
P o n t r y a g i n  Type Dual i t i e s  over C o m m u t a t i v e  Rings  (*)(**). 

SILVA~:A BAZZO~I (P~dova) 

Summary. - See Introduction. 

1. - Introduction. 

Before describing the purpose of this work, we need some definitions. 
Let R be a commutative ring with 1 ~= 0 endowed with the discrete topology. 

We denote by T M R  the category of topologicM and Hausdorff R-modules and by 
C M R  the subcategory consisting of compact modules. Mod-R will be the category 
of R-modules endowed with the discrete topology. 

Let E E C M R  be a faithful module. ]?ollowing [0], we denote by ~(E) the full 
subeategory of Mod-R consisting of the E-discrete modules, that  is the modules which 
are algebraically isomorphic to submodules of direct products of copies of E; and 
by C(E) the category of E-compact modules, that  is the modules belonging to TMR 
which are topologically isomorphic to closed submodules of topological products of 
copies of E. 

If  M ~ T M R ,  a character of M (or atso an E-character) is, by definition, a con- 
tinuous morphism of M into E. 

For every M E T . M R ,  the character module M of M is the R-module Chom~ (M, E) 
endowed with the compact-open topology. 

I t  is easily seen, that,  if M e O(E) or M e C(E), then ~7 E C(E) or M e ID(E), 
and that  the assignation M ~-> M defines functors A~: ~D(E) -+ C(E) and 2~: C(E) ~-, 
~ ~(E). 

We denote by A E the pair (A~, A2) and we say, indifferently, that  A~ or A~ is a 
duality if for every M e 9(E) and every M e e(E)~ the canonical morphism opM of M 
into its biduM ~ ,  defined by a)M(x)(J) = ](x) for all x e M and j e M, is a topolo- 
gical isomorphism. 

DE~NITI0~ 1. -- We say that  E has property ~1) if the continuous morphisms 
of E are multiplications by elements of /?. 

(*) Entrata in Redazione it 22 lugtio 1978. 
(**) Lavoro eseguito nell'ambito dei Gruppi di :Ricerca Matematica del C.N.R. 

(***) Author's adress: Semin~rio Matematico, Universit~ di Padov~, Via Belzoni 7, 
35100 Pudova. 
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DEFI~I~I0~ 2. - We say t ha t  E has p rope r ty  P2) i f / ~  does not  have  small sub- 
modules, t ha t  is, there  exists a neighbourhood of zero in E such t h a t  the  only sub- 
module contained in it  is the zero module. 

DEFII~ITIOI~ 3. - -  We say tha t  E has p rope r ty  P~) if E is topologically quasi-injective, 
t ha t  is eve ry  character  of a closed submodule of E has an extension over E.  

The aim of this paper  is to character ize the  fai thful  and compact  modules E ~ CMR 
for which the  functor  2~: ~ (E )  -~ C(E) is a duali ty.  

We obtain a generalizat ion of Orsat t i ' s  results given in [0] and the main theorem 

we can prove  is the  following: 

T I ~ o R ~ .  - Let E ~ CMR be a ]aith]ul moduge. 

The ]ollowing conditions are equivalent: 

(a) AI: O(E) -~ C(E) is a duality. 

(b) E has properties P~), P,~), Ps). 

(e) I] .P ~ Chore z (E, K) (K denotes the compact  group of complex numbers  
of modulo 1)~ P is a pro~eetive and finitely generated R-module with endomorphism ring 
isomorphic to R. 

Moreover, i / a n y  o] the previous conditions holds, then: 

1) ~D(E) = Mod-R, 

2) c (E)= CMR, 

and, i] 1" denotes the Pontryagin duality between Mod-R and CMR then: 

3) AI(M) -~ I~(M @-P), ]or every M e ~)(E), 

4) As(M) =- t t om~ (t), I ' (M)),  /or every M e ¢(E), 

that is the duality A~ is the composition o] the equivalen.ce ~)_P: M o d - R - + M o d - R  

with the l~ontryagin duality. 

In  par t icular  this theorem classifies all character  duulities, induced by  compact  

modules, be tween 3Iod-/~ and CMR. 

2. - P r e l i m i n a r y  results .  

Throughout  this paragraph  we suppose t h a t  E E CMR is a fai thful  module  having 

propert ies  21), P~), -Pd). 

