
On the Inversion of Some Differentiable Mappings 
with Singularities between Banach Spaces (*)(**). 

A. AIKBI%OSETTI - G. PRODI (Pisa) 

S u n t o .  - I1 elassico metodo di P. Levy e R. Cacvioppoli b esteso al caso di applivazioni tra spazi 
di Banach ehe presentino singolarit~. Viene ]atta un'applicazione ad un problema non lineare 
in cui si ha modo di wdutare esattamente il numero delle soluzioni. 

Some classical methods for the inversion of the nonlinear mappings between 
BANACK spaces begin with the local inversion theorem~ passing then to prove the 
invertibil i ty in the large by various methods. In this direction it  is well-known that  
P. LEVY [1] and R. CACGIOPPOLI [2] obtained very interesting results with many 
applications. 

The phi:pose of this research is to prove that  the basic idea, of these methods 
can still be nsefvNy employed, studying the singular set {i.e. the set where the 
differential is not invertible) and its image (which we call critical set). The case 
that  we t reat  is the most simple in this direction: namely the case in which both 
the singular and the critical set are differentiable manifolds of codimension 1. 

We apply the obtained results to the study of the boundary-value problem 

~) 
A u  + iCu) = g 

~ I ~  = 0 

where D is a bomlded open set sufficiently smooh, and / is a function which is 
linearly increasing as the argument tends to + e¢ and - -0% but without sym- 
metry  (see §3). 

This  method gives very  exact results on the number of the solutions. I t  is 
interesting to observe that  for our problem IJEI~AY and SCHAIYDEI¢'S method- -a t  
least in its more obvious use---gives no useful result, since the topological degree 
is zero. 

§ 1. - This section is devoted to some simple purely topological properties con- 
cerning the inversion of mappings. 

(*) En~rata in Redazione il 12 novembre 1971. 
(**) Supported by G.N.A.Y.A. (Gruppo NazionMe di Analisi Funzionale ed Appliea- 

zioni, C.N.R.). 
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We recall: 

1.1. D~I~ITIO~.  - A mapping qb: X - ~  Y (X, ~ topological spaces) is said proper  

i/ /or every compact set K c ~ ,  the set qS-l(K) is compact in X .  

1.2. D~FI~ITIO5 ~. - I~et X and ~ be topologica~ spaces. A continuous mapping 
¢: X - + Y  is said locally invertibte in uo~X i/there exist a neighborhood U of uo and a 
neighborhood V oJ yo-~)(uo) such that ~ induces a homeomorphism between U and V. 

We set N ( y ) =  # ¢-1({y}) (cardinal n u m b e r  of ~-~({V})). 

1.3. P]~0PosI~ION. - I, et X and Y be metrizable topological spaces~ qb: X - ~  
a proper, continuous mapping which is loea~ly invertible in every point. Then the 
junction yv->Pq(y) is finite and locally constant. 

The fact  t ha t  N(y) is finite follows obviously  f rom the  fact  t h a t  ~-~({y}) is 
discrete  and compact .  Moreover  i t  is easy to check t h a t  N(y) is upper  and lower 
semieont inuous:  t h e n  i t  is locally constant .  

As a corollary of this proposi t ion,  we obta in  tha t  if Y is connected,  t h e n  N(y) 
is constant .  ~ o r e o v e r ,  if X and :Y are arcwise connected and Y is s imply connected 
( that  is eve ry  loop in Y is homotopic  to a constant) ,  t h en  we get  t h a t  N ( y ) =  1 
and ~ is a global homeomorph ism of X onto IT. This is the  wellknown (~ Global 
inversion Theorem>); i t  can be p roved  b y  a m e th o d  similar to the  classical one, 
which is used for the  <~ :~onodromy Theorem >) in the  t heo ry  of the  analyt ic  funct ions.  

:For our  purpose i t  is fundamenta l  to  s t u d y  the  set  of the  points  a t  which the  

mapping  is no t  locally inver t ib le .  

1.4. DEI~INITION. -- I~et ~: X--> Y be a continuous mapping (X and Y topdogical 
spaces). We say that u e X  is a singular point i] ~ is not locally invertible i~¢ u; 
y~  Y is said to be a critical point i/ y = #(u)~ for some singular point q~eX. 

We shall speak also, wi th  obvious meaning~ of singular set and of eritica~ set. 

Clearly, the  singular set is a closed subset o / X .  
The following proposi t ion is a t r iv ia l  consequence of 1.3. 

1.5. P~01~OSlTI0~. - Let X and Y be a topological metrizabIe spaces and ¢ :  X - +  Y 
a continuous proper mapping. We denote the singular set by W. Then N(y) is constant 

on every connected component o] Y'. , ,#(W). 

In  order  to obta in  this  proposi t ion  f rom 1.3, i t  is enough to consider the  mapping 
qs: X~ /O-~¢(W)  -> Y ~ # ( W ) .  I t  is p roper  and moreover  i t  is clear t h a t  i t  is inver-  

t ible  a t  e v e r y  po in t  ueX',..¢-~qb(W). 

