On Partial Stability of Differential Equations
with Time Delay ().
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Summary. — We investigate stability, uniform stability and equi-asymptotic stability with respect
to the x-components and y-components of a differential equation with time delay. We also
oblain mnecessary and sufficient conditions for thé generalized asymplotic stability of the
exponential type with respect to the components which generalices the work of Corduneanu [3].
We make use of Lyapunov functionals and differential inequalities in our study.

1. — Introduction.

Lyapunov’s theorems give sufficient conditions for the stability, asymptotic sta-
bility and instability of systems of ordinary differential equations. In recent years
considerable attention has been paid to the generalization of these stability concepts
in several directions. In particular, the concept of partial stability or stability with
respect to a part of the variables has been studied by several authors for ordinary
differential equations. In these investigations, Lyapunov’s second method together
with the theory of differential inequalities, have been widely used. Wotable among
these investigations are those of CORDUNEANU [1, 2], LADDE and LEELA [4], LARKSHMI-
KANTHAM and LEELA[5] and RUMIANTSEV [8]. Recently, CORDUNEANU [3] investi-
gated some problems of partial stability related to linear differential equations with
delay:

(%) £(t) = A, »,) -+ B(t, y4)
y(t) = O(t7 ”t) + D(ty yt)

where € R, y € R™, i€ R* = [0, oo) and the subseript ¢ indicates the restriction
of the corresponding function to the interval [t — h,t], with h > 0 fixed: 2,(0) =
= x(t + 0), — h<0<0. In his investigation of partial stability of the exponential
type, only the z-components of the unknown solution of (s) was under consideration
with respect to their behaviour. However, partial stability is useful from the praec-
tical point of view since in certain situations, one may be interested only in the
behaviour of some part of the variables. It would therefore be interesting to search
simultaneously for information on both the x-components and the y-components of

(*) Entrata in Redazione il 7 luglio 1978.
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the solution, as observed in [3]. As far as the author is aware this consideration is
yet to be investigated, for delay equations.

In this paper, we shall consider s more general system of equations with delay
and would be interested in searching for informations on both the 2-components and
the y-components of the solutions of our differential equations. We investigate
stability, uniform stability, equi-asymptotic stability with respect to the z-compo-
nents and the y-components. We also obtain necessary and sufficient conditions for
the generalized asyroptotic stability of the exponential type with respect to the com-
ponents, which generalizes the work of CORDUNEANU [3]. We approach the problem
by making use of two Liyapunov functionals and the theory of differential inequalities.

2. — Preliminaries.

Let R» denote the m-dimensional Euclidean space with convenient norm |-
Denote by R+, the non-negative real numbers. For &> 0, let I» = C([— h, 0], B")
denote the space of continuous functions with domain [— &, 0] and range in R~ For
@ €1, we define ||, = sup [¢(s)|. Suppose that z € O([— h, 0], B*) and for ¢ € E*,

~h<s<0
», denotes a translation of the restriction of # to the interval [t — h, t], then z, is

an element of I» defined by x.(s) = @(t + s), — h<s<0. Consider the functional
differential system

#(t) = (b, @4, Y4)

(1) .
(@) = g(t, &4, ¥:)

where te R+, z€ R*, y € R™ and f, g are continuous functions from RB* X C([— &, 0], B") X
x C¢([— h, 0], B™) into R~ and B~ respectively. Also f(¢, 0, 0) = 0 and g(¢, 0,0) = 0
for te R*. Let (&, ¢, v) belong to Rt xi»xI", we denote by @ = ®(t; %, ¢, y) and
y = y(t; %, @, p) the solution of (1) such that », = ¢ and y,= y. For any i>%
we denote by @.(ty, ¢, ¥) and y.(t,, @, ¥) the corresponding elements of C([— h, 0], R")
and C([— h, 0], R~) respectively such that =, (t, @, ¥)=¢ and ¥. (b, e ¥) = p.
If we assume that f and g are locally Lipschitzian in (¢, ), then solutions of (1) are
uniquely determined to the right by their initial values. Moreover each solution
can be continued to the right for as long as the solution remains in a compact sub-
set of the domain. For any V e O(R*x O([— h, 0], B*) X O((— 1y 0], B"), R") define,

(2) DV, woltos @o)s Yeltos ¥o)) =

. 1
= ;Im sup -5 [Vt + 6 @iralto, o)y Yrrsllos o)) — V{ty #eltes @)y Yelto) o)) -
e

We also define,

. 1
{3) DV, @, ) :61“37: sup 3 [V(t + 6, @eyslt, @) Yesslly 1/’)) — V&, "P)]
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where x,(t, @), ¥:(t, ) is any solution of (1) with initial function ¢, p at ¢. We assume
the uniqueness of solutions of (1), so that (2) and (3) coincide since,

o =a 00 Y="Yos ) and 1z, (@) =, ¢),

Yirollos Wo) = ¥4 s(t, ¥). Denote by J the class of functions o € C([0, g), R*) such
that o(0) = 0 and o{f) is strictly monotone increasing in %

DerFINITION 2.1. — (@) The solution 2 = 0, y == 0 of the system (1) is said to be
stable relative to the w-component or partially stable if for any &> 0, {,>0, there
exists 8(¢, 4,) > 0 such that for every i>1,, and ol + lvj.< 4,

lztos @y 9) | < .

(b} The solution # = 0, y = 0 is uniformly stable relative to the z-component,
if we can choose d(g) independent of (¢,) in (a).

(¢) The trivial solution of (1) is said to be equi-asymptotically stable relative
to the z-component or partially equi-asymptotically stable if there exists d(f,, &) > 0
and T'(t,, ¢} > 0 such that (a) holds and for t>¢, - T

lodto; @y p) <& provided o[, + |ylo< 0.

(d) The trivial solution = =0, y = 0 of (1) is partially asymptotically uni-
formly stable if T and 6 in (e) are independent of ¢,.