LE)I-~A 2.1. - Let n e N,  B a closed submodule o] E ~, ~ a character o] B. Then 
extends to a character ~ o/ E' .  
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P~oo~:  (ispired by  [L] Z e m m a  4.1.). - We proceed by  induction on n. For  n = t ,  

s ta tement  of the lemma is p roper ty  P3). Le t  n > 1 and let us th ink of E ~' as the topo- 
logical p roduc t  E ~ × E ~-~. B y  the induct ive hypothesis,  the restriction of $ to B n E ~-~ 

extends to a character  ~ of E ~-~. Now we extend ~ to a morphism # :  B + / ~ - ~  -~ E,  

by  pu t t ing  #(b + x) ~ $(b) + V(x)- (b e B, x e E'-~).  

# is well defined, because if b + x -~ 0, then x ~ -- b e B ~ E ~-~ and so ~(x) = 

: ~(x) ---~ --  ~(b). 
tt is a continuous morphism, as we can see by  examining the following commu- 

tat ive d iagram:  

B × E  ~-~, ~' > E 

where a is the sum and ~' is defined by  ¢~(b~ x ) ~  ~ ( b ) +  ~(x). 
I n  fact,  ~t and ~ are continuous, a is surjective and moreover,  since M1 modules 

appearing are compact  and ttausdorff~ B + E ~-~ has the quot ient  topology of (~. 

Le t  now ~ :  E ~ × E  ~-~ -~ E be the canonicM projection;  it is B + E "-~ ~ z~(B) + 

+ E~-~ Let  # '  and #" be the restrictions of # to z~(B) and E ~-~ respectively. B y  the 

inductive hypothesis  # '  extends to a ¢~haracter fi of E Then ~ ---- fi @ #" is the required 

extension of ~. // 
We note tha t  a topological and t t au sdo r f f / t -modu le  belongs to C(E) if and only 

if it has the weak topology of its characters and it is complete in tha t  topology. 

DEFINITION 2.1. -- We say tha t  G(E) has the character  extension proper ty  (C.E.P.) 

if for every M ~ C(E), every character  of a submodule of M extends over M. 

P~OPOSlTI0~ 2.2. - C(E) has the C .E . t  ). 

PaooF.  - Cfr. [0] Prop.  3.6. // 

P~OPOSlTION 2.3. - I]  M ~ ~)(E) or M e C(E), then O~M is a topological embedding. 

P~ooF. - Cfr. [0] Prop.  2.3. // 

Pa0POSlTION 2.4. - I f  M ~ ff)(E), WM is an isomorphism. 

P~oo~. - Cfr. [0] Prop.  3.4. // 

:DEFINITION. -- We say tha t  a topological R-module  M is topologically quasi- 

injective in the strong sense (s.q.i.) if M is topologically quasi-injective and if, for 

every  closed submodule N of M and every xo e M\£V~ there exists a character  of M 

which is zero on N and different f rom zero on xo. 

L ~ A  2.5. - Let E be s.q.i.~ then t~ ~ is s.q.i. 
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P~ooF.  - L e t  B be  a closed submodule  of E ~, Xo ~ E ~ \ B .  
Since E is s.q.i.,  we proceed b y  induct ion on n. 
L e t  n > 1 and  ~ r i t e  E ~ as the  topological  p roduc t  E ~ × E ~-~. We  denote  b y  vh 

and  vr2 the  canonical  project ions  of E ~ onto E ~ and  E "-~ respect ively.  Then  xo ~ (a, b), 
with  a -~ ~q(x0) and  b ---- zr2(Xo). 

P u t  B~----B ~ E ~, B~ ~ B (~ E~-L W i t h o u t  loss in genera l i ty  we can suppose 

a,~B~ 
W e  dist inguish two cases. 

1) b e ~r~(B). 

Consider E ~ -~ B and  let  c e E such t h a t  (c, b) e B. We  wri te  xo = (a, b) in the  
f rom (a, b) ~ (a -- e, O) + (c, b). Then  a --  e ~ B~, because otherwise (a, b) belongs 

to B. 
L e t  V: E ~ - ~ E  be a charac te r  of E such t h a t  ~(B~)----0 and  V ( a - - c ) ¢  0. We  

define a m orph i s m  # : E ~ + B -+ E b y  pu t t i ng  #(x  + b) - -  ~?(x) (x e E ~, b e B). /~ is 

well defined because #t~ ~ ~ ~ ~l~, ---- 0. 
The  cont inui ty  of # can be  proved,  as in the  proof  of L e m m a  2.1., b y  considering 

the  following c o m m u t a t i v e  d iagram:  

E~ × B  ~ >E 

E * + B  

where a is the sum and $(x, b) = ~(x). (x ~ E, b ~ B). Obvious ly / t (B)  - -  0 and, more- 

over  t t ( a , b ) = / ~ ( ( a - - c ,  0) + (c, b)) -~ ~ ( a - -  c) V: 0. Now, b y  extending  # to a 

charac te r  of E '~ ( L e m m a  2.1.), we can conclude. 

