Weighted Sobelev Spaces and the Nonlinear Dirichlet Problem
in Unbounded Domains (*) (**).

V. BENCI (Pisa) - D. ForRTUNATO (Bari)

Sunto. — 9i dimostrano proprietd di conmtimuild e di compatiezza per una classe di operafori
differensiali non lineari. In virtis di tali proprieté ed wsando melodi di monotonia, si pro-
vano teoremi di esistenza di solusioni per aleuni problemi al contorno non lineari in domini
non limitati.

Introduction.

It is well known that elliptic boundary value problems in unbounded domains
present difficulties which are in general more severe than those encountered in the
study of similar problems in bounded domains.

Some of these difficuities are due to the lack of compact embedding theorems
such as that of Rellich-Kondrachov for bounded domains. Some authors have over-
come this difficulty by using suitable classes of weighted Sobolev spaces (for linear
problems of., among others, [1], [3], [8], [11]).

In the last years also nonlinear boundary value problems have been studied
whether in the framework of weighted-Sobolev spaces (cf. [6]. [7]) or by other
tools ([4], [9]).

Another difficulty in the study of the above problems is due to the fact that the
Poincaré-inequality does not hold in the ordinary Sobolev spaces Wi?(Q), if 2 is a
general unbounded domain.

In this paper we prove continuity, compaetness and coercitity properties for a
class of non linear differential operators between weighted spaces.

In this framework it is then possible, by applying monotonicity methods, to
prove existence theorems for the solutions of non linear Dirichlet problems in un-
bounded domains. The present paper is organized as follows.

In § 1 we study some embedding properties for a class of weighted Sobolev spaces.
In § 2 we prove a necessary and sufficient condition in order that the Nemytskii

(*) Entrata in Redazione il 27 maggio 1978.
(**) This research wag supported by the G.N.AF.A. of C.N.R.
This paper has been completed while the authors were visiting members at the Courant
Institute of Mathematical Sciences under the sponsorship of the Consiglio Nazionale delle
Ricerche.
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operator F associated to a function f: 2 x B*— R be continuous between weighted
spaces.

This condition is utilized to prove the continuify, the compaectness and the com-
plete continuity of some nonlinear differential operators. These results include the
previous ones ([4], [6], [7]), also between the ordinary Sobolev spaces.

In § 3 we consider some boundary value problems for which the tools developed
in the previous paragraphs can be used: Problem I is an easy application of the
results contained in § 2. Problem IT and problem IIT (which is linear) represent
situations in which the Hardy inequality

ﬂaz}s lu(%’)(zdﬁé’éconstfmm lgrad u(x)|? do
2 Q

(where seR, s #—n, uc 03(2) and 0¢0Q) is the main tool.

At last (problem IV) we deal with a noncompaet perturbation of the operator
— Au--Au {(A>0). This problem has more general assumptions than problems
considered in [9] in the case in which the leading term is the Laplacian.

1. — Some preliminary results.

Let £ be an open set in B with boundary ¢£2; let p €[1, 4 oo} and m an integer,
nonnegative number.

‘We shall consider the following function spaces (1): D(L) is the space of the
infinitely differentiable functions on £ and with compact support in £, equipped
with the inductive limit topology of L. Schwartz.

If o is a positive, (Lebesgue) measurable function on {2, we denote by L*(£2, o)
the space of (equivalence class of) functions % on £2, which are (Lebesgue) meagur-
able and satisfy

([lue)rate) do) "< 4 o0 tfor pelt, +oof
2

(]l £o(0,0=
sup ess p{w)|uiw)] <+ oo for p==-o0

equipped with the norm | -] 1.0,

As usual, we set L#(Q, 1) = L»(Q).

1f gy, ..., 0. are positive, measurable functions on £2 we denote by I™*(£2, go, ..., 0n)
the space of distributions » on £2 such that (2)

Druel*(Q,90,), VaeclN® |af<m

(1) If « = {ay, ..., %,) is an n-tuple of nomnegative integers we set |a} = oy + ... +
and D% = 8%z ... Baln.

