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Summary. - The pertinence o/ cor~vexity arguments in the study o~ discrepancy o/ sequences ks 
exhibited. The use/ulness o/this viewpoint can be two/old. ~irstIy, it allows the interpretation 
o/ the problem o/ estimating the discrepancy as a problem in convex l)rogramming in impor- 
tant cases. Secondly, it helps to restrict the ]amily o/ sets which have to be considered when 
evaluating the usual (or extreme) discrepancy and the isotrope discrepancy o/ sequences. In  
particular, in the latter easy it su]/iees to look at a rather special class o/ convex polytopes. 

1 .  - I n t r o d u c t i o n .  

In  the quant i ta t ive  theory  of uniform distr ibution modulo one, a central  role 
is played by  the not ion of discrepancy of a sequence. For  a survey of results con- 
nec ted  ~dth this notion, we refer to the article of H~AWI~A [2]. Finding good estimates 
for the diserepa,ncy of a given sequence is of part icular  importance in the theory  
of numerical  integration.  Numerous papers have been devoted to the s tudy of this 
relationship. To provide an access to the l i terature,  we mention HLAWKA [3] and 
ZA~E~A [7] which have more or less exposi tory character ,  and the monograph of 
K o ~ o s o v  [4]. 

I t  is the purpose of the present  note  to point  out the wide applicability of con- 
vex i ty  arguments when investigating discrepancy. A consistent exploitat ion of the 
strong links between convexi ty  and discrepancy can shed new light on the notion of 
discrepancy itself. This is done~ for instance, in Section 2 where the  problem of finding 
upper  bounds for the discrepancy of a sequence is in terpreted as a convex program. 
This viewpoint  has been successfully employed by  the present  author  in the specific 
problem of estimating the  discrepancy of so-called almost-ari thmetic progressions 
(see [5]). As a fur ther  application of convexi ty  arguments,  we show tha t  they  enable 
us to restr ict  the family of sets which have to be considered when evaluating either 
the usual or the isotrope discrepancy of a sequence (see Theorems 2 and 3). 

Le t  us briefly recall the  definition of the  discrepancy of a finite sequence a~, ..., a v 
of elements from the unit  interval  E = [0, 1]. For  a subset M of E ,  we introduce 

27 

the  counting function A ( M ;  25) = ~. e~(a~) where % denotes the characteristic func- 
t ion of M. ~=~ 

(*) Entrata in Redazione il 27 maggie 1971. 
(**) Some results of this paper were presented in an address delivered at the Conference 

on Analytic Number Theory, Carbondale, Ill., October 22-24, 1970. 
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D~FI~I~IO~ 1. - T h e  discrepancy D~ of the  f ini te  sequence  a~, ..., a~ in E is defined 

to  be  

l A ([o, ~); ~ )  
D~ = SUp i ~ • 

o<~<l [ -AT 

2.  - T h e  m e t h o d .  

L e t  us n o w  a s sume  t h a t  t he  a~ are  o rde red  accord ing  to  the i r  m a g n i t u d e .  F o r  

n o t a t i o n a l  conven ience ,  we  set  a 0 =  0 and  a s + ~ =  1. T h e n  0 =  ao<a~<a~<~ ... < 
< a ~ <  a~+~= 1. 

W e  no~e, once a n d  for  all, a s imple  f ac t  which  will be  used  f r e q u e n t l y :  the  c o n v e x  
func t ion  g ( x ) = l x - - c  ], wi th  some c o n s t a n t  c e R ,  a t t a in s  i ts  m a x i m u m  on the  com- 
p a c t  i n t e r v a l  [a, b] a t  one of t he  endpoin ts .  

W e  h a v e  the  fol lowing s imple  a l t e r n a t i v e  r e p r e s e n t a t i o n  for  t he  d i sc repancy  D~.  

Tn-E0~E~ 1. - U n d e r  the  a b o v e  condi t ions ,  t he  d i sc repancy  D~ of the  sequence  

a~, . . . , a x  is g iven  b y  

(1) D ~ =  m a x  m a x (  ; - - a ~ ,  i - - 1  , )  
i=1,...,27 ~ - -  a i  ' " 

P~ooF .  - W e  h a v e  

D~ = m a x  sup  
i~0,...,I¢ a~<ot~a~+l 

AfrO, ~); ~)  i I 
z¢ : m a x  sup  ~ - - ~  . ~r 

I i=0. . . . f iV av<~,~a~+~. 
.£y 

a~ ~ a f  +x 

But sup li/N-~l--=max(ii/ZC-a~t, li/y-ai+ll) for ai<ai+~. Thus  
ai<Cc~a~+t 

(; ) D ~ =  m a x  m a x  - - a i  , ~ - - a i + l  • 
i=0 . . . . .~ r  
a$~ai+i 

