Pontryagin Type Dualities over Commutative Rings (*) (**).

SinvANA BAzzoni (Padova)

Summary. — See Introduction.

1. — Introduction.

Before describing the purpose of this work, we need some definitions.

Let R be a commutative ring with 1 5= 0 endowed with the diserete topology.
We denote by TMER the category of topological and Hausdorff RB-modules and by
CMR the subcategory consisting of compact modules. Mod-E will be the category
of R-modules endowed with the discrete topology.

Let F e CMR be a faithful module. Following [0], we denote by D(Z) the full
subcategory of Mod-R consisting of the H-discrete modules, that is the modules which
are algebraically isomorphic to submodules of direct products of copies of F; and
by C(E) the category of E-compact modules, that is the modules belonging to TMR
which are topologically isomorphic to closed submodules of topological produets of
copies of E.

If M e TMR, a character of M (or also an F-character) is, by definition, a con-
tinuons morphism of M into Z.

For every M € T MR, the character module M of M is the R-module Chom,, (M, E)
endowed with the compact-open topology.

It is easily seen, that, if M € D(H) or M e C(E), then M € C(E) or M € D(E),
and that the assignation M > # defines functors A,: D(E) — C(E) and 4,: C(B) —
> D(H).

We denote by 4, the pair (4,, 4,) and we say, indifferently, that 4, or 4, is a
duality if for every M € D(E) and every M € C(E), the eanonical morphism wy; of M
into its bidual I, defined by wy(x)(f) = f(#) for all x e M and fe M, is a topolo-
gical isomorphism.

DeriNiTION 1. ~ We say that F has property P,) if the continuous morphisms
of E are multiplications by elements of R.

(*) Entrata in Redazione il 22 luglic 1978.
{**) Lavoro eseguito nell’ambito dei Gruppi di Ricerca Matematica del C.N.R.
(***) Author’s adress: Seminario Matematico, Universitd di Padova, Via Belzoni 7,
35100 Padova.
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DEFINITION 2. — We say that E has property P,) if # does not have small sub-
modules, that is, there exists a neighbourhood of zero in E such that the only sub-
module contained in it is the zero module.

DErFINITION 3. — We say that F has property P;) if K is topologically quasi-injeetive,
that is every character of a closed submodule of F has an extension over Z.
The aim of this paper is to characterize the faithful and compact modules H € CMR
for which the functor A,: D(H) — C(¥) is a duality.
We obtain a generalization of Orsatti’s results given in [0] and the main theorem
we can prove is the following:
THEOREM. ~ Let E e OMR be o faithful module.
The following conditions are equivalent:
(a) Ay: D(B) — C(B) is a duality.
(b) E has properties Py), P,), Py).

) If P = Chom,(F, K) (K denotes the compact group of complex numbers
of modulo 1), P is a projective and finitely generated R-module with endomorphism ring
isomorphic to K.

Moreover, if any of the previous conditions holds, then:
1) DE) = Mod-R,
2) C(EB) = CMR,

and, if I' denotes the Poniryagin duality between Mod-R and CMR then:
3) A M)y=T'(M @P), for every M e D(H),
4) A,(M) = Hom, (P I'(M)), for every M e C(E),

that is the duality A, is the composition of the equivalence @P Mod-R — Mod-E
with the Poniryagin duality.

In particular this theorem classifies all character dualities, induced by compact
modules, between Mod-R and OME.

2, — Preliminary results.

Throughout this paragraph we suppose that F € C MR is a faithful module having
properties P,), P,), P).

LEMMA 2.1. ~ Let n € N, B a closed submodule of B, { a character of B. Then ¢
extends to a character T of E.
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ProoF: (ispired by [L] Lemma 4.1.). — We proceed by induction on n. Forn = 1,
statement of the lemma ig property Ps). Let n > 1 and let us think of E" as the topo-
logical product E* X E7'. By the inductive hypothesis, the restrietion of [ to B n B
extends to a character 5 of E*1. Now we extend # to a morphism y: B -- E»! — B,
by putting u(b + 2) = {(b) + n(#)-(b € B, v € E*).

w is well defined, because if b - « = 0, then # = — be BN E™* and so0 5(x) =
= {(x) = — {(b).

u is a continuous morphism, as we can see by examining the following commu-
tative diagram:

BxE— Y@

| A

B+ B

where ¢ is the sum and (' is defined by {'(b, #) = {(b) + n{z].

