Pontryagin Type Dualities over Commutative Rings (*) (**).

Silvana Bazzoni (Padova)

Summary. - See Introduction.

1. - Introduction.

Before describing the purpose of this work, we need some definitions.
Let R be a commutative ring with $1 \neq 0$ endowed with the discrete topology. We denote by $T M R$ the category of topological and Hausdorff R-modules and by $C M R$ the subcategory consisting of compact modules. Mod- R will be the category of R-modules endowed with the discrete topology.

Let $E \in C M R$ be a faithful module. Following [0], we denote by $\mathcal{D}(E)$ the full subcategory of Mod- R consisting of the E-discrete modules, that is the modules which are algebraically isomorphic to submodules of direct products of copies of E; and by $\mathcal{C}(E)$ the category of E-compact modules, that is the modules belonging to $T M R$ which are topologically isomorphic to closed submodules of topological products of copies of E.

If $M \in T M R$, a character of M (or also an E-character) is, by definition, a continuous morphism of M into E.

For every $M \in T M R$, the character module \bar{M} of M is the R-module Chom ${ }_{R}(M, E)$ endowed with the compact-open topology.

It is easily seen, that, if $M \in \mathscr{D}(E)$ or $M \in \mathcal{C}(E)$, then $\bar{M} \in \mathrm{C}(E)$ or $\bar{M} \in \mathscr{D}(E)$, and that the assignation $M \mapsto \bar{M}$ defines functors $\Delta_{1}: \mathcal{D}(E) \rightarrow \mathcal{C}(E)$ and $\Delta_{2}: \mathcal{C}(E) \mapsto$ $\mapsto \mathfrak{D}(E)$.

We denote by Δ_{E} the pair $\left(\Delta_{1}, \Delta_{2}\right)$ and we say, indifferently, that Δ_{E} or Δ_{1} is a duality if for every $M \in \mathscr{D}(E)$ and every $M \in \mathcal{C}(E)$, the canonical morphism ω_{M} of M into its bidual \bar{M}, defined by $\omega_{M}(x)(f)=f(x)$ for all $x \in M$ and $f \in \bar{M}$, is a topological isomorphism.

Definition 1. - We say that E has property P_{1}) if the continuous morphisms of E are multiplications by elements of R.

[^0]Definition 2. - We say that E has property P_{2}) if A does not have small submodules, that is, there exists a neighbourhood of zero in E such that the only submodule contained in it is the zero module.

Definimion 3. - We say that E has property P_{3}) if E is topologically quasi-injective, that is every character of a closed submodule of E has an extension over E.

The aim of this paper is to characterize the faithful and compact modules $E \in C M R$ for which the functor $\Delta_{1}: \mathscr{D}(E) \rightarrow \mathcal{C}(E)$ is a duality.

We obtain a generalization of Orsatti's results given in [0] and the main theorem we can prove is the following:

THEORmM. - Let $D \in O M R$ be a faithful module.
The following conditions are equivalent:
(a) $\Delta_{1}: \mathfrak{D}(E) \rightarrow \mathrm{C}(E)$ is a duality.
(b) E has properties $\left.P_{1}\right), P_{2}$), P_{3}).
(c) If $P=\operatorname{Chom}_{Z}(E, \boldsymbol{K})(\boldsymbol{K}$ denotes the compact group of complex numbers of modulo 1), P is a projective and finitely generated R-module with endomorphism ring isomorphio to R.

Moreover, if any of the previous conditions holds, then:

1) $D(E)=\operatorname{Mod}-R$,
2) $\mathcal{C}(E)=O M R$,
and, if Γ denotes the Pontryagin duality between $M o d-R$ and $O M R$ then:
3) $\Delta_{1}(M)=\Gamma(M \otimes P)$, for every $M \in \mathscr{D}(E)$,
4) $\Delta_{2}(M)=\operatorname{Hom}_{R}(P, \Gamma(M))$, for every $M \in \mathcal{C}(E)$,
that is the duality Δ_{E} is the composition of the equivalence $\otimes P: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-R$ with the Pontryagin duality.

In particular this theorem classifies all character dualities, induced by compact modules, between Mod- R and $O M R$.

2. - Preliminary results.

Throughout this paragraph we suppose that $E \in C M R$ is a faithful module having properties $\left.\left.P_{1}\right), P_{2}\right), P_{3}$).

Lemina 2.1. - Let $n \in N, B$ a closed submodule of E^{n}, ζ a character of B. Then ζ extends to a character $\bar{\zeta}$ of $\mathbb{E n}^{n}$.

Proof: (ispired by [L] Lemma 4.1.). - We proceed by induction on n. For $n=1$, statement of the lemma is property P_{3}). Let $n>1$ and let us think of E^{n} as the topological product $E^{1} \times E^{n-1}$. By the inductive hypothesis, the restriction of ζ to $B \cap E^{n-1}$ extends to a character η of E^{n-1}. Now we extend η to a morphism $\mu: B+E^{n-1} \rightarrow E$, by putting $\mu(b+x)=\zeta(b)+\eta(x) \cdot\left(b \in B, x \in E^{n-1}\right)$.
μ is well defined, because if $b+x=0$, then $x=-b \in B \cap E^{n-1}$ and so $\eta(x)=$ $=\zeta(x)=-\zeta(b)$.
μ is a continuous morphism, as we can see by examining the following commutative diagram:

where σ is the sum and ζ^{\prime} is defined by $\zeta^{\prime}(b, x)=\zeta(b)+\eta(x)$.
In fact, ζ^{\prime} and σ are continuous, σ is surjective and moreover, since all modules appearing are compact and Hausdorff, $B+E^{n-1}$ has the quotient topology of σ.

