On the Zeros of Univalent Functions with Univalent Derivatives (*).

SWARUPCHAND M. SHAH (Kentucky, U.S.A.) - SELDEN Y. TRIMBLE (Missouri, U.S.A.)

Summary. – A family, E, consisting of normalised univalent functions with univalent derivatives is studied with regard to the zeros of these functions.

1. - Introduction.

Let $\Delta = \{z: |z| < 1\}$. Let S be the family of functions, $z + \sum_{k=2}^{\infty} a_k z^k$, each of which is univalent in Δ . Let E be the subfamily of S such that if $f \in E$, then each $f^{(n)}$ is univalent in Δ , n = 0, 1, 2, It is known that the members of E are entire functions of exponential type [8].

In this paper, we are concerned with the distribution of the zeros of functions in E. If $f \in E$, then f can vanish in Δ only at the origin. We investigate how close to the boundary of Δ other zeros of f may lie. We also give conditions on the zeros of an entire function which force the function to be in E.

2. - Statements of theorems.

THEOREM 1. - Let

$$\zeta = \inf \{ |z| : f(z) = 0, \ z \neq 0, \ f \in E \} .$$

(i) Then

(1)
$$1 + \frac{1}{2\alpha} \log\left(1 + \frac{2\alpha e^{-2\alpha}}{2+\alpha}\right) < \zeta < \frac{2+\beta}{1+\beta},$$

where $\alpha = \sup \{|f''(0)|/2 : f \in E\}$ and β is a number such that $0 < \beta < 1/2$ and $(2+\beta)/(1+\beta) < (2-4\beta+\beta^2)/\beta(2-\beta)$.

(ii) However, there is a function in E such that each of its derivatives has a zero on the boundary of Δ . Further, this function and each of its derivatives are close-to-convex in Δ .

(*) Entrata in Redazione il 29 marzo 1978.

REMARK. - It is known [8] that $\pi/2 \leq \alpha < 1.7208$. Further, there are numbers, β , satisfying the inequalities in (i), e.g., $\beta = 0.29$.

COROLLARY. - With the notation of Theorem 1, $1.0084 < \zeta < 1.7752$.

We note that the exponential type of the function in Theorem 1 (ii) is at least as great as the Whittaker constant, W. It is known that 0.7259 < W < 0.7378 [3, 4]. Further, the exponential type is no greater than 2α .

The following theorems were proved in [7] and [10], respectively:

THEOREM A. - Let a and d be numbers such that a > d > 1 and such that

$$\sum_{k=2}^{\infty} (1+d)(a^{k(k-1)/2}-d)^{-1} < 1 \ .$$

Let $\{z_k\}_{k=1}^{\infty}$ be a sequence of complex numbers such that $1 \leq (0.276)|z_i|$ and such that

 $a^k |z_k| \leqslant |z_{k+1}|$

for k = 1, 2, ... If

$$f(z) = z \prod_{k=1}^{\infty} (1-z/z_k) ,$$

then $f \in E$. In fact, each $f^{(n)}$ is close-to-convex in Δ .

THEOREM B. – Let $\beta \leq 0$. Let $1 < z_1 < z_2 < \dots$ be such that

$$\sum_{k=1}^{\infty} \frac{1}{(z_k-1)} \leq 1+\beta \; .$$

 \mathbf{If}

$$f(z) = z e^{\beta z} \prod_{k=1}^{\infty} (1-z/z_k)$$
,

then $f \in E$. In fact, f is starlike in Δ and each $f^{(n)}$ is close-to-convex there.

The functions in Theorem A may have zeros spread over the complex plane, but their order must be 0. The functions in Theorem B may have order equal to 1 and type arbitrarily close to 1, but their zeros must lie on a ray. We now state a theorem that falls between Theorems A and B.