In fact, {’ and ¢ are continuous, ¢ is surjective and moreover, since all modules
appearing are compact and Hausdorff, B -}- E**! has the quotient topology of o.

Let now g, : B* X E*1 - F be the canonical projection; it is B + E** = m,(B) -+
-+ B, Let u' and 4" be the restrictions of u to m;(B) and E"1 respectively. By the
inductive hypothesis ' extends to a character i of E Then [ = @ u’ is the required
extension of . //

We note that a topological and Hausdorff B-module belongs to C(H) if and only
if it hag the weak topology of its characters and it is complete in that topology.

DEFINITION 2.1. — We say that C(¥) has the character extension property (C.E.P.)
if for every M € C(E), every character of a submodule of 3 extends over M.

ProrosiTION 2.2. — C(H) has the C.E.P.

Proor. — Cfr. [0] Prop. 3.6. [/

Prorositiow 2.3, — If M € D(E) or M € C(E), then wy i8 a topological embedding.
Proor, - Cir. [0] Prop. 2.3. [/

PROPOSITION 2.4, — If M € D(E), wy is an isomorphism.

Proor. — Cfr. [0] Prop. 3.4. [/

DEFINITION. — We say that a topological R-module M is topologically quasi-
injective in the strong sense (s.q.l.) if M is topologically quasi-injective and if, for
every closed submodule N of M and every x, € M\ ¥, there exists a character of M
which is zero on N and different from zero on .

LEMMA 2.5. — Let B be s.q.i., then E* is s.q.1.
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Proo¥. — Let B be a closed submodule of E*, x, € ™\ B.

Since E is s.q.i., we proceed by induction on n.

Let n > 1 and write E* as the topological product E* < E+1. We denote by =,
and 7, the canonical projections of E* onto E* and E** respectively. Then z, = (a, b),
with a = m,(1,) and b = ().

Put B, = BN B, B,= B B~ Without loss in generality we can suppose
a ¢ B,

We distinguish two ecases.

1) b em(B).

Consider F* -+ B and let ¢ e ¥ such that (¢, b) € B. We write o, = (a, b) in the
from (a, b) = (& — ¢, 0) + (¢, b). Then a — ¢ ¢ B;, because otherwise (a, b) belongs
to B.

Let 7: B* — E be a character of F such that 7(B;) = 0 and 7(e — ¢) = 0. We
define a morphism u: E* -+ B — E by putting u(x -+ b) = n(z) we EL, be B). p is
well defined because u|z ;= 7lp, = 0.

The continuity of u can be proved, as in the proof of Lemma 2.1., by considering
the following commutative diagram:

B xB—t>E

| A

B+ B

where ¢ is the sum and {(z, b) = 5(). (x € B, b € B). Obviously u(B) = 0 and, more-
over u(a,b) = u((a— ¢, 0) + (¢, b)) = n(a — ¢) % 0. Now, by extending px to a
character of B» (Lemma 2.1.), we can conclude.

2) b¢ my(B). By the inductive hypothesis, there exists a character of B
such that 7(my(B)) = 0 and #n(b) = 0.

Define y: E*@ E»' — E by putting u|z = 0 and gz = . p is zero on E* 4 B,
hence u(B) = 0 and moreover u(a, b) = n{b)*=0. [/
We can now prove the main result of this paragraph.

THEOREM 2.7. — Let E € CMR be o faithful module having properties Py), P,), Ps).
The following conditions are equivalent:
(@) B is s.q.i.
(8) 4, is o duality between D(E) and C(E).
PROOF. — By Prop. 2.4., every E-discrete module ig reflexive. By [0] Theor. 3.6.
and by Prop. 2.2., 4, is a duality iff B is s.q.i., hence by Lemma 2.5., iff F is s.qi. //

As we shall see later on, the fact that E is s.q.i., is indeed a consequence of pro-
perties P;), P,), P;) and.of the Peter-Weyl theorem.
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3. ~ The Pontryagin duality.

