On the Zeros of Univalent Functions
with Univalent Derivatives (*).
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Summary. ~ A family, E, consisting of normalised univalent functions with univalent deriva-
tives is studied with regard to the zeros of these fumctions.

1. — Introduction.

Let 4= {#: |¢]<1}. Let § be the family of functions, 2-+ > a,2*, each of which

k=2
ig univalent in 4. Let F be the subfamily of 8 such that if fe E, then each f» iy
univalent in 4, n=10,1, 2, .... It is known that the members of F are entire funec-

tions of exponential type [8].

In this paper, we are concerned with the distribution of the zeros of functions
in E. If fe B, then f can vanish in A only at the origin. We investigate how close
to the boundary of A other zeros of f may lie. We also give conditions on the zeros
of an entire function which force the funection to be in K.

2. — Statements of theorems.

THEOREM 1. — Let

=inf{|?|: f(&)=0, 250, fe B} .
(i) Then

Q002 2
(1) 1+§15~510g(1—§— i )<c +h

21 ) <" ST+ p’
where o = sup {|f'(0){/2: f € B} and $ is a number such that 0 < << 1/2 and (24 £)/(1 -+
B <(2— 484 $%)/p2— B).

(ii) However, there is a function in E such that each of its derivatives has a
zero on the boundary of A. Further, this function and each of its derivatives are
close-to-convex in 4.

(*) Entrata in Redazione il 29 marzo 1978.
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ReEMARK. — It is known [8] that 7/2 << 1.7208. Further, there are numbers, 5,
satisfying the inequalities in (i), e.g., f= 0.29.

COROLLARY. — With the notation of Theorem 1, 1.0084 < [ < 1.7752.

‘We note that the exponential type of the function in Theorem 1 (ii) is at least
as great as the Whittaker constant, W. It is known that 0.7259 < W < 0.7378 [3, 4].
Further, the exponential type is no greater than 2e.

The following theorems were proved in [7] and [10], respectively:

THEOREM A. — Let a and d be numbers such that ¢>>d>1 and such that
z (14 d@)(ar®-v/2_ gy1< 1,
To==2
Let {#,}:>, be a sequence of complex numbers such that 1<(0.276)z| and such that

aFze] < [o1]

for k=1,2,... If

o) =2 ﬁ (1—2f2,),

then fe E. In fact, each f™ is close-to-convex in A.

THEOREM B. — Let f<0. Let 1< 2,<#,< ... be such that

oo

Ell(z/c""l)<1+ﬂ .

k=1

If

1) = a6 T (1 — 2/2)
E=1

then feE. In fact, f is starlike in 4 and each f is close-to-convex there.

The functions in Theorem A may have zeros spread over the complex plane,
but their order must be 0. The functions in Theorem B may have order equal to 1
and type arbitrarily close to 1, but their zeros must lie on a ray. We now state a
theorem that falls between Theorems 4 and B.

THEOREM 2. — Let ¢>>0. Let {,};>, be a non-decreasing sequence of positive
numbers such that 1--{< 2, and such that

(2) S 10— 1— ) <1/1+1) .
k=1
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Let {z,};>, be a sequence of complex numbers such that

(3) |y — 24| <t

for all k. If

(4) =2 ] Q—2/),
E=2

then feE. In faet, f is starlike in 4 and each f» is closeto-convex there.
Finally, we prove the following:

THEOREM 3. — Suppose f>0 and 1< 2,<2,.... Let
N
(5) f(z) = 2e (H 1— z/zk) .
F=1

(We allow N to be finite or infinite. If ¥ = co, we assume f to be well-defined.)
If fe 8, then v2<z. The inequality is sharp only for #ze*V3(1— 2/v/2), which is
starlike in A.

Further, if ¥ =1 and if fz,<1, then fe§ if and only if 2,>(24p)/(1+ ). In
this case, 2,> (14 v/5)/2.

