On the Coeflicients of Functions Analytic
in the Unit Disc Having Fast Rates of Growth (*).

G. P. Karoor - K. Goran (India)

Summary. — The present paper is concerned with functions analytic in the unit disc having
rapidly increasing mazimum moduli. To study the precise rates of growth of such functions
the concept of index is introduced. Several growth parameters in terms of the index are de-
fined for a function analytic in the wnit disc and their characterizations in terms of the Taylor-
series development of the function are obtained. The results in the present paper improve
and refine the earlier resulis of Sons (J. Math. Anal. Appl, (24 (1968), pp. 296-306),
MacLANE (4dsymptotic values of {holomorphic functions, Riee University Studies, Houston,
1963), and Karoor and Juxess {Indian J. Pura Appl. Kath., 7 (3) (1976), pp. 241-248).

1. — Introduction.

Let f(2) = Y a,2* be analytic in the unit dise D = {2: |2| <1}, ,=0 and {1.};2,
n=0
be the strictly increasing sequence of positive integers such thata,5#0 forn=1,2, ....

The rate of growth of f(z) as measured by its maximum modulus M(r) = M(r, f) =
%@§ If(2)], 0<< r<< 1, is studied in terms of the order ¢ and lower order A of f(z)
defined as g(4)= lim sup (inf) {log*log* M(r)/— log (1 — r)}, where logts=max (logz, 0),
0<#<oco. A characterization of g in terms of the coefficients a, when .= n was
given independently by BRUERMANN [1] and MACLANE [5, p. 47]. In case f(2) is
defined by a gap Taylor series the methods of Beuermann and Maclane can be easily
adopted to prove g/(1-+4 o) = lim sup (log*logt |a,|/log 4,). Coefficient equivalents of 1
can be found in[4, 3, p. 137].

Further, Sons [6] proved that for every function f(z) analytic in D and having
order g {0<< p<<oo), 1-- 1< {1+ p)liminf (log A, ,/logl,). But, for the function

f(2) = zexp(kj)zk’: where k; is an increaging sequence of positive integers such that
i=0

ky>1 and k, .=k}, it can easily be seen that A=} and g= 1 so that the above
resuit is not true in general.

Sons [6] also obtained a decomposition theorem for functions f{z) analytic in D
having ¢ > A.

However, these results do not give any specific information about the growth
of f(g) if M(r) is increasing go rapidly that the order of f(z) is infinite. In the

(*) Entrata in Redazione il 7 giugno 1978.
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present paper we extend and improve the above results for the functions having
rapidly increasing maximum modulus.
For a function f(2), analytie in D, set

o logl?l M (r)
(1.1) olg) = hﬁﬁ‘.‘pqog T—r)’

where log® M (r) = M(r) and logld M (r) = log (logle-21 M (r)), ¢ =1, 2, .... To avoid the
trivial cases we shall assume throughout that M(r)-+oco as r—17. We have the
following definitions:

DErFINITION 1. — A function f(2) analytic in D, is said to have the index ¢ if
o(g)<< oo and p(g— 1)=o00, ¢=1, 2, .... If ¢ is the index of f(2), then p(g) is called
the g-order of f(z).

DEFINITION 2. — A function f(z) analytie in D and having the index ¢ is said
to have lower g-order A(q) if

e logld M(r)
(1.2) Alg) = hfﬂff‘f “Tog(d—7)’

qg=1,2,...

DerniTION 3. — A function f(z) analytic in D and having the index ¢ is said
to be of regular g-growih if p(g)= A{g), ¢=1,2,.... f(z) is said to be of irregular
g-growth if o(¢) > Ag), ¢=1,2, ....

In the following sections coefficient characterizations of g(¢) and A(g) for a func-

tion f(2)= Y a,z*, analytic in the unit disc, are obtained. Furthermore, a decom-
n=0

position theorem for functions of irregular ¢-growth is proved. For g= 2, these
results have previously been the subject of the papers by Sowns [6], Karoor [4],
BEUERMANN [1] and MAcLANE [5].