Let now $\pi_{1}: E^{1} \times E^{n-1} \rightarrow E$ be the canonical projection; it is $B+E^{n-1}=\pi_{1}(B)+$ $+E^{n-1}$, Let μ^{\prime} and $\mu^{\prime \prime}$ be the restrictions of μ to $\pi_{1}(B)$ and E^{n-1} respectively. By the inductive hypothesis μ^{\prime} extends to a character $\bar{\mu}$ of E Then $\bar{\zeta}=\bar{\mu} \oplus \mu^{\prime \prime}$ is the required extension of ζ. //

We note that a topological and Hausdorff R-module belongs to $\mathcal{C}(E)$ if and only if it has the weak topology of its characters and it is complete in that topology.

Definition 2.1. - We say that $\mathcal{C}(E)$ has the character extension property (C.E.P.) if for every $M \in \mathcal{C}(E)$, every character of a submodule of M extends over M.

Proposimion 2.2.- $\mathcal{C}(E)$ has the C.E.P.
Proof. - Cfr. [0] Prop. 3.6. //
Proposition 2.3. - If $M \in \mathfrak{D}(E)$ or $M \in \mathcal{C}(E)$, then ω_{M} is a topological embedding.
Proof. - Ofr. [0] Prop. 2.3. //
Proposition 2.4. - If $M \in \mathfrak{D}(E)$, ω_{M} is an isomorphism.
Proof. - Cfr. [0] Prop. 3.4. //
Definition. - We say that a topological R-module M is topologically quasiinjective in the strong sense (s.q.i.) if M is topologically quasi-injective and if, for every closed submodule N of M and every $x_{0} \in M \backslash N$, there exists a character of M which is zero on N and different from zero on x_{0}.

Lemma 2.5. - Let E be s.q.i., then E^{n} is s.q.i.

Proof. - Let B be a closed submodule of $E^{n}, x_{0} \in E^{n} \backslash B$.
Since E is s.q.i., we proceed by induction on n.
Let $n>1$ and write E^{n} as the topological product $E^{1} \times E^{n-1}$. We denote by π_{1} and π_{2} the canonical projections of E^{n} onto E^{1} and E^{n-1} respectively. Then $x_{0}=(a, b)$, with $a=\pi_{1}\left(x_{0}\right)$ and $b=\pi_{2}\left(x_{0}\right)$.

Put $B_{1}=B \cap E^{1}, B_{2}=B \cap E^{n-1}$. Without loss in generality we can suppose $a \notin B_{1}$

We distinguish two cases.

1) $b \in \pi_{2}(B)$.

Consider $E^{1}+B$ and let $c \in E$ such that $(c, b) \in B$. We write $x_{0}=(a, b)$ in the from $(a, b)=(a-c, 0)+(c, b)$. Then $a-c \neq B_{1}$, because otherwise (a, b) belongs to B.

Let $\eta: E^{1} \rightarrow E$ be a character of E such that $\eta\left(B_{1}\right)=0$ and $\eta(a-c) \neq 0$. We define a morphism $\mu: E^{1}+B \rightarrow E$ by putting $\mu(x+b)=\eta(x)\left(x \in E^{1}, b \in B\right) . \mu$ is well defined because $\left.\mu\right|_{B \cap E^{1}}=\left.\eta\right|_{B_{1}}=0$.

The continuity of μ can be proved, as in the proof of Lemma 2.1., by considering the following commutative diagram:

where σ is the sum and $\zeta(x, b)=\eta(x) .(x \in E, b \in B)$. Obviously $\mu(B)=0$ and, moreover $\mu(a, b)=\mu((a-c, 0)+(c, b))=\eta(a-c) \neq 0$. Now, by extending μ to a character of E^{n} (Lemma 2.1.), we can conclude.
2) $b \notin \pi_{2}(B)$. By the inductive hypothesis, there exists a character of E^{n-1} such that $\eta\left(\pi_{2}(B)\right)=0$ and $\eta(b) \neq 0$.

Define $\mu: E^{1} \oplus E^{n-1} \rightarrow E$ by putting $\left.\mu\right|_{E^{1}}=0$ and $\left.\mu\right|_{E^{p-3}}=\eta \cdot \mu$ is zero on $E^{1}+B$, hence $\mu(B)=0$ and moreover $\mu(a, b)=\eta(b) \neq 0$. /

We can now prove the main result of this paragraph.
Theorem 2.7. - Let $E \in C M R$ be a faithful module having properties $\left.\left.P_{1}\right), P_{2}\right), P_{3}$). The following conditions are equivalent:
(a) E is s.q.i.
(b) A_{1} is a duality between $\mathfrak{D}(E)$ and $\mathrm{C}(E)$.

Proof. - By Prop. 2.4., every E-discrete module is reflexive. By [0] Theor. 3.6. and by Prop. 2.2., A_{1} is a duality iff E^{n} is s.q.i., hence by Lemma 2.5., iff E is s.q.i. //

As we shall see later on, the fact that E is s.q.i., is indeed a consequence of properties P_{1}), P_{2}), P_{3}) and of the Peter-Weyl theorem.

