
Almost periodic properties of ordinary differential equations. 

~J[emoria di W.A.  CO~I)EL (a Canberra~ Australia) 

Sunto - Si  tratta di alcune propriet4 dell'equazioni differenziali ordinarie con cosffici~nti 
quasi-periodici. 

1. - The present  paper  deals with various propert ies  of ordinary diffe. 
rential  equat ions with almost periodic coefficients. In n. 2 a theorem of 
FAVARD, which appeared recent ly in this journal,  is substantial ly improved 
by means of an argument  due to 0A~C[ERON. 

In n. 3 we prove that the equation 

~'= A~ + f(t) 

has almost periodic solutions, even if the corresponding homogeneous equation 
has almost periodic solutions, provided the f requencies  of these solutions are 
not arbi trar i ly close to the f requencies  of the almost periodic function fit). 
This corresponds in a very natural  way to the physical  concept of non-reso- 
nance. The proof is based on an extension of an inequal i ty  due to H. BOHR. 
The result  is then applied to nonlinear  equat ions and to the reducibi l i ty of 
l inear equations.  

In n. 4 a recent  result  of R .K.  MILLER, which deduces the existence of 
almost periodic solutions of nonlinear equations from stabil i ty properties,  is 
reproved by a quite different  method and given a somewhat  sharper  form. 

Since translation numbers  play no part  in this paper  we may adopt 
BOCHNER'S criterion as our definition of an almost periodic function. A con- 
t inuous (scalar or vector) function f(t} is said to be almost periodic if every 
sequence t h~ } of real numbers  contains a subsequence I k~ } such that f(t-F k~) 
converges uniformly on the whole axis J ~  (--~=), ~ ) .  Whenever  we speak 
of uniform convergence without fur ther  qualif icat ion we will always mean 
uniform convergence on J. A sequence of functions will be said to be locally 
uniformly convergent if it converges uniformly on every compact  subinterval  
of J. 

We define, the norm of an almost periodic function f(t) by 

l l f l l=  sup [f(t)l. 

The set of all almost periodic functions is a BA~Ac~ space with respect  to 
this norm. The closed hull of an almost periodic function fit) is the set of 
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all almost periodic functions g(t) such that f(t + k,~)-~g(t) uniformly for 
some real sequence (kn}. 

To any almost periodic (scalar or vector) function f(t) there corresponds 
a unique formal FOURIER expansion Ecne%, t, where the coefficients c,, are 
non-zero (complex numbers  or vectors). The real numbers  )~n will be called 
the frequencies of f(t). The frequency module of f(t) is the set of all (real) 
numbers  which are finite l inear combinations of the f requencies  with integral  
coefficients.  In  other words~ the f requency module is the additive group 
generated by the frequencies.  The set of all pure imaginary numbers  i).~ 
will  be called the spectrum of f(t). By the extended spectrum of f(t) we will 
mean the set of all (pure imaginary) numbers  which are finite linear combi- 
nations Eik~k,~ with non-negat ive  integral coefficients k,~, at least one of 
which is positive. Thus the extended spectrum is the additive semigroup 
generated by the spectrum. 

2. - FAVARD [6], pp. 303, 310, has proved a theorem which may' be for- 
mulated in the following way :  

Let A(t) be a real almost periodic matr ix  and suppose that for each 
matrix B(t) in the closed hull of A(t) the l inear differential  equation 

(1) y ' =  B(t)y 

has exactly s l inearly independent  bounded solutions. If the equation 

(2) x ' -~  A(t)x 

has no nontrivial  solution x(t) with inf Ix(t) l---=O, then it has a fundamenta l  
--oo<t~co 

matr ix  X(t) such that 

is almos~ periodic for some q<=_ s, where  Iq is the q X q unit  matrix. 

In the present section we will show that we can a lways  take q = s .  The 
method of proof is quite different  from FAVARD'S and is essentially due to 
CAMERON [4], who considered the special case in which the solutions of the 

equat ions (1) are all bounded.  
Let  f ( t )be an almost periodic function and let g(t) be a function which 

is bounded and uniformly continuous on J =  ] - -c~,  ~ ) .  By AScoLI's theorem 
any sequence  {h~} of real numbers  contains a subsequence {k,~} such that 

f(t ~ k~,) ---> fl(t) uniformly, g(t -~ k~) --> gl(t) locally uniformly. 
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We will say that fl and g2 are (translation) transforms of f and g. Evidently 
f~(t) is almost periodic and gl(t.) is bounded and uniformly continuous. If  f2(t}, 
g2(t) are transforms of f~(t), g~(t) then they are also t ransfnrms of fit), g(t). 
For suppose 

f~(t + 1,) --> ffl) uniformly, g~(t -~ 1,~) --~ g,(t) locally uniformly. 

'For each positive integer n we can find an integer m,~ ~ n such that 

I f ( t + k , ,  + l ,~ ) - - f~ ( t+l~) l  < l / n  for all t, 

I g ( t + k , ,  + l , ~ ) - - g , ( t + / , ~ } [ < l / n  for I t l ~ n .  

Hence  ffl),  g2(t) are t ransforms of f(t), g(t) by the sequence {k,~ + 1,~}. 