) We shall denote by R, R+, N respectively the set of real numbers, the set of positive
real numbers, the set of nonnegative integers.



V. BENCI - D. FORTUNATO : Weighted Sobolev spaces and the nonlinear, ele. 321

normed by

( > [[Daungp(ﬂ,gm))w for pell, 4 oo

| <m
%] ron@,001.., 0m) =

max | D*u| e for p =+ co.

o] s2lal)

As usual, we set I™2(0Q, 1, ..., 1) = Wnr(Q).

Let U and V be two Banach spaces: a map f: UV is called compact if it
ig continuous and maps bounded sets of U into relatively compact sets of V; f is
called (sequentially) completely continuous if (3)

(%o in U) = (f(u,) = f(u,) in V).

Let us now recall the following well known result (Hardy ineqguality).

THEOREM 1.1. - If p>1, s,t€ R, s % — n with t = s--p and 0 ¢ 2 then there exists
¢>>0 such that for each ue D(2)

(1.1) f|m]8|u(w)[?dm<cﬁw|ﬂ|gradu(w)1@dw.
2 2

We remark that, if s=—mn, (1.1) is true with {>s--p.

LEMMA 1.2. — Let 0y, 0, be two positive measurable funciions on £2 and pell, + oof,
p'=p/(p—1); then there exists an isometric isomorphism A, , between (L*(£,0,))’
and L7 (2, ;) defined as follows (4) A, ,(T)=geL?(2,0,) s.t. YpeI»(Q, oy):

(T, 9> = [9(@)p(@)(0:(0)) “*(y(o)) V¥ dar
o

Proor. — Let us observe that the map

1/p’
By I7(Q, 03) > T7(2, 03, %AW%% f VeI (@, 0

(o

is an isometric isomorphism.

(®) We denote by «u, — u,» and «u, —> u,» respectively the weak and the strong con-
vergence of the sequence {u,} to the element ;.

(#) If X a topological vector space, X’ denotes its topological dual and (-, > the eanonical
pairing.
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On the other hand the map
A, 2 (L2, 0,)) = L7 (2, 01), A, (T)=g s.b.

Vp & L(Q, o) (T, 9> = [9(@)p(0)0,(0) A
2

is an isometric isomorphism. It is obvious that A, , = @, ,oA, satisfies the required
properties. Q.E.D.

By Lemma 2.1 it is easily deduced that L?(Q, o) (p>1) is reflexive.

THBEOREM 1.3. — Let pe]l, + oo, me N and assume that for each ycQ (£,
bounded and open) inf esso,, () >0 (le}<m). Then I'™2(8, po, ..., Pu} is a reflevive,

separable Banach space.

Proor. - Let BE= [] L?(L, p,,) equipped with the ecanonical norm: F is a
lel<<m

separable, reflexive space. Let us consider the map

P:w— (D) weI™P(£2, 0oy ooy Om)-

fel<m?

It is now easy to verify that P is an isometric isomorphism of I"2(£2, g4, ..., Ou)
into a closed subspace FcE. QE.D.

Let ge C°(R") be a positive function satisfying the following properties
(1.2) o(@) ~»+ oo for [z| >+ oo
(1.3) Vre R and «cN*, decR, s.t.
(Do) x) | <elo(w), VoeR* (5.
I meN, pell, +-oof we set
UT2() = I'"™?(82, 6%, ..., 0), ff‘f”’(Q) = D(Q) (closure in UM"(Q))

and denote by

Cp,(£2) the gpace of functions » on (2 which possess continuous partial derivatives
up to order m and such that

2] oy = !max (sup 0%(x) | D*u () [) <+ o0

l<m \ ael

(®) We set o" the map xe 2 — (g(®)). The function o(w) = (1 + |»|*)t satisfies the
property (1.2).
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THEOREM 1.4, — Let I, m be fwo nonnegative iniegers with m <1 there if Q has
the cone property, the following embeddings are continuous (%):

