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S u m m a r y .  - A ]amily, E, consisting o] normalised univalent ]u~wtions with univalent deriva- 
tives is studied with regard to the zeros o] these functions. 

l .  - I n t r o d u c t i o n .  

Le t  2 : {z: Iz] < 1}. Le t  S be the family  of functions,  z-~ ~ a ~ z  k, each of which 

is univalent  in 4 .  Le t  B be the  subfamily of S such t h a t  if ] ~ E ,  t hen  each ](') is 
univalent  in A,  n : O, 1, 2, .... I t  is known t h a t  the  members  of B are ent ire  func- 
t ions of exponent ia l  t ype  [8]. 

I n  this paper ,  we are concerned with the dis tr ibut ion of the zeros of functions 
in E.  I f  ] e E,  then  ] can vanish in A only at  the origin. We invest igate how close 
to  the boundary  of A other  zeros of / ma y  lie. We also give conditions on the zeros 
of an ent ire  funct ion which force the  funct ion to be in E.  

2 .  - S t a t e m e n t s  o f  t h e o r e m s .  

THEOREM 1. - Le t  

(i) Then  

: i n f { I z l : / ( z ) =  0, z # 0 , 1 e E } .  

(i) + + 

where ~ : sup {If(0)]/2 : t e E} and fl is a number  such tha t  0 < fl < 1/2 and (2 -~ fl)/(1 -~ 

+ 8) < (2 - 4 8 +  ~) /~(2 - 8). 

(ii) However ,  there  is a funct ion in E such t h a t  each of its derivatives has a 
zero on the boundary  of A. Fur the r ,  this funct ion and each of its derivat ives are 
close-to-convex in 4 .  

(*) Entrata in :Redazione il 29 marzo 1978. 
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RE~£gK. - I t  is known [8] t ha t  ~r/2 < ~ <  1.7208. Fur the r ,  there  are numbers~/7, 

satisfying the inequalities in (i), e.g., / 7=  0.29. 

0Ol~OLLA~Y. - Wi th  the  no ta t ion  of Theorem 1, 1o0084< $ <  1.7752. 
We note  tha t  the  exponent ia l  type  of the funct ion in Theorem 1 (ii) is a t  least 

as great  as the  Whi t t ake r  constant ,  W. I t  is known tha t  0 .7259< W <  0.7378 [37 4]. 
l~urther, the  exponent ia l  t ype  is no greater  t h a n  2~. 

The  following theorems were p roved  in [7] and [1017 respect ively:  

T~EO~E~ A. - Le t  a and d be numbers  such tha t  a > d > 1 and such tha t  

i ( 1 - ] -  d)(a ~(k-1)/~- d ) - l <  1 . 

T~et {z~}k~ ~ be a sequence of complex numbers  such t h a t  1 <  (0.276)Iz~ I and such t h a t  

for k =- 17 27 .... I f  

] ( z )  = z ( 1 -  z/z ) , 
k = l  

then  ] e E .  I n  fact ,  each ]<") is close-to-convex in A. 

TKEOREM ]~. - Le t  /7<0. Le t  1 <  z l<  z~< ... be such tha t  

I f  

c o  

1/(zt~-- 1) < 1  -~/7. 
k = l  

/ ( z )  = ze  ( 1 -  z/z ) 7 
/ ~ = 1  

then  ] e E.  I n  fact ,  ] is starlike in A and each f~) is close-to-convex there.  
The functions in Theorem A ma y  have zeros spread over the complex plane, 

bu t  their  order mus t  be 0. The functions in Theorem B ma y  have  order equal to 1 
and  type  arbi t rar i ly  close to  17 b u t  thei r  zeros must  lie on a ray.  We now state  a 

theorem tha t  falls between Theorems A and B. 