We will say that a sequence {h~} of real numbers  is stationary for f(t) 
if f~t + h,~)-->f(t) uniformly, and for g(t) if g(t-~ hn)-->g(t), locally uniformly. 
Obviously any subsequence  of a stat ionary sequence is stationary. If fl(t) is a 
transform of the almost periodic function f(t) by a sequence {hut, then it is also a 
transform of f(t) by another sequence {k,,} if and only if thn--k,~ f is a stat ionary 
sequence for f(t). In part icular,  the stat ionary sequences for an almost periodic 
funct ion form a group under  term by term addition. It  is known that, if f(t) 
and fl(t) are almost periodic functions,  the f requency module of f1(t) is con- 
tained in the f requency module of f(t) if and only if every sequence stat ionary 
for f(t) is also stat ionary for fl(t). 

L ] ~ A  (1) - Let f(t) be an almost periodic function and let g(t) be a 
bounded, uniformly continuous function. Then g(t) is almost periodic and its 
frequency module is contained in the frequency module of f(t) i f  and only i f  
every sequence stationary for f(t) is also stationary for every transform of g(t). 

The necessi ty of the condition will not be required later, but  follows 
readily from the remark  preceding the statement of the lemma. To prove its 
sufficiency, suppose 

f(t + h,~) --> fl(t) uniformly, g(t + h,) --> gl(t) locally uniformly. 

It is sufficient to show that the convergence of the second sequence is 
necessari ly uniform. If this is not the case then for some ~ 0 there exists 
a sequence It,} and a subsequence  l k~} of the} such that 

]g(t. + k . ) -  gl(t )i > 0. 
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By restr ict ing attention to a suitable subsequence we can suppose fur ther  that 

f .(t  + t.) ~ h(t), f(t  + t.  + k.) ~ f.(t) uni formly ,  

g~(t -F & )  "-> g2(t), g ( t  4- t,, + k.) --> gfl) 

g , ( t  - -  t,,) .--> g, ( t ) ,  ga(t  - -  t .  - -  k . )  -.-> gs(t)  
locally uniformly. 

Then ffl--t,,)-->fl(t) uniformly and g4(t) is the ~ransform of gfl) by the 
sequence t--t,~}, Since g2(t) is the t ransform of gz(t) by It,} it follows that 
g4t) is the t ransform of g~(t) by a sequence (t,,, - -  t,} which is stationary for 
L(t) and hence also for f(t). Therefore g4 = g, .  Similarly we can show that 
g5 ~- g. Thus 

gs(O ~ g(t) ~ g~(t) ==> g2(t) 

under  the succession of sequences  {--  t,~-- k.}, {k,~}, {t~}. It  follows that 
g2(t) is the transform of gfl) by a sequence stat ionary for f(t). Therefore 
g~ ~-g2. But, from the definit ions of g2 and gs, 

]gs(0) - -  g~(0) ] ~ ~ ~ 0. 

Thus we have a contradiction. 

Consider now the homogeneous l inear  differential  equation 

t2) x ' -= A(t)~c, 

where the r X r matr ix A(t) is almost periodic. W e  assume that (2) has no 
nontrivial bounded solution x(t) such that 

inf I w(t)! = 0 .  
--oo<t<oo 

Let X(t)be the fundamental  matrix for (2) such that X(0)--~L The values 
at l~---0 of the bounded solutions of (2) form a subspace V~, of dimension s 
say, of the r -dimensional  vector space V. Let  V2 be any supplementary  
subspace and let P be the corresponding projection of V onto V1. Then a 
solution x ( t )~  X(t)~ of (2) is bounded if and only if x(0)-~--~ C V1, i.e. if and 
only if P~ ~ ~. Thus the matrix X(t)P is bounded:  

!X(t)P I < M for all t. 

£ matr ix  S will be called a translation matrix of {2} if there exists a 
sequence (h,} which is stat ionary for Air) such that 

X(h.)£--> S as n ~ o~. 
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Evidently S---- SP and [ S I _~ M. Furthermore,  since X(t + h~)P is the solution 
of the equation 

X ' =  A(t + h,,)X 

which takes the value X(h,~)P at t = O, it follows from standard theorems 
about  the contimlous dependence of solutions on parameters  and initial values 
that X(t + h.)P converges locally uniformly to X~t)S. Hence  Xit)S is bounded 
and PS ~ S. 

Let  S and T be translat ion matrices, corresponding to the stat ionary 
sequences {h,} and /k,~} respectively.  Then their product  TS is also a tran- 
slation matrix. For  X(t + h,~)P converges to X(t)S ~ X(OPS locally uniformly 
and X(t + k,,)P converges to X(tjT locally uniformly. Hence  X(t -t- I,~}P---> X(t}TS 
locally uniformly, where l,~ = h,%-4- k~. Moreover ( In } is a stat ionary sequence 
for A(tt. 

Let  {S,,,} be a sequence of translation matrices and suppose Sm--> S as 
+n-->~x~. Then S is also a translat ion matrix. For let l h~ "~)} be a stat ionary 
sequence for A(t) corresponding to S,,.  For  each positive integer m we can 
choose n;~ so large that 

]A(t + h(,,~ )) - -  A(t)] < 1/m for all t, I i (hk~) )P  -- S.~ 1 < 1/m.  

Then (h~,~l is a stat ionary sequence for A(t} and S is a corresponding tran- 
slation matrix. 

If  S is a translation matrix its positive powers S ~ are also translat ion 
matrices. Suppose that, for some vector  ~,. S'~--> 0 as n--> cx~. For  each posi- 
tive integer n we can find a real  number  h~ such that IX(h~)P- -S~I  < 1/n. 
It follows that X(h~)P~-->O as n-->c~. Thus the bounded solution X(t)P~ of 
(2~ has inf imum zero, which is possible only if it is identically zero, i.e. if 
P~ ~--- O. 