(1.4) U Q)= UP9R), Voelp, p*[ (),
(1.B) Uy (Q) = 07(Q) #(l—mp>n.
Proop. — If ge[p, p*[, the embedding
i3 Wor(L2) <> Wme(Q)
is continuous. On the other hand by virtue of (1.3), it is easy to verify that the maps

D;: uo ot

D_ ;U o5U

are topological isomorphisms respectively of U»?(2) onto W"?(2) and of W™%Q)

onto UP(Q).
Therefore the embedding j = @_,0i0®@, of UL?(Q) into UPYQ) is continuous.
The continuity of the embedding (1.5) can be proved in an analogous manner.
Q.ED.

By theorem 1.4 and by following analogous arguments as in proving th. 2.8 of [2],
it can be deduced the following result

COROLLARY 1.5. — Under the same hypotheses and notations of Theorem 1.4, if
seR_and pell, + oo, the embedding ULP(Q) = UM(RQ) is compact for each g €[p, p*[;
moreover, if (1—m)p>n, ULP(Q) is compactly embedded into C7,_ (£2).

By following standard arguments it can be proved that the topological dmal
(Ti”f””([}))’z U™ (Q2) (pell, +oof, p'=p/(p—1)) of the space ﬁff’“’(.@) can be
« identified » with the space of distributions » in £ which are equal to a finite sum
of derivatives of order <m of functions belonging to U%Y'(Q).

2. — On the continuity and compactness of some differential operators between
weighted Sobolev spaces.
Let us consider a map

f: QxR¥—~R (keN)

npfn— (I —m)p ifn>@—m)p,

®) p* = _
+ oo Hang{l—mip.
() If p* <+ oo embedding (1.4) holds Vge[p, p*].



324 V.BENcI - D. FoRTUNATO: Weighted Sobolev spaces and the nonlinear, ete.

satisfying the Caratheodory conditions:
(Co) for almost every xe £, f(z, -) is continuous in R*,
(Cy) for every (¥, ..., ¥x) €ER?% f(-, ¥1, ..., ¥x) I8 measurable in Q.
Denote by F the Nemytskii operator associated to f, i.e.
() (@) = f(z, u(@®@) , (@)= (ua(®), ..., Up(®)) , zef.
Let us congider k-1 continuous and positive functions
0;: 2R, ie{0, ..., k}
then the following theorem holds:
THEOREM 2.1. — If py, ..., i, g €[1, + oo[ then following statements are equivalent:
(@) there ewist g LR, ay), be R, such that Y(z, ¥y, ..., ¥:) € 2 X RF,
@, 51y ooy ya)l <g(@) 4D 2 (o:(@)]oo()) ey |7

k
@) 7( [[ 1@, 00) c 4@, o),
i=1
k
(¢) F is continuous from []L#(L, ;) into Li(Q2, o).
i=1

Proor. — It is obvicus that {(a) = (b). Let us prove that (b) = (¢). Let us
consider the map f: @ xR*— R such that

7 . q W Yr
F(®y Yrgoeey Yu) = (0‘0(‘”))1/ f(m’ (0’1(09))1!171’ " ( )

G‘;,,($))1’[37"
f satisfies the Caratheodory conditions (C,), (C,), and denote by F the Nemytskii

operator associated to f.
Let us consider the isometrie isomorphisms:

B, I, 0) > IMD), B = ()i, i€l .k},
(15%1: L(Q, o) — L4Q) , D(f) = (ao)V?f .