X oo Tt~EOI~E~ 2. -- Le t  t > 0. Le t  { ~}k=l be a non-decreasing sequence of posit ive 

numbers  such t ha t  1 +  t <  xl and such t h a t  

co  

(2) ~, l l ( x ~ -  1 - -  t) < 11(1-F t). 
k = l  
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Z oo Le t  { k}~=~ be a sequence of complex numbers  such tha t  

(3)  l x ~ -  z~l < t 

for  all k. I f  

(4) t ( z ) = z  ~ ( 1 - z / z ~ ) ,  

then  ] e E .  I n  fact~ ] is starlike in A ~nd each ](') is closeto-convex there.  
Final ly ,  we prove  the  following: 

T~rEO~E~ 3. -- Suppose f i ~ 0  and l~z~<~z2 .... Let  

(5)  ](z) : ze~Z (k~= l -- z[zk) . 

(We allow iV to be finite or infinite. I f  iV = c¢, we assume ] to be well-defined.) 
I f  ]eS ,  then  ~/2<Zl .  The inequal i ty  is sharp only  for ze~(1--z/ ,~/2),  which is 
starlike in A. 

l~urther~ if X ~ I  ~ n d i f  fizz<l, t hen  ] E S  if and only if z~>(2÷fl ) / ( l÷f l ) .  In 
this case, z~ >~ (1 -~ V3)/2.  

C0~0LLA]CY. - I f  l E E  and if ] has the form of (5), then  %/2<z~. 
This is of interest  because functions of the  form (5) are used to establish the 

r ight  side of the inequal i ty  in (1). 

3 .  - P r o o f s .  

Suppose 

Ii(z) = z e ~ ( 1 -  z/zl) . 

An induct ion a rgument  shows tha t ,  for n ~ 0, 1~ 2~ ..., 

1 , ) = # -  ~ - - -  - - -  z ~" c x p  [ f l z ] .  
Zl Zl ] Zl 

d')(z Define P~(z) by  Jl . ) ~ e~ZP~(z)~ n 0, 1~ .... Suppose 0 < fi < 1/2, 0 < z l<  2, and 

(6)  4f l  + 2flz~ < f l ~ ( 1  ÷ z~) + 2 .  

(Any fl sufficiently close to 0 satisfies this.) We show tha t ,  for  n~>2 and z e A ,  
R e  { P n ( z ) }  < 0. 
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I t  is enough to show tha t  l~e{P.(z)}<0 when Izl = :I. For  z =  x +  iy and Izl = 1, 

~ e  {p~(z)} = sZ'~-~ ~ -  s 1 + _  + ~,~_, ~ . . . .  x~. 
Zl Zl Zl / Zl 

I f  n > 3 ,  using (6) and the other conditions on fl and z~, i t  can be shown tha t  the 
discriminant of this quadrat ic  is negative. Hence, the quadrat ic  is negative for 
all x. I f  n ~ 2, these conditions imply tha t  the roots to the quadrat ic  lie to the 
left  of --1.  In  part icular  the quadrat ic  is nonpositive for x e [ - - 1 ,  1]. This estab- 
lishes the assertion of the previous paragTaph. 

l~ow suppose 0 < f l<1/2 and 

(7) (2 + ~)/(1 + ~) < z~< 2 .  

Using these, i t  is possible to show tha t  l~e{P~(z)} > 0 for all z e A .  

L v . ~ A  1. - Suppose 0 < f l < l / 2 ,  z~<2, and 

(s) (2 + ~)/(1 + ~) < z~ < (2 - 4~ + ~ ) / ~ ( 2  - ~) . 

Then f~ and ull its derivatives are univalent  ~nd close-to-convex in A. 

P]~ooF oF LEM2iIA. - Let  g(z)= (e p~- 1)~ft. Then g is a convex and univalent  
function in A. Fur ther ,  for n----1, 2, ..., Re{/(~)(z)/g'(z)}----Re{P~(z)}. The condi- 
tions, (8), on fl and z~ imply the t ru th  of (6) and (7). So, if n = l ,  R e ( P ~ ( z ) ) > 0  
in A, while if n > 2 ,  Re{P . (z )}<  0 in A. Hence, for all n > 0 ,  f ' )  is univalent  and 
close-to-convex in A [2]. 