By replacing A(t) by T-1A(t)T, and hence X(t) by T-1X(t)T, with a suitable 
constant invertible matr ix T, we can suppose that 

. (o, 0o) 
Then S = SP -~ PS implies that 

The fact that S'~--> 0 only if F~-----0 implies that $1 has no eigenvalues with 
absolute value less than 1. The fact that IS"I<~M for all n > O  implies that 
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$I has no eigenvalues with absolute value greater  than 1 and that its eigen- 
values with absolute value equal  to 1 correspond to l inear e lementary divisors. 
Thus S~ is similar to a diagonal matrix whose diagonal elements have absolute 
value 1. Now it follows from Dr~trc~LE~'s pigeonhole principle (see [10], p. 170) 
that the inverse of any such matrix is the limit of a sequence of its positive 
powers. Therefore,  since the set of translat ion matrices is closed, 

is also a translation matrix. Thus all matrices $1 which appear  as upper 
le f t -hand corners of translat ion matr ices  form a subgroup of the s-dimensional  
general  l inear group~ Since this subgroup is bounded, it is conjugate to a 
to a subgroup of the s -dimensional  uni tary group by a theorem due to 
AUERBACK [1]. Thus there exists a constant  invertible matr ix 

o) 
which commutes  with P, such that all translation matrices have the form 

where U1 is unitary.  

Pu t  
x l t t )  = x t t t  w .  

Then X~(t} is a fundamenta l  matr ix for (2) and Xl(t)~ is bounded if and only 
if ~ ~ P~. Let  {h,} be a stat ionary sequence for the almost periodic matr ix 
A(t}. We will  show that it is also a s tat ionary sequence for the bounded and 
uniformly continuous funct ion 

z(t) = x,(~)PX*(t + % 

for each real number  z. Let  (k,~} be a subsequence  of {h~} such that XI(k~)P 
converges as n--->cx~. Its  limit necessar i ly  has the form 

where  U, is unitary.  Hence  Xl(t--]-k~)P cenverges locally uniformly to 
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and Z(t + k,) converges locally uniformly to 

x l ( o P x * ( t  + = z(o. 

Since the limit Z(t) is the same for all subsequences  {k,,}, it follows that the 
whole sequence Z(t + h,,) converges to Z(t) locally uniformly. 

We  now make the fur ther  assumption that for each equation 

(1) y' = B(t)y 

in the closed hull of (2 ) the  bounded solutions form a vector space of the 
same dimension s. We will show that no equation in the closed hull of (2} 
has a nontrivial bounded solution with inf imum zero. In fact, suppose 
A ( t +  h,)-->B(t) uniformly. By replacing {h,,} by a subsequence we can 
suppose also that X(h,)P converges, with limit T say. Then T =  TP and 
X(t + h,,)P converges to 7[(t)T locally uniformly, where Y(t) is the fundamental  
matrix for (1) such that Y(0)----L Thus Y(t)T is bounded. If 

inf] Y(t)T~] = 0 

for some vector  ~ then 

inf I X(OP~i = 0 

and hence P~ = 0. In  par t icular  T~ m_0 if and only if P~ = 0. Thus if ~1, ..., ~s 
form a basis for V1----~ P V  then Y~t)T~I, ..., Y(t)T~ s are l inearly independent  
bounded solutions of (1), no nontrivial l inear combination of which has 
infimum zero. By our assumption there are no other bounded solutions. 

To prove that Z(t) is almost periodic it is sufficient,  by Lemma l, to 
show that any sequence {k~} which is stat ionary for AIt} is s tat ionary for any 
transform of Z(t). Let {h',,} be a subsequence of {h,~} such that Y(--h'~)T 
converges, with limit So. Then Yit--h'~}T converges locally uniformly to 
X{t}So. Thus Y(tlT is the transform of X(t)P by the sequence {h~} and X(t)So 
is the tranform of Y(t)T by {- -h ' , ,}  It follows that X(t)So is the transform 
of X(t)P by a sequence which is stat ionary for Att). Thus So is a translation 
matrix. Consequently,  by the group property,  there exists a sequence {l,} 
stat ionary for A(t) which transforms X(t)So into X([}P. Let /k,} be a sequence 
stat ionary for Air) such that Y(k,)T.--> Q, say. Then, since {k,,} is also statio- 
nary for B(t}, Y(t + k,,)T---> Y(t)Q locally uniformly. Thus Y(t)Q is a bounded 
solution of (1) and we can write Q = TS for some matr ix S. Since T----- TP 
we can suppose without loss of general i ty that P S =  S. Then 

X(t)P=> Y(t)T:=> Y(t)TS=> X(t)SoS=> X(t)S 

under  the succession of sequences  { h,, }, {k,}, { --  h', }, I 1,,}. Hence  X(t}S is a 

Annali di Matematica 5 
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t ransform of X(t)P by a sequence stationary for A(t). Thus any transform of 
Y(t)T by a sequence stationary for A(t) has the form Y(t)TS, where  S is a 
translation matr ix  for (2). :Now the t ransform of Ztt) by [h~} is 

Y(t)TWW*T*Y*(t + ~) 

and this is stat ionary under  any sequence which is stationary for A(t), since 

S W W * S * =  WPW*.  

Therefore,  by Lemma 1, Z(t) is almost periodic and its f requency module is 
contained in the f requency module of A(t). 