2) b ~z2(B).  B y  the  induct ive  hypothesis ,  there  exists a charac ter  of E ~-~ 

such t h a t  ~(~2(B)) = 0 and  ~ ( b ) ¢  0. 

Define #:  E ~ Q  E ~-~ --> E b y  pu t t i ng  # ] ~  ~ 0 and  #I~o-~ = 9. # is zero on E ~ -~ B, 
hence #(B) = 0 and  moreover  /~(a, b) ~ ~(b) ¢ 0. // 

We  c~n now p rove  the  ma in  resul t  of this pa ragraph .  

Tt~:EORE~ 2.7. -- JSet E e CMt~ be a ]aith]ul module having properties P~), .P.2), P3). 
The ]ollowing conditions are equivalent: 

(a) E is s.q.i. 

(b) A~ is a duality between ~)(E) and C(E). 

P~ooF.  - B y  Prop.  2.4., every  E-discre te  module  is reflexive. :By [0] Theor.  3.6. 
and  b y  Prop.  2.2., A~ is a dual i ty  iff E ~ is s.q.i.,  hence b y  L e m m a  2.5., iff E is s.q.i. // 

As we shall see la te r  on, the  fac t  t h a t  E is s.q.i., is indeed a consequence of pro- 

per t ies  P~), P~), P3) and  of the  P e t e r - W e y l  theorem.  
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3 . -  The Pontryagin duality. 

Let  us consider the compact topological group K of complex numbers of modulo 1. 
I t  is well known that  K, as a Z-module, has proper t ies /~) ,  _P~),/)3) and that  K 

is s.q.i. 
Theorem 2.7. ensures tha t  A K is a duality. 
In  this case ~(K) = Mod-Z, C(K) is the category of K-compact groups. By the 

Pcter-Weyl theorem, every compact group is K-compact, therefore A K is the Pontry-  
agin duality between discrete and compact groups. 

4.  - T h e  R - m o d u l e  P .  

In  this para, graph we first prove the equivalence of (b) and (c) of the conditions 
stated in the main theorem. Next~ we prove the equalities 1) and 2) of the same 
theorem and finally the implication (b) ~ (a). 

We state in advance the following important  remarks whose proofs are based 
on results of Pontryugin's theory on duality. 

O]3SE~VATIO~ 4.1. -- We recall tha t  Mod-/~ denotes the category of discrete R- 
modules and CMR the category of compact and Hausdorff R-modules. For  every 
M e Mod-R Or M ~ CMR~ the Pontryagin du~l M* = Chomz (M, K) of M, endowed 
with the compact-open ~opology, is an object of CMR or )!od-R respectively. 

In fact, M* is ~n R-module via the multiplication: 

r E R ,  ~ M *  (rcc)(x) : o:(rx) for all x ~ M .  

Moreover, if ] e Chom~ (M, N) is a morphism in ~5od-R or in CMR, its transpose 
]*: _~T*-+M* defined by ]*(f l): f lo],  VfleN*,  is an ~-morphism; therefore 
] * e  Chomz~ (_~*, M*) ~nd so it is a morphism in CMR or in Mod-/~ respectively. 

Thus we can state that  the functor: 

F :  Mod-R -> C M R ,  M ~ M* = Chom z (M, K ) ,  

is a duality and hence, that,  for every pair M, N of objects of Mod-R or CMR, 
ChomR (M, N) is canonically isomorphic to Chom~ (N*, M*). 

Moreover, F sends exact sequences into exact sequences. 
Obviously, C(E) is a fldl subcategory of CMR, so for every M e C(E) we can 

construct the Pontryagin dual M*. 

From now on, it is assumed that E ~ CMR is a faith]ul module. 

Let P = E* be the Pontryagin dual of E. By the previous remark _P e Mod-R 
and P * =  E** is topologically isomorphic to the compact R-module E. We can, 
thus, identify E and P*. 
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OBSER.VA~XO~ 4.2. -- The map t h a t  to each closed submodule B of E associates 
its or thogonal  B ± = {J e P :  ](B) = 0} gives an ant i isomorphism between the lat t ice 
of closed submodules of E and the lat t ice of R-submodules of 2 ,  whose inverse is 
given by  55 ~-> Z ±, where 55 is an R-submodale  of P and L ~ =  {x e E :  x(55)=  0}. 