THEOREM 2. – Let t > 0. Let $\{x_k\}_{k=1}^{\infty}$ be a non-decreasing sequence of positive numbers such that $1 + t < x_1$ and such that

(2)
$$\sum_{k=1}^{\infty} 1/(x_k - 1 - t) \leq 1/(1 + t)$$

Let $\{z_k\}_{k=1}^{\infty}$ be a sequence of complex numbers such that

$$(3) |x_k - z_k| \leqslant t$$

for all k. If

(4)
$$f(z) = z \prod_{k=2}^{\infty} (1 - z/z_k) ,$$

then $f \in E$. In fact, f is starlike in Δ and each $f^{(n)}$ is closeto-convex there. Finally, we prove the following:

THEOREM 3. – Suppose $\beta > 0$ and $1 < z_1 \leq z_2 \dots$ Let

(5)
$$f(z) = z e^{\beta z} \left(\prod_{k=1}^N 1 - z/z_k \right).$$

(We allow N to be finite or infinite. If $N = \infty$, we assume f to be well-defined.) If $f \in S$, then $\sqrt{2} \leq z_1$. The inequality is sharp only for $ze^{z\sqrt{2}}(1-z/\sqrt{2})$, which is starlike in Δ .

Further, if N = 1 and if $\beta z_1 \leq 1$, then $f \in S$ if and only if $z_1 \geq (2+\beta)/(1+\beta)$. In this case, $z_1 \geq (1+\sqrt{5})/2$.

COROLLARY. - If $f \in E$ and if f has the form of (5), then $\sqrt{2} < z_1$.

This is of interest because functions of the form (5) are used to establish the right side of the inequality in (1).

3. - Proofs.

Suppose

$$f_1(z) = z e^{\beta z} (1 - z/z_1)$$
.

An induction argument shows that, for n = 0, 1, 2, ...,

$$f_1^{(n)}(z)=\left[neta^{n-2}igg(eta-rac{n-1}{z_1}igg)+eta^{n-1}igg(eta-rac{2n}{z_1}igg)z-rac{eta^n}{z_1}z^2
ight]\exp\left[eta z
ight].$$

Define $P_n(z)$ by $f_1^{(n)}(z) = e^{\beta z} P_n(z), n = 0, 1, \dots$ Suppose $0 < \beta < 1/2, 0 < z_1 < 2$, and

(6)
$$4\beta + 2\beta z_1 \leq \beta^2 (1+z_1) + 2$$
.

(Any β sufficiently close to 0 satisfies this.) We show that, for $n \ge 2$ and $z \in \Delta$, Re $\{P_n(z)\} < 0$.

It is enough to show that $\operatorname{Re} \{P_n(z)\} \leq 0$ when |z| = 1. For z = x + iy and |z| = 1,

$$\operatorname{Re} \left\{ P_n(z) \right\} = n \beta^{n-2} \left(\beta - \frac{n-1}{z_1} \right) + \frac{\beta^n}{z_1} + \beta^{n-1} \left(\beta - \frac{2n}{z_1} \right) x - \frac{2\beta^n}{z_1} x^2 \,.$$

If $n \ge 3$, using (6) and the other conditions on β and z_1 , it can be shown that the discriminant of this quadratic is negative. Hence, the quadratic is negative for all x. If n = 2, these conditions imply that the roots to the quadratic lie to the left of -1. In particular the quadratic is nonpositive for $x \in [-1, 1]$. This establishes the assertion of the previous paragraph.

Now suppose $0 < \beta \leq 1/2$ and

(7)
$$(2+\beta)/(1+\beta) \leqslant z_1 < 2$$

Using these, it is possible to show that $\operatorname{Re} \{P_1(z)\} > 0$ for all $z \in A$.

LEMMA 1. - Suppose $0 < \beta \leq 1/2, z_1 < 2$, and

(8)
$$(2+\beta)/(1+\beta) \leq z_1 \leq (2-4\beta+\beta^2)/\beta(2-\beta)$$
.

Then f_1 and all its derivatives are univalent and close-to-convex in Λ .