(¢) The trivial solution # =0, y = 0 of (1) is asymptotically exponentially
stable relative to the z-component or partially agymptotically exponentially stable
if there exist M > 0 and o > 0 both real numbers such that

lzdtos s W< M(|@lo + |wlo) exp[— alt—t)] for t>4,.

(f) The trivial solution of (1) is generalized exponentially stable relative to
the z-component or generalized partially asymptotically exponentially stable if
there exist a continuous funetion K(¢) > 0, for ¢ € Rt and another function p e X
for t € B+ with p(f) — oo as ¢ — oo such that

lw.te; @, I <K@ (l@llo + lw]o) exp[p(te) — p(t)]

for ¢>1,. In particular, if K(f) = K > 0 and p(f) = af, o> 0, then definition (f)
reduces to (¢).
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{g) The solution # == 0, y = 0 of the system (1) is said to be stable relative to
the y-component or s-partially stable if for any &> 0, 7,0 there exists d(%, ) > 0
such that for every =1,

lyelto; @, 9)| < e

provided [olo 4 [9fo<d.
Definitions similar to (g) can be given for (a), (b), (¢}, (d), and (e) in terms
of the y-components.

(h) The trivial solution # = 0, y = 0 of (1) is said to be strictly partially stable
or stable with respeet to the z-component and unstable with respect to the y-com-
ponent (or vice-versa) if given & > 0, f, € R*, there exists 4(%, &) > 0 such that pro-
vided [g[o+ [plo<< 0

lodtes s 9| <& and  fy.llo; 9, p)>e for £>1,.

Definitions of strict partial stability corresponding to (), (¢), (d), (¢}, (f) and (g)
can be given gimilarly.

(i) The trivial solution of # = 0, y = 0 of (1) is said to be stable with respect
to both the wz-component and the y-component simultaneously or simultaneously
stable, if given &> 0, & > 0, t, € R*, there exists d(%, ¢, &) > 0 such that provided
lelo+ lvlo<< 4

@05 @5 9) ﬂ <e and Hyt(ioi P P) H < & for t>1,.

Similar definitions can be given for other types of stability.

DEFINITION 2.2. — A functional V(i, ¢, y) is said to be positive definite with
respect to g, if there exists a positive definite function o(p) not depending explicitly
on ¢t such that ¢(p)< V(i ¢, y) for all {>0.

DEFINITION 2.3. A functional V (¢, ¢, ) admits an infinitesimal upper bound in ¢
if there exists a function b € X such that V(i, ¢, ) <b(|@[e). It admits a strict in-
finitesimal upper bound in (g, ¥) if V¢, ¢, p)<b(|@]o, |¥]o) for ¢>0.

LEMMA 2.4. — A functional V(t, ¢, v) is positive definite with respect to ¢ if and
only if there exists ¢ €J0 such that

C&(“(p“o) <V, 9, y) fort=0.

3. — Stability relative to components.

We now present several theorems which give sufficient conditions for the sta-
bility of system (1) with respect to the @-component and the y-component in terms
of the existence of Lyapunov functionals.
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THEOREM 3.1. — Suppose there exists a functional V(i ¢, v) with the following
properties:

(i) V is continuous and satisfies Lipschitz condition in ¢ and » and
V{,0,0) = 0;

(ii) there exists « € & such that

o(lopl) <Vt @, w)  for (t,p, p) e Bt X o xIm

where C, = {pel": [p],< 0};
(iii) for (¢, ¢, w) € BT X Cp X 1m,
DVt o, p)<0.

Then the solution # = 0, y = 0 of the system (1) is stable with respect to the »-com-
ponent or partially stable.

Proor. — For &> 0, t,>0, 36(y, &) > 0 such that [golo + [we]o< ¢ implies
Vo, @0, o) < ale). Let x(t), y(?) be a solution of (1) with [@o], 4 [v0l, < 4, then
by (ili} V-is non-increaging with respect to ¢ and so

Vit @y ) <Vlo, oy o) Tor 17,
Thus, for 134, |plo + [lo< & implies,

“(Hmt(tlﬁ s ) N) == a’(”‘PHO) <Vt @, )< V(ty, o, o) < ale) .

It follows that [@.(t; @, v)| < & for I>14,.

THEOREM 3.2. - Suppose that there exists a functional W(t, ¢, w) with the fol-
lowing properties:

(i) W is continuous and satisfies the Lipschitz condition in ¢ and ¢ and
W(t,0,0) = 0;

(ii) there exists a € 3 such that
a’(”@””o)<v(t’ @, p)  for (¢, ¢, ) e BT xI"xC,

where O, = {yel™: [yl,< t};
(iil) for (, ¢, y) € Rt xI*x C},

Drw(t, ¢, v)<0.
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Then the solution # = 0, ¥ = 0 of the system (1) is stable with respect to the y-com-
ponent or s-partially stable.

DEFINITION 3.2. — Let V(i, ¢, v) and W(¢, ¢, v) be two Lyapunov functionals.
W(t, ¢, p) is said to be positive definite in the region V(¢, ¢, v) > 0 if given £ > 0,
38(e) > 0 such that for every point (f, ¢, v) € Bt X 0o X C; satisfying V(i, ¢, v)>¢
the inequality W(t, ¢, p)> 0 is satisfied.

THEOREM 3.3. — Suppose there exists two Lyapunov functionals V({, ¢, v) and
W(t, ¢, ) with the following properties.

(i) V and W are continuous and locally Lipschitzian in ¢, v and V(t, 0, 0) =
= W(t, 0, 0) = 0;

(ii) there exists a4 € Jb such that
“(“‘P”O) <V(t,p,y) for (¢ ¢, )€ R X CpXIm,

(i) there exists b € JC such that for (1, ¢, v) € R* x Cp X1, W(t, ¢, ) <b([%]),
and W(, ¢, ) is bounded in the region V(i, ¢, v) > 0 existing for >0

and for e[, = [yfo< 73
(iv) D*W(i, ¢, ) is a positive-definite funetion in the region V({i, ¢, ») > 0.