§ 2. - Now we consider the  differentiable mappings be tween  ]3ANACBC spaces. 

2.1. -- DEPI~'ITION. -- _Let X and Y real Banaeh spaces, A an open set o/ X.  We 
say that ¢: A - ~  Y is a e ~ ( k > l )  mapping ij it is k-times diJ]erentiab~e and i/ the 
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r-th derivative: ¢(~) ( l~<r<k)  is a continuous mapping ]rom A in the set o] the r-linear 
mappings o] X in ~ (with the usual norm). We shall use the symbol ¢(~)(%)[vl][v2] .,. [,v~] 
to denote the value that this r-linear mapping assumes when, it is evaluated o~ the 
arguments (el, . . . ,  v~), ]or uo ]ixed. 

2.2. DErI~ITI0~. - We say that the C~-mapping ¢ is locally invertible in uo e X 
i / ¢  induces a Ck-di]]eomorphism between an open neighborhood U oJ uo and an open 
neighborhood V oJ Yo = ¢(Uo). 

I t  is known tha t  ~ is locMly inver t ib le  in uo if and only if  the  l inear  mapping 
¢'(Uo): X--> Y is inver t ib le .  

The not ion of local inver t ib i l i ty  which we use here  is the  t rans la t ion  at  a dif- 
ferent ia l  level  of what  we have  in t roduced  in the  previous  section a t  a pure ly  topo- 
logical level .  

Clearly i t  is not  the  same as the  prev ious  one;  on the  o ther  sid% f rom now on 
we shall use only differentiable mappings and there fore  the  meaning  of <~local 
inver t ib i l i ty  ~> well be always the  la t te r .  So, for example,  we shall way t ha t  u0 is 
a singular poin t  for ¢ if ¢'(uo) is not  inver t ib le .  

2.3. R E M ~ : .  - Obviously all the  results p roved  in the  previous  section still 
hold if the  meaning of local inver t ib i l i ty  and of singular set  is what  we have  poin ted  
out  in Defini t ion 2.2. 

Now we in t roduce  some not ions t h a t  we shall use in the  s tudy  of the  singular 
and cri t ical  set  of u differenti~ble mapping.  

2.4. DE]~I~ITIO~. - Zet X be a Banaeh space. A set M c X is said a C~-maniJo~d, 
of codimension 1, i /  /or every point uo e M there exist a neighborhood U o] uo and a 
C~-]unctional 1": U-> R such that 

a) F(u0)  ~ 0 ; 

b) M n  U = { u :  u ~ U ,  1" (u )=0} .  

I t  is easy to p rove  t h a t  a C~-diffeomorphism t ransforms a C~-manifold of eodi- 
mens ion  1 in a manifold of the  same type .  Moreover  i t  is possible, locally, to find 
a diffeomorphism t h a t  t ransforms such a manifold in a l inear  manifold of codi- 
mens ion  1. 

I t  is in te res t ing  to see how a smooth manifold of codimension i disconnects 
the space. 

2.5. PnoPoslTm~.  - Let M be a dosed connected C~-mani]old (k > 1), of codimension 1 
in the Banaeh space X .  Then, ~M has at most 2 components. 

P~ooF. - We suppose t h a t  t he re  are 3 open not  empty ,  dis joint  sets A~, A~, As 
such t ha t  X ~ M  = A~ (J A~ u A~. We r em ark  t h a t  since X ~ M  is open then  each A~ 
is open not  only re la t ive ly  to X", .M, b u t  also to  X.  

We denote  by  ~ (i = 1, 2, 3) the boundary  of A d they  are not  em p ty  for if 
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A, has e m p t y  boundary ,  i t  is an open-closed set of X. Obviously we have also 

~-+c M. 
In  v i r t ue  of the  p roper t i es  of M, for ev e ry  uo ~ M we c:an find an open neigh- 

borhood U of Uo such t ha t  U n CM h~s exac t ly  2 connec ted  components :  t hen  only 
two of the  sets A,. can have  ,~ non-empty  in tersec t ion  wi th  U. I t  follows tha t  
U n  M can be conta ined at  most  in two sets 5,.. 

Moreover,  if  i t  is u o ~ . ~  t hen  one of the  two connected components  of U(~ ~M 
is conta ined in A+; t hen  eve ry  poin t  on U n M is a boundary  point  for A~, tha t  
is, i t  belongs to ~ .  Thus the  .~+'s are closed-open sets of M. Since, by  hypothesis ,  
M is connected,  we have M = ~ .  B~tt this  is not  consis tent  wi th  the fact ,  we 
proved  above,  tha~t eve ry  poin t  of M belongs a txmos t  to 2 sets 5~. Q.E.D. 

2.6. l~n~a~ : .  - We do no t  know if, under  the hypothes i s  of proposi t ion 2.5., 

the  connected  components  of CM are ahv~ys two. 
We s tudy  now a situation~ for us specially in teres t ing,  in which the singular 

and the  crit ical set are differentiuble manifolds of codimension 1. 