(2) 

W e  w a n t  to  show, first  of all, t h a t  t he  r i g h t - h a n d  side of (2) is equa l  to  

i i i  ' )  
(3) m a x  m a x  - - a {  i_~- -a{+i  • 

Suppose  we  h a v e  a~ < ai+l = a~+2 = ... = a~+T < a~+r+l wi th  some  r > 2. The  indices 

which  are  exc luded  in t he  first  m a x i m u m  in (2) a re  t he  in tegers  i +  j w i th  l < j <  
< r - - 1 .  W e  shall  p r o v e  t h a t  t h e  n u m b e r s  

i + j  i ri + j  a~+~ and  - -  I w i th  l < j < r - - 1 ,  
i hr :i a,+j+~ [ 
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which are admi t t ed  in (3), are in fact  domina ted  b y  numbers  a l ready occurring 
in (2). ?For l < j < r - - 1 ,  we get 

i ÷ 

- a,+~ I = a,+, 1 XT a,+, , a,+, i = 

i , / ~  a~+~) 

and  bo th  numbers  in the  last  m a x i m u m  occur in (2). Exac t l y  the  same a rgument  
holds for  [ ( i~  j)/N--a~+j+~], l < j ~ < r - - 1 .  Thus we arr ive a t  

D~ = max  m a x  = m a x  m a x  - -  ai - -  a~ 
i=O,...,X Y - -  a i  ' ~ - -  a t + l  i=l. . . , ,N N ' , y - -  ' 

since the  only t e rms  which are not  contained in the  last  expression are tO/N--aol 
and IN/N--a~+~f, bo th  of which are zero. 

I t  will of ten suffice to work  with  the following simple consequence of (1): 

I 1 D~ < m a x  + - -  , _ L  ~ I ~  - a ~  ~ .  

Suppose now t h a t  we are given cer ta in  linear inequalities for the  ai: 

2T 

(4) ~ 2Ji a~ ~< B~. for 1 <. ~ ~< k. 
i = l  

We m a y  assume tha t  the inequalities 0 < % < a~ < . . .  < a~ < 1 are a l ready included 
in (4). For  (xl, ..., x ~ ) ~ R  z¢, p u t  

) ](xl, . . . ,  x~) = m a x  m a x  - -  - - y -  - - x i  
t=1,...,~ r Y ~ • 

Since a funct ion of the  form g(x)= ]c--x], c 6 R ,  is convex,  and since the max-  

i m u m  of convex functions is convex,  the  funct ion f(xl ,  ..., x~.) is a convex funct ion 

in R "v. Fur the rmore ,  we have  D~=](a l ,  ..., a~v) b y  Theorem 1. Consider the fol. 

lowing convex p rog ram:  maximize  the  convex func t ion / (x l ,  ..., x~) over  the  bounded 
convex po ly tope  

(5) ~={(xl, ...,xD 2~ 

eRN:~=~y.~t~xi<B~ for l < ~ < k  and O < x i < l  for I < i < N } .  

Since (al, ..., am) is contained in the poly tope  (5), a solution of the opt imizat ion 

problem yields an upper  bound for D~. The es t imate  will become sharper  the smaller 
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we can make the polytope P.  When applying this method,  one will always use the 
well-k~ow fact  t ha t  the maximum of ] has to be a t ta ined at  a ver tex  of the polytope. 
Obviously, the method  can be generalized b y  replacing (4) b y  conditions which 
restrict  (al, ..., a~) to a reasonably small bounded convex set in R "v. 

A problem which lends itself to an immediate  application of the present method  
is the  following one. P. E.  O'NnIL [6] introduced so-called almost-ari thmetic pro- 
gressions-(/l, e) and proved tha t  sufficiently long initial segments of uniformly di- 
s t r ibuted sequences rood 1 ~re essentially obtained by  superposition of such almost 
ar i thmetic  progressions with arbi t rar i ly  small ~ and e. Hence good estimates for the 
discrepancy of nniformty distr ibuted sequences rood 1 can be obtained by  having 
available sharp estimates for the discrepancy of almost-ar i thmetic  progressions. 
Fo r  given 0 4 3 < 1  and e ~ 0 ,  a sequence 0 < a ~ < a 2 <  . . . < a ~ < l  is called an abnost- 
arithmetic progression-( 6, e) if there exists an ~ with 0 < ~ < e  such tha t :  (i) 0 < a ~ <  
< V ~ V ;  (ii) V - - ~ v < a ~ + ~ - - a ~ < v + ~  for l < / c < N - - 1 ;  ( i i i ) 1 - - ~ - - ( ~ < a ~ < l .  
B y  applying ore" method,  we obtained for the discrepancy D~. of the sequence 

a~, ...~ a~: 

+ ~ /~ -~ ,  

and this upper bound is even best possible (see NIEDERREITEI~ [5]). 

