Differential equations with fixed critical points (*).
By F. J. Bureavu (Liége, Belgium)

Summary. - See section 1.

1. This paper is the second part of a group of studies concerning diffe-
rential equations with fixed critical points. We shall use the methods, nota-
tions, and terminologies employed in the first part [denoted Part I] where
second order equations where considered. In particular, K with or without
a subscript will denote a constant, not always the same.

The object of this paper is: to determine all the equations of the
form

(L.1) y="Piy)y + P:(y)y* + Puy)y + Puly)

where P,y) is a polynomial in y of degree n with analytic coefficients in
x, whose general integral has no parametric critical poeints.

A few classes of stable equations of order four are considered (see
Part III).

Parr II. - EQUATIONS OF THE THIRD ORDER.

1. The theorems of stability.

2. In this article, we introduce two theorems which are fundamental in
our investigation.

Let z be a complex independent variable and ¢ a complex parameter.
Let y = (4., ..., Yp) be a set of functions satisfying the system of ordinary

(*) The research reported in this document has been sponsored by the Office of Scien.
tific Research, OAR through the BEuropean Office, Aerospace Research, USAF.
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2 P. J. BugrAu: Differential equations with fized critical points

differential equations

dy -
(21) d_x”—A(x’ Y, E}
where 4 =1(4,, ..., 4,) is a .given vector-function of =z, ¥, ¢, holomorphic

within a certain domain containing the point z==1x,, ¥ = ¢ = (#1, ..., ¥n), e = 0.

General theorem of stability. - If fhe general solution of the diffe-
rential system (2.1) is single-valued in x for all values of ¢ in a neigborhood
le| =g of £e=0, except possibly =20, then it will also be single—valued

in x for et = 0. Moreover, if one writes
QO
(2.2) yle) =ylw; & =v(0) + 3 upfa)er,

then the coefficients vix), uy{x) of (2.2) are also single-valued.

For fuller information about this theorem, we refer to Part I, § 1.

Now, in this and the next paragraphs, let ¢;, (¢==1, ..., p), denote con-
stants, k= O an integer, P(z; #) a polynomial in 2 of degree =% — 2, and
Hi(z; z; w), (=1, 2, ...), a polynomial in u, u, ..., u», Further, we sup-
pose that h(z; 2), Hyx; #; u) are holomorphic functions of z at #=0 and
that P(z; 2), hiz; #), Hi(z; 2; u) are analytic functions of 2z in a given
domain D.

We consider the differential system

[ #=142Pz; 2) + 7*u,

ar—u

ar . du
(2.3) s 2" ; + ¢ + o G dz + c,u

d dz”—*
e =hz; 2) + 2H.(z; 2; u)

coneerning which the following fundamental theorem holds:

THEOREM L. - In order that the differential system (2.3} be stable, it is
necessary

i. that the roots of the indicial equation

0@ — 1) (B — 14 1) 4 0O — 1) v (O —7 +2) + ..
24
res + 0,«._1@-'}—0,,\:0

be distinct integers, positive, negative or zero;
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ii. if one of these roots is zero, that hiz; 0) = (.

Proor. - Set x==a }¢f, z==¢ev; aeD is a constant. Substitution in
(2.3) yields

‘;; =1+ eoP(a + ef; ev) + e*vku,

d” ar—tu du
LT + ¢t a1 4 e G v ai -+ cu

= hi{o + et; ev) + cvH {a + ¢f; ev; u).

When e ==0, one finds the reduced system

dv
="
(2.5)
- ot " R Y +c uw="n{a; 0
w T dt’“"‘+ Tt dt e )
Therefore, if b denotes a constant, one obtains
v(f) =1t—0,
2.6 b T =ty T et b) "o
(d' ) ( - dtr 1 dtr___l + Cp—q |l == i~

=h(a; O).

The EULER equation (2.6) may be transformed into a linear equation
with constant coefficients by means of a substitution {--56 —-¢. This leads
to the indicial equation (2.4).

Suppose that O; is a simple root of (2.4); then equation (2.6} has a
solation of the form 1.

Suppose that O, is a multiple (say j-tuple) root of (2.4); then equation
(2.6) has 4 distinet solutions of the form

9, o lg t, .., 18(lg )i~

In order that equation (2.6) be stable, it is thus necessary that the roots
of the indicial equation (2.4) be distinct integers.
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Suppose now that one of the roots of (2.4) is zero. Then, ¢, =0 and
C=(—1rr— ! + (=100 — 2)! + . + 0rma 5 0.

Equation (2.6) has the particular solution

1
ak(a, 0) lg(t — b).

Therefore, in order that u(f) be stable, it is necessary that h(a; 0)=0;
because @€ D is arbitrary, this condition becomes % (z; 0) = 0.

3. For differential equations of the second order, theorem I takes the
simpler form:

In order that the differential system

2 =1+ 2P(x; 2) + 2*u,

(3.1) .
2u=pu + hiz; 2) + eHiz; 2; u)

be stable, it is mnecessary
i. that the constant p be an inieger, positive, negative or zero;
ii. if p=0, that hz; 0) =0.

This theorem was used throughout our previous paper (Part I).

Now consider, in particular, the case where the differential system is

S 2=1+ zu,
(3-2) . :
{ 2u - czu + cou = hiz; 2) + eHiz; #; u).

Denote by p and g, the roots of the indicial equation

(3.3) 00 —1)+4 0 + ¢, =0;



F. J. Bursav: Differential equations with fiwed critical points 5

p and g are integers and g >> p. Suppose p >0 and set

u=P, .(x; 2) + #?v,
(3.4)
Po_i(@; 2) =+ a2 + oo - ap 2P

v is an unknown function and P,_,(x; 2) is a polynomial in z of degree
p-—1 whose coefficients will be determined later on. We shall write P
instead of Py (xz; 2) when the meaning is clear.

Substitution in (3.2) gives
(3.5) #=1-+ 2P + sp+ip
8o that from (3.4), it follows that
=P+ 2Py - pzP—iv 4 2P Hy(z; 25 v),
u=P -+ 2P + sz"-lé + plp — 1)2P~%

+ p(2p — )PP~ 4 2PH,(; 2; v; )

where Hyz; z;v) and H,(z; z; v; 1}) have the same properties as
Hy(z; 2; v). Therefore, because of (3.3), the second equation (3.2) takes
the form

z”[zz:ii + (e + Zp)zf}] = — #*P — 02P — ¢, P + Mz; 2)

1 {8.6)
+ zH(z, z; P4 2Pv) + 2P Hx; 25 v).
Now, use (3.5) and write the right member of (3.6) in the form
(3.7) Ao+ 4z + ... + Apz? + 22T Hy(z; 2; v);

the A’s are analytic functions of & and Hyz; #; v} has the same properties
as H,(z; z; u).

Suppose that we determine the p coefficients «; by setting

‘?).8) Ao = Al = e = AP*‘I = 0;
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then, the differential system (3.2) becomes

=1+ 8P, ,(x; 2) - eptiy,
{3.9) . .
2*0 -+ (0s + 2p)av = Ap(z) + zH(x; 2; v).

Then the condition for stability, A,(z) =0, follows from theorem I.

It is clear that when A4gyz) =0, the system (3.9) has a unique holo-
morphic solufion 2z(z), v(x) such that z(z,) =0, v(we) ==v,, where v, is an
arbitrary constant.

The differential system (3.9) has thus the form

’S £ =14 sPpslx; z) + 22,
(3.10) . :
[ o0+ (0 + 2)v = Ho (s 25 0);

the related indicial equation is
00 — 1) & (0 +2p) O =0
and has the roots =0, 8 =¢q—p.

We apply again the same method to the differential system (3.10). To
do this, we set

U= Qgp(z; 2) + 2P W,
(3.11)
( Qpep—il; 2) = ap + 0y 12 4 oo - ag 2777

w is an unknown function and @, ,..(z; #) is a polynomial in 2z of degree
g —p—1 whose coefficients will be determined as follows.

Substitution of v into (3.10) gives rise to a polynomial
B, + B + ... + By_ 27"
analogous to 4,4 .. 4,2°. Note that «, remains arbitrary and may be
assumed to be a constant parameter; then «,,;, ..., @,_; are determined by

sefting

Bg = .B]_ == e = Bq—zzwl = O
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and the condition for stability is
B, ,(z)=0.

Instead of making the substitutions (3.4) and (3.11) successively, one
may also sef

u = P,lz; 2) -+ 2%

where
Pz; )= P, ix; &)+ 2°Q,_,—slz; 2)
or
Pyz; &) = g+ oo 02970
The coefficients «,, ..., @,—, are determined as before; «, remains

arbitrary and will be assumed to be a constant parameter.
We shall content ourselves with these general lines of the argument;

it is hoped that subsequent applications of the method will make these
operations transparent.

Finally, we note that the method applies also when the second equation
of the differential system ({3.2) [or (2.3)] is of order r greater than 2. In that
case, r — 1 coefficients «, remain arbitrary and may be assumed fto ,be
constant parameters. This method will be used below to determine stable
differential equations of the fourth order {see Part III).

4. - We shall conclude fthis section by giving formulas which will be
used often in what follows.
Set

u = Plz; )+ 2",
P =g 4 2 4 yo® 4 32° - ez,

=14 uz=1+2P4 2%

and assume « to be a constani.
In addition, set

P? = gy + 8,2 4 8,27 - 8:2° - 8,2° + O(2°),

PB == to + tlz + t2~2 + tgzs “]‘ O(ZQ},
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P=po+ p# + p#* + p® 4 pist -+ O,
P= Qo -+ .2 + q22° + q2° 4+ O(z*)

PP =r, + g + i -+ e - O,

where
8o = &%, fo == &, ro = af,
s, = 20, ty = 3a’B, 7y = 0%+ oap,,
8s = 3* + 2ay, 2 = 3af® 4 3oy, 7y = By + Bp: + ap..
8y =28y + 208, by =PB* + 6afy 4 303, 7, = PO + vp: + Bp. + ap
8s == 1" + 202 + 2ae,
and
Po=5, Go=5+p:,
P =B + 2r + af, @ = ps + 2p2 + aps,

Pr=7y+ 35+ 20y + B, g=ps + 3ps + 20p, + Bps,
p3=é+4s+3a5 -+ 337, qs 31;34-4}74—{“ 3ops + 2Bp: + 1P,

Pe = ¢ - dae 4 485 4 2y~
Moreover, one also has

Pt =o' o 4oz + (628 + day)* + O(2Y),

P=(q+ &)+ (&2 + 20 + 20)# + (@ + 3¢, + 2. + Bgo)#* + Ofe¥,
PP = agy + (Bgo + 2qu)2 + (g0 + Bas + ag) #* + O(z*),

P? =B 2p,z + (P} -+ 2Bp) 2 - O(2Y),

PPQ = PoSo + (D150 + Do81) 2 + (1280 + 1181 + Pos2) 2° + O ().
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It is often most convenient to rewrite the preceding table for the case
«=0 and for the case a replaced by 2a. This is left to the reader.

II. Equations of the third order.

5. - In order to be more specific, equation (1.1} is rewriften as follows

(5.1) y = ayy + by + e’y + dy* + Flz, )
where
(5.2) Flo, y) = .y + oy + oy + dy* + dotf® + duy + do;

a. b, ¢, d, with or without subscripts, are analytic functions of z in a
certain domain D.

The reduced equation corresponding to (5.1) is easily determined by
setting « = @, - ¢f, where z, is a point in D and ¢3=0 a parameter; oue
finds y = 0.

The only value of y for which CAUcHY’S general existence theorem
does mnot apply to equation (5.1) is y =oc' To determine necessary condi-
tions for the absence of parametric critical points for equation (5.1), suppose
that in a neighborhood of z = z,, y{r) takes the form

where >0 and s(z) == 0; s(») is a holomorphic function of z.
Substitute y(z) given by (5.8) into (5.1) and note that

ylo) = — 4 0 — a4,

Ul e L PR

(@ — xq)7t2

vl 1)(r 4 2)sfad)

(x — @) t®

ylz) = [1 4 Oz — zJ)].

Annali di Matematica 2
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i. First, suppose that at least one of a(z), blz,), clzo), d(zs) is not

zero; then, the dominant terms arise from 'g., g;g}, 4°, y"g}, y' and are
respectively proportional fo

(.’/C - 950) mr—s’ (.’)3 - xo)—-zr—d’ (x - xO)—“M‘_H (ﬂ’) - xo}a.”.'

Therefore, to obtain an identity at least two of the numbers » 4 3,
2r + 2, 3r 4 1, 4 must be equal; this gives »=1.
In addition, s(z.) must satisfy the equation

(5.4) 6+ (20 +bjs —cs*+ds*=0

so that y(z) has at most three sets of parametric poles.
Moreover, the general integral of the equation

(5.5) y = ayy + by’ + cy’y + dy*

where a, b, ¢, d are constant, must be one-valued.
These conditions will defermine the possible values of a, b, ¢, d; the
solution of this problem will be given below.
ii. Second, suppose d(x,) = clz,) =0, 2a(z,) + blz,) = 0.

Substitution of y(x) given by (5.3) into (5.1} shows that the general
integral of the equation

(5.6) y=alyy—2p

has mo pole at z=ua,. If y(x) given by (5.6) has no parametric critical
points (algebraic or not algebraic), it must be an entire function of z; this
is known to be impossible [see CHAZY [2, b] and VALIRON |4, a]]. Therefore,
=0 and accordingly 6=0.

[In (5.6), one may set # — ay, ax = 1; equation (5.6) becomes

y=yy—29"]

,.\
fu51
S

-

iii. Third, suppose a=b=c¢=d=0. The dominant terms arise

from 1, yg,;, y'. Therefore, to obtain an identify at least two of the numbers
r <3, 2r 4 1, 3r must be equal.
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When ¢, =0, this gives r +3=2r 41 or r = 2; because r + 3 < 3r,
one has also dyx,) = 0 or di{z) = 0 (because x, is arbitrary in D).
Hence, the stable equations are of the form

{5.8) ¥ = ay + (6 + co)y + i + duy + do;

the general integral of (5.8) has only one set of parametric poles of the
second order; s(w,) is given by

(5.9) 8 (o) C1(zo) = 12.
The reduced equation corresponding fo (5.8} is
(5.10) Y = ey

and must be stable; ¢, is a constant, not zero.
By setting y — «y, one may suppose ¢, ==12. The equation (5.10) is
then

(5.11) y=124y.

and is stable. In fact, the integral of (b.11) satisfies é:ﬁy"‘%—}{, where
K is a constant; therefore y{z) is 0, z7% or &z; 0, K}

iv. Soppose a=b=c¢=d=0c¢,=0. The dominant terms arise from

Yy
The reduced equation is

? and r=3.

(5.12) y = duy*

and s(z,) is determined by s(wo) da(x,) = — 60.
This equation (5.12) is not stable except when d,=0. To prove this,
assume d, = — 60 (by setting ¥ — ay). The equation
y -+ 60y° =0

is satisfied by y==w~% Then, set y = 27" 2, #(z) is determined by

P 120%3 + 60e2* = 0.
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According to the general theorem of stability, [see Part I, art. 2], z(x; ¢)
given by

225 ¢ = 20(0) + eaala) + .o

must be single~valued together with zx), #lz), ...
In particular, z,(z) is determined by

(5.13) 2 - 120%:0;
the related indicial equation is
rir—1)r—2)+120=(r + 4" —Tr +30)=0
and has two complex roots. Therefore, when d, =0, #zy(x) and also z(z) are

multiple-valued functions of z.

The stable equations corresponding to (5.12) where d,==0 are thus
of the form

}’}:“05')+00”;J+d1?/+d0

and are linear,

6. - Our purpose is now fto determine a, b, ¢, d in order that the
equation [cf. (D.D)]

(6.1) y = ayy + by’ + cy*y + dy*

be stable; a, b, ¢, d are constant.

To do this, set

(6.2) y::Z, o=1-1 us

where s, a constant, satisfies the equation

6.3) ds* — 08* + (2a -+ b)s 4 6 = 0.
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Note also that
2y = — s (1 + uz),

|,
6.4) ’1 zymb( zu+5+8u+uz),

) z"&: —§ (zzu - g + 12u — dou 4+ Tu?z — Suus® -+ u3z2> .