2.7. T~EO~E~[. - Zet X and Y be Banaeh spaces, A an open subset of X ,  ¢: A---~ Y 

a mapping of class C ~ with k ~2 .  
We suppose hat uo ~ A  is such that: 

Z) ¢'(uo) has kernel o/ dimer~sion 1 and image of codime~sion t .  

I I )  I]  v o ~ X  is a +w~-zero vector such that ¢'(uo)Vo----0 and 7o is a functional 
on Y such that Im(¢ ' (%))  = {z: (z, Y0} = 0} their the linear ]unetional 

z ~ (¢"(Uo)[Z][V,], 7o} 

is not identically zero. 
Then the singular set W o] ¢ is, in a neighborhood o] uo, a C~-~-manifoId o] codi- 

mension 1. 
I]  the condition I I )  is replaced by: 

H*) (¢"(uo)[vo][vo], 70) =/: o 

then we can find a~ open neighborhood U o] uo such that ¢ ( W n  U) is a C~-~-manifold 

of eodimension 1. 

The proof of the theorem is based on the following 1)erturbution IJeInmu which 
is well known (it is contained in general  results  concerning the :FI%EDlCi0LlYi operators).  

For  the reader 's  convenience,  we prefer  to prove  this lemma completely.  

2.8. IJE~I~IA. -- Let To: X-->-Y (X,  Y B a ~ v h  spaces) be a tinear continuous 
mapping. We suppose that K e r  To and Coker To have dimension 1. Then, every ~inear 
mapping T near enough to To (in the usua~ norm) either is an isomorphism o] X in Y ,  

or it has Kernel and Cokernel ol dimension 1. 
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PtCOOF OF TI!E LElVI~±. - L e t  {2Vo}ae R be the  Kerne l  of To and y o a  nonzero func- 
t ional  defined on Y such t ha t  I r a ( T o ) =  {z: (Z, yo} =0} .  L e t  8 be a funct ional  
on X such tl~at (re,  8 ) = 1 ,  and s an  e lement  of :~" such th,~t <S, yo) = 1 .  

The mapping  p:  u~+U--Vo(~,  8) is a projec tor  in X;  le t  ~ be the  l inear inva- 
r ian t  subspace (obviously of codimension 1) re la ted  to p. In  the same way, the 
mapping  z :  y ~ + y - - s ( y ,  Yo) is a pro jec tor  in 17; the  invzr i~nt  subsp~ee re la ted  to 
them,  ~ ,  is equal  to I m  (To). L e t  ~' be  the  conjugate projec tor  of ~. 

Le t  T: X --> Y be any  l inear  mapping;  in order  to s tudy  whe ther  T is invert ible ,  
we pu t  T = T o + S  and v = 2 V o + W ,  wi th  w e ~ .  We have to s tudy  the  equat ion 

(2) ToM + S(~vo + w) = g 

wi th  g given in 17. Applying to (2) the  projectors  g and g~, we h~ve the equivalent  
sys tem 

ToM + ~8(~Vo + w) - -  u g ,  

(3) ='S(2Vo + w) --- = ' g .  

Since the  opera tor  To is an isomorphism of 2~ onto ~,  for S small enough,  so is 
also To + ~S. We p u t  A =:= (To + ~S) -~. 

Then  the  first equat ion  of (3) is equivalent  to 

(4) w = A(~g  - -  ~S,~v°) . 

Replacing in the  second one, we have :  

~' S(2v° - -  Az~S2vo) = g '  g - -  zd S A n g  

t h a t  is 

2 ( Svo - -  SAz~SVo, yo) = (g - -  SAz~g, ~'o) • 

Now, we dis t inguish two cases: 

a) ( S V o - - S A g S v o ,  Yo)=/=0 ( tha t  is the  vec tor  S v o - - S A g S v o  does not  belong 
to I m  To). 

In  this case, Vge Y, the  sys tem (3) has a unique  solution and hence T: X - > I  7 
is an isomorphism. 

b) ( S v o - - S A ~ v o ,  ~,~) = o. 

In  this case, in order  to obta in  a solution, we must  have  ( g - - S A n g ,  ~ 'o)= O. 

We note  tha t ,  for S small enough,  the  fnnct ional  g~- ) . (g - -SA~g ,  Yo) is different  
f ro la  zero. Then  ~ can assume a rb i t r a ry  values,  and the  kerne l  of T has dimension 1. 

2.9. I ~ E z ~ K .  - In  the  case b) for the  p roper  solutions of the homogeneous 
sys tem we have  ~ ¢ 0 .  Then  to represen t  the  kerne l  of T we can set 2 = 1 .  
F r om (4), for g = 0, we ob ta in  

Villi < IFA !1 flail IIsll fl oll • 



236 A .  A M B R O S E T T I  - G. PRoDI: On the inversion, etc. 

This re la t ion implies tha t  Ke r  T, still in ease b), can be associated wi th  the vector  
Vo ~-w, wi th  Vo =~ 0, constant ,  and w which tends  to zero as T tends  to To. 