Summing up, we have proved 

TI~EOREM ( 1 ) -  Let A(t) be an almost periodic matr ix  and suppose that 
for each matr ix  B(t) in the closed hull of A(t) the equation 

(1) y ' =  B(t)y 

has exactly s linearly independent bounded solutions. I f  the equation 

(2) x' -~ A(t)x 

has no nonlrivial bounded solution x(t) with inf',x(t) l--~ 0 then each equation 
(1) has a fundamental  matrix Y(t) such that 

is almost periodic in t, for each real number ~, and its frequency module is 
contained in the frequency module of A(t). 

3. - It  was shown by Bo~R [3] that if 

f{t} = Z c,,e~X, ~, x(t) = ~ c~.~le% t 

are finite tr igonometrical  sums with I ) ~ [ ~  1 for every n, then there exists 
an absolute constant  C such that 

lixi(<-Cl]fl[. 

He showed fur ther  that the best possible value of C was 7:/2. The following 
lemma extends Bonn ' s  result, a l though we do not at tempt to determine the 
best possible value of the constant which enters. 
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L ~ M ~  (2) - Let f(t) -= ~ c,,e% t, 

x(t) = :E c , , ( o :  - -  i),,)-~e% t 

be finite trigonometrical sums, where ~ is real, It,,[ ~ ~ for every n and 
~ -F ~ > O. Then there exists an absolute constant C such that 

~1 _< C(= = + 2,)-,/ ,  ]1~,, l i f t ] ,  

Without  loss of generali ty we can suppose o d ~ 2 ~  1, since the general  
case is reduced to this by the change of scale t---> Tt, where  T ~ (:¢~+ ~)-~/2. 
Pu t  

I (:¢ - -  it)-~ for [ t l ~ .  ~, 
~0(t) 

o~Jcit for Itl <_ ~. 

Evidently ~0(t) is everywhere  continuous and is continuously differentiable 
except at t-----::t: ~, where its derivative has a jump discontinuity.  Moreover 
¢?(t)/t is absolutely integrable over ( - -0% - -1 ]  and [1, ~ ) ,  and the real and 
imaginary  parts of ~?(t) tend to zero monotonically as t--->--I-cx~. Hence  ([2], 
pp. 46-50) the FOVRIER transform 

1 
+(u)--~-~ f e-'"t~(t)dt 

exists for every real u ~ 0 and FOURIER'S integral theorem holds in the form 

~(t )  : lim~o f e'~t~(u)du" 
~<lui_<~ -1 

We will show below that there exists a positive constant C, independent  of 
and 2, such that for every u ~ 0 

(3) I+(u) l_< c(1 + u2) - '  

Thus 

and 

GO 

f r+(u)[du<_C 
- - 0 0  

O(3 

~(t) ---- f e'Ut~(u)du. 
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Since f ~nl ~ ~ we have 

x(t) = ~, c.~o(~.)e%t 

~ 0  

---= ~ c . e % t ~  e~u).n~(u)du 
J 
- - O O  

O~  

= J [y' ~"e')~"'t+"'] ~(u)du 
L I  
- - C O  

= I f(t + u)~(u)du. 
f .  

- - 0 0  

I t  follows immedia te ly  that  

]x(t) i ~ CLIfJl for every t, 

which is what  we wished to prove. 
To prove (3) we write 

f ft~ e-'u'c?(t)dt' 2 ~ ( u )  : e-iUt~(t)dt "-~l 

In tegra t ing  both terms on the r ight  by parts  twice and remember ing  
~(t) and ~0'(t) tend to zero as t - - > - + - ~  we get, for any u ~ 0, 

2=+(u) ---- 2~u -2 {(~ + i~)e-~" + (~ -- i~)#~" } 

+ 2u-~f  e-JUt(a--il)-3dt. 
Itj>_~ 

Now a~ + t ~ ( 1  -~- t~)/2 for It[ ~ ~, and hence 

OO 

27: I+(u)l ~_4u -= + 2u-=-28/= / (1 -~- t~)-S/2dt--~ C~u -2. 
f ,  

t /  
- - O 9  

To complete  the proof of (3) it is suff icient  to show that 

l~P(u) t <- c~ for t ul  <- 1. 

that  
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From the def ini t ion of ~(t) we have 

2rc+(u) =- f e-'"t(a + it)dt + f e-'~':~(a~ + t2)-~dt 

and hence 

where  

o o  

l +(u) i + u-f 
~CX)  

GO 

H = f t(a ~ -{- t~) -1 sin ut dt 

f 
-}- ~ e-lUt it(a~ ~ t~)-l dt, 

, 2  Itl>_~ 

(1 --~ t2)-ldt --[- 2 I HI ,  

~ )  OD 

~ f  t - l s i n u t d t - - ~ 2 f  t--1(652 -~ t2)--1 sin utdt .  

The first term on the r ight  is equal to 

sgn u~,! s -1 sin s ds, 

which is bounded  for all u. For  l u l ~  1 the second term has absolute value 
at most 

OG 

2 / (1 + t2) -1 dr. 
o 

This completes  the proof. 

We first apply this resul t  to a simple scalar different ial  equat ion.  

LEI~Mk (3) - Let bit) be a scalar almost periodic functon and let a be a 
complex number whose distance d from the spectrum of b(t) is positive. Then 
the equation 

(4) x' ~- a~x -~ b(t) 
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has  a unique  almost periodic solution x(t) whose spectrum is the same as 
that of  b(t). Moreover 

(5) LJx~.] ~ ( C / d ) [ [ b l I ,  

rvhere C is the numerical  constant of  L e m m a  2. 