PROOF OF LEMMA. - Let $g(z) = (e^{\beta z} - 1)/\beta$. Then g is a convex and univalent function in Δ . Further, for $n = 1, 2, ..., \operatorname{Re} \{f^{(n)}(z)/g'(z)\} = \operatorname{Re} \{P_n(z)\}$. The conditions, (8), on β and z_1 imply the truth of (6) and (7). So, if n = 1, $\operatorname{Re} \{P_n(z)\} > 0$ in Δ , while if $n \ge 2$, $\operatorname{Re} \{P_n(z)\} < 0$ in Δ . Hence, for all $n \ge 0$, $f^{(n)}$ is univalent and close-to-convex in Δ [2].

We note that the truth of the left part of (8) is a necessary condition for the univalence of f_1 in Δ provided that $0 < \beta \leq 1$ and that z_1 is real.

PROOF OF THEOREM 1. - (i) Suppose $f \in E$ and f(z') = 0, where $z' = re^{i\theta}$, $r \neq 0$. From [8, 9], we have that $|f'(z)| \leq e^{2\alpha|z|}$ for all z. Hence,

It is known that, if f does not assume the value, w, then $|w| \ge 1/(2 + |a_2|)$, where $a_2 = f^{(2)}(0)/2$ [5, p. 214].

Hence, $|f(e^{i\theta})| \ge 1/(2+\alpha)$. So,

$$\log[e^{2\alpha}+2\alpha/(2+\alpha)] \leq 2\alpha r$$

or,

$$1 + \frac{1}{2\alpha} \log \left[1 + \frac{2\alpha}{(2+\alpha)e^{2\alpha}} \right] \leq r$$

This proves the left side of (1).

The right side of (1) is proved by using Lemma 1 to produce an appropriate example. We would like to choose β so that

$$(2+\beta)/(1+\beta) < (2-4\beta+\beta^2)/\beta(2-\beta)$$
.

Letting $\beta = 0.29$, this is satisfied. Let $z_1 = (2+\beta)/(1+\beta) = 1.77519...$ Lemma 1 then shows that $f_1 \in E$. The proof of (i) is complete.

(ii) Now we prove the last part of the theorem. Let $g_0(z) = e^z - 1$. Note that, in Δ , g_0 and all its derivatives are convex and therefore, close-to-convex. Let $h_1(z) = z - (\int_0^z g_0(s) \, ds)/g_0(1)$. Then $h'_1(1) = 0$ and $\operatorname{Re} \{h'_1(z)\} \ge 1 - |g_0(z)|/g_0(1) \ge 0$ for $z \in \Delta$. So, $h_1 \in E$ and each derivative of h_1 is close-to-convex in Δ . Now suppose $h_N \in E$ such that each derivative of h_N is close-to-convex in Δ and such that, for $1 \le n \le N$, there is some z_{N-n+1} with the properties that $|z_{N-n+1}| = 1$ and $h_N^{(n)}(z_{N-n+1}) = 0$. Let z_{N+1} be a number such that $|z_{N+1}| = 1$ and such that $|h_N(z)| < |h_N(z_{N+1})|$ for all $z \in \Delta$. Let $h_{N+1}(z) = z - (\int_0^z h_N(s) \, ds)/h_N(z_{N+1})$. Then $h'_{N+1}(z_{N+1}) = 0$ and $\operatorname{Re} \{h'_{N+1}(z)\} \ge 1 - |h_N(z)/h_N(z_{N+1})| > 0$ for $z \in \Delta$. So, $h_{N+1} \in E$. In fact, each derivative of h_{N+1} is close-to-convex in Δ and for $1 \le n \le N + 1$, there is some z_{N+2-n} with the properties that $|z_{N-n+2}| = 1$ and $h_{N+1}^{(n)}(z_{N+2-n}) = 0$. Thus, we inductively obtain a sequence, $\{h_N\}_{N=1}^{\infty}$, in E such that, for each N, each derivative of h_N is close-to-convex in Δ and, for $1 \le n \le N$, there is some z_{N+1-n} with the properties that $|z_{N-n+1}| = 1$ and $h_N^{(n)}(z_{N+1-n}) = 0$.