CorOLLARY. — If fe B and if f has the form of (5), then v/Z< 2.
This is of interest because functions of the form (5) are used to establish the
right side of the inequality in (1).

3. — Proofs.

Suppose
file) = 2é"(1— 2j2) .

An induction argument shows that, for n=0,1,2, ...,

fote) = [ngr=r(p="22) + pros(p— 2)s— Lot exp .

_2—1- %
Define P,(2) by f{(2) = ¢#*P,(2), n =0, 1, .... Suppose 0< f<1/2, 0< #< 2, and
(6) 4B+ 2Pz, <Pr(1+e)+ 2.

(Any f sufficiently close to 0 satisfies this.) We show that, for n>2 and ze 4,
Re{P,(z)} < 0.
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It is enough to show that Re{P.(2)} <0 when [¢|==1. For z2==x-}- iy and |z] =1,

Re (Bu(0) = (5= ") + £ o proa(p- 2] 0 - L.
2y 2y % 2y
If n>3, using (6) and the other conditions on § and #z,, it can be shown that the
discriminant of this quadratic is negative. Hence, the quadratic is negative for
all . X n==2, these conditions imply that the roots to the quadratic lie to the
left of —1. In particular the quadratic is nonpositive for ze[—1,1]. This estab-
lishes the assertion of the previous paragraph.
Now suppose 0 < f<1/2 and

() @+p)/A+p<a<2.

Using these, it is possible to show that Re{Py{2)} > 0 for all e 4.

LemMmA 1. — Suppose 0<< f<1/2, 2,<< 2, and

8) @C+BA+ P <a<(@—454-54/82—P) .

Then f, and all its derivatives are univalent and close-to-convex in A.

PROOF OF LEMMA. — Let g(z) = (¢*—1)/8. Then g is a convex and univalent
function in A. Further, for n=1, 2, ..., Re{f™(z)/g'(2)} = Re{P.(#)}. The condi-
tions, (8), on § and 2, imply the truth of (8) and (7). So, if n=1, Re{P,(¢)}>0
in A, while if n>2, Re{P,(2)}< 0 in 4. Hence, for all #>0, f* is univalent and
close-to-convex in 4 [2].

We note that the truth of the left part of (8) is a necessary condition for the
univalence of f, in A provided that 0<Cf<1 and that 2z, is real.

Proor oF THEOREM 1. — (i) Suppose f€E and f(z') =0, where /= ré®, r £ 0.
From [8, 9], we have that |f'(2)|<e®? for all z. Hence,

6] = |1 (06”6 de
1

<f62°‘9 do = (6" — €*)[20. .
i

It is known that, if f does not assume the value, w, then |w|>1/(2+ |a.]), Wwhere
a,= {*(0)/2 [5, p. 214].
Hence, [f(¢)]>1/(2+ a). So,

log[e® 20/(2 + a)] < 21
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or,

1 2a
e

This proves the left side of (1).
The right side of (1) is proved by using Lemma 1 to produce an appropriate
example. We would like to choose § so that

@+ B+ )< (2—4p+2)/B2—B) .

Letting f = 0.29, this is satisfied. Let 2,= 2+ 5)/(1-+8)=1.77519.... Lemma 1
then shows that f,e . The proof of (i) is complete.

(ii) Now we prove the last part of the theorem. Let g4(2) = ¢*— 1. Note
that, in 4, g, and all its derivatives are convex and therefore, close-to-convex. Let

y(2)=2— ( f o(8) 43)[g,(1). Then h (1)= 0 and Re {;(2)}>1 — |¢,()|/¢o(1) > 0 forze 4.

