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S u m m a r y .  - We investigate stability, u n~iform stability and equi-asym.ptotic stability with ~espeet 
to the x-components and y-components o] a di~erential equation with time delay. We also 
obtain necessary and su~eieut conditions ]or t hg generalized asymptotic stability o] the 
exponential type with respect to the components which generalizes the work o] Corduneanu [3]. 
We make use o] Lyapunov ]unetionals and di]erentiaI inequalities in our study. 

l .  - I n t r o d u ~ i o n .  

Lyapunov's theorems give sufficient conditions for the stability, asymptotic sta- 
bility and instability of systems of ordinary differential equations. In recent years 
considerable attention has been paid to the generMization of these stability concepts 
in several directions. In particular, the concept of partial stability or stability with 
respect to a part  of the variables has been studied by several authors for ordinary 
differentiM equations. In these investigations, Lyapunov's second method together 
with the theory of differential inequalities, have been widely used. Notable among 
these investigations are those of C0]~DU~]~A~U [], 2], LADDE and LEELA [4], LA~:SH~- 
K A ~ A ~  and LEELA [5] and I~U~gA~TSEV [8]. Recently, C0~DV~EA~V [3] investi- 
gated some problems of partial stability related to linear differential equations with 
delay: 

(,) 2(t) = A( t ,  xt) + B(t ,  Yt) 

~t(t) : C(t, xt) -~ D(t ,  Yt) 

where x E R ~, y ~ R ~, t ~ R + = [0, c~) and the subscript t indicates the restriction 
of the corresponding function to the intervM I t -  h, t], with h > 0 fixed: x~(0)= 
= x( t  ~- 0), - -  h<O<~O. In  his investigation of partial stability of the exponential 
type, only the x-components of the unknown solution of ( ,)  was under consideration 
with respect to their behaviour. However, partial stability is useful from the prac- 
tical point of view since in certain situations, one may be interested only in the 
behaviour of some part  of the variables. I t  would therefore be interesting to search 
simultaneously for information on both the x-components and the y-components of 

(*) Entr~t~ in :Redazione il 7 hglio 1978. 
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the solution, as observed in [3]. As far as the author  is aware this consideration is 
ye t  to be investigated, for delay equations. 

In  this paper, we sh~ll consider a more general system of equations with delay 
and would be interested in searching for informations on both the x-components and 
the y-components of the solutions of our differential equations. We investigate 
stability,  uniform stability,  equi-asymptotic stabil i ty with respect to the x-compo- 
nents and the y-components. We also obtain necessary and sufficient conditions for 
the generalized asymptot ic  stabil i ty of the exponential  type  with  respect to the com- 
ponents,  which generalizes the work of C0~.DU~A~V [3]. We approach the problem 
by  making use of two Lyapunov  functionals and the theory of differential inequalities. 

2 .  - Preliminaries. 

Le t  R ~ denote the n-dimensional Euclidean space with convenient norm [I" It. 
Denote by R +, the non-negative real numbers, t~or h > 0, let l ~ = C([-- h, 0], R ~) 
denote the space of continuous functions with domain [-- h, 0] and range in R ' .  l~or 
9 e l", we define 1[9 I[0 = sup I19(s)[[. suppose t ha t  x e C([-- h, 0 ] , / t  ~) and for t e R +, 

--h<~s~O 

x~ denotes a t ranslat ion of the restriction of x to the interval  [ t - -  h, t], then x~ is 
an element of 1 ~ defined by  x~(s)= x(t + s), - - h < s < O .  Consider the functional 
differential system 

yc(t) = ](t, x~, y~) 
(1) 

~](t) = g(t, xt ,  y,) 

where t e/~+, x e R ~, y e R ~ and ], g are continuous functions from R + X C([-- h, 0], R ' )  x 
x C([-- h, 0], R TM) into R" and R ~ respectively. Also ](t, O, O) = 0 and g(t~ O, O) = 0 

for t e R  +. ]bet (to, q, ~v) belong to R + x l ' x l %  we denote by  x = x( t ; to ,9 ,  yJ) and 
y = y(t; to, 9, ~) the solution of (1) such tha t  xt0= 9 and y , . =  ~. For  any  t>~to 
we denote by  xt(to, 9, ~v) and y~(t0, 9, Y~) the corresponding elements of C([-- h, 0], R ") 
and C([-- h, 0], R ~) respectively such tha t  x~o(to, 9, ~v) = 9 and yto(tO, 9, ~P) = ~v. 
I f  we assume tha t  ] and g are locally Lipschitzian in (9, ~), then  solutions of (1) are 
uniquely determined to the r ight  by  their  initial values. Moreover each solution 
can be continued to the r ight  for as long as the solution remains in a compact sub- 
set of the domain. For  any  V ~ C(R + x C([-- It, 0], R ~) x C((-- h, 0], R~), R "*) define, 

(2) D÷ v( t ,  x,(to, ~o), y~(to, ~o)) = 

= lira sup 1 [V(t -4- 8, x,+~(to, 90), y~+o(to, Vo)) -- V(t, x~(to, 90), y~(to, Vo))]. 
~ o  + 0 

We also define, 

Jg+ v(t, ~, ~) =lim~_~o+ sup ~ [v(t + 8, x,+~(t, ~)y,÷~(t, ~/) - v(t, , ,  ~)] (3) 
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where xt(t, of), yt(t, 9) is any  solution of (1) with initial funct ion ?,  9 at  t. We assume 
the uniqueness of solutions of (1), so tha t  (2) and (3) coincide since, 

q~ = xt(to, ~Vo) , 9 = Yt(to, ~'o) and xt+~(to, ~Vo) = xt+,(t , ~) , 

yt+~(to, 90) = yt+z( t, ~v). Denote  by  ~ the class of functions a E C([0, ~), R+) such 
t ha t  a (0 ) -~  0 and a(t) is s t r ict ly monotone  increasing in t. 

DEFI~ITIO~ 2.1. - (a) The solution x = 0, y = 0 of the system (1) is said to be 
stable re la t ive to  the x-component  or par t ia l ly  stable if for any  e > 0, to>0,  there  
exists 8(S, t o )>  0 such t ha t  for  every  t>to,  and I@IIo-[- l!~Pl[o< 8, 

llx~(to; q,  9)li < ~ .  

(b) The solution x ---- 0, y = 0 is un i formly  stable relat ive to the x-component ,  
if we can choose 8(e) independent  of (.to) in (a). 

(c) The tr ivial  solution of (1) is said to be equi-asymptot ical ly  stable relat ive 
to the p-component  or par t ia l ly  equi-asymptot ical ly  stable if there  exists 8(to, e) > 0 
and T(to, e) > 0 such t ha t  (a) holds and for t>to ~ T 

!lxt(to; % 9)1] < s provided ]!~Ilo + 119]!o< 8. 

(d) The tr ivial  solution x = 0, y = 0 of (1) is par t ia l ly  asymptot ica l ly  uni- 
formly  stable if T and 8 in (c) are independent  of to. 

(e) The tr ivial  solution x = 0, y = 0 of (1) is asymptot ica l ly  exponent ia l ly  
stable relat ive to the x-component  or par t ia l ly  asymptot ica l ly  exponent ia l ly  stable 
if there  exist  M > 0 and ~ > 0 bo th  real numbers  such tha t  

I]xt(to; % 9)ll<M(]lq~!]o + ]1911o) exp [ -  ~(t -- to)] for t>~to. 