O~SEXVATXO~ 4.3. - The topology on E coincides with the  finite topology of 
H o m  e (P, K). Therefore,  a basis of neighbourhoods of zero in E ,  is given by  the sub- 
sets of the  type  W(F;  U), where F is a finite subset of P ,  U is a neighbourhood of 

zero in K and W(/~; U ) = { x e E :  x(F)_c U}. 
We note  tha t ,  if U is a small neighbourhood of zero in K, then  W(F;  U) contains 

a maximal  submodule and precisely the R-module <2~}~ where <F>~ is the R-sub- 

module of P genera ted  b y / K  
In  fact ,  let  V ~ 0 be a snbmodule of E contained in W(/~; U) and let  0 =~ x e V. 
Then,  for  each f e F and for each r e R,  (rx)(]) = x(r]) c_ U; therefore  x(R]) c_ U 

and, because U is small, x(Rj) : O, t ha t  is, x e <F}~. 

~OPOSI~O~ 4.4. - .Let P = J~* = Chom z (E, K). Then: 

(a) E has property 1)1) i]J EndR (P) ~ R. 

(b) E has property t'~) i f f  _P is a ]initely generated R-module. 

(c) E has property P~) iJl £ is a quasi-projective module. (That  is, every  R-mor- 
phism of / '  into ~ homomorphic  image of /)  can be l if ted to P . )  

P~ooF. - (a) B y  Obs. 4 .1 ,  Cend~ (E) ~-- Hom~ (E*, E*), so CendR (E) ~ End~ (2). 
(b) <~ =>~> L e t  W be a small neighbourhood of zero in E ;  B y  Obs. 4 .3 ,  W~_ W(F;  U) 
where /~  is a finite subset  of P and U is a neighbourhood of zero in K. Since <F>~ 

is an R-submodule of E contained in W, <F>~ = 0 and so JP = <F)~. 
( ( ~  ~> Le t  J~ be a finite sys tem of generators  of 2 ,  and U a small neighbourhood 

of zero in K. Then  0 = Pz---- (/~}~ and hence, b y  Obs. 4 .3 ,  W(/v; U) is a small 

neighbourhood of zero in E.  

(e) B y  Obs. 4.1., every  exact  sequence in C(E) of the type  

0 ~ B ~ E  

E 

with B a closed submodule of E,  gives the exact  sequence in Nod-R:  

_P --+ B* -+ 0 
1'f* 

P 
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Since /" is a dual i ty,  / is exentible iff ]* can be lifted. Now B* __~ _P/B I, hence b y  
Obs. 4.2., E is topologically quasi-injeetive iff P is a quasi-projective module. // 

P~OPOSITIO~ ~ 4.5. - Let P be an B-module such that: 

(a) EndR (/)) ~ R. 

(b) P is ]initely generated. 

(e) P is quasi-projective. 

Then P is a projective generator o] Mod-R. 

P~0OF. - By  [F~J Coroll. 3.2, (b) and (e) imply tha t  P is X-quasi-projective,  t h a t  
is p(x) is quasi-projective for every  set X. Now, b y  (b) there  exists an exact  sequence 
R" -~ P -~ 0; by  applying Hom~ (--, _P) we get  the exact  sequence 0 --> Hom~ (P, P) --~ 
-~ P ' ,  t ha t  is 0 -~ R --~ P% E v i d e n t l y / ) ~  is X-quasi-projective and, since it  contains 
a copy of R, i t  is project ive  by  [F~] L e m m a  4.1., and hence, also P is projective.  

Now, by  [A]?] Theor.  17.18 and b y  (a), P is a generator  of lVlod-R. // 
Summing up the  results obta ined so far,  we have the following: 

Tm~O~E:~ 4.6. - The R-module E has properties P~), t'~), t~s) i]/ the B-module P 
= Chomz (E, K) is projective, ]initely generated, and with endomorphism ring isomor- 
phic to It. 

This Theorem has the  following impor t an t  Corollaries. 
Le t  E have p r o p e r t i e s / ~ ) ,  P~),/)~). Then:  

COROLLARY 4.7. -- E is an injective cogenerator o] Mod-R. 