Then the solution # = 0, y = 0 is stable with respect to the z — component
and unstable with respect to the y-component or strictly partially stable.

Proor. — Hypothesis (i), (ii), and (iii) imply that given &> 0, 3d(s, {,) > 0 such
that |@.(t, @, v)]| < & provided| @], + |v[,< 6. Nowlet 0 < &< 7 and ¢, € B+, then
for (t, @, p) € R+ X 0o x Oy,

[

W(t, @, ) = W(ty, @0, Wo) + | Dt W(s, @, p)ds

to

where @, (toy oy Yo) = o5 Y1 (lo; Pos ¥o) = . BY (iv), 3d,(e) > 0 such that V(, ¢, v) >¢
implies D+ W(t, p, y)> 4.
Hence

W, @, )= Wty o, Wo) + ()t — 1) .

Suppose =0, y = 0 is stable with respect to ¢, then Id,(e, %) > 0 such that
lydto; @, w)| < & for t>t, provided [gelo+ [¥]o< . Now set = min {4, 6,}, then
by (iif) W(t, @o, o) <M and

Wty 0o, 90) + Sile)(t— L)< W, ¢, "f’)<b(&?f¢(tn§ ) H) < ble) .

As I — oo we arrive at a contradiction.
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The following theorem gives sufficient conditions for the stability of (1) with
respect to the two components simultaneously.

THEOREM 3.4. — Let V (i, ¢, ) be a Lyapunov functional defined for 0 <t < oo,
lpllo< ¢ and |%],<< oo, such that the following conditions hold
(1) V({t, ¢, p) is locally Lipschitzian in (¢, ), V(%,0,0) = 0;

(i) a(lplo) <Vt @, ) for (t, ¢, y) € Bt X o xIm, where a(r) is a continuous
monotone inereasing funection on Rt into R+ and a(0) = 0;

(i) DHV(t, @, w)<0 for (i, @, w) € R X Cg xIm.
Suppose, for each 0 < e << p, W, ¢, ) is another Lyapunov functional defined
for [yle<ég lolle< ¢ and 0<t < co and satisfying the following properties:

(1v) w([ele) < W(t, @, ) <bi(|@ls), Where a,(r), b(r) are continuous monotone
increasing funetions on B+ such that a,(0) = 0 and 5,(0) = 0;

(v) Dt*W(t, @, p)<0 for (i, @, p) € Bt X U X Co.

Then the frivial solution # = 0, y = 0 of (1) is stable with respect to the 2-com-
ponent and with respect to the y-component or simultaneously stable.

PrOOF. —~ Given 0 < g < p, there exists d(t,, &) > 0 for {, € B*, such that [p|, -+
+ llyllo<< & implies V(i ¢, )< ale). Hence if [@o]o 4 |pof, < 8, then [u,], < 6
and moreover by (ii) and (iii)

t
“(ﬂ?ﬁﬂo) <V, ¢, v)<V(t, @o, ¥o) +fD+V(37 @, p)ds < afe) .
to

Hence [ly,(ty; ¢, )| <& for t>1%, provided [¢[,< d. Let & >0 be such that
0 < & < g < g and choose d, small enough so that b,(6,) < a.(e,). Set §, = min {,, 6},

then we eclaim that |¢|, + [¢],<< 6, implies [@,(to; @, v)| < & for all ¢>14,. Sup-
pose not, then there exist ¢;, ¢, such that ¢, <1, <t and

legto; oy )] = 6oy [, p)| =& and  du<|wile; 9, 9)| <& fortelty,b,].
Hence by (iv) and (v),

ai(e)) < Wity @y ) < W (b, @y ) <bi([4(f05 @y 9)]) <u(6) < y(e1)
which is a contradiction. Therefore |@,(4,; ¢, )| < & for t>1,.

THEOREM 3.5. ~ Suppose V (¢, ¢, v) is a Lyapunov functional with the properties (i)
and (ii) of Theorem 3.1 and V (¢, ¢, y) does not increase on any solution z = #(f, &, ¢, ),
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y = y(i, o, @, p) as long as #,€ Cp. Then the trivial solution # = 0, y = 0 of (1) is
stable with respect to the x-component.

Proor. - By hypothesis V(, g, )< V{fo, @0, ¥,)- So that the arguments of The-
orem 3.1 remains valid for this case.

4. — Uniform stability with respect to components.

In this section we investigate some problems of partial uniform stability of the
system (1). We characterize this concept in terms of Lyapunov functionals.

THEOREM 4.1. — Let the hypothesis (i) and (iii} of Theorem 3.1 hold. Suppose
for (¢, @, ) € Bt x Cgx1m,

a(|@le) <V @, w)<b(lplo+ lwlo)

where a, b € i, then the trivial solution # = 0, y = 0 is uniformly stable with respect
to the z-component or partially uniformly stable.

Proor. — Choose 8(z) = b-*(a(e)) independent of #,. Then [gof, -+ [yslo<< (e)
implies

Vity, o, "Po)<b(u¢ouo =+ | WOHO) < 5(5-1(0&(8))) = a(e) .
The result then follows.

COROLLARY 4.2, ~ Let the hypothesis (i) and (iii) of Theorem 3.1 hold. Suppose
for (¢, @, p) € Rt xI"x (s,

ay(|ple) <V @, ) <bi(lele + [wlo)

where a;, b, € X, then the trivial solution # = 0, y = 0 is uniformly stable with
respect to the y-component.

THEOREM 4.3. — Assume that hypothesis (i) and (iii) of Theorem 3.1 are satisfied
and that da, b €3 sueh that

a(lglle) <Vt @) v) <b(lelo)
then for any &> 0, 3n(e) > 0 such that for 1,>0, |@olo<< 7 and [y, < co implies
l.(to, @, 9)|| << & for all i1, .