(J) The tr ivial  solution of (1) is generalized exponent ia l ly  stable relat ive to 
the x-component  or generalized par t ia l ly  asymptot ica l ly  exponent ia l ly  stable if 
there  exist a continuous funct ion K ( t ) >  0, for t E R + and another  funct ion p e 3L 
for t ~ R + with p(t) ---> co as t --> ~ such tha t  

ltx,(to; % 9)J] < K(t)(JJ~ lJo + tl 9 JIo) e x p  [p(to) - p(t)] 

for t>~to. In  part icular ,  if K(t)  = K > 0 and p(t) = at, z¢ > O, then  definition (]) 
reduces to (e). 
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(g) The solution x ----- 0, y ~- 0 of the system (1) is said to be stable relative to 
the y-component  or s-partially stable if for any  e > 0, to>0 there exists (~(to, e) > 0 
such tha t  for every t>t0 

live(to; 9, v)tl < 

provided tiq~Ilo + llVlio< O- 
Definitions similar to (g) can be given for (a), (b), (e), (d), and (e) in terms 

of the y-components.  

(h) The trivial  solution x = 0, y =- 0 of (1) is said to be strictly part ial ly stable 
or stable with respect to the x-component and unstable with respect to the y-com- 
ponent  (or vice-versa) if given e > 0, to ~ t~ +, there exists ~(to, e ) >  0 such tha t  pro- 

vided ]] 9 IIo + II ~P I]o < 

[lxt(t.; ~, yJ)[[ < e and [tY*(t0; ? ,  F)It > e  for t>to.  

Definitions of strict part ial  stabil i ty corresponding to (b), (e), (d), (e), (]) and (g) 
can be given similarly. 

(i) The trivial  solution of x -~ O, y -~ 0 of (1) is said to be stable with respect 
to both  the  x-component and the y-component simultaneously or simultaneously 
stable, if given e > 0, el > 0, to e R +, there exists 0(to, e, el) > 0 such tha t  provided 

tl~[to + liVi[o< ~, 

]ix,(to; 9, ~)il < * and IIy,(to; % ~)il < ,1 for t>to.  

Similar definitions can be given for other types of stability. 

DEFINITION 2.2. -- A functional  V(t, 9, ~2) is said to be positive definite with 
respect to 9, if there exists a positive definite function e(9 ) not  depending explicitly 

on t such tha t  c(9)<V(t~9~ ~f) for all t~>0. 

DEFI~ITIO~ 2.3. A functional V(t, V, V) admits an infinitesimal upper bound in 
if there exists a function b e J5 such tha t  V(t, 9, ~)<b([[gllo)" I t  ~dmits a strict in- 
finitesimal upper bound in (9, V) if V(t, 9, ~)<b(]Ig]lo, ]IV]lo) for t > 0 .  

L E ~ ±  2.4. - A functional V(t, 9, V) is positive definite with respect to 9 if and 

only if there exists a e J5 such tha t  

a(t lVl lo)<V(t ,%v)  for t > 0 .  

3. - Stability relative to components .  

We now present several theorems which give sufficient conditions for the sta- 
bil i ty of system (1) with respect to the x-component and the y-component in terms 
of the existence of Lyapunov  functionals. 
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THEO~E~ 3.1. -- Suppose there exists a functional  V(t, % %0) with the following 
properties: 

(i) V is continuous and satisfies Lipschitz condition in ? and %0 and 
V(t, 0, 0) = 0; 

(ii) there exists a e J£ such tha t  

a(1Iq~tto)<V(t,% V) for ( t ,? ,  ~ ) e . / ~ + x C ~ x l  m 

where C Q -  {¢ e l" :  [T~llo< e}; 

(iii) for (t 9 % %0) e R + × C~ × l% 

D + V(t, q~, %0) < O. 

Then the solution x = 0, y ~ 0 of the system (1) is stable with respect to the x-com- 
ponent  or part ial ly stable. 

P~oor .  - For  s > 0, to>0,  3~(to, s) > 0 such tha t  ]I~o1[o-t- [1%0olIo< ~ implies 
V(to, cpo, %0o)< a(s). Let  x(t), y(t) be a solution of (1 )wi th  lI%IIo + t1%0ot[o< ~, then  
by  (iii) V4s non-increasing with respect to t and so 

V(t, % %0)< V(to, ~Oo, %00) /or t> to .  

Thus, for t>~to, IIFl[o ~- [1%011o< ~ implies, 

a([lx,(to; % V')11) = ~(I1~]1o) < v(t, % %0)< V(to, ¢o, %00) < a(~). 

It follows tha t  [Ix~(to; ~, %0)H < s for t>to. 

T n - E O ~  3.2. - Suppose tha t  there exists a functional  W(t, % %0) with the fol- 
lowing properties: 

(i) W is continuous and s~tisfies the Lipschitz condition in ? and %0 and 
W(t, 0, 0) = 0; 

(ii) there exists a e ~ such tha t  

~([t%0tto)<V(t,%%0) for (t,% %0)eR+xl~xC~ 

where C. -~ {%0 e l ~ : II %0 Ilo < ~}; 

(iii) for ( t ,% %0) e R + × I ~ × C ~ ,  

D + W(t, % %0) < O. 
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Then  the  solution x = 0, y = 0 of the  system (1) is stable with respect  to  the  y-com- 
ponent  or s-part ial ly stable. 

D ] ~ I T ~ 0 ~  3.2. - Le t  V(t, ~, y~) and W(t, 9, ~f) be two I~yapunov functionals. 
W(t, ~, ~) is said to be posit ive definite in the  region V(t, ~, ~f) > 0 if given e > 0, 
~ ( e )  > 0 such tha t  for every  point  (t, % 7') e R + × C~ × G satisfying V(t, % y~) >e 
the  inequal i ty  W(t, ~, F) > ~ is satisfied. 

TI~EO]~E~ 3.3. - Suppose there  exists two I~yapunov functionals V(t, ~, 7") and 
W(t, % 7") with the following properties.  

(i) V and W are continuous and locally Lipschitzian in % 7' and V(t, O, O) 
= W(t, O, O) = O; 

(ii) there  exists a e ~ such tha t  

(iii) 

a(ll~llo)<V(t,% v) for ( t , ~ , ~ ) e R + × c ~ × t , . ,  

there  exists b e J~ such t h a t  for (t, % 7") ~ R + × Co × l "~, W(t, % 7") < b(II~fllo), 
and W(t ,? ,  ~) is bounded  in the region V(t ,? ,  ~ ) ~  0 existing for t~>0 

and ~or ll~Ilo+ 117'llo< 7; 

(iv) D+W(t, ~, ~) is a positive-definite funct ion in the  region V(t, % ~f)> O. 

Then the solution x = 0, y = 0 is stable with respect  to the x - - c o m p o n e n t  
and unstable  with respect  to the  y-component  or s t r ic t ly  par t ia l ly  stable. 

P~ooF. - Hypothesis  (i), (ii), and (iii) imply tha t  given e > 0, 3(~(e, to) > 0 such 
tha t  ]lxdto, % 7")I] < e providedII ~l[o q- I17'llo< ~. Now let 0 < e < ~ and to ~ R +, then  
for (t, % ~) e R + × Co × G ,  

W(t, % 7') = W(to, %, 7'0) + j D + W ( s ,  % ~f ) ds 
Q 

where x~o(to, %, 7"0) = ~o, y~o(to;~co, 7'0) = 7'0. B y  (iv), 3~1(e) > 0 such tha t  V(t, q;, 7")> e 
implies D + W(t, ~o, y;) >1 & 

Hence  

w(t, ~, 7")>1 W(to, ~o, ~o) + ~l(e)(t- to). 