Substitution of y(z) into (6.1) gives
{6.5) U — 2 (4 -+ as) 4 {12 -+ Bas 4+ 2bs — ¢s*} 4+
-+ uu’ — 37;5} + zu*(7 + as + bs) = 0.

According to theorem I, a necessary condition for this equation (6.5) fo
be stab.e is that the solutions of the indicial equation

(6.6) 80 — 1) - (44 as)© + 12 4 (3a + 2b)s — s =0

be integers.

For convenience, we set © =% -—1, so that equation {6.6) becomes
(6.7) X — (T4 as) X + 18 + 2(2a + b)s — cs* = 0.

Hence, we now have to solve the following problem: fo delermine
a, b, ¢, d so that the solutions of (6.7) where s satisfies (6 3), will be integers.

We consider the following cases:
i. ¢=d=0, @ or b is not zero;
ii. d=0, ¢ 0;
iii. d 0.
7. - ¢c=d=0; a or b is not zero. Then, s is given by
(7.1) (2a 4+ b)s46=0

and accordingly, (6.7) becomes

(7.2) KR—(T+ 08X +6=0.
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In order that the solutions X, and ¥, of (7.2} be integers, one muss
have

(7.8} Xl Xg = 6,
(7.4) X1+X2=7+“S.

These conditions will determine the possible values of « and b.

Corresponding to each solution of (7.3), there is an a given by (7.4) and
a b given by (7.1). The possible solutions of (7.3) are given in the following
table together with the corresponding values of as and bs.

% %y as bs
1 6 0 — 6 a=20
2 3 —2 —2 a=2"0
—1 —6 — 14 22 Ha4+T76=0
—2 —3 — 12 18 30 - 2b=0

The related differential equations are

(7.5) oy = by’ 0=0,5;

(7.6) y=alyy+9) 6=1, 2;

(7.7) y=g(yy— 1),  O=—2, —T;
(7.8) y=35Qyy—3y), ©=-3 —4

We must now investigate the stability of these equations. For conve-
nience, note that by setting y — ay, one may suppose b= —6 in (7.5),
a=2 in (7.6), a=7T in (7.7) and a=2 in (7.8).

To verify that equation (7.5) or
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is stable, set y =2 where z is given by

(7.10) 2+ 62° = 0;
the solutions of (7.10} are 0, — i—z or §(z) and therefore, #z) and y(z) are
stable

To prove that equation (7.6) or

(7.11) y =2y + 2¢°
is stable, observe that one obtains (7.11) by differentiating
(7.12) y=y* + Ko + K,

with respect to z; K and K, are arbitrary constants. This RiccaTr equation
is stable and so is equation (7.11).

The equation (7.8) or
{7.13) Z/ — 23/:1) - 32'/2

is stable as was proved by CHazy. Its general solution has a movable
singular line and is defined only in one region of the z—plane., However,
because @ = —3 or —4, no additional condition for stability can be
obtained by our method; equation (7.13) will not be considered in this
paper.

Now, we shall see that equation (7.7) or

(7.14) y=Tyy — Ly
is not stable. This equation is equivalent to the differential system
'é == 1 4 uz

(7.15) . .
#u - 10zu + 14u = 0,

By sefting
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where ¢ and Z are new variables, one obtains

2
Zz%-g—{—ng? + 14u= 0.

Now set

ZZZO“I‘EZl“}-...,

U= U + suy -} ..
and determine #,, 2, #, by
az, az,
ar = b g = A,
du au
2 & U 9 — 0
VA aE + 107, T 4 1oy = 0;

one has
Zo prosenes t,

uo = Clt—z '+‘ th_7

where ¢, and ¢, are arbiirary constants. Then consider u, =% go that Z,
is given by
az _1.
dat ~ t’

therefore Z, =1lg ¢ and Z,z) is not stable. Accordingly, y(z) given by y = z-

is not stable.

8. - d=0, ¢40. Denote by s,, s, the solutions of equation (6.3), i.e.
(8.1) cs®* — (20 + b)s —6 =0

and note that s, #=s. (otherwise, one has only one family of parametric
poles).



F. J. BUreau: Differential equations with fized critical points 17

One has
6 1, 1y
9 — N o B
(8.2) —— 0, 2a+b 6L+&)
By setting
{8.3) 6 P(s) = 18 4 28(2a + b) — cs°,
one finds
8. )=1-— =12
(8.4) Ps)=1 5 P(s,)=1 s,

It then follows that the solutions of the equations [cf. eq. (6.7)]
(8.5) X2— (7 + as;) X 4 6 P(sy) =0,
(8.6) X — (7 4 as:)h + 6 P(s;) =0

must be integers. Therefore, 6 P(s;) =p and 6P(s;)=¢ are also infegers.
Then, it follows from (8.4) that

(8.7) 6ip + 9 =pq

or because p.g =0 (otherwise s,==8,),

(8.8) +

I

LN
K -
(=]

Our next problem is to find all the integral solutions of (8.8).

Suppose one integral solution (p, ¢) of (8.7) is known. Substitution in

(8.4) gives 5
S2

Now, the solutions of equations (8.5) and (8.6), namely
8.9) C—(T+as)X +p=0,
(8.10) V— (T4 as)) +q=0
must be integers. Suppose that the integral solutions of these equations are

Annali di Matematica 3
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. 8 .
known. One may determine s, and s, and consequently 51 The desired
2

solutions are those which correspond to the same value g‘ given by (8.4). An
2

example will clarify the process,

9. - Integral solutions of (8.8).
a. If p=2=6, then g=o0 and s;=oc or e=0 ie. case i. [see § 7]
b, If p=g¢q, then p=qg=12%

Now we consider two cases according as to whether p >0, ¢ >0 or

>0, g <.

c. p>0, ¢g>0; we may suppose p << ¢ and thebefore p < 12 < q.

6p

P—6 one has p > 6 so that the integral solutions are

Because ¢ =

(0, @=(7,42), (8,24), (9,18). (10,15).

d. p>0, ¢<0. Set g=—r, r>0; then (8.8 becomes 11)—-}:(1)
and consequently r > p. Because r = t% one has p < 6 so that the

integral soluiions are
(p,‘ Q} == (2’ —8,’ (3’ —6’7 (4:7 —"12)’ (57 —30)~

10. - We proceed further by considering equations (8.9) and (8.10). To
bring out the chief features of the method, we shall use the case (p, )= (3.6)
as an illustration.

From (8.4}, one obtains 2s; ==s,. The equations {8.9-10) are
e (T as} X+ 83 =0,
A2 (T - a8} A — 6 =10

we give the integral solutions (X, %) and (X, A5 respectively of these
equations, together with the corresponding values of as, and as,:

(%2, %oy a81) = (1,8, —=3), (—1, —3, —11);

(Al,- kza as2) == ‘la '—"63 _12)’ {21 _37 _'8)5 ("_13 6: _"2)’ (_'25 8’ _6)'
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19

Because 2s, =s,, the only solution of our problem is

a8, = — 3, as, = —b.
It then follows
s -+ 8) = —9, a*s;s, =18
and from (8.2},

3= —a*, b=a.

Therefore, the stable equation of this type is

- . aZ .
(10.1) y=oyy + ay’ —5 ¥'y.

11. - No solution arises from

(P, @) = (2, —3), (7,42), (10,15)

because the corresponding relation between s, and s, is not satisfied.

We now give the results for the other cases.

X1=1, Xz:g, )\1=——2, )\223;
28, = 8, a8 = — 3, as; = — 6;

c+a* =0 b=a.

2

{11.1) Hquation: y: ayé ~}- agf — % Y

2

Y.

pz4, q:——l?.

Yy=1, =4, N =—3 Xl =4;
38, = 85, 008 == — 2, a8, = —6;

2%+ a*=0, b= 2a.
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(11.2) Equation: y = ayy + 2%'/2 _ g_‘ yy

p=>5, ¢g=—30.

Yo=1, Yp=5, M=—05, l=8;
68, =s8,, 08, =—1, as,=-—6;
c+a*=0, b=Dba.

{11.3) Equation: y = ayy + bay® — a*yy.

p=8 gq=24

=2, %o=4, A=4 i =06;
38, +8,=0, as, =—1, as,=3;

¢ =2d%, b=2a.

(11.4)  Bquation: g = agy + 209" + 20°%.

p=12, qg=12.

8+ 8=0 a8, =0 as,=0;
a=b6=0, cs=06.
(11.5) Equation: y = cyzy.

p:g, q:l&

XIIS, X2:3, }\1:3, 1226;
28, 48, =0, as;, = —1, as,=2;
c=3a% b=a.

{11.6} Equation: Y= ag;z} + ay““ + 3@2_7/2?} (not stablej.
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As will be shown in the nexi articles, equations (10.1) and {11.1-5} are
stable; equation (11.6) is not stable.

12. Equation (10.1) - A transformation y-—ay, axz =23 brings equation
(10.1) to

(12.1) y = 3yy + 3y° — 3y°y

which is obtained on differentiating

(12.2) y=3yy—y +K

with respect to =z This equation (12.2) of the second order is of type I;

P, p=0, 3(see Part I, eq. (20.4)] and is stable; then equation (10.1) is
also stable.

To integrate (12.2), set y = —:—j and find v + Kv=0.

Equation (11.2). - A transformation y--ay, az =2 brings equation
(11.2) to

(12.3) ¥ = 29y + 4 — 2.

Now, multiply both members of (12.3) by 2y and observe that

. e _ d . . "oy
(124 29y = 5 (295 — ¥);
y is thus determined by
5 U gy VLK
(12.5) y=g,t2Wy— g+,

which is a stable equation of the second order, of type 1II and class E.16.
To integrate equation (12.5) set

{12.6) g; =9+ h+ 2vy
where h is given by h* -4 2K =0; therefore

(12.7) b=
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On setfing v:%, Y == ——-«Z, one sees that equation (12.5} is equivalent

to the differential system

= —2% st e=0.
(12.8) u=5u, 2 u’ +he=0
Equation (11.4). - A transformation y-— ay, ae =1 brings equation
(11.4) to
(12.9) ¥ =9y + 2 + 20'y.

On multiplying both members by 2y and taking {(12.4) into account, one
sees tbat plz) satisfies

(12.10) y—2y+yy+2 +y

which is a stable equation of the second order, of type 1Ll and class E.6.
To integrate (12.10), set

(12.11) 120 = y — o
so that
. w K
12w =72 " 4=
y Ty
or
(12.12) y="+ K
12w

Elimination of y between (12.11) and (12.12) gives

. K
W= — 6 - 19’
w is thus an elliptic function.
Equation (11,5). - A transformation y-—ay, «°c =6 brings equation

(11.5) to

¥ = 6y’y.
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Therefore y(x) satisfies

y=29+ K

and is stable; #(z) is an elliptic function.

Equation (11.6). - A transformation y--ay, ae= —1 brings equation
(11.6} to

y=—yy— 9 + 3.
Therefore yiz) satisfies
y=—yy+v°+K

which is an equation of the second order, of type 1 and class vi, namely

y=—yy+y—12Vy 127
where V is given by

V=6V*4+ K, or V=6V4a.

Therefore, V cannot be an arbitrary constant and consequently, w(z) is
not stable exeept when K =— 0.

13- - It remains fo consider equation (11.3). A transformation y — ay,
aec = 1 brings this equation to

(13.1) Yy = gy + By* — 9.
Set
(13.2) P=y—yy—y

and write (13.1) in the form

(13.3) P = dyly — 1°).
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Multiply (13.3) by P and note that
d - . R .. .
Y=Y’y + ) =6yly — ) P
then (13.3) becomes

P= o y—y)P 2y +v)+ K

i

and y defined by (13.1) satisfies
- . N oo N
(13.4) W—9y— ¥V =350—v"C+y)+ K

This equation (13.4) is of the second degree in.the higher derivative y:
this type of equation will be the object of another part of these studies.

However equation (13.4) is stable; the proof is given below for K =0.

Note that equation (13.4) when K =0 is the reduced equation obtained
on sefting x = a,+ ¢f and ey = u.

For convenience, we put b = ‘/2 and write

(13.5) ———— 2b(yf—y2>]/@', +1v
instead of (13.4).
Now set
. 1 -
(13.6) Y+ ==y

and note that

(13.7) Yy —yy — ¥ = 229z + 2y Q)
where

1
(13.8) Q=2 —g..

13.9) y=v (z — %)

(13.10) s=— Quz—10) .
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The funection ¢ satisfies a differential equation which is obtained on
eliminating y between (13.9) and (13.10).

To proceed further, we eonsiderg given by (13.9) and take the loga-

rithmic derivative of {13.10}); one obtains

1
é~252~2zb~1_ 2(z+5~b>

e

or
z 6 1 4 1
= 2—5 . i + {:) . -
z z— 2+ ;
Therefore, # is a solution of
. 1\4
(13.11) zs—_:Ks(z-—b)s(z—}- Z) .
The explicit form of #(z) may be obtained by setting
1 1 .
ﬁ [ ?i 5 P — ﬂ .
Te—8 T -1
then
V.4

t=—F(0+3) o+ K

and 2(x) is a rational function of z.

14. d &= 0. - Denote by s;, 8:, 83 the solutions of equation (5.4) i.e.

(14.1) ds* —cs* + (20 +b)s+6=0

Annoli @i Motematica 4
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and note that s, &= s, = 8;. One has

_ 6
81828
(14:-2) C = ._818283 (sl + 8Ss + Ss),
2a b= _6:._. .
+ _ 51828, {6182 + 8.8 + 8381) .

By setting again
(14.3) 6P (s) = 18 + 2(20 + b)s — cs?,
one finds

=1 —5\[1 — &),
Ple) = ( 32)( 8)

(14.4) P(s,) = (1 -3—2) (1 _.?E),
1 8
83 S

Pl =(1 =) (1 —5).

According to the general theory, the solutions of the equations
(14.5) L2 — (7 + as) X + 6 Pis,) =0,
(14.6) 22— (7T 4 as;) ) + 6 P(s,) = 0,
(14.7) W — (7 + asy) p + 6P(ss) = 0

must be integers. Therefore,
(14.8) 6P(s;) = p, 6P(s)=g¢q, 6P(sg)=r

are also integers.
These integers p, g, r satisfy a relation which can be found as
follows. Set

(14.9) A=8;,— 8, B=8-—8, YT=8—8



F. J. Bureav: Differential equations with fized critical points 27

go that
_ % __byx __ 6ap
(14.10) p= “52_33" - é“1?3’ "= 8,8’
_ g8y (= | B z)
g+t op =36 818283 (81+ 82 +83 )
Then

N

8 8 8 o 818283

(82852 - 8,8:8 -+ 8:8:7)

By
81828,
and finally
(14.11) 6(pg + qr + rp) = pgr
or because pqr =0,
1 1,1 1
(14.12) stati=e

Our next problem is to determine all the integral solutions of the
D1oPHANTINE equation (14.12). For convenience, we denote by X, Xz; Ay, As;
B, 2 the solutions of the equations (14.5,6,7) respectively. Therefore

(1413) X, +Xo=—T7—as,, \, +2o=—T—as;, p+p.=—7—as,.

It a == 0, then as,, as., as, are real.
We have to consider two cases according as @ is or is not zero.

15. @ = 0. - Then equation (14.5) becomes

X A4 p=0;
thus
X1+X2"—-—7’ X1X2:p

where p is a positive integer. Because

(X, — Yof? = (X + Xo)® — 4, %, = 49 — 4p
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must be a positive square, one has 4p =49 — h* > 0 where h, an integer,
is such that 0<sh < 7; therefore, p must be 6, 10 or 12.
i. Suppose p =6; then ‘_}l+%" =0 [see (14.12)]. Therefore ¢ > 0 and

because of (14.6), ¢=6, 10 or 12 and r=—6, — 10 or — 12. However,
because of (14.7), 49 — 4r must be a square, which is impossible.