Moreover, f(t,0,y;) = 0 and g(i, 0, y,) = 0.
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ProOF. — Let £¢>0 and set n(e) = b~(a(e)), then for 1,0, |@.], < n implies
V(to, @0, Wo) < b(b*l(a(a))) =a(e) and so |[@dly; @, v)| <& for all {>%,. Consider
the solution @ = u(f;%,, 0, ¥,), ¥ = Y(I5%, 0, w,) for £, >0 and .. V(, 0, p,) =
= Bb(0) = 0 and since V>0 and DtV{, ¢, ) <0, V{I, 2, ¥:) < Vo, 0, wo) <b{(0) = 0.
Hence V (i, x(t;ts, 0, o)y Y(t;t, 0, o))= 0 so that |a(t;1, 0, )| = 0 for all 1>0,
and so f(¢, 0,y = 0 and ¢(?, 0, y;) = 0.

REMARK. — A similar theorem in the gpirit of Corollary 4.2 can be stated in terms
of Lyapunov functional to obtain a uniform stability result of Theorem 4.3 with
respect to the y-component.

THrROREM 4.4. — (i) Suppose V(i, ¢, ) is a Lyapunov functional with the proper-
ties (i) and (ii) of Theorem 3.1 and

(ii) V{(t, ¢, v) does not increase on any solution = x(t, t,, ¢, v}, ¥y = y(t, &, @, )
as long as %, € C,.

(ili} V satisfies for (f, ¢, y) € BR* X 0o X Cs,
Vit @, w)<b(lol, + llo) -

Then the trivial solution # =0, y = 0 is uniformly stable with respeet to the
x-component.

ProoOF. ~ (ii) implies V(¢, @, ¥) < V(ts, @0, o) hence the arguments of Theorem 4.1
remain valid.

THEOREM 4.5. ~ In addition to the hypothesis of Theorem 3.4 suppose V satisfies
Vi, @ v)<b(lelo+ vl , for (4@, y)eRY X Cexim.

Then the trivial solution # == 0, ¥ = 0 is uniformly stable with respect to both the
z-component and the y-component, that is, simultaneously uniformly stable.

Proor. — By the assumption on V, we can choose 6(¢) = b~*(a(¢)) in Theorem 3.4
independent of £, and &0 if |p,fle -+ e[ << 6(¢) in the proof of Theorem 3.4

V(to, oy o) <b(llgalo + [wolo) < b(6-*(ale)) = ale) -

Since d(¢) is independent of t,, d,(¢) in Theorem 3.4 can also be chosen independent
of 7, and the uniform stability of both # = 0 and y = 0 follows.

The next three theorems will be devoted to a variety of results concerning the
construction of Lyapunov functionals.



360 OrusoLA ARKINYELE: On partial stability of differential equaiions, eto.

THEOREM 4.6. — Suppose the trivial solution x =0, y = 0 of (1) is uniformly
stable with respect to the w-component, then there exists a Lyapunov functional
V(t, , p) such that

(i) lolo<V(t @5 v), for (¢ ¢, y) € B X O X Cr,
(i) V{t, ¢, p) does not increase in (g, ) for ¢ € Gy, and

(ili) V{t, @, w)<¥([olo -+ |y[o) for beX.
Proor. — Let (¢, @, p) € BT X 0, X Cr and define V (3, ¢, v) by setting
Vit p,p) = SE:{? {||mt+a(t0; @ p) H} .

Then clearly for o = 0, |@.(%; @, ¥)| < V(% @, ») and (i) is satisfied. Uniform sta-
bility with respect to the z-component implies that

[@dto; g, Pl <e(lplo+ lvle)  for 0.
Hence setting b(lg o + [9l) = e(lg]o + |¥]s) We have

Vit, @, w)<b(l@lo + [%lo) -

Since @ = #,(to, @o, Yo)s ¥ = Yu(lo, Po, ¥o) and by uniqueness of solutions (7, ¢, y) =
= #,(7, o, Yo) W& have

V(t, @, ) = sup {Hmt—f-a(to’ ") “} = sup {uwtw(to’ Pos %)H} ,
o220 =0
80 that for #, > t,>1,,

V (tsy @4,(tes @os o)) = S;;I()) {2, +o(t05 @os o) I}
<sup {Im,+0(te; @0y wo) I}
= V(ts, @:,(fo; Poy Vo) Yuulto? Pos P0)) -
Hence 7 does not increase and the proof is complete.

THEOREM 4.7. ~ Suppose the trivial solution # = 0, y = 0 of (1) is uniformly
stable with respect to the y-component, then there exists a Lyapunov functional
W(t, ¢, ) such that

@ lylo< W, @, v), for (¢, @, p) € BT X Ce X (.
(i) W{t, ¢, v) does not inerease in {g, ) for p e C;, and
(it) W, @, ) <bi(lgllo + [¥lo) for beX.
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Proo¥F. — Let (f, @, p) € Rt X Co X Cr, set

Wty t, @, ) = SEIO) {”?/H—z(to’ ') 7/’”}

and proceed as in the last theorem.

THEOREM 4.8. — Suppose the trivial solution # = 0, y = 0 of (1) is uniformly
stable with respect to the z-component and with respect to the y-component, then
there exist two Lyapunov functionals V{¢,¢, ) and W(i, ¢, ) such that

(1) lelo< Vit @, ) <b (l@lo + [wlo) for (¢, ¢, v) e R¥ X Ce X Oy b e X,
(i) [yle< Wt o, p)<bullole + lvlo) for (¢, ¢, )€ B* X Ce X Oz, bie X,
(iif) V{¢, ¢, ) does not increase in (g, ) for any ¢ € C,, and W(t, ¢, v) does

not increase in (g, y) for any ye C;.