Pt~0OF. -- We first prove tha t  E is injective. 
By  [AF], Lemma  19.14, E is inject ive iff 2P is fiat, so, b y  the preceeding Theorem, 

we get  the  conclusion. 
Le t  2~ be a maximal  ideal of R;  we prove tha t  there  exists an injection R / ~  ~-> E 

or, equivalent ly ,  t ha t  E[2%] ---- {x e E :  x~g ~ 0} ~ 0. Now E [ ~ ]  = Horn (P / J~P ,  K). 
The r ight  hand  side is zero iff P/~(~P is zero. By[  AMD] Coroll. 2.5. (pug. 21),if P ~ Jt(~P, 
there  exists a ~ R, such t ha t  a -~ 1 mod d¢~ and aP = 0; but ,  since P is a fai thful  
module,  we get  a contradict ion.  // 

CO]~OLLAI~Y 4.8. -- C ( E )  coincides with the category CMR o] compact and Hausdor]] 
B-modules. 

P~oo~. - Obviously C(E)_C CMR. Let  M e  CMR and M* ~-- Chom z ( M ,  K). 
By  Prop.  4.5., there  exists an exact  sequence in 51od-R: _p(x) __% M* --> 0. B y  Pon-  
t ryagin ' s  dualization we get 0 ---> M --~* E x, where n* is a topological embedding,  
hence M e C(E). / /  
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TH]~O~E~ 4.9. - I] E has properties 1)1), P~), P3), then E is s.q.i. 

P~oo~.  - E is q.i., therefore  i t  is s.q.i, iff, for every  closed submodule B of E, 
the  characters  of the R-module E/B endowed with the quot ient  topology % separate 
points of E/B. ~ow,  since (E/B, 7:) is compact  and E is Hausdorff ,  the  ta t te r  fac t  
is equivalent  to the  condit ion tha t  (E/B, ~) belongs to C(E). Then  it suffices to apply 
Coroll. 4.5. //  

We note  tha t  the preceeding Theorem and Theor. 2.7., prove the implication 
(b) ~ (a) of the  main  theorem. 

5. - The functor A~ and the module P.  

The aim of this second pa r t  of the  paper  is to prove  the implication (a) ~ (b) 
of the conditions s ta ted in the main theorem and points 3) and 4) of the same theorem. 

We recall  tha t ,  for every  M e ~ (E) ,  d~(M) is the R-module HomR (M, E)  equipped 
with the  finite topology and for every  M e C(E), A~(M) is ChomR (M~ J~) with the  
discrete topology.  

Moreover LJ~ is a dual i ty  iff AIoA~ is equivalent  to the iden t i ty  of ¢(E)  and A~oA~ 
to the iden t i ty  of ~(E) .  

F i r s t  we note  the following: 

PR, OPOSITIO~ 5.1. - Let A~ be a duality. Then Cend~ (E) ~ R. 

P~ooF.  - Since E is a fa i thful  module, R e ID(E) ; AI(R) = ttomR (R, E) is topo- 
logically isomorphic to E, hence Chend~ (E) ~ End~ (R) ~ R. // 

We s ta te  now some facts about  C(E) and ~(E) .  
For  every  closed submodule B of E,  E/B with the quot ient  topology ~ is an object  

of CMR. As we no ted  in the  proof of Theor.  4.6., (E/B, ~) e C(E) iff the characters  
of E/B separate points.  

Therefore,  b y  Prop.  5.1., (E/B, v) e C(E) iff for every  xo e E ' , ,B,  there  exists an 
r E R such tha t :  aB ---- 0 and aXo ~: O. 

IJEM~A 5.2. -- Let B be a closed submodule o]E.  
I1 I - ~  AnnR (B), then R / I  belvngs to ~)(E). 

PI~ooP. - Le t  a e R \ / ;  there  exists an e lement  b ~ B such tha t  a b ¢  0; then  the  
morphism g: R / I  -> E, defined by  g(1 ~ I)  ---- b is well defined, since / annihilates b, 
and g(1 -~ I )  = ab # O. // 

Let  P = E* ~ Chore z (_P, K). As in 1 4, we shall ident i fy  E and 2P*. 
We note  tha t ,  by  Obs. 4.1. and Prop.  5.1., Enda (P) ~ R. 
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L E n A  5.3. - Let P = E*. 

(a) For every submoduIe L o] 2,  Ann~ (P/L) = AnnR (L±). 

(b) E/B e C(E), ]or every closed submodule B o/ E if] L = Anne (P/L)P, ]or every 
R-submodule Z o] _P. 