1 1
ii. Suppose p = 10. Then é+;=—1—5; therefore ¢ is positive and is

equal to 10 or 12

When g =10, then # = — 30; when ¢ =12, then # = — 60. Thus,
we have the two solutions

(15.1) (p, q, ) = (10, 10, — 30), (10, 12, — 60).

iii. Suppose p = 12, The same method gives again the solations (15.1).

16. @ 3= 0. - From (14.12), it follows that one of p, ¢, r is a positive
integer. Moreover from (14.10), one obtains

and because as,, us,, as, are real, one may write
{16.1) pgr = — 6N*

where N is a positive integer. Therefore, one of p, g, r is a negative
integer.

By setting r = —{, equation (14.12) becomes

(16.2) +

1 1 1
¢ T8

RS |

where p, ¢ and ¢ are positive integers. Note also [cf. (16.1)] that
{16.3) pqt = 6N?
and that

(16.4) tp+q =pg+ N
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Because (p + q)*= 4pg, one sees on using (16.4) that

(p+qf —4tip+ g —4N* =0

and thus that 4/ — 4N* < 0; therefore [ < N.
i. Suppose {=N; then pg =6N, p+¢=16-+ N and

{16.5) p=6 qgq=N=4t
ii. Suppose ¢ < N. Then pg > 6NN and because of (16.4),
p+q¢>6+N

Moreover, one easily sees that p==q. [If p=¢q, one has on using
(16.4),

pP—2pt + N*=0

and p would be a complex number].

Now, we suppose p < g; then from (16.2), one obtains
(16.6) p<li2

Note that p =6 yields (16.5) [then ¢=1¢, cf. (16.2)].
Suppose p < 6. From (16.2), one obtains

6pt
16.7 =
o0 = —6—p)t
and from (16.3),
(16.8) p*t? = N*[6p — (6 — p)i].

Therefore, 6p — (6 — p)¢ must be a positive square; this limits the
possible values of £

When 6 < p <12, one employs
P -
bp — (p— 6)g’
p*q" = N*[6p — (p — 6)q]
instead of (16.7-8).
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The results are given in the following table, together with the corre-
sponding values of N. The values corresponding to ¢ =6 are omitted.

P q 2 ¢ | N
6 N N N
4 60 10 20

5 29.50 29 ) 295
5 13.15 13.2 ' 13.5
5 7.10 .3 75
7 41 41.42 417
7 19.2 21.19 7.19
7 11.3 11.14 711
8 11.2 - 11.24 8.11
8 8.2 8.6 8.4
9 15 6.15 3.1

10 14 15.14 5.14

11 13 66.13 11.13

Except for p =6, ¢ ={= N [see section 19 below], no stable equation
arises from the values of p, ¢, { given in this table,

[One sees that at least one of the corresponding 8;s is not an integer].

17, - Now we consider the case p =10, ¢ =10, r = — 30 and proceed
to determine s,, s, ;.

From (14.10), one obtains

or
Plsa—sy)=ks,, qls,—s,)=Fks:, ris, —s)=ks,

where % is a constant fo be defermined.
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Actually, one has
— ks, -+ 10s, — 10s, = 0,
— 10s, -— ks, + 108, = 0,
— 30s, + 30s, — ks, =0,

from which follows k — == 10Vb.
When k= 10V5, one obtains

@

8 _— Sz _i_P
1—Vh 14Vh 6

and thus by using (14.2)

1
b::;, 6:92, d::4—P—3.

The solutions of equations (14.5-7) are X, =2, X, =05 and p, = 10,

pe = — 3 respectively.
Now set ap =1 and write the corresponding differential equation

ves . 3 3
(17.1) ¥ = 2047 + 2a%y%y +j‘7 9.

The solution of this equation possesses three sets of simple parametrie
poles, namely

as, =1— V5, 0=1,4;
as; =1+ V5, 0=1, 4;
as, =6 , 8=9 —4.
That this equnafion is or is not stable remains to be investigated.

A simple ftransformation enables one to suppose ¢ =6 and to bring
equation (17.1) to

y = 129° + T2 + 54y
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or
v+ by = 18(y + 1)y + 7).
When # = 3y, this equation takes the form
u = du® -+ Sutu -+ 2ut
or

=4 (d -+ u?? — 2ut

[When k= — 10V5, one obtains again equation (17.1)].

18. - Suppose p=10, ¢ =12, r = —60. The same method yields
k== 20V3. Assume k= 20V3; then

812‘0{\/“3-——1}, 32:""9\/33 SZ:P(_6+V§)
and

3(7+3V3) 40+ 14V3

. T+ 3V3
e 7 7 11p2

b:-— “ITP;**.

, d=

By setting a@p = 1, one obtains the differential equation

- 3 o . A0 14V3 - T4+3V3 .,
(181) y=—7(7+3V3)ay —ij—l—lxmayy— +11-y~wy-

The solution of this equation has three sets of simple parametric poles,
namely

as,=V3—1, ©=1,4;
as,=—V3 , 0=2 3;
as,=—64V3, 0 =11, —86.

A simple transformation enables one to assume a = — V3 and hence to
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bring equation (18.1) to
L 3 . .
y=6yy + 7 O+ TV + vV

That this equation is or is not stable remains to be shown.

19. Suppose ¢ =0 and p=6, g=—r=N, N a positive integer.
Then,
6(s; —s,) =ks,, N(s,—s,) =ks,, — N{(s, —8:)=ks,

and k==2N.

For k=N, one obtains s, =0, s,=s,; this is not a solution of our
problem because all the s; wust be different from zero.

For L = — N, one has
8, :1297 82:(6"—1\7}?7 83:(6_{_1\”?
where ¢ is a parameter. Therefore

1 _ 12

T e

Now, consider equation (14.5) with s, =12p: one finds the two admissible
solutions

X, =2 X =3, bap =—1;
A, =—2 %=-—3 ap=—1
i. Suppose 6ap= — 1; then
— 6
a32:-§——6—£~v, ass___~——g—~ly

Annali di Matematica 5
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and the solutions of equations (14.6-7) are

M=6, A= E; fef. (14.6));

for]

[of. (14.7)].

N
1 = 6, Pz:‘—‘g‘-

Therefore, one must have N =06k, k> 1 an integer. Consequently,

13 —&° 12a d 3a

b= % =i ‘T i_p

l

and the desired equation is

13—k 120 - 3a®
(19.1) Y=Y+ W T oYY T oY

£

This equation has three sets of simple parametric poles, namely

. . L —F .
A simple transformation enables one to set o = «_‘)——k— and to bring

v

equation (19.1) fo

-l — R e 1 — . . PR 212
y=—5 yy+(~—2--+6)y2—5(1*k)yzy+g(l—k)'y*

or to

2

d y P y 2,2
Ja W — 4y) =6y — Ay’
if

1 —k* = 44.

To prove that this equation is stable, we only have to observe thaf it
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is equivalent to the differential system

y = lzk‘y“—i-u, " = 6u’,

ii. Suppose ap= —1; then
as; = — (6 — N), (N=6), as,=—(6+ N)
and the solutions of equations (14.6-7) are
AM=1 A= N; [cf. (14.6)];
pe=1 p.=—N. [ef. (147)].
Therefore, one has

36 - 3N* . 120 @
2@6—N9 P ‘T TN “TIgE—nNy’

b=

consequently, the desired equation is

_ +3N2 e 120 a‘”’ -

This equation has three sets of simple parametric poles, namely
as, = — 12, 0= —3 —4;
a8; = N — 6, 0=0, N—1;

ass=—(N4+6), ©=0 —N—1;
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we recall that N==6 is a positive integer greater than 1.
A simple transformation enables one to suppose a =2 and to bring
equation (29.2) fo

. — 92 e 2\2

[Note that when N =oo, equation (19.3) becomes y:ny — ng; one
sees easily that this equation is equivalent o the differential system

i yg . 9..
y:—_g_.}_u, uy* — uy + 6u® + 5u:—:O.

20. We sum up the resnlis obtained above in the following table where
the relevant equations are listed together with the related values of s
and ©.

A. One set of double parametric poles.
Class I

{201) y: Gly?./ + F(m) .7/))
Fixw, y) = Ch?} + coy + dy* 4 duy + do;
8C; = 12, 0= 3, 5.

B. One set of simple parametric poles.

Class II.
[In the remainder of this paragraph, F(z, y) is given by (5.2)].

(20.2) y=0by+ Fl, y);
bs=6, 0=0, 5.
Class 111,
(20.3) y=aly +v)+ Fls, y);

as = — 2, 0=1, 2.
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C.

Class

(20.4)

Class

(20.6)

Class

(20.7)

Class

(20.8)

Two sets of simple parametrie poles.

IV.

VI.

VII

VIII.

rer .. . az -
y=ayy +ay’' —g y'y + Flo, y);
as; = — 3, =0, 2;

as, = — 6, 0=-3 2

y = ayy + 20y° — g——zfy'%- iz, y);
as; = — 2, 0=0, 3;

a82=~6; @='—“'4’ 3.

y = ayy + by’ — a*y’y + Fls, y);
as, = — 1, 0 =0, 4;

as; = — 6, O =-—6,5

¥ = ayy + 2ay° + 2a%y’y + Flz, y);
as, = — 1, 0=1, 3;

as, = 3, 0=3,b.

v =cy'y -+ Flz, 9);

csi=6, ©=2 3.

D. Three sets of simple parametric poles.
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Class 1X.
(209 b= 205" + 20y + ' + Fla, y);
as,=1— Vb, O=1, 4;
as, =14+V5, ©=1, 4;
as; = 6 , = —4 9.
Class X.
(20.10) é;izmél.(z+5v3) Wwy@ 17%—?3” + Fla,
as;=V3—1, ©=1,4;
as, = — V3, 0=2 3;
as,= — 6 + V3, 8 =—6, 11.
Class XI.
. 18— - 124
(20.11) y=ayy+ W — 1YY +1 kzy + Fia, y);
a8 = — 2, 0=1, 2;
as;, =k —1 O0=5 k-1
as, = —k—1, 0 =5 —k—1
Class XIL

63N -, 120° a

20.12 = At e % .
(20.12) y= cw+2(36 Y VY tigs gy H Y

as; = — 12, O=—3, —
a8, = N — 6, 0=0 N—1;

a3 — N—6, 0=0 —N—1

Y):
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If N = co, this equation reduces to

(20.13) y =g (2yy — 3y

and has only one set of simple parametric poles such that
as=—12, 6 =—3, —4.

We shall proceed further with the equations of class I-VIII, leaving
the remaining equations for another paper.

21. - To obtain canonical forms for the stable equations, it is often
most convenient to use a transformation T(A, p, ¢), namely

(21.1) y(@) = Mzju + plz), = o(z)

which does not alter the main features of the equations considered
[Mz), (=), ¢(x) are analytic functions of z; see Part I, § 18].

We note for future use the following formulas where primes denote
dw ,  d'u w__

differentiations with respect to #, i.e. ' =

a’" =ag " T ap

21.2) Y = Ap*u” -+ (2A -+ @) don’ + Au - p,
¥ = Ap'u” + (A + @) Ag*u” -+ Miou' + iu +
where
21.3) A=t =9, M:3%+3A©+f.
¢

According to (5.2), set

(21.4) F(z, y) = oy + ey + oy + d’ + da® + duy + do;
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we mnote that

!
¢

Flz, y) = allc;') ' 4 cll"‘q;u%*
+ (024 + @)+ oy + oo] Mpwt
(21.5) + dXPu? + (Acy + 3dyp + do) Nu?

+ [aah + eph + ¢, hp 4 coh + BdAp’ + 2dp + d, M u

+ Flz, p).

IIT. Equations of class L

22, The stable equations of this class are of the form

(22.1) y = ayy + Fiz, y)

where

(22.2) Fiz, y) = ay + ooy + &y + duy + do.
Set

(22.3) y:;wz, z=1-+eu

and suppose that ¢ is a constant (this is obtained by a transformation T7j;
we have

zzy = 2t<}? +u),
2
. 3 —
(22.4) Py = 215[5 — zu + Ou - 2zu2],

9 . . .
g[_. 17 — #*u + Teu — 2Tu -+ 62°uu — 1920° — 42°u°| .

z*g}. =

b

Recall that {o =12 and 0 =3, .
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On using a fransformation 7, we may suppose that
a=12, 6o, +d,=0, ¢, =0;

one has only to determine A, 4, ¢ by
g +A—20 =0,

A-}—?)(I):ai—{—?%,

dp = M — a,(2A + @) — c.

Equation (32.1) may be writien

(22.5) y =124y + a,(y — 69°) + d,y + do

and {=1.

Substitution of ylx) given by (22.3) into (22.5) shows that this equation

is equivalent to the differential system
(22.6) 2 =1+ uz,

(22.7) #u — zu (7 + a,2) + du (3 + a,2)

= e %* 2 — %’ 2t - buus’ — zu’ (19 + 2a,2) — 42*u’.

Because © =3, 5, one sets [see § 3]
(22.8) w= P 4 2%,
(22.9) P=o+ B4 y&+ 02° + ee*

where & remains arbitrary and may be assumed to be a constant.
We note immediately that « =8 =0 which simplifies our

Annali di Matematico

problem.



42 F. J. Bureau: Differentiol equations with fized critical points

Now substitute # given by (22.8) into (22.7); one has

u = 2w+ ba*v + P+ 0(),
\ u = 2 4 10240 -+ 20 4- P + 0z,

(22.10) ‘ . .
/ u'= P* 4 0(°), wu= PP 4 0(),

u® = P* 4 0
so that equation (22.7) becomes
(22.11)  #v + 3% + Ao+ 4,7 + A + A7 + A + 4"+ 0@ =0
where 4., 4,, 4., 4s, A4, A; are determined by

2P — zP(’? +a2)+ 5B+ az P

Qo o

+ 24 2+ 5 ¢* — 65°PP + 2(19 + 2a,2) P* - 42°P°

= Ao+ A, + A5 + A,28° + At + A2° + O=°).

Define «, 8, y, 3, ¢ by setting

(22.12) A4, =0, 4, =0, 4,=0, 4,=0, 4,=0
Equation (22.11) yields
(22.13) 20 + 8ev = 4, + 0(2).

For equation (22.13) to be stable, it is necessary that
(22.14) 4;=0.
From 4,=0, 4, =0, 4, =0, one deduces immediately
=0, B=0,

(22.15) 6y +d, = 0.
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Then 4, =0 gives

(22.16) M

therefore & remains arbitrary. Further, ¢ is determined by 4,=0; taking
into account {22.16), one obtains

(22.17) e=a,y + 20,5+ 5
It remains to consider 4,=0 or

(22.18) &+ ae + 372 = 0.

Now we proceed to determine a,, do, d, from (22.15-18),
First, from (22.16-18), one deduces

. . . d. d )
Y (@, + 20,0,) + 2@, +0) + 5 + 3 a, + 37 =0
or because 8 is an arbitrary parameter,

(22.19) a, +at =0,

(22.20) do + dot, + 672 = 0.

Two cases are considered according as to whether @, is or is nof zero.

i. @, =0. From (22.16), (22.20) and (22.15), one deduces
(22.21) v=K, d,=—6K, dy=—6K2+ K,

where K, K, are as usual arbitrary constants. Therefore, the desired stable
equation is

(22.22) y = 12yy — 6Ky — 6K’z + K, .

By introducing « in place of z — K, one may assume K, = 0. Then

GKZ ?
a transformation z - a2, y— 8,y where 23, =1 and Ko} = — 1 reduces
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equation (22.22) to the canonical form
(22.23) y = 12yy + 6y — 6.
Set y=wu in (22.23) and integrate with respect to x; one obtains
% — 6u* = 6u — 3u* + 6K
or by rveplacing u -+ K by u,
(22.24) w — 6u* = 6u — 3u?

which is an equation of class II (see below eq. (27.3)).

ii. @, 0. Then from (22.19), one has

by replacing # + K by «, one may assume K = 0. Then, from (22.16)

v = Kx
and from (22.20),
dy = K,_3 K2,
© 2

The desired stable equation is thus

(22.25) y = 12y3) —}-i(g}-(ﬁyz)-—éley + %-—g K*a®.

