom{q-h-1}{k-1} V_{q-1}^{q-h} \quad(1 \leq k \leq q-1 ; 0 \leq h \leq q-k) \tag{6}
\end{equation*}
$$

First, let $k=1$; then from (4) and (5), using the fact that $X_{h}\left(V_{q}\right)=0$, we obtain

$$
\begin{aligned}
& A_{h}\left(V_{q-1}\right) \equiv X^{h}\left(V_{q-1}\right) \quad\left(\text { on } V_{q}\right) \\
& A_{h}\left(V_{q-1}\right) \cdot V_{q-1} \equiv X_{h-1}\left(V_{q-1}\right) \quad\left(\text { on } V_{q-1}\right)
\end{aligned} \quad(h=q-1, q-2, \ldots, 1) .
$$

From these relations we deduce the equivalences

$$
X_{h}\left(V_{q-1}\right) \equiv V_{q-1}^{q-h} \quad(h=q-1, q-2, \ldots, 0)
$$

Next, inserting these results in (4) and (5), we have

$$
\begin{array}{ll}
V_{q-1}^{q-h} \equiv A_{h}\left(\nabla_{q-2}\right)-X_{h}\left(\nabla_{q-2}\right) & \text { (on } \left.V_{q-1}\right) \\
A_{h}\left(\nabla_{q-2}\right) \cdot V_{q-2} \equiv X_{h-1}\left(V_{q-2}\right. & \text { (on } \left.\nabla_{q-2}\right) .
\end{array}
$$

Hence $X_{h}\left(V_{q-2}\right) \equiv(q-h-1) V_{q-1}^{q-h} \quad(h=q-2, q-3, \ldots, 0)$.
The general result now follows by induction; in fact the algorithm represented by the adjunction law of $n .3$ follows the law of formation of Pasoal's arithmetical triangle.
5. On the varieties $X_{n}\left(V_{r}\right)$. Given any non singular variety V_{r} of V_{q}, we associate with it a sequence $\left(V_{q-k}\right)(k=1,2, \ldots, q-r)$ constructed as follows. First, let V_{q-1} be any hypersurface chosen generically from the continuous system $\left\{V_{r}\right\}$ to which V_{r} belongs; next, we choose for V_{q-2} a member of the characteristic system on ∇_{q-1}; then we take ∇_{q-s} to be a member of the characteristic system on V_{q-2}; and so on. We thus obtain a succession V_{q-1}, V_{q-2}, \ldots, V_{r+1}, of varieties which are non singular and which are all generated by varieties V_{r}. Finally, after these we have a variety \bar{V}_{r}, say, which is in general reducible, consisting of a certain number of varieties ∇_{r}.

We now prove
Theorem II. - The canonical varieties $X_{h}\left(\nabla_{r}\right)(h=0,1, \ldots, r-1)$ are all effective (possibly mull).

Consider V_{r} as a hypersurface on the variety V_{r+1} just defined. By Theorem I, $X_{h}\left(V_{r+1}\right) \geq 0$ (all $h \geq 0$); hence, by the equivalences (4), and with a descending induction on h, the required result is established.

Cor. 1. - $P_{g}\left(\nabla_{r}\right)>0$. (this result is due to Castimelovo and Severi).
Cor. 2. - ∇_{r} is free from exceptional manifolds. For any such manifold is a locus of rational curves; and we have just seen that V_{q} cannot contain such curves.
6. The inequalities for $P_{g}\left(V_{r}\right)$. More expressive inequalities than the above Corollary 1 can be found as follows. In the first place we prove

Theorem III. If V_{r} is not pseudo-Abelian, then $P_{g}\left(V_{r}\right)>r(r-r)$; and if further $q>r+1$, then $P_{g}\left(V_{r}\right) \geq(r+1)(q-r)$.

By Theorem I, the variety $\bar{V}_{r}^{\prime-}$ adjoint to \bar{V}_{r}, namely

$$
\bar{V}_{r}^{\prime}=X_{r-1}\left(\bar{\nabla}_{r}\right)+\bar{V}_{r}\left(\text { on } V_{r+1}\right),
$$

is given by the equivalence

$$
\begin{equation*}
\bar{V}_{r}^{\prime} \equiv(q-r) \overline{V_{r}}\left(\text { on } V_{r+1}\right) . \tag{7}
\end{equation*}
$$

It follows from this that the canonical system $\left|X_{r-1}\left(V_{r}\right)\right|$ is cut on V_{r} by varieties of the characteristic system, each counted $(q-r)$ times; thus, in order to find a lower bound for $P_{g}\left(\nabla_{r}\right)$, we have to estimate the dimension of this characteristic system.

Suppose first that $r=q-1$; then since, by hypothesis, V_{q-1} belongs to a continuous system $\left\{V_{q-1}\right\}$ of ∞^{q} linear systems, the characteristic system has freedom $q-1$ at least.