P]~ooP. - (a) is obvious since (P/L)* ~_ L ± and, for each r e R, the mult ipl icat ion 
b y  r on P/L and on L ± are morphisms which are t ransposed of each other.  

(b) <~ ~ ~> Le t  I : AnnR (P/L) ; d e a r l y  1 2  c L and AnnR (2/1t)) : I .  
Therefore,  by  (a), I : AnnR (Z ±) : A n n .  ((IP)±). 
I f  I 2  ~ L, then  L ± ~ (1t)) ±. Le t  Xo e ( I P ) ± \ Z  ± and aL ~ : 0 (a e R), then  a e I 

and hence aXo = 0, contrar i ly  to the hypothesis  on E.  
( ~ )  Le t  f = A n n a ( B )  and x o e E \ B .  I f  I x o = O ,  then  I = A n n ~ ( B + R x o )  

and, again by  (a), AnnR (P/B ±) = Anna (t)/(B ~-Rxo)±). Thus, b y  the hypothesis  
on 2 ,  we get the  contrndict ion (B + Rxo) ± = B ±, t h a t  is, B = B ~-/~x0. // 

We pass, now, to analyzing the functor  LJ r and the  conditions t h a t  2 has to sat isfy 

in case A~ is a dual i ty .  
We consider the following functors :  

T :  3[od-R -+ Mod-/~ 

H :  Mod-/~ --> Mod-/~ 

M~--> M G 2  
R 

M ~-> HomR (2, M) 

and the functors  AI: ff)(E) -~ C(E), As: C(E) -> ~(E), F: Mod-R -~ CMR already 
defined. 

We set 

I m H  = {M e ~iod-/~: M ~ Hom~ (2,  N) for some N e Mod-R},  

I m  T = {M ~ Mod-R: M ~--- N @) 2 for some N e Mod-/~}. 

1)I¢OP0SITI0~ 5.4. - d l  and As are naturally equivalent to I~oT and H o I  ~, respectively. 
A2oA~ ~ lO(E) i/f  T: ~(E) --~ T(~(E)) is a category equivalence whose inverse is given 
by the ]unetor H. 

PROOF. - L e t  M e ~ ( E )  ; AI(M) = ttomR (M, Horn z (2, K)) which is canonically 
isomorphic to Horn z (M Q 2 ,  K) ([B] Alg. I 4 n. i pug. 105) tha t  is to PoT(M). 

R 

Wow, bo th  AI(M) and I~oT(M) have the  finite topology and  it  can be easily seen 
t ha t  the  algebraic isomorphism between these two modules is indeed topological. 

Le t  M e  C(E), A s ( M ) =  ChomR (M, E),  which is, b y  Obs. 4.1., canonically iso- 
morphic  to Homa (P, M), moreover  bo th  are discrete, hence At(M) is topologically 
isomorphic to HoF(M). 

2 5 - A n n a l i  g~ M a t e m a t i c a  
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The second s t a t ement  of the  Proposi t ion is ~ consequence of the  first one, since 
A~oA1,".~ HoI"oFoT and, by  the fact  t ha t  F is a dual i ty,  we get  A ~ o A ~  HoT.  // 

P R o e o s ~ o ~  ~ 5.5. - Let A~oA~I~D(E),  then ~ (E) - - - - ImH,  T: I m H - + I r a  T 
and H: I m  T - +  I m  H are mutually inverse equivalences. 

Moreover, T(~)(J~)) = I m  T. 

P~oo~.  - Le t  M e I m  H,  M ~ t tom~ (P, 2/) ~_ (Obs. 4.1.) Chom~ (2/*, E) _< E ~*, 

therefore  M e ~ (E) .  
Vieevers~, let  M e ~D(E) and h~oA~ ~ 1~(~); by  Prop.  5.~., M ~_ Hom~ (2,  M ~ / ) )  

and so M e I m H .  
l#ow, ~D(E) = I m  H and Prop.  5.4., imply tha t  for every  2 / e  Mod-R, HirH (2/) 

is canonically isomorphic to H(2/)  and hence condition 5) of [S] Theor.  1.3. holds. 
Thus,  condit ion 1) of the same theorem states t h a t / ' :  I m  H -+ I m  ;/' is an equivalence 
and t ha t  H :  I m  T -+ I m  H is its inverse. 

