On the Zeros of Univalent Functions with Univalent Derivatives (*).

Swarupchand M. Shah (Kentucky, U.S.A.) - Selden Y. Trimble (Missouri, U.S.A.)

Summary. - A family, E, consisting of normalised univalent functions with univalent derivatives is studied with regard to the zeros of these functions.

1. - Introduction.

Let $\Delta=\{z:|z|<1\}$. Let S be the family of functions, $z+\sum_{k=2}^{\infty} a_{k} z^{k}$, each of which is univalent in A. Let E be the subfamily of S such that if $f \in E$, then each $f^{(n)}$ is univalent in $\Delta, n=0,1,2, \ldots$. It is known that the members of E are entire functions of exponential type [8].

In this paper, we are concerned with the distribation of the zeros of functions in E. If $f \in E$, then f can vanish in Δ only at the origin. We investigate how close to the boundary of Δ other zeros of f may lie. We also give conditions on the zeros of an entire function which force the function to be in E.

2. - Statements of theorems.

Theorem 1. - Let

$$
\zeta=\inf \{|z|: f(z)=0, z \neq 0, f \in E\}
$$

(i) Then
(1)

$$
1+\frac{1}{2 \alpha} \log \left(1+\frac{2 \alpha e^{-2 \alpha}}{2+\alpha}\right) \leqslant \zeta \leqslant \frac{2+\beta}{1+\beta}
$$

where $\alpha=\sup \left\{\left|f^{\prime \prime}(0)\right| / 2: f \in E\right\}$ and β is a number such that $0<\beta<1 / 2$ and $(2+\beta) /(1+$ $+\beta) \leqslant\left(2-4 \beta+\beta^{2}\right) / \beta(2-\beta)$.
(ii) However, there is a function in E such that each of its derivatives has a zero on the boundary of Δ. Further, this function and each of its derivatives are close-to-convex in Δ.
(*) Entrata in Redazione il 29 marzo 1978.

Remark. - It is known [8] that $\pi / 2 \leqslant \alpha<1.7208$. Further, there are numbers, β, satisfying the inequalities in (i), e.g., $\beta=0.29$.

Corollary. - With the notation of Theorem 1, $1.0084<\zeta<1.7752$.
We note that the exponential type of the function in Theorem 1 (ii) is at least as great as the Whittaker constant, W. It is known that $0.7259<W<0.7378$ [3, 4]. Further, the exponential type is no greater than 2α.

The following theorems were proved in [7] and [10], respectively:
Theorem A. - Let a and d be numbers such that $a>d>1$ and such that

$$
\sum_{k=2}^{\infty}(1+d)\left(a^{k(k-1) / 2}-d\right)^{-1}<1
$$

Let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a sequence of complex numbers such that $1 \leqslant(0.276)\left|z_{1}\right|$ and such that

$$
a^{k}\left|z_{k}\right| \leqslant\left|z_{k+1}\right|
$$

for $k=1,2, \ldots$ If

$$
f(z)=z \prod_{k=1}^{\infty}\left(1-z / z_{k}\right)
$$

then $f \in E$. In fact, each $f^{(n)}$ is close-to-convex in Δ.
Theorem B. - Let $\beta \leqslant 0$. Let $1<z_{1}<z_{2}<\ldots$ be such that

$$
\sum_{k=1}^{\infty} 1 /\left(z_{k}-1\right) \leqslant 1+\beta
$$

If

$$
f(z)=z e^{\beta_{z}} \prod_{k=1}^{\infty}\left(1-z / z_{k}\right),
$$

then $f \in E$. In fact, f is starlike in Δ and each $f^{(n)}$ is close-to-convex there.
The functions in Theorem A may have zeros spread over the complex plane, but their order must be 0 . The functions in. Theorem B may have order equal to 1 and type arbitrarily close to 1 , but their zeros must lie on a ray. We now state a theorem that falls between Theorems A and B.

Theorem 2. - Let $t>0$. Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a non-decreasing sequence of positive numbers such that $1+t<x_{1}$ and such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} 1 /\left(x_{k}-1-t\right) \leqslant 1 /(1+t) \tag{2}
\end{equation*}
$$

Let $\left\{z_{k}\right\}_{h=1}^{\infty}$ be a sequence of complex numbers such that

$$
\begin{equation*}
\left|x_{k}-z_{k}\right| \leqslant t \tag{3}
\end{equation*}
$$

for all k. If

$$
\begin{equation*}
f(z)=z \prod_{z=2}^{\infty}\left(1-z / z_{k}\right) \tag{4}
\end{equation*}
$$

then $f \in E$. In fact, f is starlike in Δ and each $f^{(n)}$ is closeto-convex there.
Finally, we prove the following:
Theorem 3. - Suppose $\beta>0$ and $1<z_{1} \leqslant z_{2} \ldots$ Let

$$
\begin{equation*}
f(z)=z e^{\beta_{z}}\left(\prod_{k=1}^{N} 1-z / z_{k}\right) \tag{5}
\end{equation*}
$$

(We allow N to be finite or infinite. If $N=\infty$, we assume f to be well-defined.) If $f \in S$, then $\sqrt{2} \leqslant z_{1}$. The inequality is sharp only for $z e^{z \sqrt{2}}(1-z / \sqrt{2})$, which is starlike in Δ.