Let us consider the compact topological group K of complex numbers of modulo 1.

It is well known that K, as a Z-module, has properties P,), P,), P;) and that K
is 8.q.1.

Theorem 2.7. ensures that Ay is a duality.

In this case D(K) = Mod-Z, C(K) is the category of K-compact groups. By the
Peter-Weyl theorem, every compact group is K-compact, therefore Ay is the Pontry-
agin duality between discrete and compact groups.

4. ~ The R-module P.

In this paragraph we first prove the equivalence of (b) and (¢) of the conditions
stated in the main theorem. Next, we prove the equalities 1) and 2) of the same
theorem and finally the implication (b) =- (a).

We state in advance the following important remarks whose proofs are based
on results of Pontryagin’s theory on duality.

OBSERVATION 4.1. — We recall that Mod-E denotes the category of discrete R-
modules and CMR the category of compact and Hausdorff R-modules. For every
M e Mod-R or M &€ CMR, the Ponfryagin dual M* = Chom, (M, K) of M, endowed
with the compact-open ftopology, is an object of CME or Mod-R respectively.

In fact, M* is an R-module via the multiplication:

relk, o€ M* {ro){(z) = a(ra) for all xe M .

Moreover, if f e Chom, (M, N) is a morphism in Mod-R or in CMR, its transpose

f*1 N* - M* defined by f*p) == fof, VfeN*, is an R-morphism; therefore

f* € Chom,, (N*, M*) and so it is & morphism in (MR or in Mod-R respectively.
Thus we can state that the functor:

I''Mod-R - OMR, M s> M* = Chom, (M, K),

is a duality and hence, that, for every pair M, N of objects of Mod-E or CME,
Chomy, (M, N) is canonically isomorphic to Chomy (N*, M*).

Moreover, I" sends exact sequences into exact sequences.

Obviously, C(E) is a full subeategory of CMR, so for every M e C(H) we can
construet the Pontryagin dual M*,

From now on, it is assumed that B € OMRE is o faithful module.

Let P = E* be the Pontryagin dual of E. By the previous remark P € Mod-R
and P* = F** iy topologically isomorphic to the compact R-module E. We can,
thus, identify E and P*,
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OBSERVATION 4.2, — The map that to each closed submodule B of F associates
its orthogonal B* = {f € P: f(B) = 0} gives an antiisomorphism between the lattice
of eclosed submodules of F and the lattice of E-submodules of P, whose inverse is
given by ILi—» L+, where L is an E-submodule of P and L* = {x e F: (L) = 0},

OBsERVATION 4.3. — The topology on F coincides with the finite topology of
Hom,, (P, K). Therefore, a basis of neighbourhoods of zero in ¥, is given by the sub-
sets of the type W(¥F'; U), where F is a finite subset of P, U is a neighbourhood of
zero in K and W(F; U) :\‘{weE: #{(F)C U}

‘We note that, if U is a small neighbourhood of zero in K, then W(¥; U) contains
a maximal submodule and precisely the R-module (F>y where {(F> is the R-sub-
module of P generated by F.

In fact, let V 54 0 be a submodule of F contained in W(F; U) and let 0=2z€ V.

Then, for each fe F and for each r € B, (rz)(f) = «(rf) C U; therefore x(Rf)C U
and, because U is small, (Rf) = 0, that is, # € (F)z.

PROPOSITION 4.4, — Let P = E* = Chomy (E, K). Then:
(a) E has property P.) iff Endz (P) == R.
(b) E has property P,) iff P is a finitely generated R-module.

(¢) E has property P,) iff P is a quasi-projective module, (That is, every E-mor-
phism of P into a homomorphic image of P can be lifted to P.)

PROOF. — (a) By Obs. 4.1., Cend, (F) o~ Homy (E*, E*), so Cendy (¥) =~ Endy (P).
(b) « =» Let W be a small neighbourhood of zero in F; By Obs. 4.3., W2 W(F; U)
where F is a finite subset of P and U is a neighbourhood of zero in K. Since (F>x
is an R-submodule of E contained in W, (F>z = 0 and so P = {(F;.