ProoF. — Let (t, ¢, 9) € Bt XU x Cr and define two functionals V(t, ¢, v) and
W, ¢, ) as follows:
Vit, @, p) = SEI; {HxHr(to; @ p) H}

and

W(t, @, p) = sup {“f’/t+6(to§ P 9) H} .
8§20

It is easy to check that (i), (ii) and (iii) hold for ¥V and W in view of Theorems 4.6
and 4.7.
THEOREM 4.9. — Assume that 3 two Lyapunov functionals ¥V and W such that
(1) V is locally Lipschitzian in ¢ and % and V(s,0,0) = 0.
(i) a(lelo) <Vt @, p)<b(lols + [vlo) for a,beX and (¢, ¢, p) e BT x 0o x O,
(i) DYV, @, v)<0 for (t, @, p) e R X Cex s,

(iv)y W, o, v)<bi(lvls), beX and W({i, ¢, y) is bounded in the region
Vi, ¢, ) > 0 existing for >0 and for ||, + [v].< 7.

(v} D*W{t,¢@,p) is a positive definite function in the region V(i, ¢, ) > 0.

Then the trivial solution 2 = 0, = 0 is uniformly stable with respect to the
2-component and unstable with respect to the y-component.

Proor. - (i), (ii) and (iii) imply the uniform stability with respect to the z-com-
ponent by Theorem 4.1, and the rest of the proof is similar to Theorem 3.3.



362 OLUSOLA AKINYELE: On partial stability of differential equations, ete.

TrEOREM 4.10. — Assume thab
(i) V(¢ ¢, w) is a locally Lipschitzian functional such that V(¢ 0,0) =0,
(i) a(lelo) <Vt @y w)<b(lele + lvlo) for a, beXk and (4, ¢, p) € B x 0o X (%,
(i) DYV, @, p)<0 for (f, 9, ) e BT X O X Cr.
(iv) The trivial solution y = 0 of
y(t) = g(t, 0, y+)
is uniformly asymptotically stable,
(v) g(t, @, ) is locally Lipschitzian in ¢ and ¢ for a constant K > 0.

Then the trivial solution ¢ = 0, y = 0 of (1) is uniformly stable with respect to
the z-component and y-component.

PrOOF. — Arguments parallel to Theorem 3.11.2 of [5] can be used to prove the
Theorem. We omit details.

TurorEM 4.11. — If hypothesis (iv) and (v) of the last theorem hold and the
trivial solution of (1) is uniformly asymptotically stable with respect to the w-com-
ponent, then the trivial solution # = 0, y = 0 is uniformly asymptotically stable.

PROOF. — In view of Theorem 7.1.4 of [6], the proof is analogous to that of The-
orem 3.11.3 of [5].

REMARK. — Theorems 4.10 and 4.11 are the corresponding partial stability results
obtained for ordinary differential equations in [5].
The following ig another version of Theorem 4.10.

THEOREM 4.12. — Assume that (i) and (iii) of Theorem 4.10 hold, and that
(@) There exist a, b € J such that for (f, ¢, p) € R* X Cp X (s,

a(lylo) <V @, p)<b(lolo + Ivlo)

(4) The trivial solution # = 0 of

a(t) = (2, %, 0)

is uniformly asymptotically stable,

(v) f(t, @, v) is locally Lipschitzian in ¢ and v for a constant M > 0.

Then the trivial solution # = 0, y = 0 of (1) is uniformly stable with respect to
the wz-component and y-component.
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5. — Equi-asymptotic stability with respect to components.

In this section we characterize the concept of equi-asymptotic stability with
respect to the x-component or the y-component or both in terms of the existence of
Lyapunov functionals.

TurorREM 5.1. Let V(i, ¢, v) be a Lyapunov funectional such that

(1) a(lel) <Vt @, 9) for a e X and (%, ¢, y) € R X Op X Cx,
() DVt e, p)<—O(|ells) for Cel and (2, ¢, ) € BT X Cp x C..
Then for 0 < &< g, f,>0 there exist d(t,) >0 and T(%, ¢) > 0 such that for

@y(to, @y ¥)y Yille, @, p) With [@[, + [ylle < 6 there exists ty€ (%, { + T) such that
Hmf*(toy Py "l’) H < E&.

ProOOF. ~ By Theorem 3.1, for #,>0, 38(%,) > 0 such that [@l, -+ |¢]o<< ¢ im-
plies [2.(fo, ¢, 9)| < & for i>%. Now let A(t) = sup {V(k, ¢, v): [@fo + [wle< &}

and set 7'(t, &) = A(f,)/C(e). Then Ity e (ty,?, + T) such that |z, (t), @, p)[ <e.
Suppose not, then e< |2(t;, ¢, )| < ¢ for te (4,4 + T) and so

a(e)<Vte+ T, 0, 9)<V(lo, ¢, v)— C(e) T<0,
which is impossible. Hence the required result.

THEOREM 5.2. — Let V({, ¢, ) be & Lyapunov funectional such that
@) allyl) <V @, ) for aeX and (t, ¢, p) € B X O X Or,
(i) D+V(t, @, v)<— O(Jy]o) for CeX and

(4 @y p) ERTX O X Cr.

Then the trivial solution £ = 0, y = 0 of (1) is equi-asymptotically stable with respect
to the y-component,

ProOF. — The proof is similar to that of the last theorem.

THEOREM 5.3. ~ Assume that there exist two functionals V{t, ¢, v) and W{t, ¢, )
such that

(i) V and W are continuous and locally Lipschitzian in ¢, and v,

V(t,0,0)=0 and W(0,0)=0,
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(ii) Ja € such that
allel) <V, @, v) for (i, ¢, p) € BT X Cox Cy;
(i) DTV, @, v)<— C(]@l,o) for CeX and
(t,y @, w) € BT X Oy X Or;
(iv) db € X such that
W(t, @, ) <b(l9lo); (7, @, ¥) € B¥ X Ce X Cr .
(v) W, ¢, ) is bounded in the region H where
H={{t,,9):t>0, V(t,p, %) >0 and [g]o + [vlo<n};
(vi) Dt*W(, p, y) is positive definite in the region H.

Then the trivial solution # = 0, y = 0 is equi-asymptotically stable with respeet
to the z-component and unstable with respect to the y-component.