We note tha t  the t ru th  of the left par t  of (8) is a necessary condition for the 
univMence of ]~ in /I provided tha t  0 < f l < l  and tha t  z~ is re~l. 

P~ooF OF Tn'EO]~E~ 1. -- (i) Suppose l e E  and ](z ' )= 0, where z'-~ re ~°, r ~= O. 
From [8, 9], we have tha t  I]'(z)]<e ~l~l for all z. Hence, 

1 

< f e 2~° d e = (e ~ _  e2~)/2g. 
1 

I t  is known that ,  if ] does not  assume the value, w, then  t w I > l / ( 2 +  Ia~t), where 
a2=  ](~)(0)12 [5, p. 214]. 

Hence, [](e~°)1>~1/(2+ ~). So, 

log [e2~+ 2~/(2 -[- o:)] <2~r  
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or, 

1 + 2~log [1 +- (2 + ~)e~ < r .  

This proves the left side of (1). 
The r ight  side of (1) is proved by using Lemma 1 to produce an appropriate 

example. We would like to choose fi so t ha t  

(z + ~)/(1 +/~) < (z - ~ +/~) /~(~ - ~) .  

Let t ing  fl = 0.29, this is satisfied. Le t  zl = (2 + fl)/(1 + fl) -= 1.77519 .... Lemma 1 
then  shows tha t  ]16 E. The proof of (i) is complete. 

(if) Now we prove the last  par t  of the theorem. Let  go(z)= e ~ -  1. Note 
tha t ,  in A, go and all its derivatives are convex and therefore, close-to-convex. Le t  

hi(z) = z--  (fgo(S) ds)/go(i). Then h'l(1 ) ---- 0 and Re {hi(z) } > 1 -- [go(S)l/go(i) > 0 for z e A. 
0 

So, hlEE and each derivative of hi is close-to-convex in A. Now suppose h ~ e E  
such tha t  each derivative of h~. is close-to-convex in A and such tha t ,  for 1 < n < N ,  
there is some zN_~+ ~ with  the properties t ha t  tzN_~+~l = 1  and h~)(zN_,+~)= O. 
Let  zN+ ~ be a number  such tha t  IzN+ll-~ 1 and such tha t  the(z)[< ]h~(z~+l) I for 

g ! f 
all z e ~ .  L e t  h~+~(~) = z - -  (fh~.(s) es ) /~- (z~+O.  T h e n  h~+~(z~.+~) = 0 and  ~ e  {~-+~(~)} 

0 

>~1-- IhN(z)/hN(z~+l) I > 0 for z e A .  So, h~+leE.  In  fact~ each derivative of hz~+l 
is close-to-convex in A and for l < n < N + l ,  there is some z~+e_ ~ with  the prop- 
erties t ha t  Iz~T_~+~l = 1  and (~) h~-+l(z~y+e_,)-~ O. Thus, we inductively obtain a se- 

h quence, ( N}~=I, in E such that ,  for each N~ each derivative of h~ is close-to-convex 
in A and, for l < n < N ~  there is some z~+~_~ with  the properties tha t  ]z~_,+l[----1 
and  h~)(z~+1_,)-~ O. 

Now the functions in E are uniformly bounded on compact  subsets of the complex 
plane. So lViontel's Theorem shows tha t  E is a normal family on the whole plane. 

h Hence, { N}~=I has a subsequence tha t  converges uniformly on all compact subsets 
h of the plane. Wi thou t  loss of generality,  suppose { ~}~-=~ itself converges, and let h 

be its l imit  function.  Since a uniform limit  of close-to-convex functions is either 
close-to-convex or constant,  each h (~) is either close-to-convex in A or constant  there. 