Witho.ut toss of general i ty we can suppose that ~ is real, since if 
c¢-----~ + iT t h e  change of variable  x-----ei'~y reduces the general case to this. 
Let  b(t} have the (not necessari ly convergent) FoumER expansion Z e,,eiZJ. 
We can find a sequenee of finite tr igonometrical  sums 

whose frequencies  are among the f requencies  of b ( t ) such  that b~(tj.->b(t) 
uniformly as m--> c~. Then 

x,dt  ) = - -  ~ c(~)'~, ~ - -  ik,,~-~ei~,,t 

is a solution of the differential  equation 

Moreover, by Lemma 2, 

iJ x. ,  Jl _< (C/d)IJ b. , t ,  

If xm+~ - -  xm [I ~ ( C / d }  It b . ,+~  - -  b, .  rl. 

Therefore the sequence [x,,it)} converges uniformly and from the corresponding 
differential  equations the sequence of derivatives I x'~(t)} also converges 
uniformly. Thus x,,,(t)-->x(t), where x(t) is almost periodic with spectrum 
contained in the spectrum of b~t), satisfies (5), and is a solution of the diffe- 
rential  equat ion (4). 

If  x(t) ~ ~. d,~e% t then x'{t) ~ i ~  d~k~e~J, whence it follows from (4) that 
d,~ ~ - - ( ~ - - i k ~ ) - ~ c , , .  Thus every f requency of b(t) is also a f requency of x(t). 
This argument  shows that (4) has no other solution whose spectrum is con- 
tained in the spectrum of b(t). 

We now pass from scalar equations to vector  equations. Our result  
extends a theorem of MALKIN [11], p. 230, who considered only the much 
simpler case in which b(t) is a finite tr igonometrical  sum. 

T]tEORE)i ( 2 )  - Let b(t) be an  almost periodic vector funct ion and let A 
be a constant r X r matrix, such that the distance d o f  the set of  eigenvalues 
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of A from the spectrum of b(t) is positive. Then the diITerential equation 

(6) x '  ---- Ax + b(t) 

has a unique almost periodic solution x(t) wi th  the same spectrum as b(t). 
Moreover 

(7} ~[ x !I ~ Mx(C/d) lib]i, 

where M is a positive constant depending only on A, C is the numerical 
constant of  Lemma 2, and X(u) is the polynomial  

Z(u) = u + u ~ + ... + u ~. 

We can clearly suppose that A is in JoRDA~ canonical form and in fact 
that it consists of a single JOtCDA~' block. Then (6) takes the form 

x / - ~  ax~ + x,._~ + b,.(l}. 

These equat ions can be solved in succession by Lemma 3 to yield an almost 
periodic solution x(t) of (6) whose spectrum is contained in the spectrum of 
b(t} and which satisfies (7). That x(t) is unique and has the same spectrum 
as b(t) may be shown by the method of undetermined coefficients, as in the 
proof of Lemma 3. 

W e  are going to make two applications of Theorem 2. The first is a 
per turbat ion theorem and the second is a criterion for the reducibi l i ty of an 
almost periodic l inear  equation. Before doing so, however~ there are some 
prel iminary matters  to b e d e a l t  with. 

LEM~A ( 4 ) -  Let fit, x) be almost periodic in t for each x in  the ball 
S :, x l ~ R ,  and  further let it be continuous in x uni formly  with respect to t, 
i.e. for each ~ ~ 0 and each xo E S there exists a corresponding ~ ~-~(~, Xo} ~ 0 
such that 

If(t ,x)--f(t ,  Xo)l<~ for all t i f  I X - - X o l < ~ .  

Then f(t, x) is uni formly  continuous in  (t, x) for t E J, x E S and is almost 
periodic in t uni formly  for x E S. 
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For each oeo E S f(t, Xo) is almost periodic and therefore uniformly conti- 
nuous. Hence  we can find ~ = ~}(~, Xo)~ 0 such that 

x) - f(t , Xo) i <-  - -  f(t , xo) l + I f(t , Xo) - f ( t , ,  Xo) i 

< ~  if I t~ - -  t~ l < ~, I X - -  Xo l ~ ~. 

Since S compact  it is covered by a finite number  of the open balls I X - - X o t . ~  
1 

< 2~(s, xo). Let  ~ ~----~(e) be the smallest  of the corresponding finitely many 

1 
radii ~ ~{~, Xo). Then for any two points x~, x~ E S and any two values t~, t~ E J 

If(t~, x,~)--f(t~, x ~ ) l < 2 s  if I t~ - - t t  1 < p ,  ] x ~ - - x ~ l < ~ .  

Thus f is uniformly continuous.  

Let  /hs} be any sequence of real numbers  and let {x,~} be a countable 
dense subset  of S. By the diagonal process we can find a subsequence {ks} 
of {h,l  such that f(t + ks,  xm) converges uniformly in t for each m. It  then 
follows from the uniform continuity of f that f{t + ks,  x) converges uniformly 
for t E J, w E S. Thus f(t, x) is almost periodic in t uniformly for x E S. 

Under  the conditions of the lemma if ~(t) is an almost periodic function 
such that ]1 ¢~ I/<--R then f[t, ~0(t)] is almost periodic. For  if {l~} is a subsequenee 
of {ks} such that ~0(t+ Is) converges uniformly then f [ t ÷  l , ,  ~ ( t+ /~]}  con- 
verges uniformly. 

Since f(t, x) is almost periodic uniformly with respect  to ~ it has a 
FOURIER expansion Z c~(w)e~),~ ~ with exponents  )~. independent  of x, the coef- 
ficients cstx) being continuous functions which are not identically zero. The 
spect rum and extended spectrum of f(t, ~c} are defined in the same way as 
for functions independent  of x. 