P~ooF oF T~EO~E~ 2.7. -- We p u t  To = ¢'(Uo), T = ¢ ' ( u ) ;  the meaning of the 
other  symbols is the  same us in the  previous  Lemm~.  

We set:  S(u)=¢'(u)--¢'(Uo) and we denote  by  A(u) the  inverse  mapping of 
¢'(uo) +zS(u) (as mapping  of ~ in :~). I t  is impor t an t  to r em ark  tha t  u~->A(u) 
is of class ¢ k-~. A poin t  u belongs to W if and only if the  case b) holds. We p u t  

B(~) = ( ¢ , ( ~ ) -  ¢'(~o)) - ( ¢ ' ( ~ ) -  ¢'(~o)) A(~)~(¢' (~)- -  ¢'(~o)) 

then  condit ion b) yields 

<B(u)Vo, 70> = 0 .  

In  order to prove  tha t  this  re la t ion  is the  equat ion of a Ck-l-manifold of codimension 1~ 
we observe tha t  B(u) is of class C k-1 and t h a t  the  differential  of the  funct ional  

u ~+ <B(u)Vo,  to> 

evaluated  at  the  poin t  Uo is g iven b y  

z ~ <¢'(Uo)[Z][Vo], 7o>.  

This l inear  funct ional ,  by  hypothes is  II) ,  is different  f rom zero. Thus we have 

proved  the  first s t a t emen t  of Theorem 2.7. 
To prove  the  second s ta tement ,  we show th a t  raider,  hypothes is  II*),  we can 

build,  in a neighborhood of %, a diffeomorphism which maps W in ¢(W) (obviously, 
the  diffeomorphism cannot  be ¢ itself,  since uo is a singular point  for ¢!). 

Namely  we consider the  mapping  y~: U->  Y (where U is a suitable neigh- 

borhood of %) so defined 

u ~ ( u )  = ¢ ( u )  + s<B(u)Vo, 7o)  • 

Since the  func t iona l  u~-~<B(u)Vo, Yo} is zero on W, t h en  ~ is equal  to ¢ on W. 

The different ia l  of ~ a t  the  poin t  Uo is: 

z ~ ¢ ' ( u o ) z  + s <¢"(uo)[z][vo],  ~o7 .  

An easy computa t ion  show th a t  ~p'(uo) is inver t ib le  if and only if 

<¢"(,~o)[V.]EVo], 7o> ~ o, 
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which is exact ly  condit ion II*).  Hence,  if this hypothesis  holds, the crit ical set i s - -  
loca l ly - - the  image of the  singular manifold under  a diffeomorphism of class C k-~. 
thus i t  is a C~-~-manifold of codimension 1. 

This achieves the  proof  of the  Theorem.  

2.10. DEFII~ITION. - -  ~gve~ an application o/ class C ~ with k ~ 2 ,  we sha~ call 
ord inary  singular po in t  a point  /or which condition I) and II*)  hold. 

I f  uo is an  o rd inary  singular point~ t h e n  we can compute  locally the  number  of 
the  solutions of the  equa t ion  ¢ ( u ) =  y. 

2.11. T~O]~E~I. - Let ¢: A - *  Y (A ope~ set in a Banach space X~ Y Banach 

space) be a mapping of class ¢~ with k>~2 and u o ~ A  an ordinary singular point. 
Then, denoted by s a vevtor which is transversal to ¢(W) in  Yo = ¢(uo), there exist 

a neighborhood U o] uo and an s ~ R such that 

a) Vye]yo ,  Yo + e s ]  the equation ¢(u) = y has 2 solutions in  U; 

b) Vye]yo ,  yo--Ss]  the equation ¢ ( u ) = y  has no solution in U. 

la~ooF. - Since uo is an ord inary  singular point ,  t hen  if U is a suitable neigh- 

borhood of uo, ¢ ( W ~  U) is, in a neighborhood of Yo := ¢(uo), a C~-~-manifold od 
codimension 1. 

Using the  same notat ions  of the  previous  Theorems,  we denote  by  s a vector  
which is t ransversa l  to ¢(W) in the  poin t  Yo and set  y = Yo +~s ,  ~ e R .  

We can assume,  wi thou t  loss of genera l i ty  (s, 70} -~ 1, uo = 0 and Yo = ¢(Uo) ---- 0. 
We pu t  

r (u)=¢(u)-¢ ' (o)u ,  

u = ~Vo ÷ w (with w ~ )  . 

The equat ion  ¢ ( u ) = y  yields 

¢'(O)w ÷ r(2Vo ÷ w) = Vs • 

We t ransform this  equat ion  in to  a sys tem using the  projectors  z and ~'. 
~Ve have  

(5) 
¢'(o)w + ~r(2vo + w) = O, 

u'r(~Vo + w) = V s .  