l~or a fixed n > l ,  h~)(zs+l_~): 0 for all N > n .  Because {zs+~_~}~=. lies on 
the boundary  of A, we m a y  suppose {~s+~_s}s=s converges. Le t  zs be its limit. 
Since ~;h (~)x~s j~,=l converges uniformly to h (~) on Izl = 1, and since {h~)}~=~ is an equi- 
continuous family  on ]z] = 1, it  follows tha t  h(~)(z'~)-~ O. Since this is t rue for all 
n > l , , a n d  since h(0)----0, the only polynomial  t ha t  h could be would be h(z )~  O. 
But  h'(0)-----1, so h is no t  a polynomial.  Hence, huE.  Since Iz '~l=l  for all n > l ,  
the theorem is proved. 
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To prove  the  corollary to  Theorem 1, note  t h a t  the  left  side of the  inequal i ty  
follows f rom (1) since a <  1.7208. To prove  the r ight  side, let  fl-~ 0.29 and z l =  
= (2-Ffl) /(1-Ffl)  in L e m m a  1. 

I n  what  follows, we shall need several results. I n  particular~ we shall use Lucas '  
Theorem [11, p. 218], Laguerre 's  Theorem, [1~ p. 23] [10], and Walsh's  Theorem [11, 
p. 219]. We state  Walsh's  Theorem in the form in which we need it. I n  what  
follows 2V is a member  of {oo, 0, 1, ...}: 

X Zr WALSIt~S Tn~O~E~. - Le t  { k}k=~ be a sequence of real, non-zero numbers  such 
2¢ 

(Zk}k= 1 be a sequence of complex, non-zero t ha t  ~ [xk l -~<  co. Le t  t ~ 0 .  L e t  z~ 

numbers  such t ha t  lzk--xkl<~t for all k. Define ] and g b y  

and 

N 

g(z) = z ]-I ( 1 -  z/x~) 

N 

l (z)  = z  ~ ( 1 - z / z ~ ) .  
k = l  

L e t  s~(~)~v be the  critical points of g. Then  the critical points of ] lie in the cir- 

cles~ C~, w h e r e  

c~= {z: Iz-  ~(#I <t} .  

Fur ther ,  if T is a set of these circles, and if {z: z e C~0e T} does not  intersect  any  
Cj~ T, then  the number  of critical points,  counted according to multiplicity,  of ] 
in (z: z e Ck e T} is the  sum of the  multiplicities of the x(k ~), where x(k~)e C7~ e T. 

We shall also need one of our results in [10], res ta ted  in a more general  way. 
The proof  is unchanged~ so we do no t  give it. 

L E I ~ A  2. -- Le t  ] be an ent i re  funct ion such t h a t  

N 

1'(~) = eel° I-[ ( 1 -  z/z(#), 

where e is a non-zero complex number,  each of the  z(~ 1) is a non-zero complex number ,  

and fl is a complex number .  I f  2V----0, we require tha t  f i ¢  0. 
Suppose t ha t  R ~ 0  such t h a t  R <  [z(kl)l for each k. Suppose tha t  ~z (1)~ I~ Jk=l can 

be par t i t ioned  into two sets, A: and B, and t h a t  f l - ~ l - F f i ~  such tha t  

IR ÷ .~  ]z':'] - n 
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und, for  each Izt ~ R, 

~ 0 .  

Then  ] is close-to-convex and, therefore,  univalent  in Izl ~ R. I f  f l ~  0 and B is 
empty ,  then  ] maps lzl ~ R onto ~ convex set. 

P~ooF  oF Tn~0~EM 2. - Because of (2) and (3), we have tha t  Re(z~} > 2 +  t 
for  all k. Using this, (3), and (4), i t  follows that ,  if zEA,  

Therefore,  f rom (2), 

Hence,  ] is starlike in Ll. 
Le t  

l•fzt'(z)] ~ l 

~ e  i /(z) J > t + t" 

g(z) = z I I  ( 1 -  zlx~) . 
i= l  

~(') J ~(~) ~ Using Laguerre 's  Le t  ~o( ' )P  be the zeros of g(') arranged so tha t  ~o ~ 1  . . . .  
Theorem and an induct ion argument ,  i t  follows t h a t  

(9) x(") •x ('+1) 

for  all n and k. Fur ther ,  using Walsh's  Theorem and another  induct ion argument ,  
~z (~)P° of ](') can be so ordered tha t  we have tha t  the zeros, ~ k n=o,  

(10) 14 ")- ¢)! <t 

for  all n and  k. 