We observe that there is no loss of generality in restricting our study to the
functions analytic in the unit disec D, since if g(z) is analytic in Dy= {z: |¢| < R},
0 < R< oo, then by a trivial transformation of the variable z we can econstruct a
function analytic in D which, in view of Lemma 1 given below, has the same g-order
and lower g-order as those of g(z).

2. — Coefficient characterization of ¢(qg).

THEOREM 1. — Let f(2) = Y a2’ be analytic in D having index q and g-order
0(q), then n=0

. loge— J,,
2.1) olg) + Alg) = lim sup o8

= 2,3, ..
worco. 10g A, —log*log* |a,}’ 1 T

where, A{gy=1 1f g=2 and A(g)=0 if ¢=3,4, ....
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Proor. — Let

—_ -+
(2.2) Jim ing 108 A —log" log" a,| _

g.
N lo g[q—-ll n

Tirst assume < co. For every >0, (2.2) implies there exists a sequence {n,} of
natural numberg such that

log |a, | > A (logi®"® 3, )~ @+,
Using Cauchy’s estimate, this inequality gives for all (0 << r<C1) and all k=1, 2, ...
(2.4) log M(r)>1o0g|ay |+ An logr > A, (log=#2, )=+ L logr, .

For the sequence r, defined by

Iogi -1 (logle—-21 2, )6+, |k =1,2,..,
e e

(2.4) gives

1\~ 1/{6+2) 1
Tog M(r) > (1 = &) loge-1,)-0+9 — (o — 1) expie=s s10g ) Hee3).
%,

,

from which a simple calculation would yield o(q)+ A(¢g)>1/6. This inequality is
trivially true if § = oo.

To prove the reverse inequality let lim sup in (2.1) be § and assume that §< oo,
since there is nothing to prove if == co. For given ¢> 0 and for all n> n;= ny(e),
it follows that

log*|a,| < A.(logle=214, Yo,  a=f+e¢.
Thus,

M(r)< B+ 3 exp {1, (logle-2I4,)Ha}p?e

=1y

where B is a positive constant. Choose
1. 1y
N = fe—23f o .
o<t
If »> N, then the above estimate of M(r) becomes

(2.5) M(r)< B+ NH(r)+ §rnlz

N+1
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where H(r)= max {exp (An(logle-212,)-a) ra} and B is a positive constant. Since

T(N+1)[2

—1-:*,;:%—'9'—'00 as 7'~—>1,

we have > r#2=o(1). Therefore, by (2.5),

N+1
(2.6) log M(r) <log NV -+ log H(r) + o(1),
< ezz]pfﬁ—”(%log—lyj)—rx -+ log H(r} + o(1), a8 r—1—.
Now,

log H{r) <log F{r) = max {w(logf“‘m )Y :olog%} ,

o< o0
and the maximum on the right hand side occurs at the point = =, satisfying

m(log[ﬂ—ﬂ m)—' e

(]ng—zl x)"'l/“ _— P
o [[logttia
=0

1
:log;p

where the produet occuring in the denominator is interpretd to be 1 if g=2. The
point @, is uniquely determined by the above equation since the left hand side is
an increasing function for large values of 2. Thus,

log F(r) = max {

(I 2]

22 (log{a—m w)— 1/
2 . ’
aT]loghla
=0

q==

Since, (logl-#z)-Ye= ((q)logl/r, where C(q)= a/(a— 1) if g=2 and C(g)=1 if
q= 38,4, ..., it follows that for all » sufficiently close to 1,
_ {expt®(0(g)log (1/r))~3(C(g)1og (1/r)

log F(r) =
o ﬁ exp'l(C(g) log (1/r))~*
i=D

It is easily seen that

( qus exp'(0(q) log (1/r))~*) expei(} log 1 /r)
i=0 /
{exple=2(0(g) log (1/r))~"} (C(g) log (1/r))

-0 asr—>1.
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Therefore, by (2.6), for all » sufficiently close to 1,

log M(r) < {exp[a—zl(g(g) log (1/r))=}(C)q) log (1/r)) (1—o(1) -
a _IJG expt(0(g) log (1/r))~=

From the above inequality, simple calculations now yield that o(q)+ A(g)<f--e.
Since s> 0 is arbitrary, we have p(q)+ A(g)<f. This completes the proof of the
theorem.