In  regard to the equal i ty  I m  T = T(~D(E)), one inclusion is cleax. ~or  the other,  

let  2 / e  I m  T;  we proved just  now tha t  iV ~ TH(2/)  and so 

eT(Im ) = // 

O~SE~VATIO~ 5.6. -- By  Prop.  5.5., every  M e l m / /  is isomorphic to HT(M) 
and every  2 / e  I m  Y is isomorphic to TH(2/). By  [S] Theor.  1.3. the isomorphisms 

in question m a y  be assumed to be the following: 

® p ® p p 

?~: HomR (P, 2/) ® / )  -~ iV, ~ ® p ~ ~(p) (~ e I tom~ (/~, 2/), p e / ) ) .  

We set Gen (P) to be the  full subc~tegory of Mod-R consisting of /~-modules 
genera ted  by  _P, t ha t  is Gen ( P ) =  {M e Mod-R: there  exists an exact  sequence 

:P(~) -*  M -* 0 for Some set X}. 
Gen (P) denotes the  sm~]lest subc~tegory of Mod-/~ containing Gen (~P) and closed- 

under  taking submodules, homomorphic  images und direct  sums. 

LE~A~A 5.7. - i F ( C ( E ) ) =  Gen (/)). 

PROOF. -- Le t  2 / e  C(E) ; there  exists a topological embedding 0 -+ 2 / - +  E x. By  
applying the functor  F, we get  the exact  sequence p(x> _+ F(2/) -> 0 and hence F(2/) e 

e Gen (iP). 
Fo r  the  converse we proceed analogously by  dualizing, for every  M e Gen (iP), 

the  exact  sequence £o(x) _ ,  M -~ 0. //  

LE~lWA 5.8. -- Let A~ be a duality. Then I m  T-- - -Gen (-P), Gen ( P ) =  Gen (:P) 

and t ) is a/Iat  R-module. 
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Pl~oo~. - I f  z]~ is a dual i ty  i t  is A~(~(E)) ---- C(E) and hence, b y  Prop.  5.4. and 
Obs. 4.1., T(~(E) )  ---- F(C(E))  ; now, b y  Prop.  5.5. and 5.7., we get  I m  T = Gen (P). 

Therefore,  eve ry  M e Gen (P) is c~nonically isomorphic to Horn .  (P, M ) ( ~  P .  
Then  by  [S] L e m m a  2.1., Gen (P) = Gen (P) and io is fiat. // 

6. - I n  view of the results obta ined up to now, we can prove  tha t  if A~ is a duali ty,  
then  E has propert ies  Px), /o ) ,  iP~). 

We state  firs~ the following Lemmas.  

LE~)[A 6.1. - Let A~ be a duality. Then ]or every submodule L o] P ~ E*, L = 
Ann~ (P/L)1 ). I ] I  is any ideal o] R, I ~- Ann~ (P/It~). 

P~ooF.  - Le t  L g P ,  then  L e Gen (iP). By  L e m m a  5.8. and Prop.  5.5., L is iso- 
morphic  to Hom~ (P, L) (~ P.  B y  Obs. 5.6., the  above isomorphism is given by  

R 

~ :  a Q p ~+ =(p) where a e t tom~ (P, L) and p e io. 
570% Hom~ (P, L) is clearly isomorphic to Annp. (P/L) and hence the surjeeti- 

v i ty  of ~ implies t ha t  L -~ AnnR (P/L)P. 
Le t  I be an ideal of R;  since I e ff)(E), I ~ Horn .  (P, I Q P), b y  Prop.  5.4., and 

by  the  flatness of P ,  I @, P ~ IP.  

Moreover,  Hom~ (P, IP)  _~ Ann~ (P/IP) and by  the  na ture  of the  isomorphisms 
considered, I ---- AnnR (P/IP).  // 

LElWIA 6.2. - For every ideal I o] R, R / I  belongs to ~(E).  

PI~0OF. - B y  L e m m a  6.1., I ~-AnnR (P/IP) which coincides with Ann~ ((IP) ±) 
(Lemma 5.3. (a)) and so, by  Prop.  5.2., R / I e  ~)(E). // 

PlC0POSITIO:N 6.3. -- Let A~ be a duality, then E has property P~). 

PnooF.  - We prove  t ha t  P ---- E* is a finitely genera ted  R-module and then  ap- 
p ly  Prop.  4.4. 

Le t  ~------{L~<P: Lc, is finitely generated} and, for each % I~----AnnR (P/L~). 
Then,  by  Lemma  6.1., L~ = I~/). I f  ,8 = ~ I~, S P  = ~ (I~/~) = ~ L~----2. 