3. - The Pontryagin duality.

Let us consider the compact topological group \boldsymbol{K} of complex numbers of modulo 1.
It is well known that K, as a Z-module, has properties P_{1}), P_{2}), P_{3}) and that K is s.q.i.

Theorem 2.7. ensures that A_{K} is a duality.
In this case $\mathfrak{D}(\boldsymbol{K})=$ Mod- $\boldsymbol{Z}, \mathrm{C}(\boldsymbol{K})$ is the category of \boldsymbol{K}-compact groups. By the Peter-Weyl theorem, every compact group is K-compact, therefore Δ_{K} is the Pontryagin duality between discrete and compact groups.

4. - The R-module P.

In this paragraph we first prove the equivalence of (b) and (o) of the conditions stated in the main theorem. Next, we prove the equalities 1) and 2) of the same theorem and finally the implication $(b) \Rightarrow(a)$.

We state in advance the following important remarks whose proofs are based on results of Pontryagin's theory on duality.

Observation 4.1. - We recall that Mod- R denotes the category of discrete R modules and $C M R$ the category of compact and Hausdorff R-modules. For every $M \in \operatorname{Mod}-R$ or $M \in C M R$, the Pontryagin dual $M^{*}=\operatorname{Chom}_{z}(M, K)$ of M, endowed with the compact-open topology, is an object of $O M R$ or Mod- R respectively.

In fact, M^{*} is an R-module via the multiplication:

$$
r \in R, \quad \alpha \in M^{*}(r \alpha)(x)=\alpha(r x) \quad \text { for all } x \in M
$$

Moreover, if $f \in \operatorname{Chom}_{R}(M, N)$ is a morphism in Mod- R or in $C M R$, its transpose $f^{*}: N^{*} \rightarrow M^{*}$ defined by $f^{*}(\beta)=\beta \circ f, \forall \beta \in N^{*}$, is an R-morphism; therefore $f^{*} \in \operatorname{Chom}_{\mu}\left(N^{*}, M^{*}\right)$ and so it is a morphism in $C M R$ or in Mod- R respectively.

Thus we can state that the functor:

$$
\Gamma: \operatorname{Mod}-R \rightarrow C M R, \quad M \mapsto M^{*}=\operatorname{Chom}_{z}(M, K),
$$

is a duality and hence, that, for every pair M, N of objects of Mod- R or $C M R$, $\operatorname{Chom}_{R}(M, N)$ is canonically isomorphic to $\operatorname{Chom}_{R}\left(N^{*}, M^{*}\right)$.

Moreover, Γ sends exact sequences into exact sequences.
Obviously, $\mathrm{C}(E)$ is a full subcategory of $C M R$, so for every $M \in \mathrm{C}(E)$ we can construct the Pontryagin dual M^{*}.

From now on, it is assumed that $E \in O M R$ is a faithful module.
Let $P=E^{*}$ be the Pontryagin dual of E. By the previous remark $P \in \operatorname{Mod}-R$ and $P^{*}=E^{* *}$ is topologically isomorphic to the compact R-module R. We can, thus, identify E and P^{*}.

Observation 4.2. - The map that to each closed submodule B of E associates its orthogonal $B^{\perp}=\{f \in P: f(B)=0\}$ gives an antiisomorphism between the lattice of closed submodules of E and the lattice of R-submodules of P, whose inverse is given by $L \mapsto L^{\perp}$, where L is an R-submodule of P and $L^{\perp}=\{x \in E: x(L)=0\}$.

Observation 4.3. - The topology on E coincides with the finite topology of $\operatorname{Hom}_{z}(P, K)$. Therefore, a basis of neighbourhoods of zero in E, is given by the subsets of the type $W(F ; U)$, where F is a finite subset of P, U is a neighbourhood of zero in K and $W(F ; U)=\{x \in D: x(F) \subseteq U\}$.

We note that, if U is a small neighbourhood of zero in K, then $W(F ; U)$ contains a maximal submodule and precisely the R-module $\langle F\rangle_{R}^{\perp}$ where $\langle F\rangle_{R}$ is the R-submodule of P generated by F.

In fact, let $V \neq 0$ be a submodule of E contained in $W(F ; U)$ and let $0 \neq x \in V$.
Then, for each $f \in F$ and for each $r \in R,(r x)(f)=x(r f) \subseteq U$; therefore $x(R f) \subseteq U$ and, because U is small, $x(R f)=0$, that is, $x \in\langle F\rangle_{R}^{\perp}$.

Proposition 4.4. - Let $P=E^{*}=\operatorname{Chom}_{z}(E, K)$. Then:
(a) E has property P_{1}) iff $\operatorname{End}_{R}(P) \cong R$.
(b) E has property P_{2}) iff P is a finitely generated R-module.
(c) E has property P_{3}) iff P is a quasi-projective module. (That is, every R-morphism of P into a homomorphic image of P can be lifted to P.)