Suppose the almost periodic function ¢~(t) has its spectrum in the extended 
spectrum of f(t, x). We will show that the almost periodic function f i t ,  ~(t)] 
also has its spectrum in the extended spectrum of f. In fact for any s > 0 
we can find a finite tr igonometrical  sum 

g(t, x) ~ Z d,,(x)e~.. ~, 

whose coefficients are continuous functions of x, such that 

If(t, x ) - - g ( t ,  x) l < s  for t E J ,  I xr<--R. 

By the WEIERS'rRASS approximation theorem we can even suppose that the 
coefficients ds(x) are polynomials  in the coordinates of x. Als% for any ~ > 0 
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we can find a finite tr igonometrical  sum-+(t)-----Ea, ei~J, where i~,, belongs 
to the extended spectrum of f, such that ] ] ~ ] ] ~ R  and [ 1 ¢ ~ - - + ] ] ~ .  Then 
if 8 ~ ~(~) we will have 

',f[t, ~(t)] - -  g[t, +(t)]] < 2~ for  al l  t. 

Moreover g[t, +(l)] is a finite tr igonometrical  sum with its spectrum in the 
extended spectrum of f. Since ~ is arbi t rary it follows that f[t, ¢~(t)] has its 
spectrum in the extended spectrum of f. 

T~EOREZ~ (3) - Let f(t, x) be almost periodic in t for each x and satisfy 
the Lipschitz condition 

(S) If(t, x l ) -  f(t, x~)l < - L l x , - - x , I .  

Let A be a constant matrix such that the distance d of the set of eigenvalues 
of A from the extended spectrum of f is positive. Then there exists a positive 
constant Lo, depending only on A and d, such that i f  L-< Lo the differential 
equation 

(9) x / =  A~c + f(t, x) 

has a unique almost periodic solution x(t) whose spectrum is contained in the 
extended spectrum of f. 

The LIPsc~I~z condition (8) implies that the hypotheses of Lemma 4 are 
satisfied. Thus, for any R ~ 0, f(t, x) is almost periodic in t, uniformly for 
]$'E ~_R. Let  B denote the BA~ACH space of all almost periodic functions 
whose spectrum is contained in the extended spectrum of f. For  any ¢~qt)EB 
also f[t, ~(t)] E B. Therefore,  by Theorem 2, the equation 

x'  = A x  + f i t ,  ~(t)] 

has a solution x(t)E B. This solution is unique, since otherwise the homogeneous 
equation x ' ~  A x  would have a nontrivial  solution in B;  but then A would 
have an eigenvalue in the extended spectrum of f, which is contrary to 
hypothesis.  

Thus we have a mapping T :  ~(t)----> x( t )o f  B into itself. If  xl : T~I and 
x2 ~ T% then x : x ~ - - x 2  is a solution of the equation 

where  

x' = A x  + g(t), 

g(t) = f[t, ¢~i(t)] - -  f[t, ~(t)]  

Annali di Matematica 
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and hence IIg][~'Ll/%--¢+21]. Therefore,  by Theorem 2, 

[ I x , -  x,  il <_LMx(C/d) i[%-- ~2[[. 

Thus if we set Lo-----[2Mx(C/d)] -~ then for L ~ Lo the mapping T is a con- 
traction. Therefore it has a unique fixed point x(t)E B. Thus the differential 
equation (9) has a unique almost periodic solution x(t) whose spectrum is 
contained in the extended spectrum of f. 

The proof shows that the same conclusion holds for given L > 0 if 
d ~ d o ( A ,  L). 

TKEORE~ ( 4 )  - Let A be a constant matr ix  with eigenvalues ax, ..., ~,. and  
let B(t) be an almost periodic matrix .  I f  the distance d of  the set of differences 
% --  :ca(j, k = 1, ..., r) from the extended spectrum of  B(t) is positive then the 
equation 

(10) x ' =  [A + B{t)]x 

has a fundamenta l  matr ix  X(t) of  the form 

(11) x( t )  - -  [ I  + Q(t)]eta, 

where Qtt) is an  almost periodic matr ix  whose spectrum is contained in the 
extended spectrum of Bit ) . 

Since 0 belongs to the set { ~ -  ~h }, every number  in the extended 
spect rum of B(t) has absolute value ~__ d. Suppose the spectrum of B(t) con- 
tained numbers  i)b lit where  )  ̀< 0 < ~t. If k/it were rat ional  we could find 
posit ive integers m, n such that k/it = - - m / n .  Them nk + mit = 0  would 
belong to the extended spectrum, which is a contradiction. If  ),/~ were irra- 
tional we could find positive integers m, n such that [n)~/it + m] < d/it.  
Then In), + t u t t i <  d and we again have a contradiction. Thus the spectrum 
of B(t) lies entirely on one half  of the imaginary axis. Without  loss of gene- 
ral i ty  we can suppose that it lies on the positive half. 

The change of variables X-----Pe tA t ransforms the matr ix equat ion 

(12) X' = [A + B(t)]X 

into 

(13) P '  = A P  - -  PA + B(t)P. 
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Let  C(t) be an almost periodic matr ix  whose spectrum is contained in the 
extended spectrum of B(t). W e  can regard the equation 

(14) U'~- A U - -  AU + C(t) 

as an equation of the form (6). Since the eigenvalues of the l inear transfor- 
mation U--->AU--UA are % - - a h  {j, k-~-1, ..., r) the condilions of Theorem 
2 are satisfied. Hence  the equation (14} has a unique solution U(t) whose 
spectrum is the same as the spectrum of C(t). 