Now the functions in E are uniformly bounded on compact subsets of the complex plane. So Montel's Theorem shows that E is a normal family on the whole plane. Hence, $\{h_N\}_{N=1}^{\infty}$ has a subsequence that converges uniformly on all compact subsets of the plane. Without loss of generality, suppose $\{h_N\}_{N=1}^{\infty}$ itself converges, and let hbe its limit function. Since a uniform limit of close-to-convex functions is either close-to-convex or constant, each $h^{(n)}$ is either close-to-convex in Δ or constant there.

For a fixed $n \ge 1$, $h_N^{(n)}(z_{N+1-n}) = 0$ for all $N \ge n$. Because $\{z_{N+1-n}\}_{N=n}^{\infty}$ lies on the boundary of Δ , we may suppose $\{z_{N+1-n}\}_{N=n}^{\infty}$ converges. Let z'_n be its limit. Since $\{h_N^{(n)}\}_{N=1}^{\infty}$ converges uniformly to $h^{(n)}$ on |z| = 1, and since $\{h_N^{(n)}\}_{N=1}^{\infty}$ is an equicontinuous family on |z| = 1, it follows that $h^{(n)}(z'_n) = 0$. Since this is true for all $n \ge 1$, and since h(0) = 0, the only polynomial that h could be would be $h(z) \equiv 0$. But h'(0) = 1, so h is not a polynomial. Hence, $h \in E$. Since $|z'_n| = 1$ for all $n \ge 1$, the theorem is proved. To prove the corollary to Theorem 1, note that the left side of the inequality follows from (1) since $\alpha < 1.7208$. To prove the right side, let $\beta = 0.29$ and $z_1 = (2+\beta)/(1+\beta)$ in Lemma 1.

In what follows, we shall need several results. In particular, we shall use Lucas' Theorem [11, p. 218], Laguerre's Theorem, [1, p. 23] [10], and Walsh's Theorem [11, p. 219]. We state Walsh's Theorem in the form in which we need it. In what follows N is a member of $\{\infty, 0, 1, ...\}$:

WALSH'S THEOREM. – Let $\{x_k\}_{k=1}^N$ be a sequence of real, non-zero numbers such that $\sum_{k=1}^N |x_k|^{-1} < \infty$. Let t > 0. Let $\{z_k\}_{k=1}^N$ be a sequence of complex, non-zero numbers such that $|z_k - x_k| \leq t$ for all k. Define f and g by

$$g(z) = z \prod_{k=1}^{N} (1 - z/x_k)$$

and

$$f(z) = z \prod_{k=1}^N \left(1 - z/z_k\right)$$
.

Let $\{x_k^{(1)}\}_{k=1}^N$ be the critical points of g. Then the critical points of f lie in the circles, C_k , where

$$C_k = \{z \colon |z - x_k^{(1)}| \leq t\}.$$

Further, if T is a set of these circles, and if $\{z: z \in C_k \in T\}$ does not intersect any $C_j \notin T$, then the number of critical points, counted according to multiplicity, of f in $\{z: z \in C_k \in T\}$ is the sum of the multiplicities of the $x_k^{(1)}$, where $x_k^{(1)} \in C_k \in T$.

We shall also need one of our results in [10], restated in a more general way. The proof is unchanged, so we do not give it.

LEMMA 2. – Let f be an entire function such that

$$f'(z) = c e^{\beta z} \prod_{k=1}^{N} (1 - z/z_k^{(1)}) ,$$

where c is a non-zero complex number, each of the $z_k^{(1)}$ is a non-zero complex number, and β is a complex number. If N = 0, we require that $\beta \neq 0$.