Next, assuming that $r<q-1$, we follow the method given by Enriques ([14], p. 449) in the case $r=2$. Consider a hypersurface V_{q-1} defined as in n. 5 ; any such V_{q-1} is generated by $\infty^{q-r-1} \nabla_{r}$'s, and belongs to a complete linear system $\left|V_{q-1}\right|$ of freedom ρ, say, contained in a continuous system $\left\{\nabla_{q-1}\right\}$; thus there are $\infty^{q+\rho} \nabla_{q-1}$'s in $\left\{\nabla_{q-1}\right\}$. Denoting by x the freedom of those V_{q-1} 's which contain a given V_{r}, we thus have

$$
x \leq\{(q-r-1)+(q+\rho)\}-q,
$$

whence

$$
x \leq q+p-r-1 .
$$

Since the characteristic system cut on V_{q-1} has freedom $q+\rho-1$, the
characteristic system cut on * V_{r} has freedom at least

$$
q+\rho-1-(x-1) \geq r+1,
$$

whence the result. The inequality $P_{g}(V)>r(q-r)$ was established by Castel. nuovo and Comessatil on the hypothesis - unduly restrictive - that ∇_{r} contains no irregular congruence whatever. The above geometric proof of their result was first given by d' Orgeval [17] for the case $r=2$; the obvious extension was noted in [22].

Con. - If $P_{g}\left(V_{r}\right)<r(q-r)$, then $\nabla_{r}{ }^{\text {Wis }}$ is either pseudo-Abetian or Picardian.
In the case where V_{r} is pseudo-Abelian we have
Theorem IV. - If V_{r} is pseudo-Abelian of type $t(1 \leq t \leq r-1)$, then $P_{g}\left(\bar{V}_{r}\right)>(r-t)(q-r)$.

Here the equivalence (7) again holds, but the variety V_{r} and all its transforms under the group $G_{q}(\mathrm{n} .1)$ belong to a Picard congruence $\left\{V_{t}\right\}$. The above calculation has therefore to be modified. Or we can reason as follows. Regarding the congruence $\left\{V_{t}\right\}$ as a Picard variety whose points are the ∇_{i} 's, we have on it a continuous system of varieties V_{r-t} which are the images of the V_{r} 's. By the previous result, the charactcristic system on such a V_{r-t} has freedom $r-t$ at least; whence the result $\left({ }^{3}\right)$.

Cok. 1. - For any V_{r} on V_{q}, the canonical system $\left|X_{r-1}\left(V_{r}\right)\right|$ is free from base points.

This follows from (7), which holds in all cases.
Cor. 2. - A necessary and sufficient condition that V_{r} should be pseudoAbelian is that $\left|X_{r-1}\left(V_{r}\right)\right|$ should be compounded of a congruence.

The necessity is well known ([19.20]); the congruence in question is that of the trajectories. The sufficiency is a consequence of (7) and the theorem of n .2 (more precisely, the corollary)

Cor. 3. - A necessay and sufficient condition that V_{r} should be a Picard variety is that $P_{g}\left(\nabla_{r}\right)=1$.

The necessity follows from the last theorem of $n .3$.

[^2]With regard to the sufficiency, by the corollary to Theorem III, V_{1} must be either pseado-Abelian or Picardian, and the former possibility is excluded by Theorem IV.
7. Characterisation of pseudo-Abelian varieties. It is an important property of pseudo-Abelian varieties that the canonical varieties of any dimension less than that of the trajectories are all null ([19-20]). On a Pioard variety V_{q} this result can be inverted : we have

Theorem V. - A necessary and sufficient condition that ∇_{r} should be pseudo-Abelian or Picardian is that, for some value of $h(0 \leq h \leq r-1)$, $X_{h}\left(V_{r}\right)=0$.
(i) Suppose first that $r=q-1$, so that, by Theorem I,

$$
X_{h}\left(\nabla_{q-1}\right) \equiv V_{q-1}^{q-h}(0 \leq h \leq q-1) .
$$

If, for some value of $h, X_{h}\left(V_{q-1}\right)=0$, we deduce that $V_{q-1}^{q-h}=0$, and hence that $V_{q-1}^{q-h+1}=V_{q-1}^{q-h+2}=\ldots=0$. Thus the continuous system $\left\{V_{q-1}\right\}$, which is effectively free from base points, is such that its characteristic manifolds of every dimension less than $h+1$ are all null. Hence the system belongs to a congruence, which proves the result (n. 2).
(ii) Next, let $r<q-1$; and consider the succession $\left(V_{q-k}\right)$ defined in n. 5. On $V_{r_{+1}}$ we have, by (4) and (5),

$$
\left.\begin{array}{c}
A_{h}\left(V_{r}\right) \equiv X_{h}\left(V_{r+1}\right)+X_{h}\left(V_{r}\right) \\
A_{h}\left(V_{r}\right) \cdot V_{r} \equiv X_{k-1}\left(V_{r}\right)
\end{array}\right\}(h=1,2, \ldots, r-1) .
$$

Suppose that $X_{h-1}\left(V_{r}\right)=0$; then since all the varieties which appear in the above equivalences are effective, it follows that

$$
X_{h}\left(V_{r}\right) \cdot V_{r}=0, \quad X_{h}(r+1) \cdot V_{r}=0\left(\text { on } V_{r+3}\right) .
$$

Now since V_{r} is variable in an ∞^{1} system on V_{r+1}, the latter result shows that either $X_{h}\left(V_{r+1}\right)$ belongs to a congruence of which V_{r} is a member or is compounded, or else that $X_{h}\left(V_{r+1}\right)=0$.