3.  - G e n e r a l i z a t i o n  t o  s e v e r a l  d i m e n s i o n s .  

A part ial  analogue to Theorem 1 cau be shown for sequences contained in the 
k-dimensional unit  cube E ~ = {(xl, ..., xk) ~ R~: 0 < x~ < 1 for 1 < i < k} for some k ~ 2. 
We use the following notat ion.  For  0 =  (0, ..., 0 ) e E  k and x =  (x~, ..., x k ) e E  k, let  
[0, x) denote  the set [0, x) = {(y~, ..., y~) ~E~: 0<y~ < x~ for l < i < k } .  Fur ther-  
more, we pu t  V ( x ) =  x~x~ ... xk. For  a given finite sequence a , ,  ..., ax in E *, we 
define the  counting function A(.; N) in the obvious manner .  For  the sake of con- 

venience, we write A([0, a);  N)-----A(a; N) for n e E  ~. 

DEfinITIOn" 2. - The discrepancy of the finite sequence a , ,  ..., a~ in E ~ is defined 

to be 

D~ = sup ~A(a; N) V(a) . 

Obviously, it  suffices to restr ict  the supremum to those a e E  ~ with V ( a ) >  O. 
Le t  B be the collection of all a ~ E ~ with V ( a ) =  0. We construct  a finite par- 

t i t ion of E ~ \ B  in the  following" manner .  For  fixed i, l ~ i ~ . k ,  let  0 = fl~o < fi~l< --. < 
/3i~ ~ 1  be the distinct numbers occurring as i- th coordinates of al, ... ,a~v in ascend- 

ing order, together  with 0 and ] .  Now pick an arbi t rary  k-tuple (/31~, fl~,, ..., flkj~) 
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with 0 < j ~ < s ~  for l<~i<k. With  this k-tuple,  we define the  i~lterval Q = ( ( x l ,  
..., x~) ~ E ~: fl~, < x i < fl~z,+x for 1.<. i < k}. The  finite collection q of all the  intervals  Q 
obtail le4 in this w a y  forms then  a par t i t ion  of E~\B. For  each Q ~ q, let  y(Q)= 
=(fiL~+~,---, fi~.~+~) be  the  <~ upper  endpoill t  )> and  z(Q)= (fl~¢~, ..., fi~¢~) be the <<lower 
endpoint  ~> of Q. We present  the  following a l te rna t ive  representa t ion  for D~.. 

Tm~Ol~E~I 2. - Wi th  the  nota t ion  in t roduced above,  the  discrepancy of a~, ..., a~. 

is g iven b y  

(6) V(y(Q)) , A(y(Q); 1V) v(~(Q)), ). / A (y(Q) ~)  
D~z = m a x  m a x  , ~q  ..h r 

Pl~oot~. - We have  

D~ = m a x  sup [A(a;  £V) ~ q  ~ i  hr V ( t t )  . 

B y  the construct ion of the  intervals  Q, it  is e~sy to see t h a t  A(a ;  N ) :  A(y(Q); N) 
for all ~ e Q. Bu t  then  

sup A(a; N) A(y(Q); N) V(a) -= 
o ~  ~ v(~) i -- sup 

a e q  

i : mux  i N V(y(Q)) I' - -  

which a l ready proves (6). 

For  a point  (zl, ..., z~)~E ~ which is a z(Q) for some Q ~ q ,  let  its multiplicity 
M(z(Q)) be the num ber  of t e rms  of the  sequence a l ,  ..., a~ which lie in the  set 

k 

(_J((xl, ..., x~)~E~: x~= z~ and  O<~xj<.<zj for l~<j~<k}. Le t  M be an upper  bound 
i = 1  

for all the  multiplicities. Le t  ~ be the  finite set of all points  x e E ~ of the  fo rm 

x =  (fl~,, ..., fi~j~) wi th  0~<j,.<.s~ for l < i < k .  Then we obtai~ the  following more  
convenient  result.  