5Yext, we wish to find a lower bound  on x~ ~). As in the first pa r t  of this proof, 
we have  that ,  for z e A, 

1%,rzg'(z)/> Iot 

Laguerre 's  Theorem shows tha t  there  is exact ly  one zero, x (~), of g' in (0, x~). Fur the r ,  
if i z l<  l ~ - t ,  then  (2) shows tha t  

~=~x~- ~1 >0" 

Hence,  g' cannot  vanish in (0, l ~ t ) ,  i.e., 1 - ~ t < x  (~). 
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5Tow we use this bound on x(o ~) to get  information about  the % ~(~). F i rs t  of all, we 
note  tha t  1 H-t<x(k ~) for all/~, h~ext, we note  tha t  (10) implies tha t  Re(z(k 1) -  x(~)}<t 
for all k. Pu t t ing  these together,  it follows tha t  Re{z(k~)}>l for all k. This and 
Lucas '  Theorem imply tha t  

(11) :Re {¢)} > 1 

for all k and for n~>l. 
We now finish the  theorem. Fi rs t  of MI~ (11) shows that ,  if z E A  and if n > 2 ,  

then 

I t  follows from (2), (9), and (10) that ,  for n~>2, 

~=~ Iz(:~l-  1 < 1 + t" 

Using this,  (12), and Lemma 2, it follows tha t  1(~-1) is close-to-convex in A for n > 2 ,  
i.e., ](~) is dose- to-convex in A for n > l .  The proof is finished. 

Finally,  we prove Theorem 3. The assumptions abou t  ] imply that ,  if z =  1 
or z = -- 1, then  z['(z)//(z)> O. So, 

0 < I'(1)/1(1) - ] ' ( -  1)/1(- ~) 
iV 

= 211 + X 1 / ( 1 -  z~)]<211+ 1 / (1 -  z~)]. 
k = l  

Hence,  z~>~/~. I f  z l =  ~/2, we must  have iV = 1. This means ](z) = ze#Z(1 -- z /~ /~ .  
However ,  we must  also have f ' ( 1 ) =  0. This forces f l = ~ / ~ .  For this ] and for 
Iz] = 1, lCe(z]'(z)/](z)} = 2 R e { l - -  z~}/]v/~ - zp. Hence,  ] is starlike in A. 

Fur ther ,  for this f, ] " (0 )>  0 and f ' ( 1 ) <  0. So, ]'~ vanishes on (0, 1), and ]' 
cannot  be  univalent  in D. Hence,  ] is not  in E. This proves the corollary. 

To prove  the rest  of the theorem, suppose i V =  1 and flz~<l. Then ] ( z )=  
= z~- a~z2~ ... where, for n>~2, a . =  fl~-~[n-- 1 - -  ~zl]/z~(n-- 1) !. Hence,  

co 

Since, for n>~2, a~ is negative, it follows tha t  ]~  S if and only if ~ n l a .  t < 1  [cf., 6]. 

The desired result  follows. Fur ther ,  since 1/fl> z l> (2 H- fi)/(1-F fi), we have tha t  
/72+/? - 1 < 0 ,  or, /7 < (~v/5 - -1 )  /2. Hence,  z1>(%/5-~-1)/2. 
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Added in proo]. - The first pa r t  of Theorem 3 can be extended as follows: Let  ] be de- 
fined by  (5), where we assume only tha t  fl and all  z k are real  and 1 < [zll ~< Izk[. Then ] e S 
if  and  only if ]'(1) ~> 0 and ] ' ( - -  1) ~> 0. Fur ther  if f e S, then ] is s tar l ike in A and ~/2~< Izll. 
I f  fl >~ o, equal i ty  occurs only for the given function. 
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