Since the  operator  ¢'(0) is inver t ib le  be tween  ~7 and  ~ and r ' ( 0 ) =  0, we obtain 
f rom the  first equat ion of (5), in v i r t ue  of (~ DI~I's Theorem ~): 

w=a(~) 
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where a is a funct ion  of class e ~, defined in a neighborhood of 0 ~ R and such 
tha t  a'(O) = 0. 

]~ence the sys tem is reduced  to the following equat ion  

tha t  is 

x'r(ZVo ÷ ~(~)) = Vs 

(r(2Vo + ¢(~)), ;~o) = 

this l a t te r  equat ion can be s tudied by  the following lemma,  which is e lementury:  

2.12. LE~i~f~t. - Zet q~ be a real ]unctio~ oJ class C 2 defined in a neighborhood o/ 
O~R,  such that ~o(0)=0,  ~o'(0) = 0 ,  ~o"(0)> O. 

Then there exist two positive numbers e, ~ such that: 

a) V ~ ] O ,  s] the  equa t ion  ~(2)=~]  has two solutions, oJ apposite sign, in 
[ - -~ ,  + r ] ;  

b) V ~ E [ - - s ,  O[ the equation q~(2)=~1 has no solution in [ - -v ,  ÷ r]. 

I)I~OOF OF TI~E TttEOREM 2.11. COMPLETED. -- ~Ve set ~0(,~) .... (r(~Vo q- a(~)), ~o}. 
We r e m a r k  t ha t  i t  resul ts  ~ ( 0 ) =  ~ ' ( 0 ) =  0, and ~"(0) v~0. Then  b y  Lem m a  2. t2 ,  

we obta in  the  s t a t emen t  we w~nted to prove.  Q.E.D. 

§ 3. - Now we s tudy  ~ non l inear problem, making use of the  general  arguments  

which we have developed in the  previous  sections. 
Le t  f2 be an open bounded connected  subset  of R ~v, 8f2 its boundary  and 

== f2 U 3/2 its closure. 

e~(~) will denote  the space of the funct ions which are  k-times cont inuously 

differentiable on D and such t h a t  the  der iva t ives  can be ex t ended  b y  cont inui ty  

on 3~. Wi th  the  usual  norm:  

]TuH. = sup sup ID'u(x)l, 

C~(~) is a BANACtr Sl~ace. 

C~"(~) ( 0 < ~ < 1 )  will denote  the  space of the  hmct ions  u cCk (D )  such 

tha t  the  k-th der iva t ives  are  HOLDE~-eontinuouS wi th  exponent  ~ in ~ .  C~"(~) is 

BANA~H space under  the  no rm 

[.D'u(x) --  D'u(y)] 
liuli~.~ = l l u b +  s . p  .~, Ix--Y]" 

C~"(~) will denote  the  subspace of C~"(~) consist ing of the  funct ions which 
are zero on 8f2. L~(~) will denote  the space of the  mesurable  funct ions u, such tha t  
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[u] ~ are in tegrable ,  wi th  the  usual  norm 

Z~(ag) will denote  the space of the misnrable essentially bounded functions,  
wi th  the  ess. sup. norm.  

We shall say t ha t  f2 is of class C *'~ if i ts boundary  has, in the neighborhood of 
eve ry  point ,  u regular  paramet r iza t ion  of class C~'% 

Final ly  we recall  t ha t  the  classical problem:  

{ A u  -~- 2u -- 0 

'Y'IO-Q ~ 0 

on ~2 

has countably infinite many  eigenvalues {~}, ar ranged ~ccording to increasing m~- 
gni tude ~n4 considering the i r  respect ive  mult ipl ici ty.  The last eigenvalue is simple: 
thus we have  0 ~ ~ 2~ < ~3 < . . . .  

Le t  I: R-~-R  be a funct ion  of class C ~ sat isfying the  following condit ions:  

i) 1(0) ~=: 0; 

ii) t"(t):> 0 Vt; 

iii) lira f ( t )  = V wi th  0 < t ' <  ~ ; 

iv) lira fl(t) -- t" with  2 ~  l "~  22. 
t--->+ ¢o 

In  what  follows :¢ shall be a iixed n u m b er  in the  in te rva l  ]0, 1[. 

3.1. TKEOtCE~. -- Let Q c R  N be a bounder connected open set o] class C ~'~. 
We assume that the real 1unction I has the properties i), ii), iii) and iv). 
We consider the boundary-value problem 

(1) { Au + l ( u )  = g  

ula o = 0 . 

On ~ ,  

Where g is given in C°'~(~) and the solution u is looked ]or i~v C2o'~(~). 
Then there exists in C°'~(~) a closed connected Cl-mani]old M o] codim. 1, such 

that C°'~(~)"\M consists exactly o] 2 connected components A1, A2 with the ]ollowing 
properties: 

a) i] gEAI  then the problem (1) ha no solution; 

b) i] gEA2 then the problem (1) has exactly 2 solution. 

Moreover i] g E M  then the problem (1) has a unique solution. 
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P~OOF. - We consider the mapping ¢: C~'~(~)-+ G°-~(t~) defined by 

¢(u) = Au + ](~t). 