COROLLA~¥. -- Wi th  the  above  nota t ion ,  we have  

(7) 
A(x; N) ! M 

Dv < max.~F N V(x)! + -~. 

PROOF. -- For  Q~q, we get  the  subsequent  inequal i ty :  

i A (y(Q) ; N)  A (z(Q); Z r) A(y(Q); N) -- A(z(Q) ; h r) 

f N 

B y  the construct ion of the  intervals  Q, the  oniy t e rms  in the  sequence a l ,  ..., am, 

which lie in [0, y(Q)) but  not  in [0, z(Q)), are those which are counted b y  M(z(Q)). 
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Therefore, 

(8) I A(y(Q); N') 
hr 

L 

< i + N 

IA(z(Q); h r) M 
< i + 

We note tha t  the points in E ~ which occur as either y(Q) or z(Q) for some Q e q just 

make up the finite set F .  Together with (6) and (8) we get then the desired in- 

equali ty (7). 

4 .  - I s o t r o p e  d i s c r e p a n c y .  

Another  application of convexity arguments,  which is shghtly different in nature 

h 'om the previous ones~ emerges ia the investigation of the so-called isotrope discre- 

pancy  in E k for k ~> 2. Let  C denote the family of all convex subsets of E ~. I t  is well- 

known tha t  every C e  C has a measure V(C) in the sense of Jordan.  Let  a~, ..., a~ 
again be a finite sequence of points in E ~. 

DEFINITION 3.  - The isotrope discrepancy JN of the sequence a~  ... ~ a~ is defined 

to be 

(9) J~----- s u p  A(C; N) V(C) . 
c +eci iV 

This notion of discrepancy was proposed by  HLAWKA [2], and studied in more 

detail by  ZAlCE~BA [8]. For  a very  general view-point, see BtIATTAC~_AI~YA [1, p. 82] 
and the l i terature cited there. 

We shall show tha t  it suffices to extend the supremum in (9) over a certain re- 

stricted class of convex polytopes in E ~. I n  this section, we adopt  the following 

terminology with respect to co~lvex polytopes. B y  a closed convex polytope, we mean 

the convex hull of a finite number  of points in R ~. I f  a closed convex polytope has 

a nonvoid interior, then this interior is called an open convex polytope. By a convex 
polytope (per se), we mean a convex set which is obtained by  deleting an arbi t rary 

number  of faces from a closed convex polytope. A face of such a convex polytope 

is defined to be a face of the corresponding closed convex polytope. 
Let  a I , . . .  ~ a m be a given sequence in E ~. We define a family 6 of convex polytopes 

as follows. I n  ~ we collect all closed or open convex polytopes P contained in E k 

which satisfy the condition: 

(A) each face of P is either lying entirely on the boundary  of E ~ or contnins 

a point  of the sequence. 

The following result holds. 
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TtIEO~E~v[ 3. - For  the isotrope discrepancy J~ of ~he sequence a~, ..., a~, we have 

A(P; N) I 
(t0) J~ = sup V(P) I. 

p ~  iv i 

P~ooF. - For  CeC,  we h~ve V(int C)-~V(C)~--V(C) and A(int C; iv )<A(C;  iv )<  
< A ( C ;  iv). Thus 

IA(C; N) V ( C ) l < m a x  ( A ( i n t  C; N ) N  V(int C ) , I  A(C; N) iv  V(C)t ) 
i iv  

and so it suffices to consider closed or open convex sets in E ~. We shall first prove (10) 
with ~ replaced by the larger class ff of all convex polytopes P s~tisfying (A) which 
are of the form P--~ P ~  E k for some closed or open convex polytope P~ in R ~. 
The argument  in the beginning of the proof shows then (10) with ~ itself. 

I t  suffices to show that ,  for each closed or open C~ C, there exist convex po- 
lytopes P and Q from ff with A(P;  iv)--~A(Q; iv)----A(C; iv) and V(P)< V(C)< V(Q). 
For  then we get 

A(C;IV) V(C) <max( A(P;IV) V(P) A(Q~IV) V(Q) ) 
I iv iv ' 

and we axe done. 
Le t  a closed or open C e C be given, and suppose tha t  C contains exactly the 

elements as1, ..., a~ of the sequence. Le t  P be the convex hull of those points (or the 
empty set, if C contains no elements of the sequence). Then P is a closed convex po- 
lytope belonging to g', furthermore P is a subset of C~ and V(P)< V(C) and A(P; 2t)~ 