The transformation «-a,z, y—B,y where o, =1, Ko = — 2 reduces
(22.25) to the canonical form
(22.26) ¥ = 12yy + i (y — 6y — K) + 120y — 62°

where K is again an arbifrary constant.
Moreover, it is clear that equation (22.26} is equivalent to the differen-
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tial system

gy =6y + K+ 2
(22.27) .
xz = 2 -+ 120%y — 6",
IV. Equations of class IL
23. - In the following, we are concerned with stable equations whose

integrals have only simple parametric poles.

Assuming s to be a constant (which is obtained by a transformation T),
we seb

(23.1) yzg, p=1-4 uz
and note the useful relations
Py = — s(1 + uz),
- 9 .
Fy=s (E —zu-}—.‘:"m—{—zuz),

(28.2) zsy = —8 [g + eu — dzu + 120 + Teu*— z"’(?miz —u®)|,

. 1 1
Pyr=s" [g + 20 - 20 |,

\ gy = — (1 + uz).

24. - Consider the equation of class 1I

(24.1) y =by* + Fle, y)

for which bs = —6, © =0, 5 [see § 20] and determine T(X, 1, ¢} in order
that

b=—6, a, =0, d,==¢.
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This is achieved by setting

A—®+2=0 B3A+®—a, =0,

8

— M+ 2bp + (2A + @) a, 0o o+ 5 [P+ 0, A + 3dap - da] = 0

so that p is determined by a linear differential equation.

[The choice of b= —6 is obvious for then s=1. Assume the coeffi-
cients of Flx, y) to be arbitrary and apply our method. The first condition
for stability is 2a, — ¢, 4 d, = 0. Further, the condition d,= ¢, simplifies
the problem].

With these simplifications, equation (24.1) takes fhe form

(24.2) ¥+ 64" = gy + oy + o) + Aoy’ + dyy + d
and its associated equation in u is
(24.3) #u — dou + Teu? — 22(3um — u®) — 6ue
— ¢, (1 + uz) — coz*u + d, + d,7° + dyz® = 0.
Because © = 0, 3, there follows the condition for stability
(24.4) c, =d,.
Equation (24.3) becomes
(24.5) o — du — 0,4 + 0,2 + do® — copth -+ u* — z(3m) — u®) = 0.
According to the gemeral theory, one sets
(24.6) u =P+
where

P == o+ 8z - y2* 4 82° + ezt

o remains arbitrary and will be assumed to be a constant parameter.
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On using the formulas given above, this substitution brings equation
(24.5) to

20 4+ 620 + Ay + Az + Aot + A+ At + 02 =0

where the A's are determined by

¢P — 4P — ¢ P + d,2 + doz* — c2P + P? — 32PP + 2P
= Ao+ dsz + 42" + 4.2 + Ag' + O(°).
Now, we determine B, y, 8, ¢ by setting
4y=0, 4,=0, 4.=0, 4,=0;

then, the condition for stability is 4,=0.

25, - We give the resuits.

From A4, =0, one obtains
(256.1) 48 = o — ¢,
From 4, =0 and (25.1), one deduces
(25.2) 6y = — 28 4 ¢,(0* — B) — 6oz + d, .
From 4,=0 and (25.1-2), one has
(25.3) 68 = (B + 28)' — ¢,0° + 26,08 — ¢,7 + Col#® — B) — ad, + do;
then 4, =0 yields
(25.4) de = (v + 25 + ay) — 4ad — 8By + o’y — 6,5 — coy-
Finally, the condition for stability as given by 4,=0 can be written
(25.5) (8 4 de + 3u8 + 28y) — 485 + 2y — 32 + 20 + a3

—-‘({3—6‘6-—00520.
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It is clear that B, y, 5, ¢ are polynomials in « and so is also the first
member of (25.5). This condition for stability shows that a certain polyno-
mial in 2 is identically zero; because a is arbitrary, the coefficients of
this polynomial must be zero. Thus, one obtains conditions which determine
the coefficients of the stable equations of class II.

26. To simplify the problem, we replace «, ¢, ¢,, d,, do, by 2«, 6¢,, 6¢,,
6d,, 6d, respectively and obtain

B =a® — 3¢,a,

= élor. + 3c¢,a® + 3cia — 2c0 + d,

{26.1) 8=z (B 2af) — B¢, a®+ 4o,af — ¢,y + co(4a® — B)

[T

- 20(d1 + do’

de = (y + 25 + 2ay) — 8u6 — 8By + da’y — 60,3 — begy,

(26.2) (8 + 4e + 6a3 -- 2By) — 485 + 4uBy — 3y® & due 4 1247
— B — 6c,e — 6c,5 = 0.

To further simplify the notations, we set

| B=a+ B,
Y = 720"+ ¥,% + Yo,
(26.3)
8 = 8,a° - Bya® + 8,2 + 3,
| de = g0t g0 + 0" £, 2 g
where
51 = - 304 ’
Ye=38¢,, 71,= 06, + 3¢t — 2,
(26.4)

3, = —de,, 5 =—(c, + 156 — 3c,),

e =20c,, e, = 2c, + 204c! — 16c,.
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The left member of (26.2) is a polynomial in « of degree 5: however
the coefficient of «° is zero and that of «* is — 45¢]. Because « is an
arbitrary parameter, one obtains
(26.5) ¢, =0

and therefore [see (24.4)],

(26.6) d, =0.
These conditions greatly simplify 8, vy, 8, ¢; one obtains
B=ua® v=—202+4d,
5 = 3¢,® — 2d, a4 dy,
de = — 160,0° + (200 + 12d )0 + (1262 — 8ddy — 20, — 2d,)
+ d, + 2d, — 6eyd, -

The left member of (26.2) is now a polynomial in « of the secend
degree; one has

(860 — 1869 + [1262 — 260) — 3(d, — 6¢od,) | @

+ 3dy — 60ydy — 32 4 (d, — Beod,) = 0.

Therefore
(26.7) ¢ = B¢,
(26.8) d, = 6ed, ,
(26.9) do — 20,d, = d.

27. - Note that F(x, ¥) assumes the form

(27.1) Fx, 4) = 6oy + y°) + 6d,y + 6d,.

From (26.7), one deduces
¢, = 46, — 9,

Anneli di Matematica 7
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where g, is an arbitrary constant. Therefore, one has to consider three
cases according to the valnes of g,, namely

i g,=0, ¢=0;
i, g, =0, =27
iii. g,4+0, ¢co=8@; 0, gs).
i, 6=0. Then d, =0 and
d, =Kwx+ K,.
We consider again three cases, namely
a. K, =K,=0,
b K, =0, K,=+0,
c. K,#+0, K,=0,
K,+0, K,==0 is reduced to case ¢. by replacing x by x— I% .
a. From [26.9), one has do =0 and
do= K + K,.
The stable equation of this class is thus
¥+ 6y =Kz + K,

and is easily redunced to the two canonical forms

f .y“+6?)2:K47
27.2) Yoo
( Y+ 6y = —w.

By setting ;.:/: ¢, these equations become respectively
g + 6z° — K;,
;./J.—]— 68" = —

i.e. well known stable equations of the second order.
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b. From (26.9), one obtains do = K, and

-—.—Kz

do="32a" + K@ + Ku.

The stable equation of this class is of the form

y+ 65 = Ky + 5% 0 + Ko + K.
it may be reduced to the canonical form
(27.3) ¥+ 6y =6y -+ 3¢ + K0+ K,.
[see eq. (22.24)].

¢. From (26.9), one deduces d;:Kia: and

_ K

do_«ﬁ—

o+ Kax+4 K,.

The stable equation of this class takes the form
e . K2
y+oy'=Kay+ ' o'+ Kz + K

and may be reduced to the canonical form

(27.4) y + 697 = 12zy + 120* + Ko + K.
ii. ¢ =wo% Then d, satisfies
. 8
di —_ a_)é di _ 0

and thus
d, = % + Koz
Three cases are again considered, namely
o K, =K, =0,
b. K, =0, K,=+0,
c. K,+=0, K,=0;
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then d, is determined by
< = 5 2 2
(27.0) do - E do = d‘ .
Note that the solution of the homogenous equation is

(27.6) dy = % + Ka?|.

a. Then d, =0 and d, is given by (27.6); the stable equation of this
class is

| o

(27.7) Y+ =5 +9)+ > + Ko

[53

&

This equation is equivalent to the differential system

g ?i}:’_yz"i'u;

(27.8) ‘ _ ) 6 %
{ 4“92’1‘2:9%—%——4%24— Eu—i—;}-{—j{wz:o‘
. One has
di - szs;
then d, is determined by
2

do — gédo prumes K:xs
8o that
K
— 2 8 2 3
dO"""54: £ +K4w + T .
The stable equation of this class is of the form
- . . 2
(27.9 U B9 = g+ )+ Ky @t Kt e

and may be reduced to the canonical form

. 6 - - - . K
y+6y° = 5+ y)+182°y + 62"+ Kar* + 2.
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This last equation is equivalent to the differential system
S 2/ = yz + U,

? dPu + 2y(w -+ 92°) — 1 — du? %‘4—6908 + Ka? 4 fi_szo.

¢. One has
K
4, =24,
2 K:
dO L2 dO e ;U_:fi
and
Kz K
d0=4_x12 ‘+‘K4m2+ "“'x—g.
The stable equation of this class is
-, 6 , Ky {(_ﬁ{z N
(27.10) Y+ =+ 9+ S5+t K’ + —

and may be reduced to the canonical form

Y 6 - p 2 1 2 K
Y6 =20+ )+ 2+ K+

iii. ¢, =28(; 0, g,); then d, and d, are given respectively by
(27.11) d, —68@; 0, g,)d, =0,

(27.12) dy — 28@; 0, g,)do = d.
These equations are of the type (LAME's equation)

w—[nm -+ )G -+ hlw=20

integer and % a comstant; they correspond respec-

where n is a positive
and have been considered by HERMITE, PICARD

tively to n=2, n=1
and HALPHEN.
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We have fo consider two cases, namely d, =0 and d, ==0.

a. d, =0. Then equation (27.12) becomes
C.io_ 25’(%; O; ga)dozo-

This Lamé’s equation has two distinct solutions

(27.13) d, (o) = ==t h) %’%@ y Byy(a) = =W "(”i(;}h)

where & satisfies (k) ==0.
The stable equations of this class are

(27.14) Y+ 6y =68Ge; 0; g,) U + ¥) + K, dn(@) + Eud,,@).

A transformation @—ax, y—Py, co—76, af =1, &’y =1 a*¢y, =1 brings
equation (27.14) to

(27.15) y + By = 68@; 0, )(y + 9") + K,d, @) + K,d,,®)
where $(x) is fhe solution of

0o == 4¢’ — 1.

b. d, == 0. Equation (27.11) has two distinct solations, namely

¢ 4
d, (@) = 8(x), d, (%) = 3(x) é%t—)

0

The homogeneous equation associated with (27.12) has two distinct
solutions d,,(x) and d,(x) [see (27.13)]; one has

dox(m)doz(x) _ doz(m) dm(w) == Gz(h)g(h)

Finally, one particular solution of equation (27.12) may be obtained by
quadratures by using the method of variation of parameters.
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V. Equations of c¢lass IIL

28. The stable equations of this class are of the form

(28.1) ¥ =alyy + 9 + Fle, y);

their solutions have only one set of simple parametric poles such that
as=—2 and O=1, 2.

By a suitable transformation 7, one may assume
o=—2 ¢,=d,, a,=0
so that s=1. One has only to determine X, u, ¢ by seiting
a(A — @) - q =0,

2
a(dh + D) ¢, + %:O,

ap —3A + @)+ a, =0.
With these simplifications, equation (28.1) takes the form
(28.2) Y+ 20y + 9 = ey + ¥) + oy + o + Ay + do;

its associated equation in u is

U — 2ou + 2u - (dy — )2 + d,7° 4 d2® — c,uz
(28.3)

— couz® - Beu® — #Buu — )y =0.
Because ©@=1, 2, one sets
(28.4) u=P-L 2

where

P =u B

One sees immediately that «=10; because =1, 8 remains arbitrary
and may be assumed to be a constant.
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Our problem is now veadily solved. In fact, substifution of # given
by (28.4) into (28.3) yields

20+ 260+ do+ A2 + A" + 0% =0
where A4,, 4,, 4, are determined by
A, + Az + 4,85+ 0@F)
= P — %P + 2P + (d, — co)2 + d,2° — ¢, 2P — ¢@°P
+ 3zP* — 34*PP -+ P
One obtains
4,=0, 4,=d,—¢,, A,=4d, —cp;

the conditions for stability are thus A4, = 4, =0 and therefore becanse j is
arbitrary,

The stable equations of class IIT are thus [see (28.2)]
(28.5) Y+ 29+ v =cly + o) + do

where ¢, and d, are arbitrary analytic functions of a.

To integrate this equation, observe that it is equivalent to the diffe-
renfial system

y+y=mu,
% @ﬁ‘zaou—!‘do

or to the differential system

g Y = t . £ = ut,
(\ 1a_cou+do

Therefore, y(x) is stable.
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V1. Equations of class IV.

29. The stable equations of this class are of the form

e .. . Cbz .
(29.1) y=oayy +ay’ —gz ¥y -+ Fx y)

The solutions of this equation have two sets of simple parametric poles
determined by
as, =—3, 0=0, 2;

(29.2)

agy = —6, Q= —3, 2

The associated equation in u is

a’s

Fu — o (4 4 as) + u(12 + bas + — 2)

d
(29.3) + 20, — 0,8 + ds* + 2(ds — 00) + d,#* + 20

+ (Ba, — c,8)2u + (7 + 2as) zu® — co2*u + a,2°u’
— a7 — FBuu — u’)=0

where s is equal to s, or s,.

By a suitable transformation 7, one may assume

(29.4) oa=—3, a,—c¢, +2d;,=0, a,=0

i

so that s, =1 and s,=2. One has only to determine 2, p. v by setting

3\ —ap+a, + 2 B g,

SA+d)—ap=ua,.

Annali di Matematica 8
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With these simplifications, equation (29.3) becomes

21 — 2t (4 — 38) 4 u(12 — 15s - 35?)

d
(29.5) { — 0,8+ d8* 4 2(das — ¢o) + 4,2" + -89 &

— ¢, 82u + (T — 68) 2u® — co2’u — z2(3m:t — ¥ = 0.
Now suppose =1, so that

U — 2t — e, + d, +2(d: — co) + 4,8 + d’
(29.6)

— ¢,2u + 2’ — co’u — #*(Suu — u®) = 0.

Because O =0, 2, a condition for stability is ¢, =d, and consequently
[see (29.4)],

(29.7) c,=d, =0.
Then, suobstitute
u= P 4 2%,
P=o - [z,
into (29.6) and rewrite the result as
20+ 3 + Ao+ Az + A2 + 029 =0
where A,, 4,, 4. are defined by
Ao+ A7+ 427+ 0%
= P — 2P + 2(d; — ¢o) + a,8° + ¢ P° — c#’P — 3PPs -+ 22 P%
Accordingly, the conditions for stability are determined by
4,=0, 4,=0, 4,=0.

Note that 4, is identically zero, so that « remains arbitrary; we
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assume it to be a constant. Then, from 4, =0,
(29.8) g = “2 + d'Z — Qo

and from A4, =0,

(29.9) B+ o — aff — oo + d, = 0.
Substituting 8 given by (29.8) into (29.9) yields
oi,—éo~ad2 +ad, =0;
because « is arbitrary, one finally obtains
(29-10) d, =0, d,=oc.

It remains to consider the paramefric poles corresponding to §=2.
Because of (29.7) and (29.10), equation (29.5) takes the form

u —+ Qe — By — e + 4,8 + %‘»’ 2* — Deu® — cpttu — 2° (3%%,}, —u®)= 0.

In agreement with ©®=-—3, 2, one sets
U= P + 7,
Peu + @z

and determines 4,, 4,, 4, by
do+ A+ A7 4 0(F)
=P -+ 9%P— 6P — ¢z +d,& + %ze‘ — BgP? e 02* P — 34*PP 4 22 P2,
The condition for stability is given by 4,=4, = 4,=0.