In the first case, considering the members of the sequence $\left(V_{q-k}\right)$ in turn, we arrive at the conclusion that the system $\left\{V_{q-1}\right\}$ is compounded of this same congruence; whence the result.

In the second case, we have, exactly as before,

$$
X_{h+1}\left(\nabla_{r+2}\right) \cdot V_{r+1}=0\left(\text { on } V_{r+2}\right) \cdot
$$

Again there are two possibilities : either $X_{h+1}\left(V_{r+2}\right)$ belongs to a congruence of which V_{r+1} is a member or is compounded, or else $X_{h+1}\left(V_{r+2}\right)=0$.

Continuing in this way, either we obtain a congruence on V_{q} of which $\left\{V_{r}\right\}$ is compounded, or else we conclude that

$$
X_{q-r+h+2}\left(V_{q-1}\right)=0(1 \leq h \leq r-1) .
$$

And in this latter case the result follows from (i).
Recalling the details of the proof of Theorem II, we now have
Cor. 1. - Except when V_{r} is pseudo-Abelian or Picardian, the varielies $X_{h}\left(V_{i}\right)$ are all effective, h-dimensional and of positive order. In particular, the generic element of the Severi series $\left\{X_{0}\left(V_{r}\right)\right\}$ consists of a positive number of points.

In n. 2 we defined a special variety V_{q} as one containing a Prcard subvariety. By virtue of the previous theorem we can say that: In order that V_{q} should be special, it is necessary and sufficient that V_{q} should contain a variety V_{r} such that, for some value of $h \geq 0, X_{h}\left(V_{r}\right)=0$. For such a V_{r} is either Picardian or pseudo-Abelian, and in the latter casa the trajectories of V_{r} are Picard varieties.

This result may also be expressed as follows:
Cor. 2. - The existence on V_{q} of a single variety V_{r} such that, for some value of $h \geq 0, X_{h}\left(V_{r}\right)=0$, implies the existence of an invariant subgroup in the group G_{q}; and conversely.

It is interesting to consider the above theorem in the light of what we may call the generalised Severi conjecture (cf. n. 3); according to this, any algebraic variety U_{r} such that $X_{h}\left(U_{r}\right)=0(0 \leq h \leq t-1)$, while $X_{t}\left(U_{r}\right)>0$, is pseudo-Abelian of type t. Evidently a far stronger result holds when U_{r} lies on ∇_{q}. In that case U_{r} is of course superficially irregular. A first step towards proving the conjecture would be to establish this property in the general case.

II

8. The Picard-Severi variety. Consider a varieti W_{r} of superficial irregulation $q>0$; and let $u_{i}(i=1,2, \ldots, q)$ be the corresponding simple integrals of the first kind attached to W_{r}. These define a period matrix ω which is a Riemann matrix; denoting by V_{q} the Pioard variety, in normal form, belonging to ω, we say that V_{q} is the Picard-Severi variety (or second Picardian) associated with W_{r}.

Assuming u_{i} to be the universal coordinates on V_{q}, we suppose V_{q} to
be represented by the parametric equations (1); then denoting by x a general point of W_{r}, we obtain a mapping of W_{r} on V_{q} by means of the equations

$$
\begin{equation*}
u_{i}(x)=u_{i}(i=1,2, \ldots, q) . \tag{8}
\end{equation*}
$$

We first enquire under what conditions this yields a proper model of W_{r}, i.e, an irreducible r-dimensional variety V_{r}, in simple or multiple correspondence with W_{r}. The answer, due to Severi [26-7] is as follows: the proper model V_{r} of W_{r} on V_{q} exists if, and only if, W_{r} contains no congruence of superficial irregularity q. When $r>q$, such a congruence always exists, as we shall now see. In fact, to construct the model V_{r} we have to consider the relations (modulo the periods)

$$
\begin{equation*}
u_{i}(x) \equiv u_{i}(y)(i=1,2, \ldots, q) \tag{9}
\end{equation*}
$$

where x, y are points of W_{r}, the former chosen generically and the latter to be determined. If (9) admit one and only one solution, namely $y=x$, we obtain a model V_{r} which is birationally equivalent to W_{r}. If instead (9) admit $\vee(>1)$ solutions, we have a V_{r} which is the image of an involution $I_{\text {, }}$ on W_{r}, which is called the fundamental involution on W_{r}, and then V_{r} is a v-fold model of W_{r}. In every other case the relations (9) represent a con. gruence, of superficial irregularity q, of algebraic varieties along which the integrals u_{i} all remain constant in this case the proper model is non-existent.