Suppose that R > 0 such that $R < |z_k^{(1)}|$ for each k. Suppose that $\{z_k^{(1)}\}_{k=1}^N$ can be partitioned into two sets, A and B, and that $\beta = \beta_1 + \beta_2$ such that

$$|\beta_1|R + \sum_{z_k^{(1)} \in \mathcal{A}} \frac{R}{|z_k^{(1)}| - R} \leq 1$$

and, for each |z| < R,

$$\operatorname{Re}\left\{ \exp\left[eta_2 z
ight] \prod_{z_k^{(1)} \in \mathcal{B}} \left(1-rac{z}{z_k^{(1)}}
ight)
ight\} > 0 \;.$$

Then f is close-to-convex and, therefore, univalent in |z| < R. If $\beta_2 = 0$ and B is empty, then f maps |z| < R onto a convex set.

PROOF OF THEOREM 2. – Because of (2) and (3), we have that $\operatorname{Re}\{z_k\} > 2+t$ for all k. Using this, (3), and (4), it follows that, if $z \in A$,

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 1 - \sum_{n=1}^{\infty} \frac{1}{x_{k} - t - 1}$$

$$\left\{zf'(z)\right\} = t$$

Therefore, from (2),

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{t}{1+t}.$$

Hence, f is starlike in Δ .

Let

$$g(z) = z \prod_{j=1}^{\infty} \left(1 - z/x_k\right) \,.$$

Let $\{x_k^{(n)}\}_{k=0}^{\infty}$ be the zeros of $g^{(n)}$ arranged so that $x_0^{(n)} \leqslant x_1^{(n)} \leqslant \dots$. Using Laguerre's Theorem and an induction argument, it follows that

(9)
$$x_k^{(n)} \leqslant x_k^{(n+1)}$$

for all *n* and *k*. Further, using Walsh's Theorem and another induction argument, we have that the zeros, $\{z_k^{(n)}\}_{k=0}^{\infty}$, of $f^{(n)}$ can be so ordered that

(10)
$$|x_k^{(n)} - z_k^{(n)}| \leq t$$

for all n and k.

Next, we wish to find a lower bound on $x_0^{(1)}$. As in the first part of this proof, we have that, for $z \in \Delta$,

$$\operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\} > 1 - \sum_{k=1}^{\infty} \frac{|z|}{x_k - |z|}.$$

Laguerre's Theorem shows that there is exactly one zero, $x_0^{(1)}$, of g' in $(0, x_1)$. Further, if |z| < 1 + t, then (2) shows that

$$1 - \sum\limits_{k=1}^{\infty} \frac{|z|}{x_k - |z|} \! \geqslant \! 0$$
 .

Hence, g' cannot vanish in (0, 1+t), i.e., $1+t \leq x_0^{(1)}$.

Now we use this bound on $x_0^{(1)}$ to get information about the $z_k^{(n)}$. First of all, we note that $1 + t < x_k^{(1)}$ for all k. Next, we note that (10) implies that $\operatorname{Re} \{z_k^{(1)} - x_k^{(1)}\} < t$ for all k. Putting these together, it follows that $\operatorname{Re} \{z_k^{(1)}\} > 1$ for all k. This and Lucas' Theorem imply that

(11)
$$\operatorname{Re}\left\{z_{k}^{(n)}\right\} \ge 1$$

for all k and for $n \ge 1$.

We now finish the theorem. First of all, (11) shows that, if $z \in \Delta$ and if $n \ge 2$, then

(12)
$$\operatorname{Re}\left\{1-\frac{z}{z_{0}^{(n)}}\right\} > 0$$

It follows from (2), (9), and (10) that, for $n \ge 2$,

$$\sum_{k=1}^{\infty} \frac{1}{|z_k^{(n)}| - 1} \leq \frac{1}{1+t}.$$

Using this, (12), and Lemma 2, it follows that $f^{(n-1)}$ is close-to-convex in Δ for $n \ge 2$, i.e., $f^{(n)}$ is close-to-convex in Δ for $n \ge 1$. The proof is finished.