ProoF. — Theorem 5.1 implies the equi-agymptotic stability with respect to the
x-component and an argument similar to that of Theorem 3.3 shows that » = 0,
y = 0 is unstable with respect to the y-component.

REMARK. — A similar theorem can be stated for the instability with respect to
the z-component and equi-asymptotic stability with respect to the y-component.

THEOREM 5.4. Let V(t, ¢, v) and W(I, ¢, y) be two functional defined for 0 <{ < oo
such that hypothesis (i), (ii) and (iv) of Theorem 3.4 hold. Assume that the fol-
lowing also hold

(i) 3C eX such that for (¢, ¢, ) € R+ X Cp X Cr,

DV (t, 9, w)<— O(|wllo)

and

(ii) there exists O* ¢ X such that for (7, ¢, y) € BF X O x (h,

DrW(E, @, p)<— C*(lg],) -

Then the trivial solution = 0, y = 0 is equi-asymptotic stable with respect to the
z-component and with respect to the y-component.
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Proor. — By Theorem 3.4 the solution @ = 0, y = 0 is stable with respect to the
x-component and the y-component. Hence given 0 << e << 7, 36(1,, ¢) > 0 such that
l@lo 4 lwllo< 6 implies [y.(ty; ¢, 9)| <e. Let

Ate) = sup {V(to, , v): lolo + lvlo< 8} and set  To(ty, &) = A(t)/C(e) -

Suppose e< ||[y:(to; @, w)| < v for t € (%, t, + T), then as in Theorem 5.1,
ale) <V(to + To, @y ) <V(ko, @, v) — Alty) <O

which is impossible. Hence

lyito; @y 9| <& for all t>4, -+ T, .

Now given g > 0, 38, such that |, + [wlo << & implies [@.(; ¢, v)| < & for all
t>1,. Define H(l,) = sup {W(t,, @, v): [@lle+ |vlo< 6.} and set Ty(ty, &) = H(%)/C*(e,).
Choose T = max {7, T,}, and suppose &< ||[#:(%; ¢, ¥)| < o for t & (4, t, + T) then

a1(81)<a'1(“97t(t07 @ Q/’)) < Wt + Ty 0, ) < Wil @, w) — OF%(e) T, <0,

which is impossible. Henee [.(t, ¢, ¥)|| < & for t*e(f,, 1, + T). So given ¢ >0,
0<e< T, 6>0,0<e<p, and choose 6 = min {8, §,}

ldto; s )| <en and  fyullo; 9, 9)| <&

for all ¢>t, + T provided [¢|, -+ |#],< &, and the proof is complete.

6. — Generalized exponential stability with respect to components.

In this section we give necessary and sufficient conditions for the concept of
stability of the generalized exponential type with respect to both components in
terms of Lyapunov functionals. We then find conditions for this type of stability
property to be preserved under certain perturbations.

THEOREM 6.1. — Let f(t, ¢, v) be linear in ¢, 9 and p(f) be a continuously diffe-
rentiable function on R*. Then the solution 2 =0, y = 0 of the system (1) is
generalized asymptotically exponentially stable with respect to the z-component
if and only if there exists a continnous Lyapunov funetional V{t, ¢, w) such that
for (t, ¢, ) € B*xCp X Cr,

@) llelo< Vit o ) <K@ (Jelo + il
(1) |V @1y 90 — V@2, 0) | <K@ (91— @allo + [91— v:2]o) and
(i) DV, @, 9" ) <— 0 (O V(E, @, w).

24 ~ Annalt di Molemalica
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Proor - The sufficiency can be proved by integrating (iii) which yields

2:(tos @y W) <Vt @, 9) < V{Ho, @o, wo) XD [P(te) — p(2)]
<E@)([@olls + wollo) exp [p(t) — p(2)] .

To prove the necessity, define a Lyapunov functional as follows: for (¢, ¢, p)e
€ R+ xX 0y X Oq,

Vt, g y) = sup {le+olto; @, )| exp [p(t + 0) — p(8)].
At 0 =0 B
[@:(to, @, II<V(E, @, v)

and by assumption and the definition of V (%, ¢, v)

Vit @, w) <E@) (ol + [wlo) -

Now let (@, ¥); (@q, o) € Cp X Oz, then using the linearity of f in (¢, ), we obtain

IVt 9, v) = V&, g0, )] = 510 {l#1+500; @; v)| exp [p( + o) — p ()]}
— sup {5+ 8(to3 @0, o) | €xp [p(t + 0) — p(#)]} |
<sup {l1+o(te5 @5 ¥) — @i40(to; Pos wo) | €xD [P(t + 0) — ()]}
= sup {ls+olto; @ — @0 ¥ — yo) | €xP [B(t + ) — p(1)]}
<E®) (g — ol + % — olo) -

Moreover, by uniqueness of solutions, we have

Py psollo T By @1 Eos @0 )y Yiin(loy @5 W)) = @y prollo; 1 P)

and so

V{t 4+ hy 2enlts @5 9)s Yesnlts @, %) =
= SE%’ {lesn+o(t + b5 Tsnlls @y ¥)s Yeralls @, v)| exp [pE + 2+ 0) —p( + m}

= sup {|#esa+0(t; 9, v) | exp [P + b + 0) — p(t + W)}
= §up {[@+0(; @, v) | exp [p(t + 0) — p(2)} -

Therefore,

V(t + by Biralte; @, ©)y Y4nlte; @ 9) — V(t, @, )
= sup {[1+o(to; @, p) | exp [P(2 + 0) —P(O)]}

—sup {1 ot} 95 )| exp [D(t + 0) — )T}
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and

] 1
lim sup - [V(t + By Zesallos @5 ¥)s Yernllo; @, V’)) -V, o, 1/’):1

-0t h

<lim sup % [Sglg {#erolto; @5 v) | €xp [P(t + 0) — p(B)]{exp [p() — p(i + 1)] — 1}]

— V(t, g, v) limsup 5 fexp [p(0) = p(t + W] =1} -
Thus

DV, @, p)<—p' OV, @, v) -

‘We now show that V (¢, ¢, ) is continuous.