By virtue of (b) we have

k k
(2.1) F=a,.000 [[0:% F([]22)c 4@
f=1 i=1
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k
then, by virtue of a well known Theorem [12], F is continuous from []L#(£2)

into Le(£2). i=1
Therefore

&
R S
F=@; oFo0 H P,
i=1

k
is continuous from []L(L,s,) into L(L, a,).
=1
Let us prove now that (¢) = (a):
k
If ¥ is continuous from [] L»(&, ¢,) into Le(Q, 0,), we have, by virtue of (2.1),
i-1
k
that F is continuous from [T L#(2) into L+(£); therefore, by virtue a well known
i=1

result [12], there exist §je L«(2), be R, s.t. for each (x, ¥y, ..., y,) € 2 X R*:

» k
[F (@ gay ey )| <G(@)+ D Z Wilp‘/q§
i=1

then, if we set g(#)= §(x) - (o,(@))~Y¢ and z,= y,-(o,(x))~Y», we have

k . 1/g
F(, 215 vy 20) | <gl@) + b_z(az(m))/ [P QE.D.

i=1 Go(m)

Henceforth we shall suppose that £ has the cone property.
Let pell, +oof, meN and |oj<m, we set

(2.2) Pl = np|(n— (m — |a|)p) it m—la))p<n
I any number in [p, +oof if (m—|x))p>n.

I itell, 4 oo we set t'=1t/t~— 1.

Let us denote by #, and =, the numbers of the n-tuples such that respectively
lxj<m and |a|<m—1. If keN, k<m we set

Diy= {D"‘u}M:k .

Let us consider the differential operators formally defined by:

(2.3) Au= 3 (— 1" D%ay(, u, ..., D™u)
vi<m

(2.4) Bu= 3 (—1)"D"by(2,u, ..., D"u)
yl<m—1

(2.5) Cu = 3 (— 1) DY (@, u, ..., D*1u)

iyi<m
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where a,(|y|<m), by(|y|<m— 1) are real functions defined on 2 X R™, and ¢,{|y|<m)
are real functions defined on £ xR™.

We shall give conditions on the funetions ay, by, ¢, which are sufficient to ensure
that 4, B, ¢ induce respectively continuous, compact, completely continuous maps
from ﬁ;”’”(Q) to its dual U~™7(Q).

In the following we shall suppose that a,, by, ¢y, satisfy the Caratheodory condi-
tions (Cy), (Cy).

THEOREM 2.2. — Let us suppose that
(2.6) Vivi<m, V(z, &) e xXR™:

lay(@, &) <hy(@)+e 3 (9(50\))36(“’3/) | £a|Pie/Pin

o] <m

where

seR, c;eR., hye UMP(Q)  and 0oy p) = (B Pl P -

With such hypotheses the operator A defined by

Au, gy =3 fa,,(x, W), oory D)) D' g(z)d, @ED(Q)

<
l?i\mg

i8 continuous and bounded from ff’;””(!?) to UZ™7 ().

Proor. — By virtue of Theorem 1.4 the map
d: wis (4, ..., D"™u)

is continuous from T™(Q) to [] U%*=(Q).
laj<m

On the other hand, by virtue of (2.6) and Theorem 2.1, the Nemytskii operator 4,
associated to a, is continuous and bounded from [] U*=(£2) to Ufjf"“"(Q). At lagt

let| <

by Theorem 1.4 it can be easily deduced that the map o7: w > Dvy is continuous

from U>%(Q) to U-™(Q).
Therefore 4 = Y d70A,od is continuous and bounded from () to UZ"(Q).
r<m Q.E.D.

THEOREM 2.3. — Let us suppose that
2.7 VYiylsm—1, Yz, &) e 2 xR™:

?bv(w, 5)1 < hyl@) -+ ¢, Z (Q(x))(5"8)6‘(“’y)f50‘1@'“‘;“(”

o) < m
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where
cek,, ) elp, p{y;{i hye Ug’:kle(g) s O1(ay ) = (pI¢[+ Q{},})/fl{yl s GeR,
then the map B defined by

Bugy = 3 fb,,(x,u,...,l)’"u)])”qadw, peD(R)
o

l<m—
is compact from U™(Q) to U-™(R).