Suppose x-----0, y = 0 is stable with respect  to % then  3O~(e, t o )>  0 such t h a t  

[lYe(to ;~ ,  ~P)II < e for t~> to provided [t~o [lo + tl 7']Io ~- ~ .  ]gow set ~ = rain {3, 0~}, t hen  
by  (iii) W(to, Wo, 7 'o)<M and 

W (to, q~o, 7"0) ~- ~l(e)(t --  t,) < W(t, % ~,) < b (Ity dto; % ~) ti) < b(e) . 

As t -+ c~ we arr ive at  a contradict ion.  
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The f o l l o ~ n g  theorem gives sufficient conditions for the stabil i ty of (1) with 
respect to the two components simultaneously. 

T~EO~]~ 3.4. - Le t  V(t, % F) be a I~yapunov functional  defined for 0 < t  < c~, 
I!~!lo< ~ and ll~'Ilo< co, such tha, t the following conditions hold 

(i) V(t, % ~) is locally Lipschitzian in (% ~), V(t, 0, 0 ) ~  0; 

(ii) a(IlFI]o)<V(t,% ~) for (t ,~,  F) e R + × C ~ × l  "~, where a(r) is a continuous 
monotone increasing function on R + into R + and a(0) ~ 0; 

(iii) / ) + V ( t , % F ) < 0  for ( t , ~ , F )  e R + × C e × I %  

Suppose, for e~ch 0 < e < ~, W(t~ ~, F) is another  Lyapunov  functional defined 
for II ~'tl o < s, If ~ IIo < ~ and 0 < t < co ~nd s~tisfying the  following properties: 

(iv) a~(tl~lto ) <W(t, F, ~)<b~(tl~tlo), where a~(r), b~(r) are continuous monotone 
increasing functions on R + such tha t  al(0) ~- 0 and b~(0) = 0; 

(v) D + W(t, ~, ~,) < 0 for (t, ~, ~) ~ R + × C~ × C~. 

Then the trivial  solution x = 0, y ~ 0 of (1) is stable with respect to the x-com- 
ponent  and with respect to the y-component  or simultaneously stable. 

P~ooF. - Given 0 <  e <  ~, there exists (~(to, ~ ) >  0 for t o e R  +, such tha t  ll~llo-~- 
+ tt~t]o< (~ implies V(t,% ~)< a(e). Hence if tI~ollo-t- tly~oIto< ~, then  II~ol]o< 6 
and moreover by  (ii) and (iii) 

t 

a(IIv, llo) < v(t ,  V(to,  Oo) + fD+ V(s, % v,)as < . 
to 

Hence I l y t ( t o ; ? ,~ ) l l< s  for tDto provided /l LI0< , Let  e ~ > 0  be such tha t  
0 < s < s~ < p and choose 6o small enough so tha t  b~(8o) < a~(el). Set 6~ = rain {60, ~}, 
then  we claim tha t  II~l[0 • ]lwllo< 8~ implies Ilx,(to;% ~)ll < el for all t>~to. Sup- 
pose not,  then there exist t~, t~ such tha t  to < t~ < t2 a.nd 

l lx t l ( to ;%~) t l=~o ,  lIx~,(to,%~)lt~-s~ and 6o<Ilxt(to;q~,yJ)!l<sl forte[t~,t,]. 

Hence by (iv) and (v), 

at(el)< W(t,, % v2) < W(tl, % ~)<b~(llxt,(to; q), Y~)II) <b~(~o) < az(e~) 

which is a contradiction. Therefore Hxt(to; ~, ~0)I1 < sl for t>~to. 

Tm~O~E~ 3.5. - Suppose V(t, % ~) is a Lyapunov  functional with the properties (i) 
and (ii) of Theorem 3.1 and V(t, % ~) does not  increase on any  solution x = x(t, to, ~, ~), 
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y = y(t, to, % ~) as long as zt e CQ. Then  the  tr ivial  solution x = 0, y = 0 of (1) is 

stable with respect  to  the  u-component .  

P~ooF.  - B y  hypothesis  V(t, % ~ ) <  V(to, ~o, %). So t h a t  the arguments  of The- 

orem 3.1 remains valid for this case. 

4.  - U n i f o r m  stabil i ty w i th  respect  to  c o m p o n e n t s .  

In  this section we invest igate some problems of par t ia l  uniform stabil i ty of the 
system (1). We character ize this concept  in terms of Ly a p u n o v  function~ls. 

T~moR.E~ 4.1. - Le t  the  hypothesis  (i) and (iii) of Theorem 3.1 hold. Suppose 

for (t, % ~2) e R + x C~ x 1"% 

a(ll~[10) < V(t, % ~)<b(ll~tlo + ll~ll0) 

where a, b e 3%, then  the tr ivial  solution x ~- 0, y =- 0 is uniformly stable with respect  
to the u-component  or par t ia l ly  uni formly stable. 

Pl~OOF. - Choose ~(s) = b-l(a(~)) independent  of to. Then []~vollo ~ I[Vo]]0< ~(~) 

implies 

V(to,  o)<b(tl%f!o + < = 

The result  then  follows. 

COrOLLArY ~.2. -- Le t  the  hypothesis  (i) and (iii) of Theorem 3.]  hold. Suppose 

for (t, ~, V) e R + x I" x C~, 

a (ll II0) < v(t ,   )<b (II Ilo + ll lto) 

where a~, b~e3~, then  the  tr ivial  solution x = 0, y = 0 is uni formly stable with 

respect  to the y-component .  

Trmo~E~ 4.3. - Assume tha t  hypothesis  (i) and (iii) of Theorem 3.1 are satisfied 

and t ha t  3a, b ~ 3L such tha t  

a(]l~IIo) < V(t, % ~)<b(t]~lt0 ) , 

then  for any  s > 0, 3 ~ ( s ) >  0 such tha t  for to>0, ][~0]lo< V and I/%[[o< oo implies 

I[Xgto,% V')ll < ~ for all t>to. 

~oreove r ,  ](t, O, y~) = 0 and g(t, O, y~) = O. 



OLVSOLA AK~YELE:  On partial stability of di/]erential equations, etc. 359 

P ~ o o s .  - L e t  s > 0 and  set  V ( s ) =  b-l(a(~)), t hen  for t o ) 0 ,  ]l~ollo< v implies 

V(to, ~0, ~ o ) <  b(b-~(a(s))) = a(s) and  so tlx~(to; % v)l[ < s for all t>~to. Consider 
the  solution x = x(t; to, O, ~o), Y ~ y(t; to, 0, ~o) for to > 0 and  ~o. V(to, O, ~o) 

b(0) ~- 0 and  since V ) 0  and  D+V(t, % ~f) <0, V(t, x~, Yt)< V(to, 0, y~o)<b(0) = 0. 
Hence  V(t, x(t; to, O, Y~o), y(t; to, 0, ~ o ) ) ~  0 so t h a t  I]x(t; to, O, ~o)]I : 0 for  all t > 0 ,  

and  so ](t, 0, Yt) = 0 and  g(t, 0, Yt) = 0. 