3. — Coeflicient characterization of A(g).
We need the following lemmas. Lemma 1 follows on the lines of the proof of a

corresponding results of Sons [6] for =2 and Lemma 3 follows on the lines of
the proof of an earlier result in [2], hence we state them without proof.

LemMA 1. — Let f(2)= > a,2* be analyiic in D having index q, q=2,3, ...,
=0

g-order o(q) > 0 and lower g-order A(q), then

(@) _ 5 9P 108" (1)

[
(3-1) M)~ Mt Tlog 1 —7)
and
-1 N
(3.2) o(@) + Alg) = lim sup 225N )

-1 - IOg (1 - ?‘)

where, for [z|=r, p(r)= max {lanlrie}y N(r)=max {,: p(r)=|a,/r2=}, 0<r< 1, A(g) =1
if q=2 and A(q)=0 if ¢=3,4, ....

LeMMA 2. — Let f(z)= 3 a,zt be analytic in D having index q, g=2,3, ... and
n=0
lower g-order A(q). Let {n,} be an increasing sequence of positive integers. Then,

o log[d—ll i
3.3 =
(3.3) Ma) + Alg) >lim inf o An,—log*log* lay,|’

where A(q)=1 if =2 and A(q)=0 if ¢=3, 4, ....

PrOOF. ~ Let lim inf in (3.2) be 6. Without loss of generality we can assume
0>0. For any e such that 6>¢> 0, and for all %> k,= ky(¢), we have

log|a, | > A, (log =27, _ )~ 1C-o)
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Let 7, <r<f,1, Where

1 1
o= {g—2] —1/(5~¢)
log 9‘1{: e (log )'nk) .

Using Cauchy’s estimate, the above estimate of log|a, | and the value of 7, we get
log M(r)>10g |ay,| + An,log ¥
>log la,, | + A logr,

> lnk(log[d—m )'"k—i)MII(d_S) — }'nk log ;]"_
k
1
— (1 [ —) l”k(log[d—-ﬂ ;\'nk—x)-u(a-—E)‘
2
1 1\~ ©@-9
> {(e—1) (log ;) exple—2 (e log ;) .

This estimate of log M(r) after some simple calculation yields A(g)-}- A4(¢)> 3. Hence

the lemma. -
From Lemma 2 and Theorem 1 it is clear that for a function f(z)= 3 a,2%,

analytie in D and having the index ¢, if #=0

[g~1] [g—1]
(i) tim 298 A g gna (i) Sy=1lim log 1 4,

= 1 ist
n—>o0 1Og[q-1] }“n n—>o0 IOg }m - 10g+ 1Og+ ]a'n[ OIS

then f(z) is of regular g-growth and o(g) = A(g) = 8,— A(g).

LEMMA 3. — Let f(2) = 3 a.2* be analytic in D having inedr q, g-order o(q) (> 0)
7=0
and lower g-order A{q). Further, let p(n) = |a./a. +1§1/(3n+1-2”) form a nondecreasing func-

tion of n for n>mn, and

. dogleiy(y)
Mg + Mg = hi?infm .

Then,

o . log[Q—ll }'n-—-l
(3'4) A‘(Q} + A(Q) — llﬁglf IOg }*n_ 10g+10g_!_ Ia'ni

where A(g)=1 if q=2 and A(g)=0 if g==3,4, ....