From the hypothesis on ] (*) it follows that  ¢ is of class C 2. The differential of ¢, 
evaluated on u e Co2'~'(~) is given by 

¢'(u): v ~ A v  ÷ ]'(u)v. 

To complete the proof of Theorem 3.1, we state here some lemmas, which we shall 
prove in the following sections. 

LE~M~ A. - The mapping ¢ is proper. 

LE~_2L B. - The singular set W o/ ¢ is not-empty, closed and connected. ~,very 

point o] W is an ordinary singular point. 

L E ~ x  C. - I] g e e ( W ) ,  the problem (1) has a unique solution. 

PtCOOF OF ~ TICI:EORE~ COI~LETED. -- F i r s t  w e  s t u d y  the properties of the 
critical set ¢(W). By Lemma A ¢ is proper and hence, since W is closed and con- 
nected, ¢(W) is also closed and connected. 

We observe that,  by Lemma A and C, qt induces a homeomorphism between W 

and ¢(W). 
Since all the points of W are ordinary, then by Theorem 2.7. ¢(W) is a manifold 

of codimension 1. Thus, by Proposition 2.5 we can say that  C°'~(t~)~¢(W) has at 
most 2 connected components; moreover since ¢ is proper then by Proposition 1.5 
we get that  the munber of the solutions of ¢(u) = g is constant, provided g belongs 

to the same connected component. 
To compute such number, we first observe that,  for every neighborhood U of 

Uo ~W,  there exists a neighborhood V of go ----¢(%) such that  ¢-~(V)¢ U. Otherwise, 
there should exist an open neighborhood U* of u0 and ~ sequence u~ such that 
u~ va U* and lim¢(u~) = go. Since ¢ is proper, we might exctract a subsequence 
converging to a point u* such that  u*~ U* and ¢(u*)-----go, u* V=uo: this would be 

against Zemma C. 
On the other hand, since uo is un ordinary singular point, by Theorem 2.11 we 

can compute locally the number of the solutions of the equation ¢(u)--= g when g 
lies on a segment which is transversal to ¢(W) in go. These solutions are 2 or 0 

according to the side of ¢(W) on which g lies. 
Hence a) and b) of the Theorem are proved. 
At last if g e e ( W ) ,  by Lemma C, the solution of ¢(u) ----g is unique; the proof 

of the Theorem is so completed. Q.E.D. 

(*) t%r what concerns the mapping u ~-](u), we can factorize it in this way: C~o'~(t~) -+ 
-~ C*(ff)H C2(~) ~ C°'~(t2), where the first and last mapping are inclusions. 
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§ 4. - This section is devo ted  to the  proof of Lem m a  A. ~Ve will recall some 
proposit ions upon the  Po ten t i a l  Theory  and the  Eigenvalue  Theory .  

4.1. PI~oPosITIoN. - Zet .(2 c R N be a bounded set o] class C ~'~. Zet v be the solution 
o] the bound~ry-va~uv problem 

Av = h on ~9 

v [ ~  = 0 

where h is a bounded ]unction. 
estimate holds 

where k~ is a suitable constant. 

Then, /or every fixed o~ ( 0 < c ¢ < 1 )  the 1ollowing 

Now we consider the  following eigenvalue problem~ which is more general  t han  
the  one we recalled in the  previous  sect ion:  

Av + #~v ---- 0 

Vie ~ = 0 

on ~Q 

chere @ is a measurable funct ion bounded by  two posi t ive constants ;  we consider 
generalized solutions; ~ is a bounded connected open subset  of R ~. Then:  

4.2. P~OPOSITIO~. - The eigenvalues are all positive and /orm a non decreasing 
sequence tending to -5 oo: 

0 < #I </~ </%... <#~ < .... 

(We suppose every eigenvalue is repeated as many times as its multiplicity). 
For  the  proof:  [3], Chap. VI ,  § 1. 

4.3. I~oPosITIO~ ~. - The ]irst eigenvalue is simple (hence it is /~i</~); the cor- 
responding eigenlunction does qwt vanish on ~ and its values are of the same sign. 

This proposi t ion is conta ined in a general  t heo rem concerning the  nodes of an 
e igenfunct ion [3] (pug. 452). 

4.4. PI~OPOSlTION. - The r-th eigenvalue [~ is a monotone non increasing Junction 
o] the eoe]/ieie~t ~. Moreover i f  ~1(x)< q~(x) a.e., then, denoted by #~ and #~ the r-th 
eigenvalue o/ Q = ~1, ~ = ~ respectively, we have #~ > #~. 

4.5. ~)I~OPOSITION. - -  There exists a real number p >  1 such that the r-th eigen- 
value fix depends continuously on ~ in the topology o] Z~(~2). 

16 - .dnnaH d~ ~Iatemafdca 
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These propositions are an  obvious consequence of the  variat ional  rappresenta~ion 
of /t, ([3], p. 406). 

In  order to prove Lemma A, we find an  a priori-estimate for the solutions of 
problem (1). 