Proof. - (a) By Obs. 4.1., $\operatorname{Cend}_{R}(E) \cong \operatorname{Hom}_{R}\left(E^{*}, E^{*}\right)$, so $\operatorname{Cend}_{R}(E) \cong \operatorname{End}_{R}(P)$. $(b) « \Rightarrow \Downarrow$ Let W be a small neighbourhood of zero in E; By Obs. 4.3., $W \supseteq W(F ; U)$ where F is a finite subset of P and U is a neighbourhood of zero in K. Since $\langle\boldsymbol{F}\rangle^{\frac{1}{R}}$ is an R-submodule of E contained in $W,\langle F\rangle_{R}^{\frac{1}{R}}=0$ and so $P=\langle F\rangle_{R}$.
$《 \Leftarrow »$ Let F be a finite system of generators of P, and U a small neighbourhood of zero in K. Then $0=P^{\perp}=\langle F\rangle \frac{\perp}{k}$ and hence, by Obs. 4.3., $W(F ; U)$ is a small neighbourhood of zero in E.
(c) By Obs. 4.1., every exact sequence in $\mathcal{C}(E)$ of the type

with B a closed submodule of E, gives the exact sequence in Mod- R :

$$
\begin{aligned}
& P \rightarrow B^{*} \rightarrow 0 \\
& \uparrow_{f *} \\
& P
\end{aligned}
$$

Since Γ is a duality, f is exentible iff f^{*} can be lifted. Now $B^{*} \cong P / B^{\perp}$, hence by Obs. 4.2., E is topologically quasi-injective iff P is a quasi-projective module. //

Proposition 4.5. - Let P be an R-module such that:
(a) $\operatorname{End}_{R}(P) \simeq R$.
(b) P is finitely generated.
(c) P is quasimprojective.

Then P is a projective generator of Mod-R.
Proof. - By [\mathbf{F}_{2}] Coroll. $3.2,(b)$ and (c) imply that P is Σ-quasi-projective, that is $P^{(x)}$ is quasi-projective for every set X. Now, by (b) there exists an exact sequence $R^{n} \rightarrow P \rightarrow 0$; by applying $\operatorname{Hom}_{R}(-, P)$ we get the exact sequence $0 \rightarrow \operatorname{Hom}_{R}(P, P) \rightarrow$ $\rightarrow P^{n}$, that is $0 \rightarrow R \rightarrow P^{n}$. Evidently P^{n} is Σ-quasi-projective and, since it contains a copy of R, it is projective by $\left[\mathrm{F}_{1}\right]$ Lemma 4.1., and hence, also P is projective.

Now, by [AF] Theor. 17.18 and by (a), P is a generator of Mod- R. //
Summing up the results obtained so far, we have the following:
Theorem 4.6. - The R-module E has properties $\left.P_{1}\right), P_{2}$), P_{3}) iff the R-module $P=$ $=\operatorname{Chom}_{Z}(E, K)$ is projective, finitely generated, and with endomorphism ring isomorphic to R.

This Theorem has the following important Corollaries.
Let E have properties $\left.\left.P_{1}\right), P_{2}\right), P_{3}$). Then:
Corollary 4.7. $-E$ is an injective cogenerator of Mod- R.
Proof. - We first prove that E is injective.
By [AF], Lemma 19.14, E is injective iff P is flat, so, by the preceeding Theorem, we get the conclusion.

Let \mathcal{M} be a maximal ideal of R; we prove that there exists an injection $R / \mathcal{M} \hookrightarrow E$ or, equivalently, that $E[\mathcal{M}]=\{x \in E: x \mathcal{M}=0\} \neq 0$. Now $E[\mathcal{M}]=\operatorname{Hom}(P / \mathcal{M} P, K)$. The right hand side is zero iff $P / \notin P$ is zero. By[AMD] Coroll.2.5. (pag. 21), if $P=\mathcal{A} P$, there exists $a \in R$, such that $a \equiv 1 \bmod$. 1 and $a P=0$; but, since P is a faithful module, we get a contradiction.

Corollary 4.8. - $\mathrm{C}(E)$ coincides with the category $C M R$ of compact and Hausdorff R-modules.

Proof. - Obviously $\mathcal{C}(E) \subseteq C M R$. Let $M \in C M R$ and $M^{*}=\operatorname{Chom}_{Z}(M, K)$. By Prop. 4.5., there exists an exact sequence in Mod-R: $P^{(x)} \rightarrow M^{*} \rightarrow 0$. By Pontryagin's dualization we get $0 \rightarrow M \xrightarrow{n^{*}} E^{x}$, where π^{*} is a topological embedding, hence $M \in \mathrm{C}(D)$. //

THEOREM 4.9. - If E has properties $\left.\left.P_{1}\right),\left(P_{2}\right), P_{3}\right)$, then E is s.q.i.
Proof. $-E$ is q.i., therefore it is s.q.i. iff, for every closed submodule B of E, the characters of the R-module E / B endowed with the quotient topology τ, separate points of E / B. Now, since $(E / B, \tau)$ is compact and E is Hausdorff, the latter fact is equivalent to the condition that $(E / B, \tau)$ belongs to $\mathrm{C}(E)$. Then it suffices to apply Coroll. 4.5. //

We note that the preceeding Theorem and Theor. 2.7., prove the implication $(b) \Rightarrow(a)$ of the main theorem.

5. - The functor A_{E} and the module P.

The aim of this second part of the paper is to prove the implication $(a) \Rightarrow(b)$ of the conditions stated in the main theorem and points 3) and 4) of the same theorem.

We recall that, for every $M \in \mathscr{D}(E), \Delta_{1}(M)$ is the R-module $\operatorname{Hom}_{R}(M, E)$ equipped with the finite topology and for every $M \in \mathcal{C}(E), \Delta_{2}(M)$ is $\mathrm{Chom}_{R}(M, E)$ with the discrete topology.