From 4,=0, it follows that a=0. Then 4,=0, 4,=0 yield re-
spectively

48+ co=0, 4?‘{“{24 =0
or

d‘:———CQ

which is already satisfied [see (29.10)].
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The stable equations of this class are thus
(29.11) Y = — Byy — 35" — By*y + ey + Coy + do

where ¢, and d, are arbifrary analytic functions of x.
To infegrate these equations, set dy=g¢ and integrate with respect
to x; then

{29.12) Y=—3yy — o’ + ey + ¢ + K.
Equation (29.12) is of the second order, of type I [see Part I, equa-

tion (20.4)]; by setting y = g , it reduces to a linear equation

v =0 + (g + K)v
of the third order; therefore, y(x) is stable.

ViI. Equations of class V.

30. - The stable equations of this class are of the form
‘ - . at
(80.1) y=oyy + 2ay* — 5 Y’y + F(w, y).

The solutions of equation (30.1) have two sets of simple parametric
poles determined by

as, =—2, =0, 3;
(30.2) {

as, =—6, 0=—4, 3.
The associated equation in u is
g P — zz'a(4 -+ a8) 4 u(l? + Tas 4 (%) +2a, —c,5+d,8
¥ ‘ 3 .
(30.3) + #(dys — Co) -+ d,2° + d;_z -+ uz(30, —¢,8) — co?u — a,7*u

+ a,2%u* + 2u’(7 + 3as) — & Buu — #¥) =0

where s is equal to s, or s,.
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By a suitable transformation T, one may assome
(80.4) a=—2, a,=0, ¢,=0

so that s, =1 and s,=23. One has only to determine A, p ¢ by setfing

3A+D)—ap —a, =0,
6A +P — ap gi = 0.
With these simplifications, equation (30.3) becomes
su — zit(é — 28) 4 u(12 — 145 4 28*) + d,8* + 2(d,s — o) -+ 4,7’
(30.5) d,

+ . 2° — CoZ'u -+ zu*(7 — 68) — #(Buu — u®) = 0.

Now suppose s=1 and note that because 6 =0, a condition for stabi-
lity is d, =0; then equation (30.5) is

(30.6) 2 — 2u + d, — ¢+ d,z 4 do#® — cozu + u* — z(lﬁ’om'&—-— u*y=0.
In agreement with © =0, 3, set
u = P -+ 2%,

P=oa-+4 B+ v+

where a remains arbitrary and will be assumed to be a constant parameter.
Fuarther, determine A,, 4,, 4, by setting

oP — 2P+ d, — ¢ -+ d,z + d@® — cgP + P* — 3:PP - zP?
=4+ 4,2+ 4, + 0
and note that B, v are given by

(30.7) 4do=4,=0
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and that the condifion for stability is
(30.8) 4,=0.
One obtains by using (30.7)
(30.9) B=1o" + ds — 0,
(80.10) 2y =—dra+d,;
then (30.8) yields
(30.11) B+ 2y — af — 2uy + do — d2B = 0.

The left hand member of (30.11) is a polynomial in o of degree 2;
becanse a is arbitrary, one has

d, =0,
(30.12) 2d, = Co,
2dy = ¢, — 2d, = 0.

By virtue of these conditions and with ¢, being replaced by 2c,,
equation (30.1) becomes

30.13) 9= 2y — 4" — 29y + 20y + 0y
where ¢, is an arbitrary analytic function of wx.
To integrate this equation, multiply both members by 2y and note that
2 ..._ i {2 .- . .2).
Y9 = gz “YY—Y);
equation (30.13) is thus equivalent to

d ., - w4 2, 4 d 2
Y —Y)=— & Gy + ¥+ 2 5 )

and also to

= Oy Y £
(30.14) y=g, =Wy —g oyt 4.



F. J. Bureav: Differential equations with fized critical points 63

This equation of the second order is of Type III, class E.16 and may
be reduced by the f¢ransformation x — ax, y—By, af =1, Ka*=-—1 to
the canonical form

Y=g, —WY—y toy— g
it is reducible to a linear equation of the fourth order by setting yzg .
Therefore yx) given by (30.14) or (30.13) is stable.

31. - It may be verified that no new condition for stability arises from
the second set of parametric poles.

Taking into account the conditions for stabilify obtained in the prece-
ding article, one may write equation (30.5) as follows (note that s=3)

2*u -+ 200 — 12u — 2¢02 + 2" — 2¢02°u — 11zu® — 2*(Buu — u*) = 0.

Since © = — 4, 3, one sets
u = P + 2%,
P=oa+ Bz -+ y2°

and determines 4,, 4,, 4,, 4, by sefting
#P + 2P — 12P — 2c4 4 €2’ — 20,8°P — 11z P? — 3:*PP 4 22 P?
=A,+ Az 4+ 4,87+ 4,8° 4 O ().
Obviously, o« =0 and A4,=0; then 4, =0, 4,=0 give respectively
B8 + o =0, 30y =c,.
The condition for stability is then 4,=0 or
B+ By — 26,8 — 1082 =0

and is an identity.
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VIIL. Equations of class VI
32. - The stable equations of this class are of the form
(32.1) y=ayy+bay’ —a’y'y + Flz, y).

The solutions of these equations have ftwo sets of simple parametric
poles determined by

32.2) jam=—1 0=04
(32.
/

as,=—6, O=—6,5,
The associated equation in » is
P 4+ asjeu + {12 4 13as + a*s*yu + 2a, — ¢,8 + dys*
(32.3) 2 + 2(dss — co) + 2°dy + %‘l &° + 2ufBa, — c:8) — cot’u

L Zayu — u*) + 2u {7 -+ 6as) — 22{314?/}, —u¥) =0

where s is equal to s, or s.
By a suitable transformation 7, one may assume

(82.4) a=1, a0, =¢ =0
and consequently, 8, = —1, 8 = — 6. One has only to determine A, w, o
by setting

a
A-—(I)+—&— =0,
SA43P —ap—a, =0,
12A + @ — 2ap + .‘.;L:o.

For couvenience, we shall write 3¢ instead of ¢,. Then because of (32.4),
equation (32.3) may be rewritten as

ou — 4+ as)zz}, + (12 + 13as + a®s*) u + dss® + 2(dys — 3c)
(32.5) )
+ #*d; + fz—" 2* — 3ez*u + (7 4 Gas)eu® — *(Buu — u’) = 0.
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Now suppose s = — 1 so that

(32.6) 2°u — Beu + ds— (3¢ + dg)z + d,7° — dp2® - Sc*u -+ su® — zﬁ(3uu. —u¥)=0.
Since © =0, 4, a condition for stability is

(32.7) d; = 0.

Further, set
# =P 4 ',

P=oa 4 2z 4 y&° 4 62°
where « is an arbitrary parameter, and determine 4,, 4,, 4;, 4, by sefting

eP — 3P — (8¢ + i) + dt — do#® — BceP + P* — 2(3PP — P9

=4, + A - A2 + A2 4 O .

In agreement with the general theory, §, vy,  are given by
(32.8) 4, =0, 4,=0, 4,=0
and the condition for sfability by
(32.9) 4,=0.
The equations (32.8) yield respectively

( 3f=0a*—3c—d,,
(32.10) 4y =oad,+d,— 8,

85 =dyf— o) — diz—do+ B+ 7.

Finally, 4, = gives
(32.11) Y + 85 + ay — a3 — BBy — Scy + ay =0
which is a polynomial in « of degree 3. Since a is arbitrary, the coefficients
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of this polynomial are identically zero. The coefficient of «® is 'flé—g d,: therefore

(32.12) d;=0.
With this simplification, one has
3f=10a*—3c,
(32.13) dy=di+o,
35 = — dyt — dy — & +- %ﬁ (d, +0)

and (32.11) may be rewritten as

1 A B . i . . 1 .- o . .
6 (0 — ot 4 g @+ 30— i) 4 3 (b — &) — do -+ 5 olds +6) =0
from which it follows that
(32.14) di=¢, do=¢, dy=1co=0¢.
The stable equations of this class are thus of the form
(32.15) y=yy +dy* — y'y + By + cy + ¢
where ¢ is given by
(32.16) ¢=cc.
It is readily seen that ¢ satisfies

(32.17) ¢ =g+ Kot K,

and is an elliptic function of =z.
Moreover,

(32.16) =99 =9+ oy +cf = 2(9-—.7/2)2 (’1)+3—§ + %ﬁ)

+ 4y — o) oy + oy + ¢) + 4o*y* + deoy + 20 + K

is an integral of (32.15) [see CHAZY [2, a]]



W, J. Bureau: Differential equutions with firved critical points 67

I1X. Equations of class VIIL

33. -~ The stable equations of this class are of the form

(33.1) y = ayy + 2ay” + 20°y%y + Flo, ).

The solutions of this equation have two sets of simple parametric poles
determined by

(33.2)

The associafed equation in #u is

2 — (4 + as)zu 4 (12 + Tas — 2a°s°)u + 2a, — 6,5 + dss®
(33.3) + (d28 — co)z - du?® + %" 2* -+ (Bay — ci8)uz — c2’u

+ (7 + Bas)su® — au* (w — w?) — & (Bun — w$) =0

By a suitable transformation 7, one may assume

(33.4) a=1,

{33.5) 20, 4+ ¢+ ds =0,

(33.6) 20, — 3¢y + 9dy, =0

or

(33.7) a=1, 4o, +3¢,=0, 20, 3d;=0.

One has only to determine A, p, ® by sefting

A~®+Z=m

8A—-9®+16ap+4a1+%—1=0,

6(1)—-2ap——2a1~—§aq2—3=0.
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Now assume @ =1 and s = —1; then (33.3) may be rewritten as

P — Bou + Bu — (0o + do) 2 -+ dut® — do?® + (305 + ¢3) 2 — o — .2 (1}& — ¥
+ dou? — 2(Buu — u?) = 0.

Set
#w=P + 2%,

P=a- Bz + YZZ;
and determine 4,, 4,, 4., 4; by setting
2P — 32P 4 3P — (6o + d) % + dh#® — dod®
+ (3a: + ¢4) 2P — 2’ P — a,2* (P — P?) 4 4zP* — #43PP — P
= Ao + Az + 47" + 442° + O2Y.

Because of (33.5), 4,=0 gives a=0; since O =1, 3 is an arbitrary
parameter and a condition for stability follows from 4, =0, namely

(33.8) Co + dz - O .
Then A,=0 yields
(33.9) =20, + )B4 d
and 4,=0 in turn results in
(33.10) Y+ (@ 0) ¥ — 6o — dy = 0.

From (33.9-10) and since § is arbitrary, one obtains two additional condi-
tions for stability, namely

(83.11) 20, + ¢ + (ax + ¢) (20, + €)= co,

(33.12) dy + (02 + o) dy = dy .
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34. - We proceed further by considering the second set of simple para-
metric poles, namely s, =3, 08 =3, 5.

For convenience, we write 4c and 12d instead of ¢, and d, respectively;
then according to the preceding section

s &1:—3(5, d3=20, Go+d2:0,

34.1) . .
( ? Go=—2c+ ¢, do=12(d 4 cd)

50 that equaftion (33.3) may be rewritten as follows

2w — Tew + 15u + S(E; + ¢z + 12d2* + 4(d + cd)e® — 21cuz
+ 2 + ¢*) 2*u + 16zu° 4 3¢ (1 — u?) — 2 (Buu — w)=0.
Because 0 =3, 5, one sets
u—=P 4 7,
P=3z+4 v+ 82" ez

[obviously « =0} and determine 4,, 4., 4;, 4., 45 by

#P — T2P ++ 16P + 8(c + ¢%) 2 + 12de* + 4{d + cd) &® — 21caP
+ 2(¢ + ¢} #*P + 162P* + 3¢2*(P — P*) —z*(3PP — P9
= Az + A7 -+ A + A+ A2° + 0.
The coefficients §, v, 8, ¢ of P are given by

AIZO, Agzo, AgzO, A,;,:O;

the condition for stability is 4, = 0.
Since @ = 3, 3 remains arbitrary. Then, 4, =0, 4, =0 yield respectively

(34.2) B=—(c+ ¢,

(34.3) 3y =58+ 18c8 — 12d.
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Further, 4, =0 gives
§—3v 4 8B +4(d+od)— 1hoy + 2c + ) + Bef =0
or by virtue of (34.4),
(34.4) B + 6(c + 4638 — 4(d + 4cd) + 10c3=0.
From 4,==0, it follows
(34.5) e=1v + 116y — 1208 + 3¢y.
The condition for stability 4, =0 yields
(34.6) e+ 287+ By -+1285+ 67 —9ce+3cBy =0,
Because & is arbitrary, the coefficient of & in (34.6) is zero; therefore
(84.7) c=4c.
By virtue of this relation, one obtains
(34.8) B=—5c®, [=-—40c°, B=—40.12¢,
(34.9) 3y = — 290¢* — 124
and from (34.4)
(34.10) d 4 4ed + 2800 = 0.
Then by using (34.7) and (34.10), one has

v = 160d — 40¢*,

y=—16.320¢,

230
3

e = —12¢5 4 4% 87¢*d — -439 .55138¢°.

e=—12¢% 4 4. 67¢°d 4

c®,
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Substitution in (34.6) gives

2 « 931t == 0.

34.11) 12d + 4200'd — g

By differentiating (34.11) and because of (34.10), one obtains
(34.12) 12d° 4 420 ¢*d + 193565¢* =0,

Comparison of (34.11-12) shows that ¢ =0, d =0.
Therefore, the stable equation of this class is

Y=y + 29"+ 20 .

X. Equations of class VIIL

35 - The stable equations of this class are of the form
(35.1) 9=cy’y + Flz, y).

The solutions of this equation have two sets of simple parametric poles
determined by ¢s*=6, 8 =2, 3.
The associated equation in » is

| su— deu + 6u + 20, — 6,8 + d8°

(55.2) — &(co — dy8) + di2® + d—":f + uz(3a; — ¢.8) — cot*u
< + Tu*z + ao’u* — @t — 243U — u’)=0.

By a suitable transformation 7, one may assume

(35.3) c==6

and therefore s===1 and 2 a, — 6,8 -} dss* =0 or

(35.4‘) [ 0 ) 2&1 + d3 —_ O .
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One has only fo determine A, p, ¢ by setiing

2A — 20 +§:o,

2
362-”‘1"61:().

With these simplifications, equation (35.2) becomes

ou — dou -+ 6u — 2(Co ~— dp8) + dh?”® - dps?’
+ Bauz — c*u + Tu'z + a2 — nEU — 2 (Suu — ¥ =10,

Set
= P 4 2%,

P=o+fBotye
and determine A4,, 4,, A,, 4, by setting
2P — 42P A 6P — 2oy — dy8) - dy2® -+ dys?®
+ 3a.2P — 2" P + T2P* 4+ 0,8" P — a,8° P — 32*PP + 2 P®
= 4, + Az -+ A5+ 425+ 0% .
Obviously a==0 and y is arbitrary. Then 4,=0, A4,=0 yield respectively
‘ 2B =co— dy8,

(35.5) {

so that, since §==1,

{30.6)



F. J. Burpau: Differential equations with fized critical points 73

The condition for stability, 4, =0, is then
(85.7) B+ 2B+ dos + tay —cof— @ f=0.
Because y is arbitrary, this yields
a, =0

and consequently [see {35.6)].

d;=0 or dy=2K,

dy = ¢y .
From (35.7), one obtains in the usual way

éo+d;zO,

2d{) == Cng .

Therefore,
dlzéo:"—4:K2x+K1,
Cp — — 2K2$2+K1$+K2,

do = K(— 2K*?s* 4+ Kz + K,).

Now we have to consider several cases according to the values of K, K,, K..

i. Suppose. K=0; then

¢ == Kz + K,, di=4d, =0,

a. When K, =0, the stable equation is
(35.8) y=6y'y + Kuy.

b. When K, == 0, the stable equation is
(85.9) ¥ =60y + Kz + Koy + Koy .
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ii. Suppose K 5= 0; the stable equation of this class is

¥ = 6%y + (— 2K%* + K + Ko)y + 2Ky® + (— 4Kz + Ky)y

(35.10)
+ K(— 2K*%* + K,z + K,).