Proo¥. — Obviously B= Y 0YoByod, where d: u+> (4, ..., D™u) is continuous
[Pl<m—1

from U™?(Q2) to [1 U%*=(Q); B, (the Nemytskii operator associated with b,) is

<m ,
continuous, by virtue of (2.7), from [] UL2+(R) to UE’f‘;L(Q) and 97: 4> Dva is
lal<m

compact, by virtue of Corollary 1.5, from U>H(Q) to U-™"(2). QE.D.
THEOREM 2.4. — Let us suppose that
(2.8) Vivi<m, V(z, &) e xR™:

ley(@, &) <hy(@) o 3 (ofw))— %

Jor| <m—1

Ealtim/in
where

4
x

eel,, quelppl, e USINQ), Byl )= @+ D)0y s GER,

then the map C defined by

Oy gy =S f 6,(#, Uy oo, D) Dlpds, e D(Q)

l<m 5
is completely continuous from U™ (Q) to U™ ().

PROOF. — In this case 0= D 870 Cyod, where
rl<m

d:ue 107;"”’(.(2) (U, ..., D" ) e [] US51(R2)
laj<m—1
is compact; €, (the Nemytskii operator associated to ¢,) is continuous from

[T U2%(Q) to U¥?"(Q) and &v: we UY(Q) > Druec UZ™"(Q) in continuous.
|} gm—~1 Q.E.D.
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Exampie 2.5, - If #>2 and g: 2XR—R, |: 2 xR~*— R satisfy the Cara-
theodory conditions, the Nemytskii operators

%Hg('su(')): u""f(;“()a gra’du('))
are respectively completely continuous and compact from U3(Q) to U-L¥Q) if
(2.9) lg9(o, ¥)| <h(w)+ (Q(m))ﬂyiﬂ y wel, yekR,

(2.10) (@, ¥, 2)| <h(@) + (@)’ + (e@)Iel*,  (#,9,2)e QX RXR"

where
he U%, (2), (eeRi,qel2,20/(n—2)]), oc<%2_ib28,
Bell, o+ Dfn—20, 7<=y sert, (nt 2yl

For example, the Nemytskii operator associated to the function
9@, u) = (o@))*lu’sinju|’s (e, ne R, and Be[l, 5[)

is completely continuous from WJ}2(R?) to W~1*(R?).

3. — The nonlinear Dirichlet problem.
We shall apply the results of the previous paragraphs to some Dirichlet problems.

ProBLEM L. — Let us congider the following nonlinear Dirichlet problem: to find #
such that
ue If’?’” (£2)

By= Au-+ Bu-+ Cu=f

(3.1)

where A4, B, ¢ are defined by (2.3), (2.4), (2.5) respectively and fe UZ"™*(Q).
The following theorem holds.

THEOREM 3.1. — Let A, B, C satisfy the hypotheses of Theorems 2.2, 2.3, 2.4 moreover
we swppose that

(3.2) (Au— Ao, w— ) >0(u— o] ppra) ,  Vee Q)
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where G 18 a continuous, increasing function, such that 6(0)==0 and
(3.3) CBuy wy |l §rmey—-+oo  for  ulgmeay—>+oo.

Then for each fe U-"™"(Q) there ewists ue U™ (Q) such that Bu= f.
Moreover, if B=0, we can veplace the assumption (3.2) with the following one

(3.4) (Au— Av, u—v>>0, Vel™(Q)
and the same conclusion holds.

ProoF. — By virtue of Theorems 2.2, 2.3, 2.4 and (3.2) (or (3.4) if B=10) E is
pseudomonotone (cf. [5], [107). Therefore the conclusion follows from (3.3) and
well-known theorems on pseudomonotone operators. Q.R.D.

ExaMprE 3.6. — The operator

B) =— 3 50| ato)

k3

p—z %] -+ b{w) ju[r—2u — e(x) ju [P~ 0u

@i
ox;

satisfies the hypotheses of Theorem 3.1 in ﬁi”’(Q) if ¢ Q”(a:)}‘g((jj)) > 6,0 (%) and ()<
<¢;0" " %(») where ¢, 6, ¢, are positive constants and jeR,.