The following example shows that the hypothesis y(n) is an increasing function
of » for » > n, in the above lemma does not imply that f(2) is of regular g-growth.
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ExXAMPLE. — Let,
4
ny=4, B,=mn; (k=1,2,..}
g g e - - if 2
PrE= T, =13 ==6, Tp=0Xp(m~*7) i P <M < N,

exp (m™) — exp (nzl,)

T = €XD (ni11) + i nE<m < myss

Rpta

and let

(3.5) fR) =1+ 3 (ri7y...13)2" .
k=1

Then y(k) = |ay_y/a,] = 1/r,, is a decreasing function of k. Let,

logk
PE) = Toglog (1jr)

Then, %Ln& p(n3) = 1and I}Lglo P(Nyyy) = 2. It can be easily seen that li}ﬁg sup p(k) = 2 and
li&gﬁp(k}=1, so that by (3.2), o(2)=1 and A{2)=0. Thus, f(z) is of irregular
2-growth.

THEOREM 2. — Let f(z)= > a,2’= be analytic in D having index ¢, g-order g(q)

%=0

(> 0) and lower g-order A(q) end

.., Joglety(y)
A AMg) == liminf —2——— " |
(9) + Mo) ey Py |
Then,
— ’ . log[q—I] Ank‘wl
(3.6) Alg) + AMq) = rgjb}x [h,gl,;nflog Ank_10g+10g+lankl] ,

where mazimum in (3.6) is taken over all increasing sequences {n,}r, of natural num-
bers, and A(q)=1 if g==2, A(q)=0 if ¢= 3,4, ....

PrOOF. — Let 8(z2) = ¥ a,2™, |¢| < 1, where {4, }i>, it the sequence of elements
k=0

in the range set of N(r). It is easily seen that S(z) is analytic in D, and for every z
in D, f(z) and S(z) have the same maximum term. Hence, by (3.1), the g-order and
lower-g-order of 8(z) are the same as those of f(z). Thus, S(z) is of lower g-order A(g).
Further, let o(n:) = max {r: N(r)= 1, }. Then, g(n;) = (ns), and consequently, ¢(n;)
is an increasing function of k. Therefore, S(2) satisfies the hypothesis of Lemma 3
and so by (3.4) we have

3.7) Alg) + Mq) = liminf 228 Fuee
(3. (@) + Mo = lmint e o e
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But, from Lemma 2, we have

{g—1]
(3.8) Alg) + A(g)>max [Hm ing 108" Ay, ] .
{nn} h—>oco 10g }'n» - 10g+ 10g+ ]a”h|

Combining (3.7) and (3.8) we get (3.6). Hence the theorem.
Our next theorem generalizes a result of Sons [6]. The technigques employed
here give an alternative proof of Sons result.

THEOREM 3. — Let f(2)= D a,2™* be analytic in D having index q (= 2,3, ...),
k=0
g-order g(g) (> 0) and lower g-order A{g) and

oo i e JOgI0(r)
Then,

lgg{Q“ 1] RS’:—I

(3.9) Alg) + Alg) <(A(g) + (o) Him inf 7orr

where A(q)=1 if g=2 and A({g)=0 if ¢=3,4, ....

Proor. — From (3.6), we get

. loglq“"l] lnk . . Iog[ﬂ'—l] Z"ﬂlc—;
A+ 4o St [hfﬂllp log A, —log*log* [an, I] s [h;?iionf logte=21 2, ]

{e—11
- [lim sup logh™ 4, ]

.. ]_og{q—li ,’{n
1 foo ke
koo 108 Ay — logtlogt |ay| sup [ imin ]

{t} ) logmmﬂ j'nk

which, in view of Theorem 1, gives

L 10g[q—1] lnlc-;
(3.10) Alg) + M) <(Alg) + o(9) sup h}f{i:ﬁm

Now, for any arbitrary sequence {n,};>, of natural numbers, let

. ]Og[q—ll ).nkn

E(m B logle—1 An;fOr gy << M <M k=23, ..

and
_ log[a—ll Zm_‘l

wim) = logle—1 .

for m =2,3, ...