On using a linear transformation, one may suppose K; = 0.
Then by z — az, y — By where af=—1, Ke®*=1 and K,a’= —4h
where h is a constant (arbitrary), one obtains

(35.11) ¥ = 65y — (22° + 4h)y — 2 — day + 22° + 4k .
Substitution of y = u -+ = brings (35.11) fo
w == 6uts + 12uuz -+ 4(z* - hjw 4 du® 4+ dou .
This equation is obtained by differentiating with respect to z, the equation
(35.12) Qun = u* + 3u* + Bz + 4(2* + hju® + 2K
in order fo eliminate the seeond constant K.

Equation (35.12) is a stable equation of the second order [see Part I,
table I, eq. 4]; therefore, y(z) gives by (35.11) is also stable.

Pagrr III
Equations of order four.

1. - This paper is the third part of a group of studies concerning diffe-
rential equations with fixed critical points. We shall again use the method,
notations and terminology employed in Parts T and II.

We write the equations concerned in the form

(L.1) Y =ayy +byy + 'y + dyy’ + ev’y + fy* + Flz, ),
where

F(z, y) = ay + (9 + o)y + do® + (es9® + ey + ey
+ 1y 1y + Ly + fy + fo;
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a, b, ¢, d, e f, with or without subscripts, are analytic funetions of z in a
certain domain D.

The reduced equation corresponding to (1.1} is easily determined by
setting & =z, + ¢/, where z, is a point in D and ¢==0 a parameter; one
finds y* = 0.

The only value of y for which Cauchy’s general existence theorem does
not apply to equation (1.1) is y ==co. To determine necessary conditions for
the absence of parametric critical points for equation (1.1), suppose that in
a neighborhood of z = z,, y(z) takes the form

(1.3) Yz) = ——,

where r > 0 and s(z,) &= 0; s(x) is a holomorphic function of z.
Substitute y(z) given by (1.3) into (1.1) and note that

o) = — T [+ Ol — sl

O P
%F—MVKQ%mew%m

yiig) = 1) {(;‘ + 2}(1 360 14 1 (5 — a)).

i. Tirst, suppose that at least one of afxo), b(xd), cl@o), d(wo), elmo), [ (o)

is not zero; then the dominant terms arise from y®, yy, yg;, yzg), yg}‘z, ysg./, 4°.
It is easily seen that » =1 and that s(z;) must satisfy the equation

(1.4) fs* — es® 4 (2 & d)s' — 2(3a + b)s — 24 =0

thus y(z) has at most four sets of parametric poles.
In addition, every solution of the equation

(1.5) g = ayy + byy + v’y + dyy* + ey'y +

where o, b, ¢, d, e, f are constant, must be single-valued.
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These conditions restrict the possible values of a, b, ¢, d, e, f, as will
be seen in the following sections:

ii. Second, suppose f(z) = elzo) =0, 2c(xo) + d(xo) = 0, 3a(xo) + b(zo) = 0.
Substitution of (1.3) into (1.1) shows that every solufion of the equation

¥ = alyy — 3yy) + o’y — 2uy’)

must, be single-valued. However this is known to be impossible except when
a = ¢ =0 [see CHAZY]

iii. Third, suppose a=b=c=d=e=[f=0. The dominant terms

arise from ¥*, yy, ¥° y°. Then =2 and the corresponding equation is

(1.6) v =0yy + by’ + Ly°;

¢, do, f; are constant and every solution of (1.6) must be single-valued,
Moreover, s{z,) must satisfy the equation

(L.7) fa8°+ 2(3¢; 4 2dg)s — 120 =0.

iv. Fourth, suppose ¢, = dy = f; = 0. The dominant terms arise from

¥, yy Then r = 3 and the corresponding equation is

(1.8) Yo =eyy,

where e, is a constant.
The integral of (1.8) satisfies

_.E}_Z

and is a maultiple-valued function except when e; = 0. [see Part II, eq. (5.12)].

v. Pifth, suppose e, = 0. The dominant terms arise from y* and y* so
that r = 4. The correspoading equation is

(1.9) ¥ ="r9,

where f; is a constant.
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This equation is not stable except when f; = 0. To prove this, assume
fr=4.5.6.7=2840 (by replacing y by «y). The equation

yiv = 8407

is satisfied by y = «~* Then set y =2~* -} e¢; 2(z) is determined by
. 2
2 = 840 (Eé— Z - szz) .

According to the general theorem of stability, z(xz; ¢) given by

2lx; e) ==2lz) + sanlz) + ...

must be single-valued together with 2z}, #(z),....
In particular, z,(z) is determined by

2 — 1680 o = 0;
the related indicial equation is

00 —1) (8—2) (0 —38) — 1680 =0
or

(©+5) (0 —8) (88 —30 442 =0

and has two complex roots. Therefore, z,(x) and also z(x) are multiple-valued
functions of z.

2. - In the following sections, we consider the cases r=1 [eq. (1.5]]
and r =2 [eq. (1.6}].

When r = 2, set
(2.1) y=s"%, =1+ uz,
where s is a constant and note that

. 1
2 s g— J—
Fy= 28(z+u),

z‘”’g;z 2s (—i— -— 24 + Du -+ 2zu2),
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2y = — 2s (-1; -+ 2*u — Teu 4 27w — 62°uu - 192u4° 4 43%‘*) ,
2y = 2s [29 - 168u% - 2(— 48y + 165 u?)

422 (9u — TLuw -+ 65 %%
o+ 2¥(— u + 6u® + Sun — 24 wu + Suf)|.
Substitute y(z) given by (2.1) into (1.6) i.e.
2.2) y© = cyy + ay* + fy°
[we omit the subscripts]; then, s(z) is determined by
(2.3) f8*+ 2(3¢c + 2d)s — 120 =0.
Moreover the roots of the indicial equation corresponding to

2u— 922 u + (48 — cs)zu — (168 — Bos — ddsju =0,

ie.,
24 00O —1) (0 —2)—99(0 — 1) 4 (48 — cs)O — 168 4 bes + 4ds =0

must be integers.
Set ® =y — 1; then (2.4) becomes

(2.5) P — 1632 4 (86 — cs)x — 240 + 28(3c 4 2d) = 0.
Now, we have to consider two cases according as f is or is not zero.
i. f=0. Equation (2.3) is
(2.6) 2 (3¢ + 2d) s = 120
and the related stable differential equations have only one set of double
parametric poles.

On taking (2.6) into account, equation (2.5) may be rewritten as

(2.7) X—10y"+ (86 —csjx —120=0.
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Because the roots y., ¥.. xs of this equation must be integers, our problem
is now: to determine all the integral solutions of

XaXeXs =120, at Y+ xa=15.
With these values of ¥, ¥., Xs, one finds

8 = 86 — (YaXe + XeXs + XaXa) -

The only solutions of our problem are:

a) X1:47 X2:5) X3:6§

es == 12, ds =12, c=d;
the desired equation is
(2.8) Yy = olyy + ¥) .
By a transformation y — ay, one may assume ¢ = 12 so that (2.8) becomes

g =12(yy + ).

To prove that this equation is stable, integrate with respect to z and find

y=12yy + K,

y =6y + Kz + K,
i.e. a stable equation. [see Part I, Table I, eq. 1]

b} =2 Ye=—38, xs=20;
¢s = 180, ds = — 480, 8¢+4+3d=0;

the desired equation is
. e . -
(2.9). y* = 5 Byy—8y).

We shall not consider this equation in this paper.
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ii. f==0. Let s, and s, be two solutions of equation (2.3); then

(2.10) 8 8 = ~— -21; (3¢ -+ 2d),

@.11) 518 = — 3?9 ,

2.12) 240 — 2(3¢ + 2d) s, = 120 (1 — %)

so that equation (2.5} becomes

(2.13) 3& — 15y + (86— 681) x — 120 ( — L}) =0.

The roots of this equation must be integers and similarly for

2.14) X* — 152% 4 (86 — 08;) % — 120 < _ _zz_> -0,
1
Now set
120( ——8L>_—-_— , 120(1_£a>_q
Sz S
80 that
| 11
(2.15) =i

Our next problem is thus: to find the integral solutions of (2.15). This pro-
blem has a number of solutions; we leave it for another cecasion.

3. - Suppose » = 1 and set
8.1) Y=gz, é:—:l—!—zu.
Substitute y(z) given by (3.1) into the reduced equation
(3:2) Y= ayy +byy + v’y + Ay s + ey’y + 1o
and determine s(z) by

(3.3) fs*— es* 4 (2¢ + djs* — 2(8a + bjs — 24 = 0.
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Moreover the roots of the indicial equation corresponding to
e — (5 + a8) 2*u—~-[20-4 (4a+-b)s— cs?] zu—[60-(12a-+5b) s —(3c-+2d) s*+fes?u=0,
i.e.,
BO—1)©O—2)— (5 -+ as)8(0 — 1)+ [20 4 (4o + b)s — ¢s*]O
(3.4)
— [60 4 (120 -+ Db)s — (3¢ 4 2d)s* 4 es*] = 0,

must be integers.

Set & = y — 1; then (3.4) becomes

X' — (11 4 as) x* + [46 + (T + b)s — es?]
—[96 -+ 6(3a + b)s — 2(2 + d)s* + es¥] = 0.

(3.9)

We have to consider several cases according to the values of @, b, ¢, d, e, f.

i, Suppose that f=e=c¢=d =0 and that ¢ and b are not both zero.
Then s is given by

(Ba +b)s+12=0;
moreover, the solutions y, %2, ¥s of
¥ — (11 4+ as)x* + (34 + 4as)y — 24 =0

must be infegers.
One obtains two solutions, namely,

a. X1:1; X2:45 X3:6;

The corresponding equation
(3.6) g =byy

is stable. To prove this, observe that a trivial transformation enables one to
assume b = — 12 and brings (3.6) to

(8.7) g+ 129y =0.
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Now integrate (3.7} with respect to z and find

y=—6y+K;
therefore y =2 is a solution of z = — 62° -+ K and is an elliptic function 8(z).
Thus, y{z) is stable.
Note that @ =0, 3, b,
b. n=2, X2 =3, X =4;
ag = —2 bs = —6, 30 =06

The correlated equation is

(3.8) ¥ = alyy + 3yy) .

To provo that this equation is stable, observe that a trivial transformation
enables one to assume ¢ = — 2, b = — 6 and brings (3.8) to

(3.9 yr=—2yy —6yy.

This equation is equivalent to the differential system
=y, 5=0;

therefore, y(2) is stable.
Note that ® = 1, 2, 3.

ii. Suppose that f=e =0 and that ¢ and d are not bothzero. Then s
is determined by

(3.10) (2c+ d)s* —2(Ba 4+ bjs — 24 = 0.

Moreover, the solutions y,, ¥z, ¥s and Ay, A, Ag of
(3.11) X — (11 4 asy) x* -+ [46 + (Ta + b)s, —cs}]y — Pis,) =0,
(3.12) A — (11 4 as) A2 4 [46 + (Ta - b)s, — ¢s?| A — P(s;) = 0,
respectively, must be integers; we have set

(3.13) P(s) = 96 + 6(3a + s — 2(20 + d)s° .
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From (3.10), one obtains

24

(3.14) 20bd=— —,

(3.15) 23a 4 b) = — 228+ 8)
8182

and thus

S pEP(81)=24( — -gi),
2
(3.16)
e q=Pls) =24 (1_. fi)
81
Therefore,
24(p+ 9 = ¢
or
; 1 1 1
(3.17) r <+ it %

Since y; and A; must be integers, p and ¢ are also integers. Our next problem
is thus: to determine all the integral solutions of (3.17).
The solutions of this problem are given in the following table together

with the corresponding value of —zi\given by (3.16).
2

p q /82 y 4 q — 8,/8;
6 — 8 3/4 25 24.25 1/24
8 — 12 2/3 26 24.13 1/12
12 — 24 1/2 27 24.9 1/8
15 — 40 3/8 28 24.7 1/6
16 — 48 1/3 30 24.5 1/4
18 — 3.24 1/4 32 24.4 1/3
20 — b,24 1/6 33 8.11 3/8
21 — 7.24 1/8 36 72 172
22 — 11.24 1/12 40 60 2/3
23 — 23.24 1/24 42 84 3/4
48 48 |
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4. - Suppose that a solution (p, ¢) of (3.17) is known ; then (3.16) gives

the value of -~ .
Sa

Corresponding to these values of p and g, there are equations (3.11)
and (3.12) whose solutions (xi, X2, Xs) and (A, As, As) must be integers;
therefore,

(4~1} KiXe2Xa =D, A Ag ?»s"-:q

and these relations give a finite number of possible values for {x., X, Xs
and (A, Az, Ag
With these particular values of y; and 2;, one has

a8, = z K — 11 s
(4.2)
a8y = )] Ri—-— 11

and consequently a value of s;/s,. The desired solutions are those which
correspond to the value of s,/s, previously given by (3.16), [see the prece-
ding table].

Further, bs, and bs, are determined by (3.15); then, cs} and cs? are given
by [ef. (3.11-12))

(4.3) OS‘: = 46 + (7“ + b)Sl — E Xi Xj s

(4.4) 08 = 46 + (Ta + Bjs, — S A, A,

Finally, ds} and ds; are determined by (3.14).

Except for (p, g¢) = (12, — 24) and (20, — b5.24), the values obtained for
S /s, are not consistent with those given by (3.16).

To bring out the chief features of the method, we consider the case
( 4 Q) = (12; - 24)

From (3.16), one has s,/s, == 1/2. The integral solutions of (4.1} are

S =1 Y2 =3, ¥e =4, as, = —3,
Ao=—2, A, =3, he =4, as; = —6;
== ~—1, Yo = — 3, e =4, as; = — 11,

(4.6)
)\1:-"'—'1, }\22—‘“4:, )\3:"—6, @322_22;



F. J. Burrau: Differential equotions with fized criticul points 85

¥p=—1, Ye=3 , Ye== — 4 as, = — 13,
4.7)
A== —1, A= — 2, Ay = — 12, as, = — 26 .

Now we consider (4.5). From (3.15), one has
4.8) bs, = —9, bs, = — 18.
Then (4.3 —4) yield
4.9 csf=—3, csi=—12
and finally [cf. (3.14)]
(4.10) dsi=—6, ds; = — 24.
From (4.5, 4.8 —9), one concludes that
(4.11) b=3a, 3¢ = —a?, 3d = — 2a°.

The desired equation is thus

. ey . e az - 9 -2
y'=ayy +3eyy — 5 ¥’y — 5 dyy

Lo

or on writing 3a instead of a,
(4.12) ¥ = Bayy + Yoy y — 3ay’y — BaPyy;
for (4.12), the two sets of simple parametric poles are given by

S as, = — 1, 0=0 2, 3;
4.13)
| as,=—2, B=-—3, 2, 3.

For (4,6), one obtains successively

bs, = 15, bs, =30

es;=—3, csi=—112

which is not consistent with 2s, = s, Thus (4.6) does not furnish a solution
for our problem.
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The same inconsistency arises for (4.7).
It remains fo verify that equation (4.12) is stable. By a suitable transfor-
mation, one may assume g == 1 which brings (4.12) to

(4.14) ¥ = 3yy + Yyy — y*y — by y*.
Integration of (4.14) with respect to z yields

y=3yy+3 —3yy+ K,

where K is as usual an arbitrary constant. This is a stable equation of the
third order and of class iv [see Part II, eq. (29.11])].

5. - For p =20, g = —D.24, 65, = s,, one obtains two possible solutions,
namely
S X1*17 X224 y X3:5, a31=~1,
{8.1)
( 7\1: , 12:_5, )\326, 0682:~—6;
s ¥p=—1, K== — 2 ye == 10 | a8 = — 4 |
{5.2) ¢
[ =1 =6 , g= —20, as; = — 24,

For (5.2}, one has

which are inconsistent with 6s; = 8.

For (5.1), one finds

bs; = — 11, bs, = — 66 ;
esi=—1, csi=-—36; d&=-—2.
Therefore,

b= 1lla, €= —a’, d = — 2a°
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and the desired equation is

(5:3) ¥ =ayy + Uayy — a*y'y — 20°yy° .