ExampLE 3.3. — Let us consider the operator
By=— Au- Au -+ f(z, u, grad «)

where f: 2 X R X E"— R. If f satisfies the hypotheses (2.10), e R,, and F satisfies
(3.3) on UL%(Q) = WL%(Q) the problem E(u)= { has a solution u e WA (Q) for each
fe W30

ProBLEM II. - Let 2 be an unbounded domain such that 0¢Q. Let a, (i=1, ..., n)
and f be real functions defined respectively in 2 x RB* and 2 X R x R» and satisfying
the Caratheodory conditions. We want to find » s.t.

0 .
(3.5) By = mzéx—,-ai(w’ grad u) -+ flx, u, grad«) = gl&) a.e. in Q2

%fagZO

and verifying asymptotic conditions which will be specified later (i.e, % will be re-
quired to belong to a suitable weighted Sobolev space).
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Let us suppose that

H) jalz, §)§<h(w)+b}x128%§§§{ , YreQ,feR" hel?(Q, x| ¥),beR,, scR.

i=1

H,)  Voe®, jeR 2(66 (@, &) — a(@, M)(E;— ns)>m|z[>]E — )2
where m i3 a positive constant.

H,) [f(x, y, &) <h@) -+ |2|*|y)°+ |2"|&)°,  V(z,¥,§ el xR xR

where
he U@, (GE12 2020 —2)e>0),  a< - (5—1),
pelt, o+ D20, < TN 1), oel, -+ 2l

o) f@y, &y>—clally’, Y@y, §e QxR xE
where ¢ is a positive constant and 6€]0,2[, n<—n(2—0)/2406(s— 1)/2.

Let W be the completion of D(L2) with respect to the norm

ol = (3 [l 22 @) -

By virtue of Theorem 1.1 we have the continuous embedding

(3.6) Wes 120, o2, o)), &>0

where I':2(Q, [z]22e, |z]2) = O°° ) (closure in I'3(9, |x|22-¢, |z]>).
The following theorem holds:

THEOREM 3.4. — Under the hypotheses H,), ..., H,), for each ge W' (omd by virtue
of (3.6) for each geL*(Q, |w|—25+2+£)) there ewists we W solution of (3.h).

Proor. — By virtue of (3.6), the embeddings
i1 Wes Ul LOPPN § ) IR A UZbl (@) > W'
are continuous. On the other hand, by virtue of Theorem 2.3 and Hs) (cf. (2.10))

the Nemytskii operator B, associated to f, is compact between Us 2 () and
UZL2 1 .o(R). Therefore F'=i*oBoi is completely continuous. By virtue of H,)
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and with the same arguments used in Theorem 2.2, it easily follows that the operator

n

Au="7 (0/omw;)a (2, gradu) is continuous from W into W’'. Let us now prove that
i=1

E= A+ F is coercive on W, i.e.:
3.7) {Bu, wyf|w]y—>-oo for |July—+Foo.

By virtue of H,) we have

f o [u(@) |° de <( f I I"(’?_S'e)dw)w(f(lmisls lu(’x)ie)zf&dm)elz

2 0
where

u=2/2—06), s=s—1—p, >0

sufficiently large, therefore

(3.8) f e |u<w>\6dw<ol( f /2 u(e) 2dw)e'z<ol ull
2 2
where
1/p
6, = (f}a: I"(’?‘S'e)dm) .
0

By virtue of H,), H,) we have

(3.9) {Bu, uy = {Au, wy -+ {Fu, w)>c)u|5— cﬂw}”lu(m)ied&; , GER,.
o

Because 6e]0, 2[, (3.7) follows from (3.8) and (3.9). Therefore, by virtue of well-
known theorems on pseudomonotone operators (cf. [3], [10]), the conclusion follows.
Q.E.D.