I~E~A~K. -- A similar  t heo rem in the  spiri t  of Corollary 4.2 can be s t a t ed  in t e rms  

of L y a p u n o v  funct ional  to obta in  a un i form s tabi l i ty  resul t  of Theorem 4.3 wi th  
respect  to the  y-component .  

TEEO~E~ 4.4. -- (i) Suppose V(t, % ~p) is a L y a p u n o v  funct ional  wi th  the  proper-  
ties (i) and  (ii) of Theorem 3.1 and  

(ii) V(t, % yJ) does not  increase on any  solution x = x(t, to, % w), y = y(t, to, % ~0) 

as long as x~ ~Ce .  

(iii) V satisfies for  (t, F, ~p) ~ R + x Ce x C~, 

v(t ,  % v)<b(lI ilo + llV!lo) • 

Then  the  t r iv ia l  solution x = 0, y - ~  0 is un i fo rmly  s table  wi th  respect  to the  

x-component .  

P E 0 0 F . -  (ii) implies V(t, % y~)<~ V(to, q~o, ~Po) hence the  a rguments  of Theorem 4.1 

remain  valid.  

TKEOI~EI~ 4.5. -- I n  addi t ion to the  hypothes is  of Theorem 3.4 suppose V satisfies 

v(t,%v,)<b(tiq llo+ Ttv, llo), for 

Then  the t r iv ia l  solution x = 0, y = 0 is un i fo rmly  s table  wi th  respect  to bo th  the  
x -componen t  and  the  y -component ,  t h a t  is, s imul taneous ly  uni formly  stable.  

P~0OF. - B y  the  assumpt ion  on V, we can choose (~(e) = b-l(a(e)) in Theorem 3.4 

independent  of t o and  so if [l~olIo • I]Follo < 8(e) in the  proof  of Theorem 3.4 

V(to, vo,  o)<b(IEVol[o + llvollo) < = 

Since ~(e) is independent  of to, ~l(e) in Theorem 3.4 can also be  chosen independent  
of to and  the  un i fo rm s tabi l i ty  of b o t h  x ----- 0 and  y = 0 follows. 

The nex t  three  theorems will be  devo ted  to a va r i e t y  of results  concerning the  
const ruct ion of Lyapuno~ ~ fnnctionals.  
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T~_Eo~.~ 4.6. - Suppose the trivial solution x = 0, y = 0 of (1) is uniformly 
stable with respect to the x-component, then there exists a Lyapunov  functional 
V(t, 9, YJ) such tha t  

(i) tl911o< v( t ,  9,  v~), for (t, 9,  ~) e R+ x c~ x c~, 

(if) V(t, 9, ~2) does not  increase in (9, F) for 9 e CQ, and 

(iii) V(t, 9, ~)<b(tlgtlo + !l~Pl[o) for b ~ .  

P~ooF. - Le t  (t, 9, ~) e R + x Ce x C~ and define V(t, 9, ~) by setting 

V(t, 9, ~) = sup  {llxt+Jto; 9, w)ll} • 
a>~O 

Then clearly for a = O, [l~(to;9, ~) l l<V(t ,  9 , w) and (i) is satisfied. Uniform sta- 
bil i ty with respect to the x-component implies tha t  

tIxt(to; 9, ~)11 <s(l[pilo ÷ I[~][o) for t>to. 

Hence sett ing b(l[9Ho + H~llo) :  ~(l[9llo + [l~IIo) we have 

V(t, 9, ~)<b(Hg]lo + ]1~1[o) • 

Since 9 = at(to, 9o, Vo), ~ = yt(to, 9o, ~o) and by uniqueness of solutions x,(~, 9, ~) = 
-~ xt(v, 90, ~o) we have 

V(t, 9, ~') = sup  {ll~,+~,(to, 9,  ~')/I} = sup  {llzt+Jto,  90, Wo)ll}, 
a>~0 a/>0 

so tha t  for t, > t,>to, 

r ( t , ,  z~(to, 90, VJo)) = sup {llxt,+Jto; 90, ~'o)It} 
a~>o 

< s u p  {ltx,,+o(to; 9o, ~o)ll} 
a~O 

= v(t~, x,,(to; 90, ~0), y,°(to: 90, ~o)) • 

Hence V does not  increase and the proof is complete. 

Trmo~E~ 4.7. - Suppose the trivial solution x = 0, y = 0 of (1) is uniformly 
stable with respect to the y-component,  then  there exists a Lyapunov  functional 
W(t, 9, ~P) such tha t  

(i) II~Ho<W(t, 9 , y~), for (t, 9 , yJ) e / ~ + x C e x C r .  

(if) W(t, 9, ~) does not  increase in (9, F) for ~ e Cr, and 

(iii) W(t, 9, 7 J) <b~(t[9[to + [lv?[[o) foa b~ e ~ .  
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P~ooF.  - Le t  (t, 9, Y~) ~ R+ × Co × C~, set 

w(t, t, 9 ,  ~) = sup {llv,÷~(t0, 9,  vii} 
~>o 

and proceed as in the  last theorem. 

TtlEOI~E~ 4.8. -- Suppose the tr ivial  solution x = 0, y = 0 of (1) is uni formly  
st~bte with respect  to the x-component  and with respect  to the  y-component ,  then  
there  exist  two L y a p u n o v  function~ls V(t, 9, ~') and W(t, 9, ~P) such t h a t  

(i) ]]911o< V(t, 9, y~)<b (11~IIo + H~[]o) for (t, 9 , ~ ) e R + x C o x C ~ ,  b e ~ ,  

(ii) HVHo<W(t,%~p)<.<b~(]Jcplto + HF]]o) for ( t ,~,  y J ) e / ~ + x C e x C , ,  bx~3~, 

(iii) V(t, 9, YJ) does not  increase in (% y3) for  any 9 e Co, and W(t, 9, ~P) does 
not  increase in (% ~) for any  ~ e C~. 

P~ooF.  - Le t  (t, % ~o) E R + × Co × C~ and define two functionals V(t, 9, ~v) and 

W(t, 9, ~) as follows : 

and 

v(t, ~, ~) = sup {llx,+~(t0; 9,  ~)/I} 

w(t, 9, v) = sup {llv,+~(t0; 9,  ~)1t}. 
~>o 

I t  is easy to check t ha t  (i), (ii) and (iii) hold for V and W in view of Theorems 4.6 
and 4.7. 

TrlEOI~E~ 4.9. -- Assume tha t  3 two L y a p u n o v  funetionals V and W such t h a t  

(i) V is locally Lipschitzian in 9 and ~o and V(t, O, O)= O. 

(ii) a([[9][0) < V(t, 9, ~v)~<b([[~][ o + [l~O[[o) for a, b e ~  and ( t ,9  , ~0),_--R + × Co × C~, 

(iii) D+V(t, 9 , ~o)<0 for (t, 9, y?) eR+×Co×C~, 

(iv) W(t, 9,~p)<bl(][~Ho) , b l e ~  and W(t, 9, y) ) is bounded  in the region 

V(t, 9 , F ) >  0 existing for t>O and for 1Igtlo + ItvIto< v. 

(v) D+W(t, 9, ~) is a posit ive definite funct ion in the region V(t, 9, ~v)> O. 

Then the tr ivial  solution x ~ 0, y----0 is uni formly  stable with respect  to the 
x-component  and unstable  with respect  to the y-component .  