«<=» Let F be a finite system of generators of P, and U a small neighbourhood
of zero in K. Then 0 = P+ = (F>; and hence, by Obs. 4.3., W(F; U) is a small
neighbourhood of zero in E.

{¢) By Obs. 4.1., every exact sequence in C(E) of the type
0—>B->H
¥
B
with B a closed submodule of E, gives the exact sequence in Mod-E:
P — B* 0

b
P
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Since I' is a duality, f is exentible iff /* can be lifted. Now B* = P/B*, hence by
Obs. 4.2., E is topologically quasi-injective iff P is a quasi-projective module. //

ProPosITION 4.5. — Let P be an R-module such that:
{a) Endg (P) = R.
(b) P is finitely generated.
(¢) P is quasi-projective.

Then P is o projective generator of Mod-E.

Proor. —~ By [F,] Coroll. 3.2, (b) and (¢) imply that P is 2-quasi-projective, that
is P® is quasi-projective for every set X. Now, by (b) there exists an exact sequence
R» - P — 0; by applying Hom; (—, P) we get the exact sequence 0 — Homy, (P, P) —
-+ Pr, that is 0 — R — P» Evidently P» is 2-quasi-projective and, since it contains
a copy of R, it is projective by [F,] Lemma 4.1, and hence, also P is projective.

Now, by [AF] Theor. 17.18 and by (a), P is a generator of Mod-B. //

Summing up the results obtained so far, we have the following:

THEOREM 4.6. — The R-module E has properties Py}, Py}, P,) iff the R-module P =
== Chomy (&, K) is projective, finitely generated, and with endomorphism ring isomor-
phic to R.

This Theorem has the following important Corollaries.
Let E have properties P,), P,), P,;). Then:

COROLLARY 4.7. —~ E is an injective cogenerator of Mod-R.

ProoF. — We first prove that ¥ is injective.

By [AF], Lemma 19.14, I is injective iff P is flat, 80, by the preceeding Theorem,
we get the conclusion.

Let G be a maximal ideal of E; we prove that there exists an injection E/AG <> F
or, equivalently, that E[M] = {z € E: 246 = 0} 0. Now E[M] = Hom (P[P, K).
The right hand side is zero iff P/ AP is zero. By[ AMD] Coroll.2.5. (pag. 21),if P = AP,
there exists a € R, such that ¢ = 1 mod A6 and aP = 0; but, since P is a faithful
module, we get a contradiction. //

COROLLARY 4.8. — C(E) coineides with the category O MR of compact and Hausdorff
R-modules.

ProoF. — Obviously C(E)C CME. Let M e CME and M* = Chom, (M, K).
By Prop. 4.5., there exists an exact sequence in Mod-R: P® % M* — 0. By Pon-
tryagin’s dualization we get 0 — M =% E*, where m* is a topological embedding,
bence M e C(H). [/
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TEREOREM 4.9. — If B has properties P,), P,), Ps), then E is s.q.i.

ProO¥. — ¥ i8 q.i., therefore it is s.q.i. iff, for every closed submodule B of B,
the characters of the R-module E/B endowed with the quotient topology z, separate
points of F/B. Now, since (¥/B, 7) is compact and ¥ is Hausdorff, the latter fact
is equivalent to the condition that (E/B, t) belongs to C(E). Then it suffices to apply
Coroll, 4.5. //

We note that the preceeding Theorem and Theor. 2.7, prove the implication
{b) = (a) of the main theorem.

5. — The funetor 4, and the module P.

The aim of this second part of the paper is to prove the implication {(a) = (b)
of the conditions stated in the main theorem and points 3) and 4) of the same theorem.

We recall that, for every M € D(E), A,(M) is the R-module Homy (M, E) equipped
with the finite topology and for every M e C(E), A,(M) is Chomg (M, E) with the
diserete topology.

Moreover A4, is a duality iff 4,04, is equivalent to the identity of C(E) and Ay04,
to the identity of D(E).

First we note the following:

ProrosiTioN 5.1, — Let 4, be a duality. Then Cendy (H) ~ R.