ExampLE 6.5. — I QcR® and hi{z)e $(2)
Bu=— Au-+h@)u’"", (Bell,2])
satisfies the assumptions of Theorem 3.4 on the space ]9’1’2(!2, |2|~2-¢, 1).

ProBLEM III. — Let 2 be an unbounded domain such that 0¢Q, and g be a
meagurable, real function on 2. We consider the following scalar product in D(02)

L ?
[u, v} —égl f%(w)é(m)dx
02
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and we denote by V the Hilbert space, completion of D(Q2) with respect to the scalar
produet [ -, -1
In the following we study the linear problem:

(3.10) { wev

— Au + Ag(x)u = f
where A is a real parameter.
THEOREM 3.6. — Lel us suppose thai

(3.11) sup ess gix)? e[t < + oo
wel

then there exists a discrefe set A of real numbers bounded from below such that:

I) for A& A problem (6.10) has only one solution w for each feV’ (cmd in par-
cular for each feL*(9, |x|*te), e>0),
1) for e A the homogeneous problem
weV
— Au + Aglz)u =0

has a finite number of linearly independent solutions. Moreover for each A the Theorem
of the Fredholm alternative holds in V.

Proor. — Let us consider the canonieal isomorphism
H:u—{-,ul, wuweV, Hu)eV'.
By virtue of (3.11), the map
Gi:urgu

is continuous from L(£2, |«|~*) into L2({2, |¢|**<); on the other hand, by virtue
of Theorem 1.1 and Corollary 2.9 of [2] the embedding

i: Ve L0, |o|2)
is compact, therefore also the embedding

* LR, |x|rte) > V'
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is compact. We deduce that G = i*c,0i is compact from V into V’. On the other
hand problem {(3.10) is equivalent to the following functional equation

u+ MHo@)(u) = HX{)

where Ho@G: V-V is compact and H-'(f)eV. QE.D.

ProBLEM IV. — Let £2 be an unbounded domain in R». Let us consider the fol-
lowing problem

(3.12) {-—A%+2u+¢wﬂ%gadmzzmm

ue W)

where AeR_, ge W) and f is a real function defined in 2 X R xR, satisfying
the Caratheodory conditions and the following properties:

(3.13) V(o 1, ) eQXRXE",  |f(@, b, ) <h(a)+ bift)f 4 bl& ]

where
heL?(2), qel2,em/m—2), Bell, (n+t2)(n—2),

dell, (n+2)/n[, by, beR,

(3.14) Viz,t, E)e QX R X R, f(m,t, &) t>— 6|2~ r(x)

where 6 < min{l, A}= M,, re L}(Q).

Let us observe that, by virtue of (3.13), the Nemytskii operator F associated
to f is continuous from W3(Q) to W, »*(2) but it is not, in general compact; therefore
we cannot directly use the Theorem 3.1. However the following theorem holds:

THEOREM 3.7. — Under the hypotheses (3.13), (3.14), the problem (3.12) has af least
one solution ue Wy Q) for each ge L¥(Q).

The proof of Theorem 3.7 easily follows from the following lemma

LemMA 3.8. — For each e R, the problem

Wi Q
(3.15) {%e o)

Esuaz - Au’e+ }'us+ Qﬂsf(a% Uy gra‘dla’s} =
has a solution w,. Moreover the sequence of solutions {u,} is bounded in Wy*(RQ) and
we cam select a subsequence {u, } with the properties: £,—>0 for n—-+oco and there
exists uye Wy(Q) s.t.

U, —uy in WeH(Q) and  w, —>wu, in U¥*Q), Vs<O.

22 ~ Annali di Malematica
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Proor. — For each ¢ R, the Nemytskii operator F,, associated to the funec-
tion g~¢f, is compact from Wy(2) into W~1%Q2). On the other hand, by virtue
of (3.14), we have

(B, v)/|v|wiyay—>-+oo  for [ofpiygy—>--oo.