Moreover Δ_{B} is a duality iff $\Delta_{1} \circ \Delta_{2}$ is equivalent to the identity of $\mathcal{C}(E)$ and $\Delta_{2} \circ \Delta_{1}$ to the identity of $\mathfrak{D}(E)$.

First we note the following:

Proposimion 5.1. - Let Δ_{k} be a duality. Then $\operatorname{Cend}_{R}(E) \cong R$.

Proof. - Since E is a faithful module, $R \in \mathscr{D}(E) ; \Delta_{1}(R)=\operatorname{Hom}_{R}(R, E)$ is topologically isomorphic to E, hence $\operatorname{Chend}_{R}(E) \cong \operatorname{End}_{R}(R) \cong R$. //

We state now some facts about $\mathrm{C}(E)$ and $D(E)$.
For every closed submodule B of $E, E / B$ with the quotient topology τ is an object of $C M R$. As we noted in the proof of Theor. 4.6., $(E / B, \tau) \in \mathrm{C}(E)$ iff the characters of E / B separate points.

Therefore, by Prop. 5.1., $(E / B, \tau) \in \mathrm{C}(B)$ iff for every $x_{0} \in E \backslash B$, there exists an $r \in R$ such that: $a B=0$ and $a x_{0} \neq 0$.

Lemma 5.2. - Let B be a closed submodule of E. If $I=\mathrm{Ann}_{R}(B)$, then R / I belongs to $\mathcal{D}(E)$.

Proof. - Let $a \in R \backslash I$; there exists an element $b \in B$ such that $a b \neq 0$; then the morphism $g: R / I \rightarrow E$, defined by $g(1+I)=b$ is well defined, since I annihilates b, and $g(1+I)=a b \neq 0$. //

Let $P=E^{*}=\operatorname{Chom}_{\boldsymbol{Z}}(P, \boldsymbol{K})$. As in I 4, we shall identify E and P^{*}.
We note that, by Obs. 4.1. and Prop. 5.1., $\operatorname{End}_{R}(P) \cong R$.

Lemba 5.3. - Let $P=E^{*}$.
(a) For every submodule L of $P, \operatorname{Ann}_{R}(P / L)=\operatorname{Ann}_{R}\left(L^{\perp}\right)$.
(b) $E / B \in \mathrm{C}(E)$, for every closed submodule B of E iff $L=\mathrm{Ann}_{R}(P / L) P$, for every R-submodule L of P.

Proof. - (a) is obvious since $(P / L)^{*} \cong L^{\perp}$ and, for each $r \in R$, the multiplication by r on P / L and on L^{\perp} are morphisms which are transposed of each other.
$(b) 《 \Rightarrow$ Let $I=\operatorname{Ann}_{R}(P / L) ;$ clearly $I P \subseteq L$ and $A n n_{R}(P / I P)=I$.
Therefore, by (a), $I=\operatorname{Ann}_{R}\left(L^{\perp}\right)=\operatorname{Ann}_{R}\left((I P)^{\perp}\right)$.
If $I P \underset{f}{\subsetneq} L$, then $L^{\perp} \subsetneq(I P)^{\perp}$. Let $x_{0} \in(I P)^{\perp} L^{\perp}$ and $a L^{\perp}=0 \quad(a \in R)$, then $a \in I$ and hence $a x_{0}=0$, contrarily to the hypothesis on E.
$« \Leftarrow »$ Let $I=A \operatorname{An}_{R}(B)$ and $x_{0} \in E \backslash B$. If $I x_{0}=0$, then $I=A n n_{R}\left(B+R x_{0}\right)$ and, again by $(a), \operatorname{Ann}_{R}\left(P / B^{\perp}\right)=\operatorname{Ann}_{R}\left(P /\left(B+R x_{0}\right)^{\perp}\right)$. Thus, by the hypothesis on P, we get the contradiction $\left(B+R x_{0}\right)^{\perp}=B^{\perp}$, that is, $B=B+R x_{0}$. //

We pass, now, to analyzing the functor Δ_{E} and the conditions that P has to satisfy in case Δ_{E} is a duality.

We consider the following functors:

$$
\begin{array}{ll}
T: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-R & M \mapsto M \otimes_{R} P \\
H: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-R & M \mapsto \operatorname{Hom}_{R}(P, M)
\end{array}
$$

and the functors $\Delta_{1}: \mathfrak{D}(E) \rightarrow \mathrm{C}(E), \Delta_{2}: \mathrm{C}(E) \rightarrow \mathfrak{D}(E), \Gamma:$ Mod- $R \rightarrow C M R$ already defined.

We set

$$
\begin{aligned}
& \operatorname{Im} H=\left\{M \in \operatorname{Mod}-R: M \cong \operatorname{Hom}_{R}(P, N) \text { for some } N \in \operatorname{Mod}-R\right\} \\
& \operatorname{Im} T=\left\{M \in \operatorname{Mod}-R: M \cong N{ }_{R} P \text { for some } N \in \operatorname{Mod}-R\right\}
\end{aligned}
$$

Proposition 5.4. - Δ_{1} and Δ_{2} are naturally equivalent to $T \circ T$ and $H \circ T$, respectively. $\Delta_{2} \circ \Delta_{1} \sim{ }^{1} \mathfrak{D}(E)$ iff $T: \mathscr{D}(E) \rightarrow T(D(E))$ is a category equivalence whose inverse is given by the functor I.