Starting from Uo( t ) : I  we define a sequence { U~(t)} induct ively by taking 
U,~(t) to be the unique almost periodic solution of the equation 

U' : A U --  UA + B(t) U._l(t) 

which has the same spectrum as B(t)U~_~(t). Since the spectrum of a product  
is contained in the sum of the spectra of the factors, the spect rum of U,~(t) 
(n~_l)  is contained in the extended spect rum of B(t) and consists of numbers  
i~, where ~ ~ n d .  Moreover 

II u.I I  <_,Mx(Cld.)ilBil It U~_,II, 

where d~ is the distance of the set {%--~k} from the spect rum of B(t)U~_l(t), 
i.e. from the spectrum of U,~(t). 

Choose a positive integer N so that 

! ~ - - ~ a l ~ 2 ~ d  for j, k : l, ..., r. 

Then d , ~ ( n - - N ) d  for all n ~ N  and 

x( C/ d.) "<~ X ((n __CN) d) . 

From the definition of XIu) we can choose N ' ~ / V  so large that 

X ( n - - N )  d - - ~  for n >  

Then for n ~ N'  we have 

II v .  II < (~/n)IJ U~_, II, 

whore ~---2M][B H C/d. Therefore the series ~,IIU,~JI converges at least as 
fast as an exponential  series. 
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Put  
o~  

P(t) = ~ U.( t )= I +  Q(t~. 
~ 0  

Then Q(t) is almost periodic and its spectrum is contained in the extended 
spectrum of B(t). It is easily seen that P(t) is a solution of the differential  
equation (13). Thus Xtt)-~ P(Od A is a solution of the equation (12). It only 
remains to show that it is a fundamenta l  solution. 

In the same way we can show that the equation 

P ' =  A P -  PA -- PB(t) 

has a solution Pl{t)-~-I + QI(I), where Q*(0 is an almost periodic matr ix whose 
spectrum is contained in the extended spectrum of B(t). It  follows that 
P~(t)P(t) is a solution of the equation 

U'=  A U- -  UA. 

Therefore P I ( t ) P ( O - - I ~  Q~(t)+ Q(t)+ Q~(t)Q(t) is a solution of ~he same 
equation. Since its spectrum is contained in the extended spectrum of B(t) 
it must  be the zero solution. Thus PI(t)P(t)= I and the matr ix I +  Q(t) has 
an inverse of the same form. 

Some results  in the direction of Theorem 4 have been given in the 
l i terature.  P U ~ A M  and WIN~NER [13] considered an r th order scalar equation 
with the corresponding matr ix A ~-0 .  SA~DOn [14] and GoLo~B [9] allowed 
A ~ 0 but  made the additional assumption that B(t) had an absolutely con- 
vergent  FOURIER expansion. 

The representat ion (11) shows that the equation (10) can be reduced to 
an autonomous equation by the almost periodic change of variables x = [ I +  
+ Q(t)]y. I1 also permits us to draw conclusions about the stabil i ty of the 
equat ion (10) in the same way that F LOQUE~'S theorem enables one to draw 
conclusions about  the stabil i ty of periodic equations. For  example, (10) will 
be (uniformly) asymptot ical ly stable for t--->+ c~ if and only if all eigenvalues 
of A have negative real parts. 

4 . -  Recent ly  ~[ILLER [12] has proved an interest ing stabili ty criterion 
for the existence of almost periodic solutions. His  proof depends on the 
theory of dynamical  sistems. We give here a quite different  proof, based on 
the propert ies  of asymptot ical ly  almost periodic functions, which enables us 
to weaken the hypotheses of MILL~a'S theorem and at the same time streng- 

then the conclusion. 
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A continuous function ~(t), defined on the half - l ine  [0, ec), is said to be 
asymptotically almost periodic (FRECm~T [7], [8]) if every sequence {h,~} of 
positive numbers  contains a subsequence (k,~} such that ~(t-b k,~) converges 
uniformly on [0, ~ ) .  Just  as for almost periodic functions, there is an equi. 
valent definition in terms of translation numbers.  If p(t) is almost periodic 
and if a(t) is a continuous function which tends to zero as t--->cx~ then 

(15) ~(t) ~ p(t) + a(t) 

is asymptotical ly almost periodic. Fm~cm~ has shown that, conversely, any 
asymptotically almost periodic function can be represented in this form and 
that the representat ion is unique. 

Suppose that ¢~(t) is di[ferentiable and that its derivative ~'(t) is also 
asymptotically almost periodic. If 

r'(t) = q(t) + ~(t) 

is the corresponding representat ion of the derivative then for any fixed h ~ 0 

t 4 - h  t-q-h 

~(t + h ) -  ~(t) = f ~(s)ds @ ( ~(8)ds. 
,) 

t t 

The first therm on the right is almost periodic, since it is bounded and its 
derivative is almost periodic. The second term is continuous and tends to 
zero as t--> c~. Therefore,  by the uniqueness of the representation, 

t+h t+h 

p(t + h ) -  p(t) = f q(s)ds, ~(t + h) --  ~Ct) = i ~(s)ds. 
,9 

t t 

It  follows that p(t) and :¢(t) are differentiable and 

p'(l)=q(t),  £ ( t ) =  ~(t). 

TKEORmt (5) - -Suppose that f(t, x) is almost periodic in t" for each x in 
the ball I x! ~ R and continuous in x uniformly with respect to t. I f  the equation 

(16) x' = f(t, x) 

has a solutio~ ~(t) such that i~(t) l <-- M < R for t ~ 0 which is totally stable 
on the interval [0, oo), then it has an almost periodic solution p(t) such that 

(17) I~(t)--p(t)l + Jq~'(t)--p'(t)r---->0 as t .-->oo. 
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In  I~ILLER'S formulat ion (]7) is lacking and the solutions of any equation 
in the closed hull  of (16) arc required to be uniquely determined by their  
initial values. 