Therefore, by virtue of Theorem 3.1, for each s R, the problem (3.15) has at least
one solution w,c W% Q). Moreover, by virtue of (3.14), we have:

1 1
”“s” 2W:.l(g)<E <(“’“ 4 + }')/“’87 u5> = TE <g7 u8> - :Z;l{_; <F8(u€)7 ey <

1 4
<37 19l elipoin + 3 e oeraduo)rde + - Irlo <
2

<€ ﬁ“sﬂm"(sz) + ‘M‘l late wing) T+ Co
where

1 1
%= r, lglw-2a and o= M, 171z -

Then it is easily deduced that {u,} is bounded in Wy*(2). Therefore we can select a
subsequence {u, } such that

£,—>0 for m—>J-oco and u, —u, in Wy¥Q).
Let us now observe that, by virtue of Corollary 1.5
(3.16) U, —>u, in UPY(2), YO<O0, Vpe[2,2n/(n—2)[
u, are solutions of (3.15), therefore
(3.17) — Au, + ru,, = g—F_(u,).
From which, if s<< 0, we have

(3.18)  [K(— A+ M, 0¥ (1, — ue)>| = |<gy 02(%,,— we)> — <{F, (%), 0> (4, — %)>[<

<9l zeay " ”“e,," o 02’574(9)'1" [ F e,.(“e,.)”m'(m ’ H“s,,”“ o U2 +

By virtue of (3.13), {F, (v, )} is bounded in LY(Q), therefore from (3.16) and (3.18)
it follows that

(3.19) L{— A4+ u, , @**(u, — te)> >0 for n—>-o0.
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Now, by virtue of (3.17), {(— A+ A)u, } is bounded in L¥(£2) therefore we may
suppose (if necessary by passing to a further subsequence) that

(3.20) (— A+ Nu, =y, in LYQ).

On the other hand the operator v (— A+ A)v is weakly continuous from Wi*(Q)
into W-12(£), thus

(8.21) (—A+Aw, —=(— A4+ Au, in WQ).
From (3.20), (3.21) we deduce that
(— A+ Nu,e LY(Q) .
Therefore we have also
(3.22) (= A+ Ayuy, @*(u, — o)y —~0  for n—>-oo.
From (3.19) and (3.22) it follows that
(3.23) {— A )y~ u, )y 0*(tUy—u, )> >0  for m—>-fo0,

ie.

(3.24) g f (@) |

w5 [l

On the other hand

(uo( ) — (@) dw-uf 25(0) to@) — he () [ 0 +-

b

aw (uo(w usn(w))] (uo() — we, (%)) dw -0 for n— + oo

(3.25) I, = <

D02 o
f ['é%: (x)%;(uo(w Ue, w))] (vo(@) — te, () do
2

<a( [0 o)~ we@raa) ( | léi— (1) — e @) | d0) =
2 o
§01”’N/0 Ue ” oot (Q)Huo-u “2 1,2 ¢y = JSup aQ (CE‘) .
n il TUgsdy Enll Wy (), 1 eh ami

Therefore, by virtue of (3.16) and the boundedness of {|u,— %, |3 @}, We have
(3.26) I,—-0 forun—>-toco.
Finally from (3.24) and (3.26) it follows that

lwe— u, |viiay—>0 for mn—>+4-oco. QE.D.
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Proor or THE THEOREM 3.7. — We preserve the notations introduced in proving
Lemma 3.8. It is easy to see that the map v+ F(v) is continuous from Wi:3(£2)
into L& (Q), therefore, by virtue of Lemma 3.8, we have

(3.27) F, (u,)—>F(u) in LL(Q).

loc

On the other hand {F, (u, )} is bounded in L?(£2), thus we may suppose (if neces-
sary by passing to a further subsequence) that

(3.28) F, (u,)—yx inL9Q).
From (3.27) and (3.28) it follows that

F (u )— Fu,) in I¥(Q).

ept " Bp

Thus, passing to the weak limit in the equation — Au, 4 v, +F, (u,)=g, the
conclusion easily follows. Q.E.D.
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