We want  to prove tha t  S = R, because f rom tha t  we get  1 e I ~  + ... + 1% and 

so P = I~ 2P-~ ~ L~  is finitely generated.  
" i = l  ~" ~=1 

6.2., R/s hence, by Prop. 54., R/S Horn, (P, R/S ® P)," B y  L e m m a  
bu t  R/S  Q 2  -~ P / S P  ---- 0, so R/S  ---- O. // ~ " 

PlC0POSlTIO~ 6.4. - Let zJ , be a duality. Then E is topologically quasi-injective. 

PlcooF. - We prove t ha t  P is quasi-project ive and then  apply  Prop.  4.4. Le t  L 
be a submodule of P a.nd I = AnnR (P/L).  B y  L e m m a  6.1., L = I P  and therefore  
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t ' /L  ---- t)/11 ) ~ R / I  @ 1 :). Now R / I e  ~)(E) b y  Lc mma  6.2, hence l=Iom~ (t), 2/11 )) ~_ 

R / I  and this means tha t  every  morphism of P into _P/L can be l if ted to  _P. // 

~Te have so p roved  the  implication (a) ~ (b) of the main theorem. Points  3) 
and ~) of the  theorem follow f rom Prop.  5.4. and f rom the  results of § 4. 

7. - S o m e  e x a m p l e s .  

I f  R is a commuta t ive  ring with 1 va 0, we say tha t  a dual i ty  between Mod-R 
and CMR is a character duality if it  is induced b y  a fai thful  module of CMR in the 
way  defined in § t .  

E v e r y  commuta t ive  ring, viewed as an R-module over itself, satisfies the  condi- 
t ions of Prop.  4.4; hence, by  the main  theorem A~. is a dual i ty  between Nod-R  and 
CMR. (R* = F(R)) .  

But ,  AR.--~/'o @ R;  so AR. is na tura l ly  equivalent  to the  Pon t ryag in  dual i ty.  

There  exist  some rings, for  which the  dual i ty  considered above is the  only dua- 
l i ty  existing, up to equivalences. In  fac t  we have the  following: 

PROPOSITION 7.1. -- I /  R is a principal ideal domain (P.I.D.) or a local ring, there 
exists--up to topological isomorphisms--a unique /aith]ul module E e CMR having 
properties P1), P2), Pa). E is topologically isomorphic to R* and hence, every character 
duality between ~ o d - R  and CMR is equivalent to the Pontryagin duality. 

PnooF.  - I f  E is an R-module  satisfying the  required hypothesis ,  t hen  b y  Prop.  4.4. 
and 4.5., P ~- E* is a pro jec t ive  module.  

How, i t  is well known tha t ,  if R is a P . I .D.  or a local ring, every  project ive  module 
is free. (The second case is a theorem of Kaplansky--[1K] Theor.  2 n. 4 - - ) .  

Then  P is free and, since End~ (_P) ~ R (Prop. 4.¢.), we get  P ~ R, t ha t  is E _~ R*. 
The second s ta tement  of the proposi t ion is the preeeeding remark.  // 

We  give, now, an example  of a r ing R over which there  exists a module  E satisfy- 

ing the  hypothesis  of the  previous proposit ion,  b u t  such t h a t  E ~ R*. 

P~oPosI~Io~ 7.2. - Let R be a Dedekind domain with a non principal ideal I. Then 
I is a projective/initely generated R-module with endomorphism ring isomorphic to R. 

There]ore z]z. is a character duality between ~¢Iod-R and CMR not equivalent to the 
Pontryagin duality. 

P~ooF.  - Obviously I is finitely genera ted  and project ive  (cfr. e.g. [AB]). W e  

prove now, t ha t  End~ (I) _~ R. 
Le t  ~ e EndR (I). Fo r  every  pr ime ideal ff of R, let  I~  be the localization of 1 

at  ff and ~ :  I~. --~ I~. defined by  q~(x/t) -~ 9~(x)/t (x e I ,  t e R \ ¢ ) .  ~ is an R$ morphism 

such tha t  ~ I ~  = ~. 
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For every prime if, Iff is an ideal of the discrete valuation ring R~, therefore 
End~ (I) _~_~ R~, that  is ~ is the multiplication by  an element of R~. Thus ~ is the 
multiplication by  an element of ~ R$ which coincides with R because R is Dedekind. 

ff prime 
So/Jz* is a duality, by the main theorem, and LJ~. ~ F because otherwise, R* 
A~.(R) ~ I*, that  is I ~ R contrarily to the hypothesis on I. // 
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