P~ooF. - (i), (ii) and (iii) imply the  uniform stabi l i ty  with respect  to  the  x-com- 
ponen t  by  Theorem 4.1, and the rest  of the proof is similar to Theorem 3.3. 
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TttEO]~E~ 4.10. - Assume th a t  

(i) V(t, 9, ~f) is a locally Lipschitzian funct ional  such t h a t  V(t, O, O)=  O, 

(ii) a(]lF ilo) < V(t, 9, ~#) ~< b (t]9 ilo + ]l ~ tl 0) for a, b • ~ and (t, % ~) • R + X CQ X C~, 

(iii) D + V(t, % ~o) < 0 for (t, 9, F) e R + X Ce x C~. 

(iv) The tr ivial  solution y = 0 of 

~)(t) - -  g(t, 0, y~) 

is uni formly asymptot ica l ly  stable, 

(v) g(t, 9, ~) is locally Lipschitzian in ~ and ~ for a constant  K > 0. 

Then  the tr ivial  solution x = O, y : 0 of (1) is uni formly stable with respect  to 

the  x-component  and y-component .  

PROOF. - Arguments  parallel  to Theorem 3.11.2 of [5] can be used to prove the 

Theorem. We omit  details. 

Tm~o~]~  4.11. - I f  hypothesis  (iv) and (v) of the last theorem hold and the  
tr ivial  solution of (1) is uni formly asymptot ica l ly  stable with respect  to the x-com- 
ponent ,  then  the tr ivial  solution x =-0 ,  y = 0 is uni formly asymptot ica l ly  stable. 

P~ooF. - In  view of Theorem 7.1.4 of [6], the proof is analogous to tha t  of The- 

orem 3.11.3 of [5]. 

t~E~A~K. - Theorems 4.10 and 4.11 are the corresponding par t ia l  s tabil i ty results 

obta ined for ordinary  differential equations in [5]. 
The following is another  version of Theorem 4.10. 

Tn-EORE~ 4.12. -- Assume tha t  (i) and (iii) of Theorem 4.10 hold, and tha t  

(a) There  exist  a, b E 5% such t h a t  for (t, ~s, ~) • R + x Ce × C~, 

a(llVi[o) < V(t, 9, V')<b(l[~lIo + ll~i[o) 

(b) The tr ivial  solution x : 0 of 

~(t) = / ( t ,  x,, o) 

is uni formly asymptot ica l ly  stable, 

(v) ](t, 9, ~) is locally Lipschitzian in ~ and ~ for a constant  M > 0. 

Then  the  t r ivial  solution x ~ 0~ y ----- 0 of (1) is uni formly  stabte wi th  respect  to  

the x-component  and y-component .  
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5. - Equi-asymptotle stability with respect to components.  

In  this section we characterize the concept  of equi-asymptot ic  s tabil i ty with 
respect  to the x-component  or the y-component  or bo th  in terms of the existence of 
L y a p u n o v  functionals.  

Tn-EORE~ 5.1. Le t  V(t, % ~) be a L y a p u n o v  funct ional  such tha t  

(i) a(ll~Ilo)<r(t ,% v') for a e ~  and (t,% v') e /~+xv~xc~ ,  

(ii) D + V(t, ~, y~) <~-- C(]I~ ]]o) for C e 3L and (t, % F) 6 R + x Ce x C~. 

Then  for 0 <  e <  ~, to~>0 there  exist ~(to) > 0 and T(to, e) > 0 such t h a t  for 
xt(to, % ~2), y~(to, % ~) with Ilqlio + li~Vlio< ~ there  exists t , e  (to, to A- T) such t h a t  

I[x,.(to, ~, ~)Ii < ~. 

P~ooF. - By  Theorem 3.1, for to>0,  3~(to)> 0 such t h a t  I1~0]1o + IIFII0< ~ im- 
plies tlxt(to, q, W)II < s for  t>to.  Now let  ),(to) = sup {V(to, ~., W): Ii~llo + I 1 (~} 
and set Y(to, e) ---- 2(to)/C(e). Then ~ t , e  (to, to ÷ T) such tha t  [Ixt,(to, % ~)[1 < ~. 
Suppose not,  then  s <  tlxt(to, q, ~P)II < e for t e (to, to -6 T) and so 

a(s) < V(to + T, % ~) < V(to, % ~t') -- C ( s )T<O,  

which is impossible. Hence  the required result.  

T~ORE~I 5.2. - Le t  V(t, % ~,) be a L y a p u n o v  funct ional  such t h a t  

(i) a(tl~llo ) < V(t, % y~) for a e 3L and (t, % y?) e R + x Ce x C~, 

(ii) D+V(t, % ~2)<<.-- c(il IIo) for C e 36 and 

(t, 9, ~) e R ~ x C~ x C~. 

Then  the tr ivial  solution x = 0, y ---- 0 of (1) is equi-asymptot ical ly  stable with respect  
to  the  y-component .  

PaooF.  - The  proof  is similar to t h a t  of the last  theorem. 

THEORE~ 5.3. -- Assume tha t  there  exist  two functionals  V(t, ~v, ~,) and W(t, % ~) 
such t ha t  

(i) V and W are continuous and locally Lipschitzian in ~, and F, 

V(t, O, O) = 0 and W(t, O, O) = 0 ,  
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(ii) 3a e 35 such t h a t  

a(l]~Ho)<Y(t,% 9) for (t, q J , ~ ) e R + × C e × ¢ ~ ;  

(iii) D+V(t, q~, ~ ) < - -  C(t[q~llo ) for C e35 and 

(iv) 

(t~% ~) eR+×CQxC~; 

3b e 35 such tha t  

w(t ,  % 9)<b(ll llo); (t, 9) e R+ x x 

(v) W(t~ ~, ~) is bounded in the region H where 

H = {(t, % ~o): t>~O, V(t, % y~) > 0 and II~ifo + II~lio < •}; 

(vi) D+W(t, % y~) is positive definite in the region H.  

Then the trivial solution x = O, y = 0 is equi-asymptotically stable with respect 
to the x-component and unstable with respect to the y-component.  

P~ooF. - Theorem 5.1 implies the equi-asymptotic stabil i ty with respect to the 
x-component and an argument  similar to t ha t  of Theorem 3.3 shows tha t  x = 0~ 
y = 0 is unstable with respect to tlie y-component.  

I~E~AlcK. - A similar theorem can be s ta ted for the instabil i ty with respect to 
the x-component and equi-asymptotie stabil i ty with respect to the y-component.  

Tn-EOXE~ 5.4. Le t  V(t~ ~, ~p) and W(t, % ~) be two functional  defined for 0 < t  < co 
such tha t  hypothesis (i), (ii) and (iv) of Theorem 3.4 hold. Assume tha t  the fol- 

lowing also hold 

(i) 3Ce35  such tha t  for (t,% ~ ) e / ~ + × C ~ × C ~ ,  

D+ V(t, qp, y~)<-- C(tlWllo ) 

and 

(ii) there exists C* e 35 such tha t  for (t, ~, ~) e R + × C~ × C~, 

D+ W(t, % YJ)<-- C*([[q~tlo ) • 

Then the trivial  solution x ~ O, y = 0 is equi-asymptotic stable with respect to the 
x-component and with respect to the y-component.  



0LtlSOL~ AKI~Y~L]~: On part ial  stability of di]lerential equations, etc. 365 

Pl~ooF. - By  Theorem 3.4 the solution x ~ O, y ---- 0 is stable with respect to the 
x-component and the y-component:  Hence given 0 < s < ~, S~(to, s) > 0 such tha t  
[I9]1o + lI~vll0< ~ implies lly~(to;% ~v)I [ < e. Le t  

X(to) = sup {V(to, 9, w): II~l!o + Ii~I[o < ~} and set To(to, ~) = ~(to)/C(~). 