Sapposing now that the model V_{r} exists, we still do not know whether it is necessarily non singular. At present the question can be answered (in the affirmative) only in certain special cases. In all that follows we shall make the assumption that, whenever W_{r} admits a proper model, there is also a proper model which is free from multiple points (Bat see n. 12).
9. First applications. The first applications of the mapping of W_{r} on V_{r} are immediate consequences of the preceding theorems, together with the remark that, whether the model V_{r} is simple or multiple, we always have $P_{g}\left(W_{r}\right) \geq P_{g}\left(V_{r}\right)$.

To begin with, it follows from Theorem III that if $W_{\text {r }}$ admits a model V_{r} which is not pseado-Abelian, then in all cases $P_{g}\left(W_{r}\right)>r(q-r)$; if also $q>r+1, P_{g}\left(W_{r}\right)>(r+1)(q-r)$. Whence

Theorem VI. - If $P_{g}\left(W_{r}\right) \leq r(q-r)(q \geq r)$, or if $P_{g}\left(W_{r}\right) \leq(r+1)(q-r)$ $(q>r+1)$, then either W_{r} contains a congruence of (superficial) irregularity q, or else V_{r} is pseudo-Abelian; and in the latter case W_{r} - in correspondence with V_{r} - contains two congruences of complementary irregularities.

Cor. - If $P_{g}\left(W_{r}\right)=0$, then W_{r} contains a congruence of irregularity q. As already stated, this result is due to Castelnuovo and Severt.

Theorem WI is an improved form of the inequality due to Castelnuovo and Comessatti. We may add that Comessatti [8], using an ingenious idea in the differential geometry of line systems, has determined all the surfaces for which $P_{g}\left(W_{2}\right) \leq 2(q-2)$; such surfaces reduce to a few types. Comes. satmi's results have been confirmed by Nollet [16]. The analogous problem for threefolds has been attacked by Rosenblatt [18], employing the same methods, but only partial results have been obtained.

In the original version of Theorem VI, the sole inference made from the inequality was to the effect that W_{r} must contain an irregular congruence. It is interesting to compare this form of the result with one obtainable from the theory of differential forms ([24]) If we assume that W_{r} contains no irregular congruence whatever, we know that none of the differential forms such as $d u_{1} d u_{2} \ldots d u_{r}$ can vanish identically on W_{r}. Hence the number of differential forms of the first kind and of degree r attached to W_{r} is at least $\binom{q}{r}$: whence the theorem $([29])$: If $P_{g}\left(W_{r}\right)<\binom{q}{r}$, then W_{r} contains an irregular congruence. We may remark that the case $r=2$ of this theorem was proved by Castelnuovo [6] many years before (${ }^{4}$) the general result was published by Severi. Castelnuovo's proof was different in character.

Using Theorem IV in the same way as Theorem III, we have
Theorem VII. - If W_{r} is pseudo-Abelian of type $t(1 \leq t \leq r-1)$, and if $P_{g}\left(W_{r}\right) \leq(r-t)(q-r)$, then W_{r} contains a congruence of irregularity q.

From Cor. 3 to the same theorem we deduce
Theorem VIII. - If $P_{g}\left(W_{r}\right)=1$, either W_{r} contains a congruence of irregularity q or else - in the case $q=r-W_{r}$ can be mapped, simply or multiply, on a Picard variety V_{r}.

The case $r=3$ of this result was given by Comessatti [7].
Cor - If $X_{r-1}\left(W_{r}\right)=0$, either W_{r} contains a congruence of irregularity q or else is a Picard variety.

For supposing that V_{r} exists, in the case $\nu=1$ there is nothing to prove. If however $\vee>1$, the fact that $X_{r \rightarrow 1}\left(W_{r}\right)$ is null implies that in the mapping

[^3]on V_{r} there can be no branch elements. Hence, as Enriques ([14], p. 360) has shown, W_{r} admits the continuous group of automorphisms which characterises a Picard variety (n. 1).
10. Characterisation of W_{r} by means of subvarieties. An obvious way of ensuring that W_{r} must contain a congruence of irregularity q is to impose on W_{r} a condition which will render the proper model V_{r} nonexistent. One such condition (Theor. VI. cor.) is $P_{g}\left(W_{r}\right)=0$. We shall now consider conditions of a different kind.