Proor. — Since F is a faithful module, R € D(H); 4,(R) = Homy (B, E) is topo-
logically isomorphic to F, hence Chendg (¥) ~ Endy (R) =« B. [/

We state now some facts about C(E) and D(E).

For every closed submodule B of F, E/B with the quotient topology = is an object
of CMR. As we noted in the proof of Theor. 4.6., (E/B, 7) € C(¥) iff the characters
of E/B separate points.

Therefore, by Prop. 5.1., (E/B, ) € C(B) iff for every x, € E\B, there exists an
r &€ B such that: aB = 0 and ax, 5= 0.

LemMa 5.2, — Let B be a closed submodule of E.
If I = Anng(B), then R[I belongs to D{H).

ProoF. — Let a € R\[; there exists an element b ¢ B such that ab 5= 0; then the
morphism g: R/I -> E, defined by g(1 -+ I) = b is well defined, since I annihilates b,
and gl +I)=abs20. [/

Let P = F¥* = Chom, (P, K). As in I4, we shall identify F and P*.
‘We note that, by Obs. 4.1. and Prop. 5.1., End, (P) o= E.



SILVANA BazzoNi: Pontryagin type dualities over commutative rings 381

Lemma 5.3, — Let P = E*.
(a) For every submodule L of P, Anng(P/L) == Ann, (L"),

(b) E/B e C(K), for every closed submodule B of E iff L = Anny (P/L)P, for every
R-submodule L of P.

Proo¥. — (a) is obvious since (P/L)* ~ L* and, for each r € R, the multiplication
by r on P/L and on L* are morphisms which are transposed of each other,

(B) « =» Liet I = Anng (P/L); clearly IPC L and Anng (P/IP)=1.
Therefore, by (a), I = Anng(L*) = Ann, (IP)).
If IP;E L, then LJ~7<£ (IP). Let z,e (IP)™NL* and al* =0 (a € R), then ael
and hence az, = 0, contrarily to the hypothesis on H.
¢<=19 Let I == Anng(B) and 2, ENB. If Iz, =0, then I = Ann, (B + Ruz,)
and, again by (a), Anng (P/B*) = Anng (P/(B + Rx,)*). Thus, by the hypothesis
on P, we get the contradiction (B -+ Rw,)* = B+, that is, B = B + Rx,. [/

We pass, now, to analyzing the functor 4, and the conditions that P has to satisfy
in case 4, is a duality.
We consgider the following functors:

T:Mod-BE —-Mod-BR M+ MRP
B
H:Mod-B — Mod-BE M Homg (P, M)
and the functors A,: D(E) - C(H), 4,: C(E) —» D(E), I': Mod-R — CME already

defined.
We set

Im H = {M € Mod-R: M =~ Homg (P, N) for some N € Mod-E} ,
ImT = {MeMod-R: M == N ® P for some N € Mod-R}.
B

PROPOSITION b.4. — A, and A, are naturally equivalent io I'oT and Hol', respectively.
Ayody ~D(H) iff T: D(E) — T(D(E)) is a category equivalence whose inverse is given
by the functor H.

ProO¥F. — Let M € D(E); A, (M) = Hom, (M, Hom, (P, K)) which is canonically
isomorphic to Hom, (M ® P, K) ([B] Alg. I4 n. 1 pag. 105) that is to I'oT(M).
B

Now, both A, (M) and I'eT(M) have the finite topology and it can be easily seen
that the algebraic isomorphism between these two modules is indeed topologiecal.

Let M e C(&), 4,(M) = Chomy (M, B), which iz, by Obs. 4.1., eanoniecally iso-
morphic to Homy (P, M), moreover both are discrete, hence 4,(M) is topologically
isomorphic to Hol'(M).

25 — Awnnalt di Matematica
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The second statement of the Proposition is a consequence of the first one, since
Ayody~Holo[oT and, by the fact that I' is a duality, we get dsod;, ~ HoT. [/

PrOPOSITION 5.5. — Lot Ayod,~1D(E), then D(E)=ImH, T:Im H -TIm T
ond H:Im T —>Tm H are mutually inverse equivalences.
Moreover, T(D(E)) =Im T.