Suppose s <  llyt(to; ?,  v/)ll < T for t e (to, to ~ T) ,  then as in Theorem 5.1, 

a(~) < V(to ÷ ~o, 9,  ~) < V(to, 9,  ~) --  ~(to) < 0 

which is impossible. Hence 

IIyt(to; 9, ~f)li < s for all t ~> to - / T o  • 

Now given s~>  0, 3¢$~ such tha t  119ilo + II~il0< ~ implies llx~(to; % ~v)} I < s~ for all 
t>to .  Define H(to) : sup {W(to, % V): 119]1o + II~v]lo< ~} and set T~(to, s) = H(to)/C*(s~). 
Choose T ---- max (T~, To}, and suppose s~< Ilxt(to; 9, ~)tl < e for t e (to, to ~ T) then 

a~(s~) < a~(llx,(to, % v')) < W(to + T, 9, ~) < W(to, 9, v ' ) -  e*(~)  T1 < o ,  

which is impossible. Hence Iixt.(to, 9, Y~)II < ~ for t* e (to, to ~ T) .  So given s > O, 
0 < s < ~:, ~ > O, O < s:t< ~, and choose (~ ~ min {(~, ~} 

Ilxt(to ;% y ~) I[ < ~x and Ilyt(to ;9 ,  ~')11 < s 

for all t> to  ~- T provided [l~[Io + [[~°][o< ~, and the proof is complete. 

6. - Generalized exponential stability with respect to components.  

In  this section we give necessary a.nd sufficient conditions for the concept of 
stabil i ty of the generalized exponential  type  with respect to both components in 
terms of IJyapunov functionMs. We then  find conditions for this type  of stabil i ty 
proper ty  to be preserved under  certuin perturbations.  

TI-IE01CEg 6.1. - Le t  ](t, 9,  Y)) be linear in 9, ~ and p(t) be a continuously diffe- 
rentiable function on R +. Then the solution x = 0, y = 0 of the system (1) is 
generalized asymptot ical ly exponential ly stable with respect to the w-component 
if and only if there exists a continuous Lyapunov  functional  V(t ,  9, Y~) such tha t  
for (t, 9,  '?) e R + × CQ × C,, 

(i) 119110< V(t, 9, ~)<K(t)([IP[Io + I[~l[o), 

(ii) Iv(t,91, ~1) -  V(t,%, ~)[<K(t)([[9,--  9~t[o + t i ~ -  %rio) and 

(iii) D + V(t ,  9,  %v') < - -  p'( t)  V(t ,  9,  ~). 

2 4  - A n n a l i  d i  M a t e m a t i c a  
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P~oo~ - The sufficiency can be proved b y  integrating (iii) which yields 

]Ixt(to; q~, ~f)I] < V(t, q~, 9) < V(to, qo, 90) exp [p(to) -- p(t)] 

<~K(t)(Hcfol]o -~- tIFoHo) exp [p(to) - p(t)] .  

To prove  the necessity, define a Lyapunov  functional  as follows: for (t, ~, y~)E 
R + x Cq × C~, 

V(t ,  ~,  ~ )  -~ s u p  {llxt+z(to; % v2)!l e x p  [p(t  -~  ( ~ ) - - p ( t ) ]  . 
a>~o 

At a = 0  

IIx,(to, ~, 9)I[ < v(t, ~o, ~) 

and b y  assumption and the definition of V(t, of, 9) 

V(t,  9v, y~)<K(t)(llW]lo + [19Ilo) • 

~ o w  let (% 9);  (qo, 90)e  C~ x C~, then using the linearity of ] in (~o, 9), we obtain 

IV(t, q~, yJ) -  V(t, (po, Y~)[ = [sup (llxt+.(to; ~, Y~)[t exp [p(t -~ a ) -  p(t)]} 
a~>O 

-- sup {[lxt+dto; ?o, ~folll exp [p(t ~- a) - p ( t ) ] }  l 
a~>o 

~ s u p  {llXt+a(to; (f, ~ ) -  Xt+~(to; Cfo, Y)o)I1 e x p  [p(t --~ (¢)--p(t)]} 
o>1o 

== sup {llxt+o(to; q~-  fo, ~' -- ~folll exp [p(t + a ) -  p(t)]} 
a>~0 

< K ( t ) ( t l ~ - ~ o 1 1 0  + II9 - ~ollo) • 

Moreover, by  uniqueness of solutions, we have 

Xt+h+a(t o -~ h, Xt+h(to; % ~f), yt+~(to, % ~)) ~ Xt+h+~(to; % 9) 

~nd so 

v(t  + h, x~÷~(t, % ~), y~÷~(t; % ~1) = 

= s u p  {[Ix~+~+~(t + h; x~÷~(t; % 9), y~+,~(t; % ~)Ii c x p  [p(t + h + ~1 --p(t  + h)]} 
a~>0 

= sup {I]xt+h+~(t; % 9)tl exp [p(t ~- h + a ) - -p ( t  -+- h)]} 
a~>0 

= sup {Ijxt+o(t; q), 9)I] exp [p(t + a)--p(t)}  . 

Therefore, 

V(t ÷ h, xt~÷h(to; ~o, 9) ,  y÷~(to;  % 9))  - g ( t ,  f ,  ~o) 

= sup  {llx~÷~(to; ~, ~1 It e x p  [p(t + ~)-p( t ) ] }  
a~h 

- - s u p  {tIxt+~(to; ~v, ~v)ll exp [p(t + a ) -  p(t)]} , 
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and  

1 [ v ( t  + h, x,+,(to; 9, ~), V,+,(to; 9, V ) ) -  V(t, 9, W)] lira sup 
h-~0 + 

< l i m  sup _1 [sup {IIxt+o(to; 9, ~)it exp [p(t + a) - p(t)] {exp [p(t) - p ( t  + h)] --  1}] 
h-~0 + h a ~ O  

= ~(t, 9, ~1 li~+snp h {exp [p(t) -- p(t + hi] -- 1 ) .  
h-v0 

Thus 

D + V(t, 9, ~) < - -  p'(t) V(t, 9, ~f). 

We now show tha t  V(t, 9, ~) is continuous. 

tV(t + h, 9, V') -- V(t, 90, V'o)l < JV(t + h, 9, Y ' ) -  V(t + h, 90, ~'o)1 

+ IV(t + h, 9o, ~,o)-- V(t -]- h, x,+t,(to; 90, ~,o), y,+~(to; 90, ~o)] 

+ 

< K ( t  + h ) ( I [9 -  90110 + 

+ 

+ 

1v(t + h, ~,+,(to; 9o, V'o), y,+,(to; ~o, ~o)) --  V(t, 90, ~o))t. 

l]~-- ~o[1o) + 

]V(t + h, 90, "q'o) -- V(t + h, x,+~(to ; 90, V'o), y,+~(to; 90, %)I 

Iv(t  + h, x,+~(to; 90, V,o), y~+~(to; 90, ~ o ) ) -  v(t ,  90, v,o)l • 

The first and second terms on the t~.tt.S, of the  lust inequal i ty  are small for h b y  
the  definitions of xt and Yt and as h --~ 0 the last  t e rm tends to zero, so tha t  V(t, 9, ~) 
is continuous. 