Suppose that W_{r} contains a subvariety $W_{\varepsilon}(1 \leq s \leq r-1)$ which does not admit a proper model on V_{q}; this will be the case if, for example, $P_{g}\left(W_{s}\right)=0$, or again if $g_{1}\left(W_{s}\right)=0$. Then there are two possibilities: either V_{r} does not exist or else W_{s} must correspond, in the mapping, to some variety of dimension less then s. In the latter event this means that W_{s} must either be, or be on, an exceptional or a fundamental manifold, according as $v=1$ or $v>1$. Since the number of such manifolds is necessarily finite, we have

Theorem IX. - If W_{r} contains a system (continuous or discontinuous) of varieties W_{s} which invade W_{r} and for which either $P_{g}\left(W_{s}\right)=0$, or $g_{1}\left(W_{s}\right)=0$, then W_{r} carries a congruence of irregularity q.

Consider the particular case in which $s=r-1, g_{1}\left(W_{r-1}\right)=0$. Here, by hypothesis, $W_{r \rightarrow 1}$ cannot carry a superficially irregular congruence of varieties or involution of points, so the system $\left\{W_{r-1}\right\}$ to which W_{r-1} belongs must be contained in the congruence - necessarily unique - of irregularity q on W_{r}. Hence

Theorem X. - If W_{r} contains an ∞^{1} system (continuous or discontinuous) of superficially regular hypersurfaces, then this system must belong to the unique congruence of irregularity q on W_{r}.

In the case where this congruence is a pencil, the system $\left\{W_{r-1}\right\}$ in question consists of members of that pencil, so that if the system is discontinuous a priori, it is actually continuous in fact. A classical instance of this result is that of a surface W_{2} which carries a system of rational curves; here all the curves in question are contained in a pencil of genus q, and W_{z} is birationally equivalent to a scroll.

Consider next the case where $P_{g}\left(W_{s}\right)=1$; if W_{s} admits a proper model V_{s}, this is a simple or multiple Picard variety, in which case $g_{1}\left(W_{s}\right)=s$ (Theorem VIII). It follows that, if W_{r} likewise possesses a proper model V_{r}, this most be a simple or multiple pseudo-Abelian or PICARD variety, for V_{s}
is a member of a congruence of Picard varieties on V_{r}. Hence
Theorem XI. - If W_{r} contains a system (continuous or discontinuous) of varieties W_{s} which invade W_{r} and for which $P_{g}\left(W_{s}\right)=1$, then either W_{r} carries a congruence of irregularity q or else the proper model V_{r} is pseudoAbelian or Picardian.

An important instance of this result is afforded by a pseudo-Abelian variety W_{r} of type t; if this admits a model V_{r}, then the congruence of trajectories W_{t} on W_{r} is mapped by a congruence $\left\{V_{t}\right\}$ of Proard varieties on V_{r}, which is likewise pseudo-Abelian. If when $v>1$, there are branch elements in the representation, these must consist exclusively of varieties belonging to the congruence $\left\{V_{i}\right\}$; for in that case, and in that case only, the generic ∇_{t} does not meet the branch manifold, and so corresponds to a set of \vee Pioard varieties on W_{r}.
11. Further applications. We must now examine the nature of the correspondence between the varieties ∇_{r} and W_{r}. Suppose first that $\nu=1$: this means that the congruences (9) in general admit just one solution $y=x$. Thus to a point of W_{r} there always corresponds just one point of V_{r}; but to a point of V_{r} there may correspond a variety of W_{r}. Now, by Theor. II, Cor. 2, ∇_{r} is free from exceptional manifolds. Thus, If a variety W_{r} possesses a simple model ∇_{r} on its Picardian V_{q}, its exceptional manifolds can all be removed by birational transtormation. In other words, if the relations (9) in general admit just one solution, we can find a birational transform of W_{r} on which the relations always admit just one solution.

In the case $\nu>1$, it is still true that V_{r} is free from exceptional manifolds. But we do not know whether, for $r>2$, the fundamental elements (if any) in the correspondence between V_{r} and W_{r} can be removed by suitable birational transformation of W_{r}. It may be that such a transformation cannot always be found.

The remaining preliminary remarks concern the transcendental definition of the canonical varieties $X_{h}\left(W_{r}\right)$ which we have already mentioned in n. 3. Consider first the case $h=0$; here the essential results for surfaces are due to De Franchis [12] and Severi [28]. As Severi has stated elsewhere ([30], they extend to any variety $\mathrm{W}_{r}(r>2)$.

Let u be any simple integral of the first kind attached to W_{r}. Then, if the Jacobian set $J(u)$ of the pencil is infinite, the set in question consists of one or more algebraic varieties, along each of which u is constant. If instead $J(u)$ consists of a finite set of points, then we have $J(u)=X_{0}\left(\mathrm{~W}_{r}\right)$; this last result was established independently for $r>2$ by Todd [32] and Éger [13]. It may be deduced that a necessary and sufficient condition that J(u) be infi-
nite for the general integral u of W_{r} is that W_{r} should contain a congruence of irregularity q. It follows that, if W_{r} does not contain such a congruence, the generic set $X_{0}\left(W_{r}\right)$ is effective and consists of a finite number of points.