So, h,e E and each derivative of h; is close-to-convex in A. Now suppose hyel
such that each derivative of hy is close-to-convex in 4 and such that, for I<n<N,
there is some z,_, ., With the properties that |2y_,.,|=1 and AP(zy_,,,) =0
Let zy., be a number such that |2y ,|=1 and such that |hy(e)| < |hy(2y,,)| for

allzed. Lethy ,(2)=2— (f}aN(s) ds)/hy(2y ). Thenhy, (2y,,)=0and Re {hy ()}
)

>1— |hy(2)/hy(2y..1)| >0 for 2e 4. So, hy, ,€E. In fact, each derivative of hy,,
ig close-to-convex in 4 and for 1<n<N -1, there is some 2, , With the prop-
erties that |oy_,.,/=1 and B, (¢35 ,_,) = 0. Thus, we inductively obtain a se-
quence, {hy}y_;, in F such that, for each N, each derivative of &y is close-to-convex
in 4 and, for 1<n<X, there is some 2y, , with the properties that |¢y_, . ,|=1
and B (zy . 4_,) = 0.

Now the functions in ¥ are uniformly bounded on compact subsets of the complex
plane. So Montel’s Theorem shows that E is a normal family on the whole plane.
Hence, {hy}5_, has a subsequence that converges uniformly on all compact subsets
of the plane. Without loss of generality, suppose {hy}5_, itself converges, and let &
be its limit function. Since a uniform limit of close-to-convex functions is either
cloge-to-convex or constant, each b ig either close-to-convex in A or constant there.

For a fixed n>1, AWz, ,_,) =0 for all N>n. Because {&y,, ,}5., lies on
the boundary of A, we may suppose {Zy.,_,}m-, converges. Let %, be ity limit.
Since {A{M}%_, converges uniformly to A on |¢| =1, and since {A{P}%_, is an equi-
continuous family on |¢| =1, it follows that h®™(z,)= 0. Since this is true for all
n>1, and since h(0)= 0, the only polynomial that kb could be would be h(z) =0.
But 2'(06)=1, so k is not a polynomial. Hence, hc E. Since §z;§ =1 for all n>1,
the theorem is proved.
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To prove the corollary to Theorem 1, note that the left side of the inequality
follows from (1) since o< 1.7208. To prove the right side, let §= 0.29 and 2=
= (24 p)/(1+p) in Lemma 1.

In what follows, we shall need several resulfs. In parfieular, we shall use Lucag’
Theorem [11, p. 218], Laguerre’s Theorem, [1, p. 23] [10], and Walsh’s Theorem [11,
D. 219]. We state Walsh’s Theorem in the form in which we need it. In what
follows N is a member of {co,0,1,...}:

WaLsH’s THEOREM. — Let {#,}Y_. be a sequence of real, non-zero numbers such
N
that 3 [m< co. Let ¢>0. Let {¢};., be a sequence of complex, non-zero
k=1
numbers such that |2,— o,|<? for all k. Define f and ¢ by

N
g(=)y = kI:[ (A — 2fz)

and
N

fe) =2 [] (11— 2/a) .

k=1

Let {#"}_, be the critical points of g. Then the critical points of f lie in the eir-
cles, ¢, where

C,= {z: |p— P <t} .

Further, if 7 is a set of these circles, and if {z: z€ C, €T} does not intersect any
C,¢ T, then the number of critical points, counted according to multiplicity, of f
in {#: 2 C,e T} is the sum of the multiplicities of the 2{", where #{"¢c C, e T.

We shall also need one of our results in [10], restated in a more general way.
The proof is unchanged, so we do not give it.

LEMMA 2. — Let § be an entive function such that
N
F'(2) = od™ [T (1 — /&)
k=1

where ¢ is a non-zero complex number, each of the #Y is a non-zero complex number,
and § is a complex number. If ¥ =0, we require that 6 #=0.

Suppose that B> 0 such that R< [¢{| for each k. Suppose that {¢{’}i_, can
be partitioned into two sets, 4 and B, and that = p;- f, such that

1161 z t (1); <1

zeA
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and, for each |2|< R,

Re {exp B21T1 (1 — 51—))} >0.