4.6. :L~':~A. - .5et u .  be a sequence in  C~'~(~) and ¢(u~,)= Au~ + ](u~)-----g.. 

I 1 the sequence g.  is bounded in  C°'~(~), then the sequence u ,  is bounded in  Cg'~(~). 

P~ooP OF L~_~fA 4.6. - Suppose t ha t  the opposite holds: n a m e l y , ~  Itu,!!o.~ = + c~. 
2,0~ We set z, ==:u~I[%]l~.)~; we have z, eC~ (f2) and IIz,!lo.~ = 1 .  We introduce the real 

funct ion h defined as follows: 

{ ](t_)) for t # O, 
h(t) -~ t 

f(O) for t---- O. 

In v i r tue  of the hypothesis  on ], h is of class C ~ and is bounded. 
F rom the relat ion Au~-F](u~) = g ~ ,  dividing by ]fu~]to.~, we get  

(6) Az. + h(u~)z. - -  g~ 
iluG. " 

The sequence g, [lu, IIo-.~ - -  h(u~)z, is bounded in Z ~ (~9). By  Proposit ion 4.1 we have 
tha t  I]z~ [[o.~ is bounded. Therefore we can extract  a subsequenee converging in C~(~) 
(thus also in C~'~(~)) to a funct ion z*; we remark  tha t ,  since l[z.[]o.~ = 1 i t  must  
be I[z*][o.~ = 1, by  the cont inui ty  of the  norm. In  part icular ,  i t  is z * #  0. 

We write (6) in generalized form: 

(7) 
f2 fJ 

for every  w ~ ~(f2) (~(~)  denotes the space of C ° functions having compact sup- 

port  contained in Q). 
We observe tha t  in the points xeY2 where we have z*(x)<0 i t  is lira u,dx) = - - c o  

and hence lira h ( u ~ ( x ) ) = l ' ;  so at  the points where we have z* (x )>O,  i t  results 
n--~-+co 

lira . . . . . .   hus we set 

l' if z * ( x ) <  0 

a(x) = I" i f  z*(x) > 0 

f'(O) if  z*(x) = 0 

we h~ve in every point  of ~ ,  ,!im h(u~(x))z~(x)=-a(x)z*(x) .  
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Taking the  l imit ,  f rom (7) we obtain (by LE]3ESG~-E'S theorem) 

f ~ ~z* ~w f 
- 

Ea 

this relat ion shows tha t  /x = 1 is an  eigenvalue of the problem (in generalized sense) 

(8) { A v ÷ t ~ a v : - O  

V]e ~ = 0 . 

on /2,  

We prove tha t  #-----1 is the least eigenvalue. I f  the opposite holds, we have ;x~ = 1, 
wi th  r>>.2. We compare the problem (8) wi th  the  problem 

(9) 
Av + #)~v = 0 

Vla ~ = 0 . 

on ~ ,  

Since i t  is a<~l"< 22, t hen  by  the Proposit ion 4.4: we get  t ha t  the eigenvalaes of (9) 
are s tr ict ly less t han  the corresponding eigenvalues of (8). 

Bu t  this is impossible, for the problem (9) should have two (at most) eigenvalues 
les than  one, while ~u = 1 is obviously the second eigenvalue for (9). 

Then v = z* is the first eigenfunction of (8) wi th  eigenvalne #-----1. t~ut then,  
by  Proposit ion 4.3., z* is of the  same sign on the whole f2. Now, if we suppose 
z*(x) > 0 on ~ ,  then  the  following equat ion is fullfilled 

Az* + l'z* = 0 ,  z*[a~ = 0 ,  

what  cannot  be, since V is not  an  eigenvalue for - - A ;  on the  other hand,  we sap- 
pose z*(x)< 0 on ~ ,  then  we have 

Az* + l'z* = 0 ,  z*[~z = 0 .  

Also this relat ion cannot be t rue,  since l' is not  an eigenvalue for - - A ;  this com- 
plete the proof of the Lemma 4.6. 

PlCOOF OP TItE LElVIN~ A. - Le t  u~ be a sequence on C~'~(~) such tha t  ¢(u.) = 
= Au~ A-](u~)-----g. is convergent in  C°'=(~). By Lemmu 4.6, we known tha t  u~ 
is bounded in ~ '~ (~)  and  then  Au~-----g~--](u~) is a bounded sequence in C°'~{~). 
:But since, under  our hypothesis  for ~ ,  Ithe o p e ~ t o r  A is an isomorphism of C~ "~ 
onto ~ '=  ([4], p. 335), then  we can say tha t  us is a bounded sequence in ~'= C~ . Hence 
we can ext rac t  f rom u .  a subsequenee converging in C°'=(sP); then  the equation itself 
shows tha t  this  subsequence converges in C~'~(~). So Lemmu A is completely 
proved. Q.E.D. 



244 A .  2k~/BROSETTI - G .  PI%ODI: O n  the inversion, eto. 

§ 5. - This section is devoted to prove Lemma B. 
First  we prove that  all the points of the singular manifold W are ordinary, 

namely hypothesis I) and II*) of Theorem 2.7 are fullfi]led. 
The differential of ¢ in a point uo is given--in our case--by the mapping C~'~-+ 

--> C °'~ so defined 

v~+Av ÷ y(Uo)S. 