Proof. - Let $M \in \mathscr{D}(E) ; \Lambda_{1}(M)=\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{Z}(P, K)\right)$ which is canonically isomorphic to $\operatorname{Hom}_{Z}(M \otimes P, K)([\mathrm{B}]$ Alg. I 4 n .1 pag. 105) that is to $\Gamma \circ T(M)$. Now, both $\Lambda_{1}(M)$ and $\Gamma \circ T(M)$ have the finite topology and it can be easily seen that the algebraic isomorphism between these two modules is indeed topological.

Let $M \in \mathbb{C}(E), A_{2}(M)=\operatorname{Chom}_{R}(M, E)$, which is, by Obs. 4.1., canonically isomorphic to $\operatorname{Hom}_{R}(P, M)$, moreover both are discrete, hence $\Delta_{1}(M)$ is topologically isomorphic to $H \circ \Gamma(M)$.

The second statement of the Proposition is a consequence of the first one, since $\Delta_{2} \circ \Delta_{1} \sim H \circ \Gamma \circ \Gamma \circ T$ and, by the fact that Γ is a duality, we get $\Delta_{2} \circ \Delta_{1} \sim H \circ T$.

Proposition 5.5. - Let $\Delta_{1} \circ \Delta_{2} \sim 1 \mathfrak{D}(E)$, then $D(E)=\operatorname{Im} H, T: \operatorname{Im} H \rightarrow \operatorname{Im} T$ and $H: \operatorname{Im} T \rightarrow \operatorname{Im} H$ are mutually inverse equivalenees.

Moreover, $T(\mathbb{D}(E))=\operatorname{Im} T$.
Proof. - Let $M \in \operatorname{Tm} H, M \cong \operatorname{Hom}_{R}(P, N) \cong\left(\operatorname{Obs} .4 .1\right.$.) $\operatorname{Chom}_{R}\left(N^{*}, E\right) \leq E^{N^{*}}$, therefore $M \in \mathfrak{D}(E)$.

Viceversa, let $M \in \mathfrak{D}(E)$ and $\Lambda_{2} \circ \Lambda_{1} \sim 1_{D(E)} ;$ by Prop. 5.4., $M \simeq \operatorname{Hom}_{R}(P, M \underset{R}{\otimes} P)$ and so $M \in \operatorname{Im} H$.

Now, $\mathfrak{D}(E)=\operatorname{Im} H$ and Prop. 5.4., imply that for every $N \in \operatorname{Mod}-R, H T H(N)$ is canonically isomorphic to $H(N)$ and hence condition 5) of [S] Theor. 1.3. holds. Thus, condition 1) of the same theorem states that $T: \operatorname{Im} H \rightarrow \operatorname{Im} T$ is an equivalence and that $H: \operatorname{Im} T \rightarrow \operatorname{Im} H$ is its inverse.

In regard to the equality $\operatorname{Im} T=T(\mathcal{D}(E))$, one inclusion is clear. For the other, let $N \in \operatorname{Im} T$; we proved just now that $N \cong T H(N)$ and so

$$
N \in T(\operatorname{Im} H)=T(D)(E))
$$

Observation 5.6. - By Prop. 5.5., every $M \in \operatorname{Im} H$ is isomorphic to $H T(M)$ and every $N \in \operatorname{Im} T$ is isomorphic to $T H(N)$. By [S] Theor. 1.3. the isomorphisms in question may be assumed to be the following:

$$
\begin{array}{ll}
\psi_{M}: M \rightarrow \operatorname{Hom}_{R}(P, M \otimes P), & m \mapsto[-, m]: p \mapsto m \otimes p(m \in M ; p \in P) \\
\varphi_{X}: \operatorname{Hom}_{R}(P, N) \otimes \underset{R}{\otimes} P \xrightarrow{\otimes} N, & \alpha \otimes p H \alpha(p)\left(\alpha \in \operatorname{Hom}_{R}(P, N), p \in P\right)
\end{array}
$$

We set Gen (P) to be the full subcategory of $\operatorname{Mod} R$ consisting of R-modules generated by P, that is $\operatorname{Gen}(P)=\{M \in \operatorname{Mod}-R$: there exists an exact sequence $P^{(X)} \rightarrow M \rightarrow 0$ for some set $\left.X\right\}$.
$\overline{\text { Gen }}(P)$ denotes the smallest subcategory of Mod- P containing Gen (P) and closedunder taking submodules, homomorphic images and direct sums.

Lemma 5.7. $-\Gamma(\mathrm{C}(E))=\operatorname{Gen}(P)$.
Proof. - Let $N \in \mathbb{C}(E)$; there exists a topological embedding $0 \rightarrow N \rightarrow E^{x}$. By applying the functor Γ, we get the exact sequence $P^{(X)} \rightarrow \Gamma(N) \rightarrow 0$ and hence $\Gamma(N) \in$ $\in \operatorname{Gen}(P)$.

For the converse we proceed analogously by dualizing, for every $M \in \operatorname{Gen}(P)$, the exact sequence $P^{(x)} \rightarrow M \rightarrow 0$. //

Lemma 5.8. - Let Δ_{z} be a duality. Then $\operatorname{Im} T=\operatorname{Gen}(P), \operatorname{Gen}(P)=\overline{\operatorname{Gen}}(P)$ and P is a flat R-module.