IVt 41y 0, 9) — Vit g0, 90| <V + By @, ) — V(2 + by g0, )]
+ V@ + Ty o, wo) — V(E + By @e4allo; Pos Po)s Yerallos o, o)
F 1V + by @esnlto; 9oy Yoy Yerallos oy Yo)) — VI @o; o)) -
<K+ B)([o—polo+ ¥ — volo) +
+ V(4 By @oy o) — V(&4 Py @eallo; Poy Pody Yegallos Po, Yol
V(4 by @eiallo; @o, Yo)s Yerallos @o, ¥o)) — Vit @oy w0)] -
The first and second terms on the R.H.S. of the last inequality are small for # by

the definitions of @, and y, and as h — 0 the last term tends to zero, so that V(t, ¢, v)
is continuous.

REMARK. — Theorem 6.1 is a generalization of Theorem 1 of [3].
The next theorem gives an analogue of the last theorem in terms of stability
with respect to the y-component.

THEOREM 6.2. — Let g(4, ¢, v} be linear in (g, v) and p(!) be a continuously dif-
ferentiable function on R+. Then the solution # = 0, y == 0 of the system (1) is
generalized exponentially asymptotically stable with respect to the y-component if
and only if there exists a continuous Lyapunov functional W(t, ¢, ) such that for
{Z, @, Q]))ER+XGQX01

@ Iplo< Wt g, 9) <M @) ([9lo+ l2lo);
(1) W @1, 1) — Wty @2y w)| < MO (s — @2llo + 92— 9]0)

and

(i) D*W(, @, p)<—p () W(L, @, v).
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Proor. ~ The sufficiently follows from a similar arguments as in Theorem 6.1.
For the necessity, define

Wt ¢, y) = sup {lv+olto; @, w)| exp [p( + &) — p(®)]}

for (4, ¢, y) € B" X Cp x Cr and proceed as in Theorem 6.1.

THEOREM 6.3. — Assume that f, g and p satisfy the conditions of Theorems 6.1
and 6.2. Then the solution # = 0, ¥ = 0 of the system (1) is generalized exponential
asymptotically stable with respect to the z-component and with respect to the
y-component simultaneously if and only if there exist two continuous Lyapunov
funetionals V(, ¢, w) and W(t, ¢, v), satisfying the following properties.

() lelo< Vty o, )< K@@l + l9lo);

i) ylo< Wt @, W) <M (el + lvlo);

(i) |V @ @, 9)— V (& @0y wo)l < E@(l@ — @ollo + | — wollo) s

(iv) (W, @, w)— W g, v < M@ (lo— @ollo + Tv— wolo)5

(V) DYV @, @ 9)<—2' OV @5 9);

(vi) D*W(t, @, p)<—p' )Wt @, 9);

where (£, ¢, ) € R* X O X Cr.
ProOF. — The same type of arguments in Theorem 3.4 modified along the lines

of Theorem 6.1 proves the sufficiency. To prove the necessity we define V and W
as follows: for (¢, @, v) € B* X U x Cx,

Vits g, p) = 5D {[orolle; @5 ¥ exp [p(¢ + 0) —2 (O]}
and

W(t, @, p) = sup {I9e+olte; @5 v)| ex0 [P(E + ) —p®)]} -

Proceeding with the rest of the proof with arguments parallel to that of Theorem 6.1
we have the result.

REMARK. — If in place of the linearity of f and g in (¢, y) we assume only Lipstichiz
continuity the results of Theorems 6.1, 6.2 and 6.3 still remain valid. The following
theorem is one of such results.

THEOREM 6.4. — Assume that p(f) is continuously differentiable for {e R* and
(4, @, w) and g(t, ¢, ) satisfy Lipschitz condition in ¢ and y respectively with con-
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stant L > 0. Let K{f) be bounded and for some g with 0 < ¢ <1, let there exist
T > 0 such that

E(t)exp[— q(p(t + T)— p(¥))]<1 for te R*.

Then the solution # = 0, ¥ = 0 of the system (1) is generalized exponentially asymp-
totically stable with respect to the x-component if and only if there exists a con-
tinuous Lyapunov functional V{i, ¢, v) satisfying: for (2, ¢, v) € B* X Cp X O::

) lelo< Vi, @, p) <E® (Jle + Jwlo)
if) V¢, @, ) — VI, @0, )| <exXp [JDT]0 gggT{exp (A —g)(p(t + )] —p@®)} -

(lo — @ollo + v — wolo)
and

(iil) DVt @, p)<— A — P’ O V) @, )

Proor. — The sufficiency follows easily. Let ¢, T be as given and define for
(t, @, TIJ)ER+XOQX01.

Vi, o) = sup {l@+o(t, @, )] exp [(1 — ) (p(t + 0) — (1) ]}

K(t) is bounded, hence 3 M = sup K(t) << co: Set g, = o/ M, then V e O(B+x (g X
teR*
X Co,, B¥), and (i) and (iii) thus follow using the arguments parallel to that of The-

orem 6.1. We now establish (ii). Note that

12, o(t; @, 9)] exp [(1— ){p(t + o) — p(1)}]
E@)(Jglo+ lwlo) exp [~ ¢(p(t + o) — p(1))],

80 that the assumption implies,
Vit 9y ) = 5D {[1+o(io; @1 p)] exp [(1 — ) (00t + 0) — )}
Hence for (g, yo) € O X U, and te R,

[Vt @ 9) — V(t, @, )]
< sup {Hxiﬁ-c 3 @y ) — Tuvolts @oy Yo)| €XD [(1 —q ( (t 4+ o) p(t))]}

0o T

Define

m(t) = |[@t; @, w)— 2t 0o, wo) | F 9485 @ ) — U485 @0, wo) |
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then

Dm(t) = ’}1_)1(1)1_ inf?@_(ﬁ_i];ljﬁ@

< @i, @, W) — wi(t5 9o, wo) | + [94(E5 @, ¥) — y2(E; @0,y 90)|

< |@it; @, w) — 1ty @, 9) — TE(E; @o, wo) + F(E; Yoy Wo) - (s @, w) — F(E, @0, v0) |
+ yilt; @, v) — 90, @, 9) — Yi(E5 @o, Po) -+ 9(t, @o, Yo) 4 9ty @5 ) — 9(1, @0, wo)|
< |[f(ty @y ¥) — (s @05 w)| + 9(E @5 ) — 9(2; @0, o) |

<L|g—@olo + Llw — wolo = L@ — @oloe + ¥ — wollo] = Limo .