I~ElVIAI~K. - Theorem 6.1 is a generalization of Theorem 1 of [3]. 
The nex t  theorem gives an analogue of the  last  theorem in te rms of stabil i ty 

with respect  to the  y-component .  

Tt~EOI~E~ 6.2. - Le t  g(t, 9, ~) be linear in (9, ~o) and p(t) be a cont inuously dif- 
ferentiable funct ion on R +. Then  the solution x-----0, y = 0 of the system (1) is 
generalized exponent ia l ly  asymptot icMly stable with respect  to the y-component  if 
and only if there  exists a continuous L y a p u n o v  funct ional  W(t, 9, ~) such tha t  for 
(t, 9, ~) ~ ie+ x CQ x ¢~ 

(i) I[Fllo < W(t, 9, ~#)< M(t)(ll911o + II~'llo) ; 

(ii) Iv( t ,  ~ ,  ~ )  - w( t ,  ~ ,  ~..)l < M(t) (IT ~ - 9~ llo + Ff ~ -  ~ tIo) 

and 

(iii) D+ W(t, 9, ~') 4 - -  p' (t) W(t, 9, yJ). 
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Pi~oo~ ~. - The sufficiently follows from a similar arguments as in Theorem 6.1. 
For  the necessity, define 

W(t, q~, ~) = sup {t[yt+~(to; (p, ~')It exp [p(t d- s¢)- p(t)]} 
a~>O 

for (t, 9, y~) e i2 + × Cq × C, and proceed as in Theorem 6.1. 

T~mo~E)~ 6.3. - Assume tha t  ], g and p satisfy the conditions of Theorems 6.1 
and 6.2. Then the solution x = 0, y -= 0 of the system (1) is generalized exponential  
asymptot ical ly  stable with respect to the x-component and with respect to the 
y-component simultuneously if and only if there exist two continuous Lyapunov  
functionals V(t, ~, ~p) and W(t, % ~0), satisfying the following properties. 

(i) flq~tto< V(t, 9, ~o)< K(t)(Ii~Ito + tl~llo); 

(if) ii Y~ Ito < W(t, 9, y) < M(t) (]1 ~o tto + II Y' II o) ; 

(iii) iV (t, ~o, ~o) -- V (t, ~oo, ~oo)[ < K(t)(l[q~-- qOo[Io + Ilia-- %llo) ; 

(i~) Iw(t, % v ) -  w(t, ~o, ~o ) l<mt) ( I I~ -  ~olto + l tv -  ~oiIo); 

(v) D+V(t, 95 y)<--p ' ( t )V(t ,  ~, ~o); 

(vi) D+W(t, ~, ~y)<--p'(t)W(t, cp, ~); 

where (t, ~, ~0) e/¢+ × C~ × C~. 

Pt~ooF. - The same type  of arguments  in Theorem 3.4 modified along the lines 
of Theorem 6.1 proves the sufficiency. To prove the necessity we define V and W 

as follows: for (t, % ~) ~ R+ × CQ × C~, 

and 

v(t, ~, ~) = sup {l[x~+o(t0; ~, ~,)ll exp [p(t + ~) -p( t ) ] }  
a~>0 

w(t, ~, ~) = sup {lly,÷~(t0; ~, ~)[[ exp [p(t + ~) -p( t ) ] }  

Proceeding with  the rest of the proof wi th  arguments  parallel to t ha t  of Theorem 6.1 

we have the result. 

I~E~AI~K. -- I f  in place of the l ineari ty of ] and g in (% ~o) we assume only ]Apstichiz 
cont inui ty  the results of Theorems 6.1, 6.2 and 6.3 still remain valid. The following 
theorem is one of such results. 

T ~ o t c E ~  6.4. - Assume tha t  p(t) is continuously differentiable for t e/~+ and 
](t~ % y) and g(t, ~, y) satisfy Lipschitz condition in 9 and F respectively with con- 
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s tun t  L > O. I~et K(t) be  b o u n d e d  and  for  some q wi th  0 < q < 1, l e t  t he r e  exis t  
T > 0 such t h a t  

K(t) exp  [--  q(p(t + T) -- p(t))]  < 1 for  t e R + . 

T h e n  the  so lu t ion  x ---- 0, y ---- O of the  s y s t e m  (1) is genera l ized  exponen t i a l l y  a symp-  
to t i ca l ly  s table  wi th  respec t  to  t he  x - c o m p o n e n t  if and  on ly  if t he r e  exists  a con- 
t i nuous  L y a p u n o v  func t i ona l  r ( t ,  % yJ) sa t i s fy ing:  fo r  (t, q), ~) e R + x CQ x C~: 

(i) Ii~ 1to <~ V(t, q~, y~) <~ K(t)(tJqJ H o + il YJ IIo) 

(ii) IV(t, of, ~ ) -  V(t, cfo, ,po)l<exp [LT] sup {exp [(1 - -q) (p(t  + (D] --p(t))}  • 
O~a<~T 

( l lq~-  ~o t l . +  !Iv - ~o!to) 
and  

(iii) D + V(t, ~, ~f) ~<-- (1 - -  q)p'(t) V(t, ~, ~). 

P~oo~ .  - T h e  suff iciency follows easily.  L e t  q, T be as g iven  and  define for  

(t, % ~) e R + X C~ x C~. 

Tz(t, v, v) = sup {llx~÷o(t, v, v)ll exp [(1 - q ) ( p ( t  + ~ ) -  p(t))]} 
a>~o 

K(t) is bounded ,  hence  3 M  ~ sup K(t) < c~: Se t  Qo = Q/M, t h e n  V ~ C(R + × CQo X 
~eR + 

X Ce°, R+), and  (i) and  (iii) t hus  fol low using the  a rgumen t s  para l le l  to  t h a t  of The-  
o r em 6.1. We  now es tabl ish  (ii). ~ o t e  t h a t  

tlxt+~(t; ? ,  ~)Jl exp [ (1 - -  q){p(t + a)--p( t )}]  

<~K(t)(llcfllo + ttvllo) exp  [ -  q(p(t-~ (~)-  p ( t ) ) ] ,  

so t h a t  t he  a s sumpt ion  implies,  

V(t, ~, ~v) ---- sup {llxt+~(to; % F) il exp  [(1 - -  q)(p(t -~ a) --  p( t ) ) ]}  . 
O~a<~T 

t t e n c e  for  (qo, ~o) E Coo× Co O and  t ~ R +, 

Iv(t, q, ~) - v(t ,  ~, w)l 

< sup {ll@+~(t; ~, yJ) - -  xt+~(t; q~o, ~o)ll exp  [(1 - -  q)(p(t + a) - - p ( t ) ) ] } .  
O ~ a ~ < T  

Define  

re(t) = ttx~(t; % ~ ) -  x~(t; ~o, ~o) II + Ily,(t; % ~ ) -  y,(t; ~o, %)II 
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t hen  

_Din(t) = l im inf m(t -}- h) --  re(t) 
- -  ~ ' - > 0 -  

<~ llx~(t, q~, ~ ) -  x;(t; qgo, ~o)[t + IlY;(t; cy, ~) - -y ' t ( t ;  (Po, ~o)It 

< lix~(t; ~, , p ) - l ( t ,  % ,p) -x~( t ;  ~0, ~o) + l(t, ~o, ~o) + l(t, ~, ~) - ] ( t ,  ~o, ~o)I] 

-~ lly~(t; qo, y~) -- g(t, ~v, y~) -- yi(t; q~o, Y'o) + g(t, q~o, ~o) + g(t, q~, y~) -- g(t, q~o, Y~o)]I 

< Ill(t, ~, ~) - l(t, qOo, wo)ll ÷ llg(t, ~ ,  v') - g(t, q~o, v'o)ll 

< z I l ~ -  ~oIIo + z l l ~  - ~°llo = z [ l l ~ -  ~o110 + 1I~ - ,~ollo] = z lm, lo  • 

Hence  Lemma  6.1.1 of [6] implies 

[[x,(t; q~, y J ) -  ,~,(t; q~o, yJo)11 < ilx,(t; % y~)- x,(t; qJo, V'o)t[ + liY~(t; % Y~)- y,(t; 9~o, %)tl 

<~ exp [L( t - -  t°)]( ~ - -  q~otI° -]- ttF-- Folio) . 