Proof. - If Δ_{E} is a duality it is $\Delta_{1}(\mathcal{D}(E))=\mathrm{C}(E)$ and hence, by Prop. 5.4. and Obs. 4.1., $T(D(E))=\Gamma(\mathrm{C}(E))$; now, by Prop. 5.5. and 5.7., we get $\operatorname{Im} T=\operatorname{Gen}(P)$.

Therefore, every $M \in \operatorname{Gen}(P)$ is canonically isomorphic to $\operatorname{Hom}_{R}(P, M) \otimes P$. Then by [S] Lemma 2.1., Gen $(P)=\overline{\operatorname{Gen}}(P)$ and P is flat. //
6. - In view of the results obtained up to now, we can prove that if Δ_{R} is a duality, then E has properties $\left.P_{3}\right), P_{2}$), P_{3}).

We state first the following Lemmas.
Lemma 6.1. - Let Δ_{E} be a duality. Then for every submodule L of $P=E^{*}, L=$ $=\mathrm{Ann}_{R}(P / L) P$. If I is any ideal of $R, I=\mathrm{Ann}_{R}(P / I P)$.

Proof. - Let $L \leq P$, then $L \in \overline{\operatorname{Gen}}(P)$. By Lemma 5.8. and Prop. 5.5., L is isomorphic to $\operatorname{Hom}_{R}(P, L) \underset{R}{\otimes} P$. By Obs. 5.6., the above isomorphism is given by $\varphi_{L}: \alpha \otimes p \mapsto \alpha(p)$ where $\alpha \in \operatorname{Hom}_{R}(P, L)$ and $p \in P$.

Now, $\operatorname{Hom}_{R}(P, L)$ is clearly isomorphic to $\operatorname{Ann}_{R}(P / L)$ and hence the surjectivity of φ_{L} implies that $L=\mathrm{Ann}_{R}(P / L) P$.

Let I be an ideal of R; since $I \in \mathfrak{D}(E), I \cong \operatorname{Hom}_{R}\left(P, I \otimes_{R} P\right)$, by Prop. 5.4., and by the flatness of $P, I \underset{R}{\otimes} P \cong I P$.

Moreover, $\operatorname{Hom}_{R}(P, I P) \cong \operatorname{Ann}_{R}(P / I P)$ and by the nature of the isomorphisms considered, $I=\operatorname{Ann}_{R}(P / I P)$. $/ /$

Lemma 6.2. - For every ideal I of $R, R / I$ belongs to $\mathfrak{D}(E)$.
Proof. - By Lemma 6.1., $I=\operatorname{Ann}_{R}(P / I P)$ which coincides with $\operatorname{Ann}_{R}\left((I P)^{\perp}\right)$ (Lemma 5.3. (a)) and so, by Prop. 5.2., $R / I \in \mathscr{D}(E)$.

Proposition 6.3. - Let Δ_{z} be a duality, then E has property P_{2}).
Proof. - We prove that $P=E^{*}$ is a finitely generated R-module and then apply Prop. 4.4.

Let $\mathcal{F}=\left\{L_{\alpha} \leqslant P: L_{\alpha}\right.$ is finitely generated $\}$ and, for each $\alpha, I_{\alpha}=\operatorname{Ann}_{R}\left(P / L_{\alpha}\right)$. Then, by Lemma 6.1., $L_{\alpha}=I_{\alpha} P$. If $S=\sum_{\alpha} I_{\alpha}, S P=\sum_{\alpha}\left(I_{\alpha} P\right)=\sum_{\alpha} L_{\alpha}=P$.

We want to prove that $S=R$, because from that we get $1 \in I_{\alpha_{1}}+\ldots+I_{\alpha_{n}}$ and so $P=\left(\sum_{i=1}^{n} I_{\alpha_{i}}\right) P=\sum_{i=1}^{n} L_{\alpha_{i}}$ is finitely generated.

By Lemma 6.2., $R / S \in \mathfrak{D}(A)$, hence, by Prop. 5.4., $R / S \cong \operatorname{Hom}_{R}(P, R / S \otimes P)$,
$R / S \otimes P \cong P / S P=0$, so $R / S=0$. but $R / S \underset{R}{\otimes} P \cong P / S P=0$, so $R / S=0$. $/ /$

Proposition 6.4. - Let Δ_{E} be a duality. Then E is topologically quasi-injective.
Proof. - We prove that P is quasi-projective and then apply Prop. 4.4. Let L be a submodule of P and $I=\operatorname{Ann}_{B}(P / L)$. By Lemma 6.1., $L=I P$ and therefore
$P / L=P / I P \cong R / I \underset{R}{\otimes} P$. Now $R / I \in \mathscr{D}(E)$ by Lemma 6.2, hence $\operatorname{Hom}_{n}(P, P / I P) \cong$ $\cong R / I$ and this means that every morphism of P into P / L can be lifted to P. //

We have so proved the implication $(a) \Rightarrow(b)$ of the main theorem. Points 3) and 4) of the theorem follow from Prop. 5.4. and from the results of $\S 4$.

7. - Some examples.

If R is a commutative ring with $1 \neq 0$, we say that a duality between Mod- R and $C M R$ is a character duality if it is induced by a faithful module of $O M R$ in the way defined in $\S 1$.