However, this equation is not stable. In fact, by a suitable transformation,
one may assume @ = 1 which brings equation (5.3) to

(6:4) yo =yy+ lyy — 'y — 29"
Integration of (5.4) with respect to z yields
y=yy+5/—yy+K.
This equation of the third order and class vi is not stable [see Part IT; eq. (32.15)].
6. — Suppose that f==0. Then s is determined by
(6.1) fs* —es* 4+ (204 d)s* — 2(3a 4 b)s — 24 =0,
Moreover the solutions of
(6.2) x*— (11 - as)x* + (46 + (Ta + b)s — os”]}x — P(s) =0,

where s is replaced by 8., S;, 8s, S« (the roots of (6.1)} must be integers; we
have sef

(6.3) P(s) =96 4 6(3a + b)s — 2(2c + d)s® + es®.

On using (6.1), one obtains with obvious notations

e 2¢ +d
Is= —, 2§88 ==
| i o
(6.4) { o ”
2(3a - b)
ES‘SS:——-——————, 8:8,8:8;, == — —
? f 19293%4¢ f
A simple calculation shows that
(6.5) Pls) =24 (1 - ﬁ) (1 — E&) (1 . ﬁ)
82 83 Sy

and similarly for P(s,), P(ss), P(s4).
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1t is left to the reader to verify the relation

(6.6)

In order to proceed further with our problem, it becomes necessary fo
find the integer solutions of the DIOPHANTINE equation (6.6). We hope to
have an opportunity to return to this problem on another occasion.

7. - We sum up the results obtained above in the following table where
the relevant equations are listed together with the related values of s and ©.

A. One set of double parameiric poles.
Class I, [cf. (2.8)].

(7.1) yo = oyy +9) + Flz, y),
(7.2) Flz, 4) = aoy + ooty + ey + fof* -+ fuf + fo:
(7.3) s =12, 0=3, 4, 5.

B. One set of simple parametric poles.
Class 11, [cf. (3.6)].

(7.4) Y =byy + Fz, y),
Flz, y) = agy + (e -+ ¢y + dof’ + (e + &9 + ey

(7.5)
Y o

(7.6) bs = — 12, ©=0 8,5.
Class III, [cf. (3.8)]

(7.7) o = alyy + 3yy) + Flz, 9).

where F'(z, y) is given by (7.5);

(7.8) as = — 2, =1, 2, 3.
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C. Two sets of simple parametric poles.

Class IV, [cf. (4:12)].
(7.9) y* = 3ayy + Yayy — 30’y’'y — 6a’yy’ + Fla, 9),
where F(z, y) is given by (7.5);
(7.10) as;,=—1, =0, 2 3;
(7.11) as, = — 2, 0=—3, 2, 3.

8. - To obtain canonical forms for the stable equations, it is often most
convenient to use a transformation T (X, p, 9), namely,

(8.1) y(z) = Mz)u + pla), t=¢(z)

which does not alter the main features of the equations concerned [A(z), p(z),
¢(z) are analytic functions of z; see Part I, § 18; Part II, § 21).

We note for future use the following formulas where primes denote
aw ., duw , du

. . . . M P —— ar-yry W=
differentiations with respeect to ¢, i.e. u' = di U = ae’ w = ae’ W=
__du
gt
D oy= 2w 4 hu g,
(8.2) 9 = Ap*u” 4 (2A 4+ @) hou' 4 hu + p
Y = rpu’ + (24 + Q) hou’ + Au 4 p,
Y= re*u” + NAg*u’ + Mhow + Au+ o,
where
i ¥
M:gi +300 4+ T, N=3A+0),
(8.3) Y
A = % P = kg
S St
y = AU 4 AgHAA 4 6 D) + [MAg® + (N g’
(8.4)

+ 5 +M—|—MA+M‘D}7\CPM’+XWM+W”.
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For F(z, y) given by (7.5), one obtains

(8.5) Fz, y) = Aout” + (Cyu + Co)u” - Dyu* 4 (Eu® + Eyu + Eoju'
4 Fu* + Fa® 4 Fou® - Fou - F,

where
Ao = agh¢®, Ci=oc\¢?,
Co =[alN + cypp + CoJA9?, Dy = d\*e?,
B, = ezlf‘q.;,
B = [6(2A + ®) 4 2doA + 20 + 1] A2,
By = [0M + 628 + ®)p + 62A + ®) + 2dups + e:° + e + el 9,

F, = [\, F32[62A+4f4p‘+f3]13,

F, = oy + do A* 4 2e, Ap + exp + e, A + 6f, 07 4 3fsp - fo) A7,

B e . n

Y N . % .
Flzaoi-i"clj\P‘l“cz}’«‘l‘coi“i“gdoAP‘l“ezAPz X,
|+ 2eae o tenlps + uA) + eod + 47017 + By 2ap o
Fo=Flz; p.

We also note the following result. Suppose
8 -
Y = o ¢=1+4 zu,

s a constant and F(z, y given by (7.5); one has

/

—Z—i Flx, yy=0(z; uy=A4 + (B + B,) 2

{8.6) S + [fos — €0 + (8o — essu -+ (4@ — ¢,5)u — Byu?]?

& + [fr — estt + cou® — Coth + ao(‘fmﬁ — — ii)] 2 4+ g"— 24,
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where
[ A= —6 a,+ 268 + dos — €,8° + fis®,
\ B, == — 120, 4+ 36,8 + 2ds — e,8°,
(8.7) ;
? B, = 20, — ;8 + 8%,
\ By =Tag — 18 — dos .

Equations of class I

9. - The stable equations of this class are of the form

(9.1) ¥ = alyy +y) + Flo, o),

where

(9.2) Flz, y) = aoy + oy + 09 + oy + o/ + [0 + fo -
Set

(9.3) y::%, =1+ ou

and assume s to be a constant (this is obtained by a transformation T') [the
related formulas are given art. 2, (2.1)].

Recall that as =12, © =3, 4, 5.

On using a transformation 7, we may assume

{‘9.4) (1;212, el+12€6020, 660+f2:-0-

To this effect, one has only to determine A, p, ¢ by

A—Z(Is—l-g:O,

l:; + 2 A) = (M 4 N+NA 4 2N®] + a + ¢ = 0.

ant2 (§ A4+
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With these simplifications, equation (9.1) assumes the form

(95) g = 12(yy + ¥ + aoly — 124 9) + coly — 65°) + ey + f + fo .

Substitution of y(z) given by (9.3} into (9.5) shows that this equation is equi-
valent to the differential system

(9.6) v=1-+zu,
£*u — 92°u - 36zu — 60w — 11724 — 657°u° 1 T1sun
— 62*u® — Setum - 245 utu — Srut

(9.7) . - .
+ a[— 1620 4 T2*u — 192°u* — 2°u 4 62°uu — 42°u°

+ co[Bz*u — ou + 22°u%] — e2*(1 -+ 2u) + —gf— A -];‘L =0,

For convenience, we denote by E(u) the left hand member of (4.7).
Because € = 3, 4, b, one sets [see Part 11, § 3],

(9.8) u= P4 v,
(9:9) P=a+4Bz+4ves*+ 32 ez,

where 3 and ¢ remain arbitrary and may be assumed to be constant parameters.
Substitute # given by (9.8} into (9.7); one obtains

(9.10)  #7e"0 + 62% + 620] + Ao + Ai# + 4i2* + 4,8 + A + A° + O*) =0,
where the 4; s are determined by
(9.11) E(P)= A, + Az + 4" + 4,2° + Az -+ 4:2° + 0(2°).
We define «, B, y, 8, ¢ by setting
A4,=0, (=0,1,2 3 4.
Equation (9.10; becomes

(9.12) 2 + 62°0 + 62w + A; + 0(2) = 0.
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For equation (9.12) to be stable, it is necessary that
As = O P
From A4, = 4, =0, one immediately deduces o« = 8 = 0 which simplifies our

problem.
Then 4, =0, 4, =0, 4, =0 yield, respectively,

(9.13) 67+ e =0,
(9.14) 129 —6aey + f, =0,
(9.15) Y=o + G0y

while 4; =0 gives

(9.16) T— 31 4 oz — ay  6f25 — 1) — ooy + 1 = 0.
Because & and ¢ are arbitrary, one obtains

{9.17) a, =0, =0

and consequently

(9.18) e,=0, f,=0.

Therefore, one determines v, ¢, f1. fo subject to the following conditions

/ =0,
\ 6y 46 =0,
(9.19) { _
( f1 + 12Y = O’
fo =6&Y.
Accordingly,
S Y = le + Kz,
(9.20) ) & =—6(Kz + Ky}, fi=—12K,,

( fo=— G(Klw -+ K.)f .
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The stable equations of class I are thus of the form

O21)  yo= 120y +y) — (K + Koy — 12Ky — 6(K.z + K.

‘We have to consider two cases according as K, is or is not zero.
i. K, =0; equation (9.21) becomes

(9.22) y* = 12(yy) — 6K,y — 6K:

or on integrating with respect to =,

(9.23) y=12yy — 6Ky — 6K22 + K, .

This equation (9.23), of the third order and of class I [Part II, eq. (22-23}], is
stable ; therefore equation (9.22) is also stable.

[On setting y = 2, equation (9.23) becomes
(9.24) 7 = 1222 — 6Kz — 6Kz + K, ;
see eq. (14.7) below].

ii. K4 0. A transformation » — az, y — By, where fo’ =1, Kia* =1
reduces equation (9.21j to the canonical form

{9.25) ¥ = 12(yy) — 6zy — 12y — 62°.
Now set y = :;:; equation {9.25) can then be wvitten
2* = 12(22) — B(zz) — 62 — 642.
Integration with respect fo = yields
2 =125 — 6oz — 60 — 20° + K,

an equation of class II [substitute z, y with az, By, af = — 1, a* =1 see
eq. (14.10) below].
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Equations of class 1L

10. - In the remainder of this paper, we consider equations whose
solutions have simple parametric poles. We sef

(10.1) y:Z, e=1+ uz,

where s is assumed to be a constant (this is obtained by a transformation 7).
The stable equation of class Il are of the form

(10.2) yo =byy + F(z, y),
where F(z, y) is given by (7.5).

The general solution of these equations has one set of simple parametric
poles characterized by

(10.3) bs +12 =0, 0=0, 3, 5.
Substitute g(z) given by (10.1) into (10.2). In order to simplify notations,

we suppose at once s=—=1 which can be obtained by a transformation T
(see below); one has

2 u — Betu -+ 8au 4+ A 4 2{B, -+ B# — 2u’|
+ 2 {fs — € + {(3¢co — eju — Byu® + (da, — e — Bu® + 13m'a]
{10.4) . ) . . . .
+ 2 f1 — eott — Cott - Cott” - ao(Suu — u® — u) — duu — 3u® 4 6un’— u']

+f03420’

where 4, B;, B,. B, are given by (8.7).
To determine a ftransformation T in order that

(10.5) b=—12, ¢=0, B,=0

[then s = 1], one has only to choose A, 9 such that
A @+ g =0,

A—l—%—:O;
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then p is determined by a linear differential equation of the first order in
the form

. s 2.12.12
b}"“}"(cl‘*“l?‘z*'f‘ """ T fsi)%"‘f"Mz:O)

where M, depends on X, ¢ and on certain coefficients of F(z, y) = 0.
With these simplifieations, equation (10.4) can be written [for convenience,
we replace a, by a and ¢, by ¢

#u — Dt o Sou + A + z[Byu — 20

+ 22 [fs — €0 + (3¢ — eyJu — B,u? + dau — 3u® + 13uu)]

(10.6) . . . .
+ &(f: — et — cu - cu® -+ a(3uu — u — u?) — duu — 3u’ - 6uu® — u|
i +f054201
where
A:—*Ga—}‘dg—eg—f“fg,
B1:-12a/+2d0_62,
(10.7) '
By=2¢c—e +f,,
B3:7a'—do.

We denote by E(u) the left hand member of (10.6).
11. - To proceed further, set

\ w=P4 2,
(11.1)
? P= 204 Bzt vs + 82 ez,
[2« instead of « simplifies the notation]. Equation (10.6) becomes
250 + 10220 + 1820] 4 Ao + Az +4,2° + A7 + A’ 4 A® + 0% =0,

where the 4,'s are determined by

E(P)= Ay + Az + A2® + A,2° + A2* + A2° + 0.
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According to the general theory, « and & remain arbitrary and are assu-
med to be constant parameters.

The condition for stability are given by the relations
4,=0, t=0,1, 2, 3, 4, 5).
A simple but tedious calculation gives the following results.
i. Ay =0 shows that
(11.2) 4=0.

ii. A4,=0 gives

(11.3) § = ot — éi_l u

iii. From A4.=0, it follows that

(11.4) by = Y20® + Y22 + 1o,

where

t2=4B, + 5B, —4a,

(1L5) o=— LB %

3 (B, + 4a) — 2{3c — &),

U Yo=e€—"[..
iv. On using (11.3), we write 4, = 0 in the form

7

28 4 67 + 4af — 12ay — By + 4Byof + 2B (8 + 207
—(2¢c — e)f — dco® + 20000 —
—a2B+ 67+ 1248 —8a% =0.

(11.6)

The left hand member of (11.6) is a polynomial in « of degree 3; because
« is arbitrary, the coefficients of this polynomial must be zero. In particular,
on taking into account the coefficient of «°, one obtains

(11.7) B.+B,=a.

Annali di Matematica 13
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We shall consider later on the other conditions for sfability given by (11.6).
v. The condition 4, =0 gives

de=(F+v—20f — 100y — 38 + 4028) — 8ab - (B, - 6ap
(118} ¢ 4 68y — 4o®y — 2B,0"8 — B,(8* + day) — e, 8 — ey

F oy + 2af — B) + a(l6ay + 58— + 2ab — 4a%B) + £,

i.e.,
(11.9) 4e = — 80l 4 (B, + 6a)3 + Qo)
where @«} is a polynomial in a.

vi. The condition 4, = 0 is

(Y +day 4+ de — 48y + 8a’y) + Bie — e — B, (2By -+ 423)
(11.10)
— ey —oy+afde+ 1208 + 108y —day — 7 — 2ay] = 0.

The coefficient of a8 in (11.10) is zero; this yields
(1L.11) B, 4 2B, =20
and becaunse of (11.7),
(11.12) B, =0,
(11.13) B,=a.
The coefficient of & is also zero; therefore
(11.14) e, =6(a+ a?).
With these values of B, B, and on account of (10.7), one obtains

(11.15) do=6a, =0, fi=0;
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further, by virtue of (11.3-5), one has

ﬁ—_“o‘g;
(11.16) by =v,2+ 70,
Y, =—20Bc—e,).

12. - With these simplifications, we rewrite 4, =0 in the form [see (11.6)}
(12.1) 6{!-——-120:*{—-Gay——ﬁcocz—{—eiosz—}-Zeeoc-«-fi:O‘

This polynomial in « of the second degree is identically zero. Thus

{12.2) e, = 2¢,
whence

{12.3) fs =0, [ef. B, = 0],
(12.4) Y, =—2¢;

further,

(12.5) fo=c¢—ac,

(12.6) fi="Yo—at.

18, -~ Now we return to 4¢ [cf. (11.8)] and 4, = O [ef. (11.10)]. One obtains

4e=-—8ad -+ 6ad +"Y"' IOa.Y—}- 2aly — epa’

113.1) !
' + c(20® — v} 4+ 12aay 4 fo

or

{13.2 de + 8ad —6ad = e,0° 4 0 +¢,2 + g,
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where

(13.3)

1 -
50‘—‘:6(Y0*—0Yo)+fo-

N —— et

Further we rewrite 4, = 0 as

5 (v + 4oy + e+ doy) — e, — ey — oy

—§—0&[4e—}—8a8+40¢2y—-§-—-20&ﬂ:0.