Thus,  

iv(t ,  ~ ,  ,p) - v ( t ,  ~o,  V,o)l 

< s u p  [llxt+,(t; ~, yJ) -- xt+o(t; ~0, %)11 exp [(1 -- q){p(t  d- a) --p(t)}]  
O~a~Y 

< e x p  [ Z T ]  sup  e x p  [ (1  - -  q)(p(t + ~) - -  p ( t ) ) ] ( t l ~  - -  ~otlo + !1~ - -  ~olio) • 
O ~ a ~ T  

We now consider the pe r tu rbed  system, 

2(t) = ](t, xt ,  yt) -t- G(t, xt, yt) 
(4) 

~t(t) = g(t, x , ,  yt) -}- H(t ,  x~, yt) 

where G(t, % ~) and H(t,  of, ~) are continuous mappings f rom/~+ X C([-- h, O], R ~) X 
× C([-- h, 0], R ~) into R '~ and R ~ respectively.  We assume t h a t  G and H satisfy 

locally a Lipsehitz condit ion wi th  respect  to ~ and F and such tha t  

liG(t, % ~)I[ ÷ ll//( t, % ~)11 <o~(t,  II~lI0) 

where o)(t, u) is a continuous scalar funct ion for t > 0 ,  u>O,  satisfying a locally Lip- 
schitz condit ion and nondecreasing in u, with o~(t, 0) = 0. We have the  following 

generalizat ion of Theorem 2 of [3]. 

TKEOI~E1K 6.5. -- Assume tha t  the solution x =- 0, y = 0 of the system (1) is gener- 
alized exponent ia l  asymptot ica l ly  stable with respect  to the x-component  or with 
respect  to the  y-component .  Le t  ] and g be linear in % ~ respectively.  Then  the  
tr ivial  solution x = 0, y -~ 0 of (4) has the  same stabil i ty p rope r ty  with respect  to  
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the x-component or with respect to the y-component  as the solution u = O of the 
differential equation. 

(5) i~ : - -  p ' ( t )u  ÷ Ko~(t, u) , u(to) : % .  

PROOF. -- Le t  xt(to;Fo, Wo) and yt(to;~o, Vo) be any  solution of (4) such 
tha t  II~olio ÷ [lyJoiIo< e/K(to) • Setting ~ = x~(to; %, ~o) we have x~+~(to; ~o, Vo) ~- 

xt+~(t; % ~), 8 > 0  by  uniqueness. Suppose zt+~(t; % F), w,+~(t; % ~), ~ > 0  is any  
solution of (1) through (t, ~, F), and let [fx,(to; ~o, ~0)ll < e, ttY,(to; %,  ~oll < e for 
t>to ,  then  i t  is easy to show tha t  

D+ V(t,  qp, ~)) < - -  p'(t) V(t ,  q), ~) ÷ K~o(t, V(t,  % ~)) . 

Setting re(t) : V(t,  % ~), then  V(to, q~o, %)<uo  implies by Theorem 1.4.1 of [5] t ha t  

V(t,  xt(to; ~o, Fo), yt(to; Y~o, YJo) <r(t ,  to, Uo) for t > t o ,  

where r(t, to~ uo) is the maximal  solution of (5) existing for t>to.  
I f  we choose K(to)(tt%tlo ÷ IiFI!0) -~ uo, then  % <  ~ and by  the assumption on 

the solutions of (1), 

Ilxt(to; Fo, %)1t < V(t; xt(to, q~o, Vo), yt(to; Fo, %)) <r(t ,  to, uo) . 

The result  then  follows by the choices of uo, for the stabil i ty with respect to the 
x-components. The same arguments  establish stabil i ty with respect to the 
y-components.  

COrOnArY 6.6. - The solution x : O, y = O of (4) is asymptot ical ly  stable with 
respect to the x-component or the y-component if w(t, u) ~ 2(t)u where 

t 

p(to)-  p(t) ÷ fK(s))o(s)ds - + -  
to 

P~ooF. - The general solution of (5) is 

~S t - >  c<). 

t 

% ) :  
to 

The result  then  follows from the last  theorem. 

t>  to . 

R ~ : .  - I f  p(t) = ~t~ ~ > O and K(t)  = K > 0 in Corollary 6.6, then the last  
Corollary reduces to a resutt of [3]. 
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T~EO~E~ 6.7. -- Assume t h a t  the  solution x ~ 0, y ~ 0 of the  sys tem (1) is 
generalized exponent ia l  a sympto t i ca l ly  s table  wi th  respect  to  the  x -componen t  and  
wi th  respect  to the  y -componen t  s imultaneously.  L e t  ] and  g be  l inear in ~ and  
respect ively.  Then  the  zero solution of (4) has  the  same s tabi l i ty  p r o p e r t y  wi th  
respect  to the  x -componen t  and  wi th  respect  to the  y -componen t  as the  solution 

u ~ - 0  of the  differential  equat ion (5). 

P~ooF.  - Using a rguments  paral lel  to Theorem 6.6 (modified along Theorem 3.4) 
toge ther  wi th  Theorem 6.3 establ ish the  result .  W e  omit  details. 

We  now s ta te  analogous resul t  to  Theorem 6.6 and  6.7 for the  case in which ]~ g 

sat isfy the  Lipschi tz  condit ion with  respect  to (~, F). 

T~EO~E~ 6.8. - Assmne t h a t  the  hypothes is  of Theorem 6.4 are satisfied. As- 
sume tha t  the solution x ~ 0, y ~ 0 of the  sys tem (1) is generalized exponent ia l  
a sympto t i ca l ly  s table  with respect  to the x -component  or wi th  respect  to the  

y -componen t  as the  solution u ----- 0 of (5). 

PRoo~ '. - Using a rguments  para, llel to t h a t  of Theorem 6.5 wi th  obvious modi-  

fications, the  resul t  follows. 

Tm~o~E~ 6.9. - Assume tha t  the  hypothesis  of Theorem 6.4 are satisfied. As- 

sume tha t  the  solution x ~ 0, y ~ - 0  of the  sys tem (1) is general ized exponent ia l  
a sympto t i ca l ly  s table  wi th  respect  to the  x -componen t  ~nd with  respect  to the  
y -componen t  s imultaneously.  Then  the  zero solution of (4) has  the  same s tabi l i ty  
p r o p e r t y  wi th  respect  to the  x -componen t  and  wi th  respect  to the  y -componen t  as 
the  solution u - ~  0 of the  differentia.1 equat ion  (5). 
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