Every commutative ring, viewed as an R-module over itself, satisfies the conditions of Prop. 4.4; hence, by the main theorem $\Delta_{R^{*}}$ is a duality between Mod- R and $C M R . \quad\left(R^{*}=\Gamma(R)\right)$.

But, $\Delta_{R^{*}} \sim \Gamma_{0} \otimes R$; so $\Delta_{R *}$ is naturally equivalent to the Pontryagin duality.
There exist some rings, for which the duality considered above is the only duality existing, up to equivalences. In fact we have the following:

Proposition 7.1. - If R is a prinoipal ideal domain (P.I.D.) or a local ring, there exists-up to topological isomorphisms-a unique faithful modute $E \in C M R$ having properties $\left.\left.\left.P_{1}\right), P_{2}\right), P_{3}\right) . E$ is topologically isomorphic to R^{*} and hence, every charasier duality between Mod- R and CMR is equivalent to the Pontryagin duality.

Proof. - If E is an R-module satisfying the required hypothesis, then by Prop. 4.4. and 4.5., $P=E^{*}$ is a projective module.

Now, it is well known that, if R is a P.I.D. or a local ring, every projective module is free. (The second case is a theorem of Kaplansky-[K] Theor. $2 \mathrm{n} .4-$).

Then P is free and, since $\operatorname{End}_{R}(P) \cong R$ (Prop.4.4.), we get $P \cong R$, that is $E \simeq R^{*}$.
The second statement of the proposition is the preceeding remark. //
We give, now, an example of a ring R over which there exists a module E satisfying the hypothesis of the previous proposition, but such that $E \nleftarrow R^{*}$.

Proposition 7.2. - Let R be a Dedekind domain with a non prineipal ideal I. Then I is a projective finitely generated R-module with endomorphism ring isomorphic to R.

Therefore $\Delta_{I^{*}}$ is a character duality between $\operatorname{Mod}-R$ and $O M R$ not equivalent to the Pontryagin duality.

Proof. - Obviously I is finitely generated and projective (cfr. e.g. [AB]). We prove now, that $\operatorname{End}_{R}(I) \simeq R$.

Let $\varphi \in \operatorname{End}_{R}(I)$. For every prime ideal \mathfrak{T} of R, let $I_{\mathscr{T}}$ be the localization of I at \mathscr{T} and $\varphi_{\mathscr{F}}: I_{\mathfrak{T}} \rightarrow I_{\mathfrak{J}}$ defined by $\varphi_{\mathfrak{S}}(x / t)=\varphi(x) / t(x \in I, t \in R \backslash \mathscr{T}) . \varphi_{\mathscr{F}}$ is an $R_{\mathfrak{J}}$ morphism such that $\left.\varphi_{\mathscr{J}}\right|_{I}=\varphi$.

For every prime $\mathcal{T}, I_{\mathfrak{G}}$ is an ideal of the discrete valuation ring $R_{\mathfrak{T}}$, therefore $\operatorname{End}_{R}(I) \cong R_{\mathscr{T}}$, that is $\varphi_{\mathscr{T}}$ is the multiplication by an element of $R_{\mathscr{T}}$. Thus φ is the multiplication by an element of $\prod_{\mathcal{T} \text { prime }} R_{\mathcal{S}}$ which coincides with R because R is Dedekind.

So $\Delta_{I^{*}}$ is a duality, by the main theorem, and $\Delta_{I^{*}} \nsim \Gamma$ because otherwise, $R^{*} \cong$ $\cong \Delta_{I^{*}}(R) \cong I^{*}$, that is $I \cong R$ contrarily to the hypothesis on I. //

BIBLIOGRAPHY

[AB] M. Auslander - D. Buchsbaum, Groups, rings, modules, Harper's Series in Modern Mathematics.
[AF] F. W. Anderson - K. R. Fuller, Rings and categories of modules, Springer-Verlag, Heidelberg - New York.
[AMD] M. F. Atifah - I. G. Mac Donald, Introduction to Commutative Algebra, AddisonWesley.
[B] N. Bourbaki, Algebre, chap. 2: Algebre Lineare, Hermann, Paris.
[F_{1}] K. R. Fuller, On direct representations of quasi-injectives and quasi-projectives, Areh. Math., 20 (1969), pp. 495-502.
[$\left.F_{2}\right]$ K. R. Fuller - D. A. Hille, On quasi-projective modules via relative projectivity, Arch. Math., 21 (1970), pp. 369-373.
[K] I. Kaplansky, Projectives modưles, Annals of Math., 68, no. 2 (1958), pp. 372-377.
[L] J. Lambek, Localisation at epimorphisms and quasi-injectives, J. of Alg., 38 (1976), pp. 163-1976).
[0] A. Orsattr, Dualità per alcune classi di moduli E-compatiti, Annali di Mat. Pura e Appl., (IV), 113 (1977), pp. 211-235.
[S] M. Sato, On equivalences between module categories, Proceedings of the 10 -th Symposium on ring theory, held at Shinshu University, Matsumoto, August 1977.

[^0]: (*) Entrata in Redazione il 22 luglio 1978.
 (**) Lavoro eseguito nell'ambito dei Gruppi di Ricerca Matematica del C.N.R.
 (***) Author's adress: Seminario Matematico, Università di Padova, Via Belzoni 7, 35100 Padova.