A( C; N) follow immediately.  
I t  requires some more work to construct Q. Let  ajl, ..., a~. be the elements of the 

sequence which are not  contained in C. If  s =  O, then we put  Q = E  k. Thus 
s > 0 in the sequel. I f  C is not  itself open (hence compact), then it is clear tha t  
we can enlaxge C to a convex set C' (not necessarily contained in E ~) which still does 
not  contain as,, ..., a~,, bu t  has a~l, ..., ai, as interior points. ~f C is open, we simply 
put  C ' =  C. Through each point a~m with l < m <  s, there is a supporting hyperplane 
S~ of C' such tha t  C' lies entirely in a dosed half-space H~ defined by S~. Then 

the set Q~ = ~ H~ contains C'. Le t  H~ be the open half-space corresponding to H~. 
m = l  

The convex polytope Q2-~ H~ (~ H~ n ... ~ ~ n E k contains all the points a,1, ..., a,~, 
but  none of the points aj~, ..., as,. Thus A(Q2;N)=A(C; iv); moreover V(Q2): 
=V(Q~nEk)>~ V(C'nE~)> V(C). Of course, Q2 need not belong to ft. But  note tha t  
Q~ can be writ ten ia  the form Q ~ - P 2  n E ~ with an open convex polytope P~ in 
R ~. Thus ut least the last  par t  of the definition of ff is satisfied. We also note tha t  
V(Q~)> V(C'n E k) > O, and so Q2 is not  contained in a hyperplane. 
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To complete the proof,  we show tha t  for each Q~ not  contained in a hyperplane 
such tha t  Q~= P~ n E ~ with an open convex polytope P~ in R ~, and which satisfies 
A(Q2; iV) ~- A(C; iV) ~nd V(Q2)> V(C), we can find Q ~ ff with A(Q; N) = A(Q~; iV) 
and V(Q)>V(Q~). Let  the  de]iciency d(Q2) of the convex polytope Q~ be the  number  
of faces of Q~ which fail to satisfy condition (A). We now proceed b y  induction on 
d(Q~). I f  d(Q~.) == O, we just  take Q = Q2. Suppose we have shown the assertion for 
all Q~ of the above type  with d(Q~) < n. Let  Q~ be a convex polytope of the above type  
with d(Q~) = n  +1 ,  and let F be one of the faces of Q~ which do not  satisfy condition (A). 
Le t  _F~ ...~i~, be the remaining faces of Q~, with i~ ,  . . . ,F~  lying on the boundary  
of B k, and i~,+~, .,., F ,  not  lying on the boundary  of E k. For  1 < p < t, let S~ be the 
hyperplane which contains F~. The S~ are all distinct since Q2 is not  entirely contained 
in a hyperplane.  For  u + 1 < p <  t, let  H~ be the  open half-space defined b y  S~ 

• H ° ... H ~ n E  ~ (with Q a = E  ~ if u=:t). Then which contains Q~ We pu t  Q~= ~+~n (~ 
Qa contahns Q~ and d(Q3) < d(Q~). I f  A(Q,; N)  = A(Q~; iV), then an application of 

the induct ion hypothesis to Q3 yields the desired result. 
So suppose tha t  points of the given sequence are contained in Q~\Q~. Let  S 

be the  hyperplane  containing F ,  and let  aj  be one of the  elements of the  sequence 
in Q~\Q2 which has the least orthogonal  distance from S. Le t  T be the hyperplane 
Shrough a; parallel to S. Then Q~ lies entirely in an open half-space H ° defined b y  T. 

The convex poly tope  Qd-~ Q~ n H ° is cer tainly of the form Qd= P d n  E 7̀  with ~n 
open convex polytope P~, and Q~ contains Q~. I t  follows from the definition of Q~ 
that  A(Q~; 2~ ~) = A(Q~; 5~). The faces of Q~ either (i) lie in S~, l < p < t ,  and contain 
F~; or (ii) lie on the boundary  of E~; or (iii) lie in T. The faces of Qa satisfying (i) 
do not  contr ibute more to d(Q~) t han  the faces F .  contr ibute  to d(Q~). The faces of 
Qa in the  second category contr ibute  nothing to d(Q~). I f  ~ face of Qt satisfying (iii) 
exists a t  all (such a face need not  exist if a; lies in a ~( corner >> of E~), then it  contains 
a~, and so contributes nothing to d(Q~). On the other  hand,  the face F of Q~ contribu- 
tes t to d(Q=). Consequently, we get d(Q~)<d(Q:). An application of the induction 

hypothesis  to Q~ yields the desired result. 
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