We thas see that, in the (simple or multiple) correspondence between W_{r} and the model V_{r}, whenever the latter exists, a set $X_{0}\left(V_{r}\right)$ transforms in general into an effective finite set $X_{0}\left(W_{r}\right)$. Hence, if, for a variety W_{r}, the set $X_{0}\left(W_{r}\right)$ is in general virtual or infinite, W_{r} must carry a congruence of irregularity q. This proposition, which is analogous to Theor. VI, Cor., generalises one of Dantoni's results for surfaces ([10]). However, in the case $r=2$, one can be more precise; in fact the only surfaces - regular or irregular - which possess this property are irrational scrollar (of genus greater than unity).

In the case $h=r-1$, the definition of $X_{r-1}\left(W_{r}\right)$ by means of a Jacobian was likewise first given by Severi for surfaces. This generalises at once to any variety V_{r} of V_{q}; if $u_{1}, u_{2}, \ldots, u_{r}$ are linearly independent integrals attached to V_{r}, the Jacobian $J\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ is in general a hypersurface on V_{r}, and in that case it is identical with a variety $X_{r-1}\left(V_{r}\right)$. The exceptional case is that in which V_{r} carries an irregular congruence: we cannot then employ in the definition any integral which is constant along members of the congruence.

Instead of the Jacobian locus, we may introduce the concept of differential form (n. 9), following an idea due to Kähler [15] Consider, on V_{r}, the outer product $d u_{1} d u_{2} \ldots d u_{r}$; unless this vanishes identically, it is a differential form of the first kind and of degree r; there are in all $P_{g}\left(V_{r}\right)$ linearly independent differential forms of this type. In the mapping of V_{r} on W_{r}, the form in question corresponds to an analogous form

$$
\frac{\partial\left(u_{1}, u_{2}, \ldots, u_{r}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{r}\right)} d x_{1} d x_{2} \ldots d x_{r}
$$

where $x_{1}, x_{2}, \ldots, x_{r}$ are local coordinates on W_{r}. We use this result in the next section.
12. Coincidences in I_{ν}. Assuming now that $v>1$, we take $x_{1}, x_{2}, \ldots, x_{r}$ for local coordinates on W_{r}, and $u_{1}, u_{2}, \ldots, u_{r}$ for local coordinates on V_{r}; the remaining integrals $u_{i}(i=r+1, r+2, \ldots, q$ will then be holomorphic functions of $u_{1}, u_{2} \ldots, u_{r}$.

A coincidence in the involution I_{ν} (and, correspondingly, a branch point on ∇_{r}) can occur when and only when the determinant

$$
\begin{equation*}
j \equiv \partial\left(u_{1}, u_{2}, \ldots, u_{r}\right) / \partial\left(x_{1}, x_{2}, \ldots, x_{r}\right) \tag{10}
\end{equation*}
$$

vanishes (m .8). When this condition is satisfied, it is clear that every other such determinant obtained by choosing any r different variables from the q integrals u_{i} will likewise vanish. As in the case $r=2$ (Andreotur [1-2]), we may show that coincidences in I_{v} cannot be isolated. We now prove

Theorem XII. - Coincidences in I_{ν} can occur only when V_{r} is pseudo-Abelian or Picardian (in which case $q=r$); and in all such cases the branch locus on ∇_{r} belongs to the congruence of trajectories.
(In the case where V_{r} is Picardian it is to be understood that the «trajectories» in question are those of some subgroup of $G_{q}(\mathrm{n} .1)$).
(i) First let $q=r$, in which case V_{r} is a Picard variety. If V_{r} contained no irregular congruence whatever, there could be no branching, since in that case the Jacobian j defined by (10) would give rise to the canonical hypersurface $X_{r-1}\left(V_{r}\right)$, which we know to be nall (n. 3). It follows that V_{r} must contain at least one congruence represented by the equations $u_{i}=c_{i}(i=1$, $2, \ldots, r-t$) ; and then the branch locus belongs to a congruence $\left\{V_{t}\right\}$ of Picard varieties.
(ii) Supposing that $q>r$, we may also assume that $P_{g}\left(V_{r}\right)>r$. For we have $r(q-r)>r$, so that if $P_{g}\left(V_{s}\right) \leq r, V_{r}$ would be pseudo-Abelian (Theor. III, Cor.) Thus the complete system $|K| \equiv\left|X_{r-1}\left(V_{r}\right)\right|$ has dimension r at least.
We may also assume that the system $|K|$ does not belong to a congruence, since, if it did, it would again follow that V_{r} is pseudo-Abelian (Theor. IV, Cor. 2).

Suppose, if possible, that $|K|$ does not belong to a congruence. We may then select from $|K|$ at least $r+1$ linearly independent members K_{1}, K_{2}, \ldots, K_{r+1}, given by Jacobians j whose arguments are chosen from the set $\left(u_{i}\right)$; for otherwise it would follow from Comessatti's work [7] that $|K|$ must belong to an irregular congruence on ∇_{r}.