I t  is known that  the point s0 e W (singular set) if and only if the problem 

(lo) 
Av÷/'(uo)v-o 

St~ ~ -~ 0 

has proper solutions. This relation is equivalent to state that  /~ = 1 is an eigen- 

value of As + t~I'(uo)v = 0 via ~ = O. 
By Proposition 4.4, i t  is the least eigenvulue since is 0 <  l '<]'(q~o(x))< l", with 

Then it is a simple eigenvalue; the kernel of ¢'(uo) is associated with a non-zero 
vector voeC~'~(~). I t  is known that  Im¢'(uo) consists of the elements geC°'~(L )) 
for which i t  is fg(x)%(x)dx = o. T h e n  hypothesis I) of Theorem 2.7 is satisfied. 

a 
The functional 7o which is associated with Im¢'(u0) is 

z~fz(x)vo(x)dx. 

Now we compute ¢"; since the second differential of the linear term vanishes, 

we have 

MIni)( ) = 

Then condition II*) of Theorem 2.7. becomes 

fl"(uo)v~,dx # O . 

This condition is satisfied, since f'(t) > 0 Vt and vo is of the same sign on the 
whole f2, being the first eigenfunction of (10). 

To complete the proof of Lemmu B, we must show that  W is not empty and con- 
uected. We show that  W has a cartesian representation on a linear subspace of 

~'~(~) of codimension 1. 
Namely, let s e C~'~(~) with s ( x ) >  0 Vxe~Q and let Z be any linear snbspace 

of C]'~(~) of codimension 1, such that  s ~Z.  Every element u e Co~'~(~) can be 
represented, of course, in u lmique way in the form u = z + v s ,  v e R ,  z e Z .  We 
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consider  the  e igenvalue  p rob l em:  

{ A v ÷ # ] ' ( z + ~ s )  v = 0 

Vl0 ~ -~  0 

on  ~2 

where  z is a fixed e l emen t  of Z, and v e R.  We set  #(~) the  first  eigenvalue.  By  

Propos i t ion  4.5, # is a cont inuous  func t ion  of v. Since s ( x ) >  0 on ~2, we have  

Vxe~9:  

l i r a  ]'(z(x) ÷ vs(x)) = l', 

lira f'(z(x) -F vs(x)) = t". 

~ o r e o v e r  since l '< f ' ( t )<  l", we can  easy p r o v e  t h a t  the  p rev ious  l imi t s  are  still  

l imi t s  also in Z~ n o r m  (Vp). I t  follows tha t ,  b y  Propos i t ion  4.5: 

• ~1 
= y  < 1 .  

Thus the re  exis ts  a va lue  ~ such t h a t  # ( ~ ) =  1. This  va lue  is unique  since # is a 
monotone  s t r ic t ly  decreasing func t ion  (Proposi t ion 4.4). 

Then  we have  p roved  t h a t  eve ry  s t ra ight - l ine  v~-~z + ~s mee t s  the  manifold  W 
in a un ique  po in t ;  i t  is easy  to  show t h a t  th is  po in t  depends  cont inuously  on Z. 

(Otherwise,  we can recal l  t h a t  W is a different iable  mani fo ld  and  show t h a t  the  
s t ra ight l ines  v~->z + v s  a re  t r ansve r se  to  W). Q.E.D. 

§ 6. - I n  th is  las t  sect ion we p r o v e  L e m m a  C. 

~ O O F  OF LE~MA C. - L e t  uoeW,  ¢(uo)=g~;  we suppose  t h a t  the  equat ion  
¢(u) = g has  ano the r  solut ion ~. 

We set  

~o(x) = ~ ( x )  - -  Up(X) 

f'(Uo(X)) 

where i t  is ~(x)~e up(x), 

where i t  is 4 ( x ) =  Up(X). 

Then  ~ - - u o  is a p rope r  solut ion of the  p rob lem 

Av ÷ # ~ v  = 0 

rIO ~ == 0 

on .(2 
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wi th  ~=I. Since i t  is alwnys l ' < a ) ( x ) < l " < ~ ,  we obtMn tha t  ~ - - u o  is the 
first e igenfunct ion of this  p rob lem.  B y  Propos i t ion  4.3 ~(x)--Uo(X) has the  s~me 

sign on the  whole Q and hence  in v i r t u e  of the  hypothes i s  ]"( t )> O, Vt, i t  follows 

t h a t  o)(x)> ]'(no(X)) on S). 

On the  o ther  trend, b y  hypothes is  we have  u o e W ;  thus Mso the  p rob lem 

Av + ~l'(Uo)V = 0 

r i o  D ~ 0 . 

on Q 

has # = 1  us first eigenvMue. This  is a g M n s t P r o p o s i t i o n  ~.4 and  so L e m m a  C is 

p roved .  
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