ProOF. ~ Let M e Im H, M =~ Homg (P, N) =~ (Obs. 4.1.) Chomy (N*, E) < BV,
therefore M € D(H).

Viceversa, let M € D(E) and Ayod; ~ 1g5; by Prop. 5.4., M >~ Hom;, (P, M ¥ P)
and so M elmH. R

Now, D(E) = Im H and Prop. 5.4., imply that for every N € Mod-R, HTH (N)
is camonically isomorphie to H(XN) and hénce condition 5) of [S] Theor. 1.3, holds.
Thus, condition 1) of the same theorem states that 7': Im H — Im 7 is an equivalence
and that H: Im T — Im H is its inverse.

In regard to the equality Im T' = T(D(H)), one inclusion is clear. For the other,
let ¥ e Im T'; we proved just now that N o~ TH(N) and so

NeT(ImH) = T(DE). [}

OBSERVATION 5.6. — By Prop. 5.5., every M €Im H is isomorphic to HIT(M)
and every N € Im 7' is isomorphic to TH(N). By [8] Theor. 1.3. the isomorphisms
in question may be assumed to be the following:

guM:M—>HomR(P,M®P), mi>{— mlipr>m@p(me M;pel)
R
¢yt Homg (P, N) @ P - N, o« @ pr>o(p) (“EHomB(P7N>7pEP)'
R

We set Gen (P) to be the full subcategory of Mod-R consisting of E-modules
generated by P, that is Gen (P) = {M e Mod-R: there exists an exact sequence
P® M — 0 for some set X}.

Gen (P) denotes the smallest subeategory of Mod-R containing Gen (P) and closed-
under taking saubmodules, homomorphic images and direct sums.

Lemya B.7. - I'(C(H)) = Gen (P).

Proor. — Let N e C(E); there exists a topological embedding 0 — N — K%, By
applying the funetor I, we get the exact sequence P*' — I'(N) — 0 and hence I'(N)e
€ Gen (P).

Tor the converse we proceed analogously by dualizing, for every M e Gen (P),
the exact sequence P® —» M —0. [/

LEMwMA 5.8. — Let A, be a duality. Then Im T = Gen (P), Gen (P) = Gen (P)
and P is a flat R-module.
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ProoOF. — If A, is a duality it is 4,(D(H)) = C(¥) and hence, by Prop. 5.4. and
Obs. 4.1., T(D(B) ) = ['(C(E)); now, by Prop. 5.5. and 5.7., we get Im T' = Gen (P).

Therefore, every M € Gen (P) is canonically 1somorphlc to Homg (P, M) @ P.
Then by [S] Lemma 2.1., Gen (P) = Gen (P) and P is flat. [/

6. — In view of the results obtained up to now, we can prove that if 4, is a duality,
then E has properties P,), .P,), P;).
We state first the following Lemmas.

LeMMA 6.1. — Let A, be a duality. Then for every submodule L of P = E*, I =
= Anng (P/L)P. If I is any tdeal of R, I = Anng,(P[LP).

PrOOF. — Let L<P, then L € Gen (P). By Lemma 5.8. and Prop. 5.5., L is iso-
morphic to Hom, (P, L) ® P. By Obs. 5.6., the above isomorphism is given by
R

@, a @ pr>ofp) where « € Hom, (P, L) and p € P.

Now, Homp (P, L) is clearly isomorphic to Ann, (P/L) and hence the surjecti-
vity of ¢, implies that L = Ann, (P/L)P

Let I be an ideal of B; since I € D(H), I o~ Hom, (P, I ® P), by Prop. 5.4., and
by the flatness of P, I @ P =~ IP, B

R
Moreover, Homy (P, IP) =~ Anng (P/IP) and by the nature of the isomorphisms
considered, I = Ann, (P/IP). [/
LEMMA 6.2. — For every ideal I of B, R/I belongs to D(E).

ProOF. — By Lemma 6.1., I = Ann, (P/IP) which coincides with Ann, ((IP)*)
(Lemma 5.3. (a)) and so, by Prop. 5.2., R[I e D(E). [/

ProPOSITION 6.3. — Let 4, be o duality, then E has property P,).