It is easily seen that &(m)<w(m) for all m. Therefore it follows that

fo~1] logle=11 },
Tim inf "8 S Fmes _ Tim inf &(m) < lim inf e(m) — lim inf o8 1

-roo logw'” }-nk M=>00 M~>00 J>00 10g[q-—1] /q'k
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Since the sequence {n,} is arbitrary, this gives

le fa—1]
___g__i’ik__l] <liminf logte™ Ay

sup [hm inf o=y minf g,

Y |

In fact equality holds in this inequality since the reverse inequality is obviously
true. Hence, (3.10) implies (3.9).
Theorem 3 implies that for functions of regular g-growth

lim 081" Ay

=1.
oo 10gHE 4,

However, the converse need not to be true as is clear by the function (3.5} for which

lim 108 At

krco 10g Zk =1

but the function is irregular 2-growth.

4. — The decomposition theorem.

The following theorem concerns the functions analytic in D and having irregular
g-growth.

THEOREM 4. — Let f(z) zakz’c be analytic in D having index q (¢=2,3,...),
g-order o(q) (> 0} and lower q 07‘(16?’ Ma), and let A(q) << ulq)<< olg). Then,

1(2) = g(z) + h(2)

where g(z) has g-order less tham or equal to ulg) and

oo
h(z) = 3 @, 2™
k=0

such that
logle—1my—,
(4.1) ﬂ.(q)}[u( )llmlnfw
PrOOF. — Let g(z) = > a,2*, where

k=0

ar= 0y if log*|e| < k(logh )~ V4@ +4@)

== ( otherwise .
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Then g(z) is of g-order p(q). Let
W) = f(z) — g(2) = 3 @, 2™
k=0
and set 4, = |a, | Then
log™ A, > m; (logl™ iy, )~ V(4@ +s@)
Now, let r, be uniquely defined by the equation

=21 ) \—1/{d
4.2) (logle—21 )~ (4@ () __mk(IOg[rz 21 gy, )~ U (A} +4(2)) _ Iogl ’

g—2
(A(a) + p(@) IT logiem, T

and choose r such that 7, <r<7y,,. Inview of the above estimate of log* Ap, , wehave

log M(r)>1og A, — my log%}log A, — My, log %—

&

> mk{}ggia—-zl mk)” 1A +md)) my, IOg }_ .
Tx
Now, using (4.2), we have, for all £,

m2(logla—21 mk)*”("("“““(“))

{4.3) log M(r)> ) .
(A(g) + pl0) IT logm,

From (4.2), it follows that

1\2 /1,(2) — (a2 +1) R
il T st St A fg=2
(1°g n) OESC na

and

log% = (logl—2Im,)~1r@ 4 o(1) a8 k—>oo0 if ¢ =3,4,....
&

Thus, after some simple ealculation (4.3) yields

L. log[Q—ll My,
e(9) > p(q) llﬁglfm

which proves (4.1) and the proof is complete.
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5. — Functions having the same g-order.

We observe that if any two functions analytic in D have the same g-order and
lower g-order then the notions in Seection 1 do not give a precise information about
their comparative rates of growth. For this purpose, we introduce the following
definitions:

DEFINITION 1. — A function f(z) analytic in D and having g-order o(g), (o(g) >0,
g=2,38,..), is said to have g-type T(q) and lower g-type t(q) if

T(9) _ ;p, SUP logle=11 M(r)

t(Q) 71—>1 inf (1-—7')—9(0) ‘

DEFINITION 2. — A function f(2) analytic in D is said to be of growth (o(g), T(9))
if it is of g-order not exceeding o(q) and g¢-type not exceeding T'(g) if it is of
g-order o{g).

The tecniques employed in Sections 2, 3 and 4 can be suitably modified to give
the following coefficient characterizations for the g¢-type and lower g-type.

THEOREM 5. — Let V(q) = lim sup (log"*~* 1) (log*|a,|/2,)** 49, o(¢) > 0, ¢=2,3, ...,
Alg)=1if =2 and A(q)=0 if g=3,4, ... Let f(z)= > a,2" be analytic in D.

n=0
For 0<< V(g)<< oo, the funciion f(z) is of g-order o(q) and g-type T{g) if and only if
T(q) = B(g) V(q) where B(g) = (0(2)+1)*®**/(0(2))*® for ¢=2 and B(q)=1 if =
=3,4, ... If V{g)=0 or oo, f(z) is respectively of growth (p(g),0) or of growth
(0(g), o0), and conversely.