)
2{len

Then f is close-to-convex and, therefore, univalent in |z|<R. If f,==0 and B is
empty, then f maps |2|<< R onto a convex set.

Proor or THEOREM 2. — Because of (2) and (3), we have that Re{z}>2-41
for all k. Using this, (3), and (4), it follows that, if 2z 4,

of'(2) > 1
weli) > ~Eam

Therefore, from (2),

2f'(2) t
Re{ﬂz) }>1~—-—+t.

Hence, f is starlike in 4.
Let

s =2 ] (1)

)

Let {#{"}° , be the zeros of g™ arranged so that o{®<a{®<.... Using Laguerre’s
Theorem and an induetion argument, it follows that

(9) mscn) < wgcn+ 1

for all » and %. Further, using Walsh’s Theorem and another induction argument,
we have that the zeros, {z{"};>,, of /™ can be so ordered that

(10) | — & <t

for all » and *.
Next, we wish to find a lower bound on #{". As in the first part of this proof,
we have that, for ze 4,

Re{i‘q,—(z)}>1—§ d

9(2) =y — 2] ’

Laguerre’s Theorem shows that there is exactly one zero, wg‘), of g’ in (0, #,). Further,
if |¢|<<1-}t, then (2) shows that

s __Fl

1-3

=18k — IZI

>0.

Hence, g’ cannot vanish in (0, 1-1), ie., 1-t<a(d.
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Now we use this bound on #{" to get information about the 2. First of all, we
note that 1-+-t<al for all k. Next, we note that (10) implies that Re {{— 2D} <1
for all k. Putting these together, it follows that Re{s{"}>1 for all k. This and
Lucas’ Theorem imply that

(11) Re {#"}>1

for all ¥ and for n>1.
We now finish the theorem. First of all, (11) shows that, if ze 4 and if n>2,
then

(12) Re{l——z—;—,}>0.

It follows from (2), (9), and (10) that, for n>2,

i 1 1

2

AP 1ST 1

Using this, (12), and Lemma 2, it follows that f*~Y is close-to-convex in A for n>2,
i.e., ™ is close-to-convex in A for n>1. The proof is finished.

Finally, we prove Theorem 3. The assumptions about f imply that, if e=1
or z=—1, then 2f'(2)}/f(2)>0. So,

0 <MW/~ F(=1/f(=1)

N
=201+ X 1/(1— B)<21+1/(1— D).
k=1

Hence, 2,>4/2. If 2,=+/2, we must have N = 1. This means f(z) = 2¢™*(1— 2/V/2).
However, we must also have f(1)=0. This forces §=+/2. For this f and for
l2] =1, Re{ef'(2)/f(2)} = 2 Re {1l — 2*}/|v/2— 2|>. Hence, f is starlike in A.

Further, for this f, #(0)>0 and /(1)< 0. 8o, f’ vanishes on (0,1), and f’
cannot be univalent in D. Hence, f is not in H. This proves the corollary.

To prove the rest of the theorem, suppose N =1 and fz,<1. Then f(z)=
== g4 a,22-+ ... where, for n>2, a,= ﬂ"'z[n; 1— 8z )/z{n—1)!. Hence,

o

Snfa,| =1+ (24 p)fa—1—B].
n=2
Since, for #>2, a, is negative, it follows that fe 8 if and only if ) nla.|<1 [ef., 6].

n=2
The desired result follows. Further, since 1/8>2>(2+ §)/(1-+ ), we have that
p2+4B—1<0, or, f<(vB—1)/2. Hence, z,>(vV5+1)/2.
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Added in proof. — The first part of Theorem 3 can be extended as follows: Let f be de-
fined by (5), where we assume only that 8 and all 2, are real and 1<|2|<|]. Then fe S
if and only if 7'(1) >0 and f'(—1)>0. PFurther if f€ 8, then f is starlike in 4 and /2 < |z).
If $>0, equality occurs only for the given function.

21 ~ dnnali di Matematica