A solution v(t) of the equation (16) is said to be totally stable ( ~  stable 
under  constant disturbances) on the interval [to, ~ )  if for each z > 0 there 
exist cor responding positive numbers  ~(s), ~(~) with ~ ( s ) <  s such that 

(a) I+(t~)-- v(t~)[ < ~ for some t ~ t 0 ,  and 

(b) !+'(t)--f[t, +(t)]l < ~ for those t_~>t~ for which 

I+(t)  - -  ~(t) l < 

together imply I+(t) - -  ¢~(t) t < s for every t ~> tl. 
If ~(t) is  a totally stable solution of the equation (16) on the interval 

[to, ~ ) ,  then clearly T(t =1-h) is a totally stable solution of the equation 

x' = f(t "4- h, ~) 

on the interval [ to- -h ,  ~ )  with the same funct ions ~gs), ~gs). 
We now proceed with the proof of Theorem 5. By Lemma 4 f is uniformly 

continuous in (t, x) and almost periodic in t uniformly with respect to x. 
From any sequence {h~} of positive numbers  we can extract  a subsequence 
{ k, } such that ~(k,~) -+ ~ and 

f(t+k++, x)--+g(t, x) uniformly for t E J ,  I xl--<R. 

Now +(t-4-k.) is a totally stable solution of the equation x'--= f ( t - f -k . ,  x) and 
for any z > 0 we can find a positive integer ~(s) such that if n ~ ( s ) ,  

! ~(k . )  - -  ¢;(k.~) ] < ~1(~), 

I f ( t -4-k , ,  x) - -  f(t -4- k,, , x) l<~: (s )  for t ~ J ,  ]xi<_R. 

Here  ~l(s), ~,(s)are the functions corresponding to ~(t) in the definition of 
total stability. Then, if n >_~ N(s), m >~ N(s), 

r q ~ ( t + k , ~ ) - - ~ ( t + k , , ) ] < e  for all t ~ 0 .  

Thus ~(t + k,) converges uniformly on the interval  [0, co). This shows that ~(t) 
is asymptotically almost periodic, and so it has a representat ion (15). For  
any almost periodic funct ion p(t) 

ILPil---- lim Ip(t) J 
b--> C~ 
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and therefore, in our ease, ] p ( t ) [ ~ M  for all t. Thus f i t ,  p(t)] is almost 
periodic and f i t ,  p( t )~-¢¢( t )]- - f[ t ,  p(t)] tends to zero as t-->c,c. Therefore  
+'(t)----f[t, ~(t)] is asymptotically almost periodic. Moreover, by what has been 
said above, p(t) is differentiable and p'(t) = f[t, p(t)]. This completes the proof. 

To apply Theorem 5 we need to know when the solution ¢+(t) is totally 
stable. As ~ L L E ~  remarks,  a sufficient condition is that ¢~(t) be uniformly 
asymptotically stable and that the function f(t, x.) satisfy a L~PscH~+z condition: 

If(t, vc~)-- f(t, ~c2) 1 <_L I x~ - -  ~c2t for t ~ J, i w~ I ~ R, [x~l~'/~. 

Since all proofs which I have seen of this result  use the ra ther  difficult  
theorem that uni form asymptot ics tab i l i ty  implies the existence of a L ¥ ~ P u ~ o v  
function the following e lementary  proof may be of interest. 

By the definition of uniform asymptotic stability for each e :> 0 there 
exist positive numbers  ~,(~) and T(s), with ~ ( ~ ) ~  s, such that if x(t) is a 
solution of (16) satisfying 

then 

and 

Set 

]x(t~)-- ¢~(t~)l < ~ for some t ~  to 

1 
I x ( t ) - - ~ ( l ) l < 2 ~  for all t~_~t~ 

1 
I x ( t ) - - c ~ ( t ) I ~  for all t ~ t l - l - T .  

1 
~2(~) = ~ ~ t L ( e  LT - -  1) -~. 

Let 5(t) be a differentiable function such that [t~(tl) - -  ~(t~)i < ~1 and let x(t) 
be the (unique) solution of (16) such that x ( t x )=  +(t~). If 

fit ,  for tl<t<t2_ _ 

then the same interval  we have ([5], p. 20) 

1 +(t) - -  x(t) i ~-- ~L - l [ e  L(Z-t~) - -  1]. 

Thus 

] ~(t) - -  ¢~(l) j < ~ ~ --~ ~ , L -X[e  L(t-t ,)  - -  1]. 

i 1 
For t ~_ tl + T the right side does not exceed + 

Z 
~. Hence if 
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for all t ~ t x  for which ,~(l)--~(t)[  < e the latter inequali ty must hold at 
least throughout  the interval [t~, t , -~ T]. Therefore 

( ~ ( t ) - - ~ ( t ) [ < ~  for t ~ . l ~ t ~ +  T 

and 

I ~.~(11 + ~') - -  ~p(t 1 + ~')] g ' !  +(t, ~- T)  - -  X(t i + T)  I + I X(tl + T) - -  ~(t l + T)] 

1 1 

The same argument  can now be repeated with t~-~T in place of t~. Proceeding 
in this way we see that 

I~(t)--~(t)l  < e  for all t ~ t , .  

Thus ¢~(t) is totally stable. 
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