By what has been said before, if there exists a branch locus on V_{r}, this must be common to all the hypersurfaces $K_{1}, K_{2}, \ldots, K_{r+1}$. Now this locus is identical with the Jacobian variety $J(K)$ of the set (K_{i}), provided the Jacobian effectively exists - as, on our hypotheses, it certainly does. But, from the classical linear equivalence ([30])

$$
J(K)-(r+1) K \equiv K
$$

it follows that $J(K)=(r+2) K$ is a pluricanonical variety, in contradiction to the previous result that the branch locus must be contained in $|K|$.

Hence $|K|$ must be compounded of a congruence $\left\{V_{t}\right\}$, say ($1 \leq t \leq$ $\leq r-1$), the members of which are Picand varieties (n .5); thus V_{r} is
pseudo-Abelian of type t. And we have shown incidentally that the branch locus belongs to $\left\{V_{t}\right\}$. This locus may be reducible and also pure or impure.

The above theorem generalises Andreotti's results [1.2] for the case $r=2$. In that case, however, it is possible to go on to assert that the surface W_{2} is elliptic, i. e pseudo-Abelian of type 1 . For $r>2$, the immediate conclusion is less precise: we observe that, since the generic element V_{t} of the congruence $\left\{V_{t}\right\}$ does not meet the branch locus, it must correspond to a set of v varieties W_{i} on W_{r}, each of which is birationally equivalent to V_{t}. It follows that W_{r} likewise contains a congruence of birationally equivalent Picard varieties W_{t}; there is of course a complementary congruence corresponding to that carried by V_{r}. But in the mapping of W_{t} on V_{t} there are in general exceptional features - in other words, W_{t} is not in normal form. At any rate, we see from the correspondence between W_{r} and V_{r} that W_{r} admits a continuous group of ∞^{t} automorphisms the trajectories of which are the varieties W_{t}. But in the general case the transformations of the group are not completely transitive over W_{t}. If, as seems plausible, the exceptional elements in the correspondence could be removed, it would then follow that W_{r} is pseudo-Abelian (of type t).

One important feature of this mapping should be noted. Consider a variety $V_{t, s}$ of the congruence $\left\{V_{t}\right\}$ which is an s-fold component $(s \geq 2)$ of the branch locus, or which lies on such a component. To it there corresponds on W_{r} a member $W_{t, \text { s }}$ of the congruence of «quasi-trajectories» such that the multiple $s W_{t, s}$ is algebraically equivalent to the generic W_{t} of $\left\{W_{t}\right\}$. The varieties $W_{t, s}$, for a given value of s, may be isolated or they may generate a certain number of manifolds belonging to the congruence $\left\{W_{t}\right\}$. If in particular W_{r} is pseudo-Abelian, then we must expect such submultiple varieties to occur in the congruence of trajectories. When, however, W_{r} lies on a Picard variety these submultiples are always absent (c.f. n. 1).

It is worth remarking that whenever a variety W_{r} admits a proper model V_{r} (simple or multiple) which is pseudo-Abetian, then the hypothesis of $n .8$ is superfluous. In particular, then if the involution I_{v} possesses coincidences, there always exists a non singular model V_{r} of W_{r}.
13. The case $v>1$. We have seen that, when $v>1$, and there are branch elements in the correspondence, then V_{r} must be pseado-Abelian. The question now arises: what can be said concerning the case $y>1$ when branching is absent? Here we have a formula, established by Andreotmi [2] for surfaces, but of general validity. Considering the fundamental groups of V_{r} and. W_{r}, he shows that the Severi divisors of the two varieties are connected by the relation $\sigma\left(V_{r}\right)=v \sigma\left(W_{r}\right)$. It thus follows that $\sigma\left(W_{r}\right)<\sigma\left(V_{r}\right)$. Whence

Theorem XIII. - If W_{r} admits a proper model V_{r}, then this model can be multiple if, and only if, one of the following alternatives holds:
(i) V_{r} is pseudo-Abelian;
(ii) The divisor of W_{r} is less than the divisor of V_{r}.