ReMARk., — Theorem 5 generalizes a result in {3, p. 156], obtained for ¢= 2.
Later, the same result for ¢=2, with a trivial transformation of the variables 2
has again been obtained by BAJpaz, ef. al. [8].

THEOREM 6. — Let f(z) = D a,z" be analytic in D and have g-order p(q), (o(g) > 0),
7=0
and lower q-type t(q). Let {n,} be an increasing sequence of natural numbers. Then,

B(g) t(q) > li;%gionf [ (log[a—zl lnk—x) (10g+lwn,c |1llnk-1)9(a)+A(a)]

where B(q) and A(q) are as in Theorem 5.

THEOREM 7. — Let f(z) = > a,2™ be analytic in D and have g-order o(q), (o(g) > 0)
%=0
and lower g-type t(q). If p(n) = |@p/@n [V forms a nondecreasing sequence of n
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for n>mn,, then

B(q)t(g) <lim inf[ (log" > 4,) (log*|a,|/4,) 2+ 4@]
<IL(g) xlim inf [(log'~% 4,_,)(log*|a,|/A,) 2@+ 4@]

where B(g) and A(q) are as in Theorem 5 and L(g)=lim sup (logle->i1,/logle—214, _,).
The second inequality holds whenever the product on its irght hand side is defined.

Theorems 6 and 7 give the following coefficient characterization of the lower
g-type for a subelass of funections analytic in D.

o0

THEOREM 8. — Let f(2)= 1 a,z" be analytic in D having g-order o(q), (o(g)>0)
=0
and lower g-type 1(q). Let p(n) = |a./0n +1}”“““””’ forms a nondecreasing function of n

for n>mn, and logle-22,~logle214, ; as n— oo, then
B(g)#(g) = lim inf[ (log"~* 1, _,)(log*|a.]/ PICOREO)

where B{q) and A(q) are as in Theorem 5.

REMARK. — For ¢= 2, Theorem 8 gives a result contained in[3] and is an
improvement over a similar result for ¢=2 obtained later by BAJPAIL, ef. al. [8]
under the additional hypothesis, logu(r)~1log M(r) as r — co.

Our next theorem is a coefficient characterization of the lower g-type for the
class of functions analytic in D having a restriction on the range set of the central
index N(r).

THEOREM 9. — Let f(2) = 3 a,2" be anolytic in D having g-order o(q), (o(q)>0),

n=0
and lower g-type t(q). Let {4,} be the range set of the central index N(r) of f(z) such
that log" 1], ~10g""#4, as k—>oco. Then,

.. oflogle-21 A, \ (logt @, |\e@ 4@
t(g) = max [hmmf( E ’)( ud .
y m} L koo B(g) Ao,

where B(q) and A(q) are as in Theorem B and the maximwm is taken over all increasing
sequences {n,} of natural numbers.

Now, we have a decomposition theorem for functions analytic in D for which
)< T(g).
THEOREM 10. — Let f(z) = Zanz"" be analytic in D and have g-order o(q), (o(q) > 0),

=0

g-type T(q) and lower g-type t(q). Let t(q)<n(g)<< T(q). Then,

f(2) = g(2)+ h(z)



G. P. Xapoor - K. GoPAL: On the coefficients of analytic functions, etc. 349

where g(z) is analytic in D having g-type less than or equal fo nlg) and

hie) = 3 @, 2"
E=0
such that

. . 10gf11~2] imh algy
Hq) >n(q) 11?})1? (W) ’

FLI S

where a(q) = 0(2)[(0(2)+1) if ¢=2 and alg)=1 if ¢=3,4, ...

The proofs of the results in this section would appear elsewhere.
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