Finally, we prove Theorem 3. The assumptions about f imply that, if z = 1 or z = -1, then $zf'(z)/f(z) \ge 0$. So,

$$\begin{split} 0 &\leqslant f'(1)/f(1) - f'(-1)/f(-1) \\ &= 2[1 + \sum_{k=1}^{N} 1/(1 - z_k^2)] \leqslant 2[1 + 1/(1 - z_1^2)] \end{split}$$

Hence, $z_1 \ge \sqrt{2}$. If $z_1 = \sqrt{2}$, we must have N = 1. This means $f(z) = ze^{\beta z} (1 - z/\sqrt{2})$. However, we must also have f'(1) = 0. This forces $\beta = \sqrt{2}$. For this f and for |z| = 1, $\operatorname{Re} \{zf'(z)/f(z)\} = 2 \operatorname{Re} \{1 - z^2\}/|\sqrt{2} - z|^2$. Hence, f is starlike in Δ .

Further, for this f, f''(0) > 0 and f''(1) < 0. So, f'' vanishes on (0, 1), and f' cannot be univalent in D. Hence, f is not in E. This proves the corollary.

To prove the rest of the theorem, suppose N = 1 and $\beta z_1 \leq 1$. Then $f(z) = z + a_2 z^2 + \dots$ where, for $n \geq 2$, $a_n = \beta^{n-2} [n-1-\beta z_1]/z_1(n-1)!$. Hence,

$$\sum_{n=2}^{\infty} n |a_n| = 1 + e^{\beta} [(2+\beta)/z_1 - 1 - \beta].$$

Since, for $n \ge 2$, a_n is negative, it follows that $f \in S$ if and only if $\sum_{n=2}^{\infty} n |a_n| < 1$ [cf., 6]. The desired result follows. Further, since $1/\beta \ge z_1 \ge (2+\beta)/(1+\beta)$, we have that $\beta^2 + \beta - 1 < 0$, or, $\beta < (\sqrt{5}-1)/2$. Hence, $z_1 \ge (\sqrt{5}+1)/2$.

BIBLIOGRAPHY

- [1] R. P. BOAS, Entire Functions, Academic Press, New York, 1954.
- [2] W. KAPLAN, Close to convex schlicht functions, Mich. Math. J., 1 (1952), pp. 169-185.
- [3] S. S. MACINTYRE, An upper bound for the Whittaker constant, London Math. Soc. J., 22 (1947), pp. 305-311.
- [4] S. S. MACINTYRE, On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc., 67 (1949), pp. 241-251.
- [5] Z. NEHARI, Conformal mapping, McGraw-Hill, New York, 1925.
- [6] A. SCHILD, On a class of functions schilcht in the unit circle, Proc. Amer. Math. Soc., 5 (1954), pp. 115-120.
- [7] S. M. SHAH, Univalent derivatives of entire functions of slow growth, Arch. Rational Mech. Anal., 35 (1969), pp. 259-266.
- [8] S. M. SHAH S. Y. TRIMBLE, Univalent functions with univalent derivatives, Bull. Amer. Math. Soc., 75 (1969), pp. 153-157.
- [9] S. M. SHAH S. Y. TRIMBLE, Univalent functions with univalent derivatives III, J. Math. and Mech., 19 (1969), pp. 451-460.
- [10] S. M. SHAH S. Y. TRIMBLE, Entire functions with univalent derivatives, J. Math. Anal. and Appl., 33 (1971), pp. 220-229.
- [11] J. L. WALSH, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Coll., 34 (1950).

Added in proof. – The first part of Theorem 3 can be extended as follows: Let f be defined by (5), where we assume only that β and all z_k are real and $1 \leq |z_1| \leq |z_k|$. Then $f \in S$ if and only if $f'(1) \ge 0$ and $f'(-1) \ge 0$. Further if $f \in S$, then f is starlike in Δ and $\sqrt{2} \leq |z_1|$. If $\beta \ge 0$, equality occurs only for the given function.

21 - Annali di Matematica