Proor. — We prove that P = F* is a finitely generated R-module and then ap-
ply Prop. 4.4.
Let F = {La<P: L, is finitely generated} and, for each o, Iy = Anng (P/La).
Then, by Lemma 6.1., Ly=IP. If § = > I, SP = Y (I.P)= Y Ls= P.
We want to prove that S = R, because from that we get 1€ Is + ... + I, and
n n
so P = ( > Lxl)l’ = Y Ls, is finitely generated.
i=1 =1
By Lemma 6.2., RB/8 € D(H), hence, by Prop. 5.4., B/S =~ Homg (P RIS UP)
but R/S @P P/,SP =0, g0 B/8=0. [/

ProPOSITION 6.4, — Let A, be a duality. Then B is topologically quasi-injective.

Proor. - We prove that P is quasi-projective and then apply Prop. 4.4. Let L
be a submodule of P and I = Ann, (P/L). By Lemma 6.1., L = IP and therefore
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P/l = P[IP ~ R/I ® P. Now R/I € D(F) by Lemma 6.2, hence Hom, (P, P/IP) ~
R
=~ R/I and this means that every morphism of P into P/L can be lifted to P. [/

‘We have so proved the implication (a) = (b) of the main theorem. Points 3)
and 4) of the theorem follow from Prop. 5.4. and from the results of § 4.

7. — Some examples.

If R is a commutative ring with 1 3£ 0, we say that a duality between Mod-E
and OME is a characier duality if it is induced by a faithful module of C MR in the
way defined in §1.

Every commutative ring, viewed as an R-module over itself, satisfies the condi-
tions of Prop. 4.4; hence, by the main theorem Az, is a duality between Mod-R and
CMR. (R* = I'(R)).

But, Az~ I, ® R; so Az is naturally equivalent to the Ponfryagin duality.

R

There exist some rings, for which the duality considered above is the only dua-
lity existing, up $o equivalences. In fact we have the following:

PROPOSITION 7.1. — If R is a principal ideal domain (P.I.D.) or & local ring, there
ewists—up to topological isomorphisms—a wunique faithful module B e CMR having
properties Py), P,), Py). B is topologically isomorphic to B* and hence, every characier
duality between Mod-R and OME is equivalent to the Pontryogin duality.

ProoF. — If E is an R-module satisfying the required hypothesis, then by Prop. 4.4.
and 4.5., P = E* is a projective module.

Now, it is well known that, if R is a P.I1.D. or a local ring, every projective module
is free. (The second case is a theorem of Kaplansky—[K] Theor. 2 n. 4—).

Then P is free and, since End, (P) =~ R (Prop. 4.4.), we get P ~ R, thatis B ~ E*.

The second statement of the proposition is the preceeding remark. //

We give, now, an example of a ring B over which there exists a module E satisfy-
ing the hypothesis of the previous proposition, but such that B 4 R*.

PROPOSITION 7.2. — Let R be a Dedekind domain with a non principal ideal I. Then
I is a projective finitely generated R-module with endomorphism ring isomorphic to R.

Therefore A, is a character duality between Mod-R and CME mnot equivalent to the
Pontryagin duality.

PROOF. — Obviously I is finitely generated and projective (cfr. e.g. [AB]). We
prove now, that End, (I) ~ k.

Let ¢ € Endg (I). For every prime ideal § of R, let Iy be the localization of I
at T and ggq: Iy — I defined by gg(z/t) = p(@)/t (¢ € I, t € R\). pg is an Rg morphism
such that ¢g|; = ¢.



S1LvaNA Bazzoni: Pontryagin type dualities over commuiative rings 385

For every prime ¢, Iy is an ideal of the discrete valuation ring Ry, therefore
End, (I) o~ Ry, that is ¢g4 is the multiplication by an element of Bg. Thus ¢ is the
multiplication by an element of (| By which coincides with R because R is Dedekind.

4 prime

So A, is a duality, by the main theorem, and 4. + I" because otherwise, B* ~
o A,(R) == I*, that is I ~ R contrarily to the hypothesis on 1. [/
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