Hence Lemma 6.1.1 of [6] implies

|25 @y w) — 2483 @oy Wo) | < [0elt; @y ) — 2elt5 @05 wo) | + {Yelts @5 ¥) — Yall; o, o) |
<exp[L{t— 1) 1(lg — @olo + ¥ — wolo) -
Thus,

(V' (t, @, ) — V(E, @, o)
<UD [ |46t @, 9) — Trwolts @0, wo)| exp [(1 — ) {p(t + 0) —p(1)}]

0o T

<exp [LT]sup exp [@— (@ + o) —pE)](lg — @olo + [ — volo) -
We now consider the perturbed system,
x(t) = f(t, Ty ?/t) -+ G(ty Ly, ?/t)
Yty = gty @4, y2) -+ H({y 24, y2)

(4)

where G(t, ¢, ) and H(t, ¢, w) are continuous mappings from R+ X C([— h, 0], B") X
x C([— h, 0], R™) into R» and R~ respectively. We assume that G and H satisty
locally a Lipschitz condition with respect to ¢ and y and such that

165 @5 )| + JHE, ¢, 9) | <oy [olo)

where w(t, %) is a continuous scalar function for ¢>0, u> 0, satisfying a locally Lip-
schitz condition and nondecreasing in u, with w(f, 0) = 0. We have the following
generalization of Theorem 2 of [3].

THEOREM 6.5. — Assume that the solution # = 0, y = 0 of the system (1) is gener-
alized exponential asymptotically stable with respect to the z-component or with
respect to the y-component. Let f and ¢ be linear in ¢, y respectively. Then the
trivial solution # = 0, y = 0 of (4) has the same stability property with respect to
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the z-component or with respect to the y-component as the solution u = 0 of the
differential equation.

{5) @ =—p'(hu + Kw(l, u), wity) = % .
ProoF. — Lebt ,(fo; @0, wo) and y.ls; o, ¥o) be any solution of (4) such
that [golo + lyelo < o/K(%). Setting ¢ = @(lo; @o, o) We have a,, ,(t; gy, 1o) =
= 2, 5(¢; ¢, ¥), 6>0 by uniqueness. Suppose 2, ,(t; ¢, ¥), w, 4{; @, ), 6>0is any
solution of (1) through (f, @, ¥), and let [@:(te; go, wo)| < 0y |¥elfo; @0, w0l < o for
t>1,, then it is easy to show that
DV, @, py<—p' OV ({0, v) + Ka)(t, Vi, , "/’)) .

Setting m(t) = V(i, ¢, ), then V(iy, @, ¥} <, implies by Theorem 1.4.1 of [5] that
V(ta @oltos Pos Yo)s Yulles Yo, Wo) <{E Lo, uy)  for i1,

where (%, t,, #,) is the maximal solution of (B) existing for ¢>1,.

If we choose K(%,)(|@olle + l%w]o) = #,, then u,< ¢ and by the assumption on
the solutions of (1),

[@:(to3 Pos Vo) “ < V(ti Zyltos oy Pols Yullo; o, 1/’0)) <1(2y boy Up) -

The result then follows by the choices of u,, for the stability with respect to the
z-components. The same arguments establish stability with respect to the
y-components.

COROLLARY 6.6. — The solution @ = 0, ¥y = 0 of (4) is asymptotically stable with
respect to the z-component or the y-component if w(i, u) = A(f)u where

13
P(t) — p(Y) +fK(s)Z(s)ds >— oo a8 t->oo.
e
Proor. —~ The general solution of (5) is
3
Wty ta, ta) = o exp [2(0) — p(0) + [K(5) A5)| 140
to

The result then follows from the last theorem.

REMARK. — If p(f) = «f, > 0 and K(#) = K > 0 in Corollary 6.6, then the last
Corollary reduces to a result of [3].
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THEOREM 6.7. — Assume that the solution # =0, y = 0 of the system (1) is
generalized exponential asymptotically stable with respect to the z-component and
with respect to the y-component simultaneously. Let f and g be linear in ¢ and ¢
respectively. Then the zero solution of (4) has the same stability property with
respect to the x-component and with respect to the y-component as the solution
% = 0 of the differential equation (5).

Proor. — Using arguments parallel to Theorem 6.6 (modified along Theorem 3.4)
together with Theorem 6.3 establish the result. We omit details.

We now state analogous result to Theorem 6.6 and 6.7 for the case in which f, ¢
satisfy the Lipschitz condition with respect to (g, v).

THEOREM 6.8. — Assume that the hypothesis of Theorem 6.4 are satisfied. As-
sume that the solution @ = 0, y = 0 of the system (1) is generalized exponential
asymptoticaily stable with respect to the w-component or with respect to the
y-component as the solution » = 0 of (5).

Proor. — Using arguments parallel to that of Theorem 6.5 with obvious modi-
fications, the result follows.

THEOREM 6.9. — Agsume that the hypothesis of Theorem 6.4 are satisfied. As-
sume that the solution # = 0, y = 0 of the system (1) is generalized exponential
asymptotically stable with respeet to the w-component and with respect to the
y-component simultaneously. Then the zero solution of (4) has the same stability
property with respect to the z-component and with respect to the y-component as
the solution # == 0 of the differential equation (5).
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