1

This polynomial in « is identically zero. The coefficient of «® vanishes because
of the value (13.3) of ¢,. The coefficient of «® gives

(18.5) (26 — dac — f) + a(de — dac — f) = 0;
on using (12.4) and becaunse of
(13.6) ¢ =3+ a?)
fef. (12.2) and (11.14)], one obtains instead of (13.5),
(18.7) ¢ =c*.
The coefficient of o gives
(13.9) 3:);0—26'}'0—}—0é—680-a62=0;
on using the value (11.5) of y, and in view of (12.5), one obfains
(13.9) Yo— Yo =10
or by a short calculation,

(13.10) éo — E == Za(ao)'.
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Finally, the coefficient of a° gives
(13.11) 6lfo + af] -+ 20— c10) — Yoo — Yo — a0y, = 0.
It is not difficult to see that (13.11) reduces to
. o,
(13.12) fot+afo= g1,
[use (13.9), (12.5) and v, given by (11.5)].

14. - We sum up the results obtained in the preceding sections.

For convenience, We replace ¢ by 6c.

The coefficients of the stable equations of class II are given in terms
of a function a determined by
(14.1) ¢=6¢ ,
(14.2) a+at=2%

or on sefting

(14.3) o= g ,
by
(14.4) v—2e0=0,
Then

i ¢, =0, dy=60a;

(14.5)
e, =0, e, = 12¢;
(14.6) o — B oeo = 12 alac) .;
fi=f,=0,

(147) f:=6—ac), f,=Yo—aYo,

. 1
fo+ afe= 6 Yo
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where
(14:.8) Yo = €0 — fZ ’
(14.9) Yo—66v,=0.

The stable equations of this class are thus of the form
(14.10) g + 129y = aly + 69 + 66y + 299) + ey + [o" + [y + fo.

15. - To determine explicitly all the stable equations (14.10), we begin
by considering (14.1). One has

(15.1) c=4c¢"+g,,

where g, is an arbitrary constant. Therefore, three cases are to be considered
according to the values of g,, namely,

i. 93:01 G:O,
ii. g,=0, c=z7%,

iii. g,+0, c=38x;0, g5).

Then, we determine @ by (14.2) or, which is equivalent, by (14.3-4); one
obtains the following results

i. g,=0, ¢ =20; then

v=K,z+ K,;
i.a. when K, =0;
a=20;
i.,8. when K, +0,
Kl
0= 4 __
Kz+ K, '’
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and thus

v, =z, Up == &

to whieh correspond respectively

11, o, 4= —,
Z
.. 1
ii. B. a=—-,
; N R 4
T TR + Ky

iii. g, ==0; then
(15.2) v—28(z; 0, g)v=0

which is a LAME equation.

16. - We consider the case g, =0, ¢ = 0. Then

(16.1) f=0,

(16.2) f, = e — ae,

(16.3) fo+afy = é e,

(16.4) YT+ 129y =aly + 65 + ey + fy + fo
Further,

(16.5) 6 =Kz -+ K,.

i. Suppose a=0. We consider two cases according as K, is or is

nof zero.
i.a. K,=0. Then

(16.6) f,=0,

A 1 -
(16.7) fo=; Kiv + K.
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Equation (16.4) is
(16.9 v 1290 = Kug + § Ko + Ko

on replacing « by xa and y by By, where 2f =1, K,o® = 6, one brings (16.8)
to the canonical form

(16.9) g+ 12y =6y + 62+ K.
[Sef g): #; then (16.9) assumes the form
241222 =62 + 62 + K
which is a stable equation of the third order and of class I (eq. 22.23)).

i.8, K, 0. Then

(16.10) f,=K,,

(16.11) fo= R K, (Kyz + K + K.

[y

Equation (16.4) becomes
N P B _ 1
(16.12) g +12gy =Kz + K)y + Ky + 157 Ko + Ko + K.
3

A trivial transformation enables one to suppose K, =0; then a substi-
tation (z, ¥; az, By) where af =1, K ,a* =06, brings equation (16.12) to the
canonical form

(16.13) y* + 129y =6y + 6y + 2° + K,

where K is an arbitrary constant.

ii. Suppose g = KTﬂZ—Ki*K: or by a trivial snbstitution
16.14 o= 1
(16.14) =
e K,
Then e, is still given by (16.5) and f, = — - Further,

; 1 1 2,
fo‘l‘;fo:@(ng"f‘K‘x),
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therefore, when K, =0,

K2
(16.15) fo= 1—24 z
and when K, 5= 0,
1 2 a3 1 2
(16.16) fo= K 2+ 5 K, K.o* —

K
x

K4. 2 Bs
v g Kot

When K, = 0, the stable equations (16.4) are thus of the form

(16.17)

¥+ 129y = — @+ 6y + Ky + T3 w+ =

which may be brought to the canonical forms

(16.18)

(16.19) g - 12yy =

[For (16.19), «f = 1, K,a® = 6],

yo+12yy =

1 Y . 6 ' K
S U+ by— —y e+ -,

On settmg
= ?1 + 6?;’2 s
equation (16.18) becomes
-1 1
z = - 2 -+ =
and thus
z=Ka—1.

Therefore equation (16.18) is equivalent to

5+61)2:Kx—1

which is a stable equation of the third order [see Part 11, eq. (27.2))].
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When K, =0, the stable equations (16.4) are of the form

v+ Ryy=— G+ 69+ Ko+ Ky— -y

(16.20)

1 1 1 K,

Equation (16.20) may be brought to canonical forms, namely,

i, when K, =0,
. . - 1o . 8 K
(16.21) Y +12yy= — W +6Y )ty + 55+
x 24 z
ii. when K, 40,

y*+ 12yy = ;(y+6y2)+<w+2’(>y— — Y

LIRS SRS e O

(16.22)
Equations of class I1I,

19. - The stable equations of class III are of the form

(17.1) ¥ = alyy + 3yy) + Flz, v),

where F(z, y) is given by (7.5).
The general solution of these equations has one set of simple parametric
poles characterized by

(17.2) as = —2, 6=12 3.

Substitute y(x) given by (10.1) into (17.1), suppose s = 1 [which is obtained
by a T transformation; see below] and for convenience, define A4, B,, B,,
B, by (8.7); one obtains

21 — 32°u + 621 — 6u ++ A + o[ B, + B,u — 12u?)
+ &[fs —eo + (3co — e,)u — Byu® -+ (4a, —-_cl)iz — Tu® -+ 13uu]

(i3 o . : . .
C + &°f, — et — cott - cow® + ao(Bun — u® — u) — duw — 3u® -+ 6un® — u’|

+ foe' =0.
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We denote by E(u) the left hand member of (17.3).
Now determine a T-transformation in order that

o0=—2, ¢, =0, 4=0.

To this effect, one has only to choose A, ¢, p such that

6A+3¢>+%’=O,

1 2 4
2A—3P 4 ap - ao—{—g&(?c%—l—doo{— %—1«&{;‘):0.

Set
u= P2,
P=fz-}v7
e = O because 4 = 0]. Equation (17.3) becomes
2270 4 6220 + 620] + Ay + A,z + A + A28 + 09 =0,
where 4,, 4,, 4., 4, are determined by

EP)= Ao+ A,z + A:5° + A.2° 4 O(z%).

According to the general theory, 8 and y remain arbitrary and are assumed
to be constant parameters.
The conditions for stability are given by

17.4) 4;,=0, (i=0, 1,2 3.

For convenience, we rewrite the values of 4, B,, B,, B, i.e.,

g A =—6a;,+ dy—e,+ [i,

Bi o= — 12“0+2d0—"82;
(17.5) ¢
( B, =2 —e¢,+T,,

B3=7ao""d0.
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18. - We consider the relations for stability (17.4).

i. Because 4 = 0, one has 4, = 0 and therefore
(18.1) o =0.

ii, From 4, =0, one deduces
(18.2) B, =0,

iii, Fuarther, 4, = 0 has the form

@ao+ B)B+ [ — =0
and because 8 is arbitrary
(18.3) ia, 4+ B, =0,
(18.4) fr—e=0.

iv. Finally, 4, = 0 has the form
Bao+ B,)y + 20 —e)f+f, =0

and therefore

(18.5) 6a, 4+ B, =0,
(18.6) 2¢,—e, =0,
(18.7) fi=0.

From (18.3) and (18.5), one obtains
(18.8) o =0, B, =0.

From the preceding results, one easily deduces

’S e, = 2¢,, e, = 2d,;
(18.9)
? fi—':()e fo== 6, f3:05 fo=dy.

The stable equations of eclass Il are thus of the form

|y 20 + byy = oy + 2y) + Aoy + 259 + 1)
f ey + )+ o,

where ¢,, do, e, fo are arbitrary analytic functions of .

(18.10;
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Equation {18.10) is equivalent to the differential system
(18.11) =y -+,
(18.12) 2= Co# + do?® - et + [

When y is stable, # is also stable. However, in order to be stable, equation
(18.12) must be linear and d, =0 [see Part II. art. b, eq. (5.12)].
The stable equations of class III are thus of the form

(18.13) Y + 20y + 6y y = ooy + 201 + esly + ) + o,

where ¢,, €, fo are arbitrary analytic functions of «.
They are equivalent to the differential system

y=" wmomw
(18.14) "

2==0 + e + [o;

therefore #, w and y are stable.

Equations of class IV.
19. - The stable equations of class IV are of the form
(19.1) g = Bay y + Yayy — ba*yy’ — 3a'y'y + Fla, v),
where F(x, y) is given by (7.D).
The general solution of these equations has two sets of simple parametric
poles characterized by
(19.2) as, = —1, 0=0, 2 3,

(19.8) agy = — 2, 0=-—3, 2, 3.

Substitute y(x) given by (10.1) into (19.1), suppose that s is a constant
[which is obtained by a transformation T) and for convenience, define 4, B,,
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B,, B, by (8.7); one obtains

U — B+ 3as)z2ii + (20 - 21las - 3a’s¥ou — (60 4- 8las -+ 21a°s%u - 4
-+ 2[B, + By — (50 4 57as -+ 9a’s*u?]

(19.4) ¢ +-2¥fr8—eo+(da,—ce is)@;\v,—}— (Bee—e 1s)wmﬂBgzﬁ—i—(25—1}-18%)%& —(154+12a8)u’]

42— Qoth — Coth — €ql +cou’ +f, 4 ag(&uk —u’)— dum — 31;52—{—6?2%2-—%‘*}
+

& =

fo 0.
S

Now determine a transformation 7' in order that ¢ = —1, go=¢, =0;
to this effect, one has only to choose X, ¢, p such that

)

a
4A + 60 —3ap — a, =0,
mA+9®-&m+%i=
20. - We first consider the set of simple parametric poles characterized by
s, =1, 686=0, 2, 3.

Equation (19.4) takes the form

u—2~u+9zu+A+ 2By + B,u — 2u?

(20.1) #fs — ey -+ (Bco — e Ju -+ dgu® -+ Tun — 3u®)

, +

\

’ —g—za—cou—-egu—{—cou —{—fi—éuu-——:%u —{—bu%——u}
+ fo2* =0

(20.2) A=do—e:+ s,
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(20.3) B, =2d, —e,,
(20.4) B,=2¢c,—e,+f,.
Denote by E(u) the left hand member of (20.1) and set
=P 4 0,
P=oa+Betve.
Equation (20.1) becomes
2[00 + 120 + 8ev] + Ao + Az + A7 + A2 + 0@ =0
where the A/s are determined by
E(P)=A4,+ A,z + 4,2 + A,8° 4 0@*).

According to the general theory, « and y remain arbitrary and are assumed
to be constant parameters.
The conditions for stability are given by

(20 5) 4,=0, (=0 1,2 3.

21. - From (20.5), one obtains the following results.
i. The condition 4,=0 gives
(21.1) 4=0.
ii. From 4, =0, one deduces

e 2 -Bl BZ
(21.2) @ I LT 7 & — ? .
iii. Then 4,=0 yields

©L3) 23— B8+ (g Blmdo) a2+(§ Bz-l-el——?)co)oc—l—eo——fz:O.
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This polynomial in « is identically zero; thus

(2] 4) B1 = Zdo 5

2
(21.5) Bl ""% g Bz “'{“ 300 — = 0 5
(21.6) B, — B1252+f2——-eo=0.

iv. Finally 4, =0 gives

'

S 8 — 2B + vB, + (2dy — B)af + 820, — &, — By)
(21.7) B 1
| =B om §B) —an =0,

4

Because y.is an arbitrary parameter, one has
(21.8) B, =0"

From (21.4), one deduces
(21.9) do=0.

Then (20.2-4), (21.1) and (21.5) yield
(21.10) =0, fi=0, e=3f,,
21.11) By=2(c,—[5)-

With these simplifications, we rewrite (21.2-3), (21.6-7) as follows

(21.12) 3= of — P%e ,
(21.13) 28+ eg—f,=0,
(21.14) éwgaé—fsﬁ‘*“fa“?”eo“"%‘flzo;

(21.15) Boe=eo—f.
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From (21.13-14), one obtains easily

(21.16) §—foo + % f.B,+f=0.
Becaunse o is arbitrary, (21.16) yields

(21.17) fo=0

and accordingly

(21.18) B,=e¢,,

(21.19) 2f, = B: — [, B:.

22. - Consider now the second set of simple parametric poles characte-
rized by s =2, ® = — 3, 2, 3. Taking into-account the values obtained in

the preceding section, one rewrites (19.4) in the form
{ Su -+ 2*u — 10zu + 184 + 2(B, + 28u?)

+ 2 — e, -+ (Bco — 2e)u — 11uw + 9u®

(22.1) . - . .
) + 2 [— cout — et + o’ - fi — duu — 3u® 4 6uu® — u*
fﬂ 4 ___
+ '—2— g = O .
Set again

w=P | %,

P=oa+ Bz +vs"

and denote by E(wu) the left hand member of (22.1). Then determine the A4/s

by setting
E(P)=A,+ Aip + A,2* + A,2° + 0@Y;
the conditions for stability are given by
4,=0, (=01, 2, 3).

Annali di Matematica

15



114 F. J. Bureau: Differential equations with fived critical points

One obtains the following results.
i. The condition 4,=0, gives 2 =10.
ii. From 4,=0, one deduces
(22.2) 83+ B, =0.
iii. Then 4,=0 yields
(22.3) 88 +6,=0.
Conditions (22.2-3) are consistent because of (21.18),
iv. Finally, 4, =0 gives

48+ 8B + 20 —e)f +fi=0

or
.. 1., 1
(22.4) B2 — a:.BZ“l— 2 B2(00—-—el)x:2f1.
From (21.19) and (22.4), one obtains
B,[B, — 2(c, — e,) — 4f,] = 0;
hence,
(22.5) B,=0, ie c«=f,,
or
(22.6) e, = 3f,, i.e. (21.10).

Therefore we have to consider two cases.
i. c=1f,. Then fi=0 and ¢, =0 [see (22.4) and (21.18)].
The stable equation is of the form
(22.7) Y + yy -+ Iy + byy* + S’y =
=y + 3yy + ¥ + /o

where ¢, and f, are arbitrary analytic functions of «.
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That this equation is really stable may be shown as follows.
Set

22.8) w=1y + 3y + ¢’

and obtaim

(22.9) U= Coth 4y .

The linear equation (22.9) is stable. On setting y = %, equation (22.8)

reduces fo
(22.10) 0 = uw

and is also stable. [see Part I, eq. (23.1)].
Equation (22.7) is therefore equivalent to the differential system

v=vy,

@2.11) S
w = et + fo

and is stable.

ii. e,=f,. For convenience, write f instead of f, and set c=c¢,—f,.
Then

B,=2%, e=2, fi=0c—fc
[see 21.18-19]

The desired equation is

\ '+ By + 9 + by + 3y

(22.12)
8 =cy+ 20y +cy + -+ 3yy + ) —cfy + -
Now set
(22.18) w=y+3yy+y—oy,

[see Part I, eq. (23.1)].
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Equation (22.12) may be rewritten as

u =fu+f.
On setting

(22.13) takes the form
V=0 + uv.
Therefore, equation (22.12) is equivalent to the differential system
0= vy,
(22.14) w=fu-+f,
v = cb + uv

and is stable; ¢, f, f, are arbitrary analytic functions of w.
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