In all other cases V_{r} and W_{r} are birationally equivalent. Condition
(ii) is obviously satisfied whenever V_{r} is free from torsion.
14. Some unsolved problems. In conclusion we draw attention to some of the questions raised and left unanswered in the present work.
(i) We have used throughout II the working hypothesis that, whenever the variety W_{r} admits a proper model V_{r}, then it admits a non singular model. This assumption is needed even in the case $\nu=1$; for although we have seen that in that case the variety, V_{r} is certainly free from exceptional manifolds, it is not necessarily free from multiple points.
(ii) In the case $v=1$, we know that any exceptional elements in the correspondence between V_{r} and W_{r} can be removed. When, however, $v>1$, we do not know whether the elimination can always be effected. When V_{r} happens to be pseado-Abelian this seems likely; if so, we should then be able to conclude that W_{r} is pseudo-Abelian if, and only if, V_{r} is pseudo-Abelian. But even so, no light is shed on the remaining cases, i. e. all those in which the correspondence has no branch elements.
(iii) Given a variety W_{r} which carries no congruence of irregularity q, we may wish to know in what circumstances it will possess a simple model V_{r}. Theorem XIII answers this question, but the hypotheses entail some knowledge of the model itself. It would be interesting to obtain a statement involving only properties of W_{r}.
(iv) All our results concerning W_{r} in relation to V_{r} require the hypothesis that W_{r} carries no congruence of irregularity q. When this condition is unfulfilled, we have a mapping of W_{r} on a Picardian of dimension less than r, and the various question we have discussed cannot (it seems) be broached with the present methods. Other problems, such as classification, cannot be attempted either. The question of finding some alternative approach is important, since various significant classes of irregular varieties, e.g. the pseudo-Abelian varieties of geometric genus zero, fall within this category.
(v) In n. 3 . we have mentioned Severi's conjecture concerning V_{q}. It is natural to ask whether our methods would suffice to establish a weaker form of this conjecture : any variety W_{r} for which $g_{1}\left(W_{r}\right)=q>0, X_{n}\left(W_{r}\right)=0$
(all h) is necessarily Picardian. By Theorem VIII, any such variety W_{r} is either Picardian or else contains a congruence of irregularity q; we have therefore to eliminate the latter possibility. However, in order to do so, it appears that we must use the original Severi conjecture as applied to varieties of any dimension less than r !

BIBLIOGRAPHY

[1] A. Andreotri, «Mem. Ac. roy. Belgiques, 27 (1952), fasc. 4.
[2] - -, ibid., fasc. 7.
[3] M. Bandassarri, Algebraic Varieties, Berlin, 1956.
[4] G. Castelnuovo, *Rend. Palermos, 20 (1905), 55.
$[5]$ - -, «Rend. Acc. Lincei», (0) 14 (1905), 545, 593, 655.
$[6]-$, Rend. Acc. Lincei», (8) 7 (1949), 8.
[7] A. Comessatui, «Rend. Acc. Lincei», (5) 22 (1913), 270, 316, 361.
18] - -, Rend. Palermo*, 46 (1929), 1.
$19]$ F. Conforto, Abelsche Funktionen und algebraische Germetrie, Berlin, 1956.
[10] G. Dantoni, atti Acc. Italia», 14 (1943), 39.
[11] - -, "Anuali di Mat. ", (4) 24 (1945), 177.
[12] M. De Franchis, «Rend. Palermo», 36 (1913), 223.
[13] M. Éger, "Ann. Éc. Norm. Sup.», (3) 60 (1943), 143.
[14] F. Enriques, Le superficie algebriche, Bologna, 1949.
[15] E. Kähuer, "Mem. Acc. Italia», 3 (1982), 5.
[16] L. Nolxet, «Bull. Ac. roy. Belgique», (5) 36 (1950), 897.
[17] B. D'Orvegal, *Bull. Ac, roy. Belgique», (6) 36 (1950), 302.
[18] A. Rosmnblatis, atti Congr. Internaz.», Bologna, 1928, IV, 128.
$[19]$ L. Rote, «Proc, Camb. Phil. Soc.", 50 (1954), 360.
$[20]-$, "Annali di Mat.》, (4) (1955), 281.
[21] — -, «Rend. Sem. Mat, Padova», 30 (1960), 149.
[22] - -, Sulla varietà di Picard e le sue applicazioni, «Rend. Sem. Mat. Milano», 30 (1960).
[23] B. Segre, "Annali di Mat.": (4) 35 (1953), 1.
[24] — -, ibid., (4) 37 (1904), 139.
[25] F. Severi, «Rend. Ace. Lincei», (5) 20 (1911), 537.
[26] - —, \&nnali di Mat. », (3) 20 (1913), 201.
[27] - -, atti Ist. Veneto», 72 (1913), 765.
[28] - -, Comm. Math. Helvetici», 4 (1932), 168.
$[29]$--, Rend. Acc. Lincei*, (8) 20 (1906), 7.
[30] - -, Geometria dei sistemi algebrici..., Roma, 1058, 1950.
[31] J. A. Topo, «Proc. Liond. Math. Soe.», (2) 43 (1937), 127.
[32] - -, ibid., (2) 43 (1937), 139.
[33] — -, ibid., (2) 45 (1939), 410.
[34] - -, "Bol. Soc. Mat. Mexicana *, (1958), 26.

[^0]: ${ }^{(1)}$ In fact Comesatiti gives a detailed proof only for the case $\boldsymbol{r}=\mathbf{3}$.

[^1]: ${ }^{\left({ }^{2}\right)}$ This means that the base variety of the pencil is non singular (save when $d=2$), that all members of the pencil are irreducible, and that the only members which possess multiple points are nodal.

[^2]: ${ }^{(3)}$ If V_{r} can be regarded as pseudo-Abelian in more than one way, we choose the least possible value of t.

[^3]: (4) Castelnuovo's work remained unpublished for a long time.