Further, if $N=1$ and if $\beta z_{1} \leqslant 1$, then $f \in S$ if and only if $z_{1} \geqslant(2+\beta) /(1+\beta)$. In this case, $z_{1} \geqslant(1+\sqrt{5}) / 2$.

Corollary. - If $f \in E$ and if f has the form of (5), then $\sqrt{\overline{2}}<z_{1}$,
This is of interest because functions of the form (5) are used to establish the right side of the inequality in (1).

3. - Proofs.

Suppose

$$
f_{1}(z)=z e^{\beta z}\left(1-z / z_{1}\right)
$$

An induction argument shows that, for $n=0,1,2, \ldots$,

$$
f_{1}^{(n)}(z)=\left[n \beta^{n-2}\left(\beta-\frac{n-1}{z_{1}}\right)+\beta^{n-1}\left(\beta-\frac{2 n}{z_{1}}\right) z-\frac{\beta^{n}}{z_{1}} z^{2}\right] \exp [\beta z]
$$

Define $P_{n}(z)$ by $f_{1}^{(n)}(z)=e^{\beta z} P_{n}(z), n=0,1, \ldots$. Suppose $0<\beta \leqslant 1 / 2,0<z_{1}<2$, and

$$
\begin{equation*}
4 \beta+2 \beta z_{1} \leqslant \beta^{2}\left(1+z_{1}\right)+2 . \tag{6}
\end{equation*}
$$

(Any β sufficiently close to 0 satisfies this.) We show that, for $n \geqslant 2$ and $z \in A$, $\operatorname{Re}\left\{P_{n}(z)\right\}<0$.

It is enough to show that $\operatorname{Re}\left\{P_{n}(z)\right\} \leqslant 0$ when $|x|=1$. For $z=x+i y$ and $|z|=1$,

$$
\operatorname{Re}\left\{P_{n}(z)\right\}=n \beta^{n-2}\left(\beta-\frac{n-1}{z_{1}}\right)+\frac{\beta^{n}}{z_{1}}+\beta^{n-1}\left(\beta-\frac{2 n}{z_{1}}\right) x-\frac{2 \beta^{n}}{z_{1}} x^{2}
$$

If $n \geqslant 3$, using (6) and the other conditions on β and z_{1}, it can be shown that the discriminant of this quadratic is negative. Hence, the quadratic is negative for all x. If $n=2$, these conditions imply that the roots to the quadratic lie to the left of -1 . In particular the quadratic is nonpositive for $x \in[-1,1]$. This establishes the assertion of the previous paragraph.

Now suppose $0<\beta \leqslant 1 / 2$ and

$$
\begin{equation*}
(2+\beta) /(1+\beta) \leqslant z_{1}<2 . \tag{7}
\end{equation*}
$$

Using these, it is possible to show that $\operatorname{Re}\left\{P_{1}(z)\right\}>0$ for all $z \in A$.
Lemma 1. - Suppose $0<\beta \leqslant 1 / 2, z_{1}<2$, and

$$
\begin{equation*}
(2+\beta) /(1+\beta) \leqslant z_{1} \leqslant\left(2-4 \beta+\beta^{2}\right) / \beta(2-\beta) . \tag{8}
\end{equation*}
$$

Then f_{1} and all its derivatives are univalent and close-to-convex in Δ.
Proof of Lemma. - Let $g(z)=\left(e^{\beta z}-1\right) / \beta$. Then g is a convex and univalent function in Δ. Further, for $n=1,2, \ldots, \operatorname{Re}\left\{f^{(n)}(z) / g^{\prime}(z)\right\}=\operatorname{Re}\left\{P_{n}(z)\right\}$. The conditions, (8), on β and z_{1} imply the truth of (6) and (7). So, if $n=1, \operatorname{Re}\left\{P_{n}(z)\right\}>0$ in Δ, while if $n \geqslant 2, \operatorname{Re}\left\{P_{n}(z)\right\}<0$ in Δ. Hence, for all $n \geqslant 0, f^{(n)}$ is univalent and close-to-convex in Δ [2].

We note that the truth of the left part of (8) is a necessary condition for the univalence of f_{1} in Δ provided that $0<\beta \leqslant 1$ and that z_{1} is real.

Proof of Theorem 1. - (i) Suppose $f \in E$ and $f\left(z^{\prime}\right)=0$, where $z^{\prime}=r e^{i \theta}, r \neq 0$. From $[8,9]$, we have that $\left|f^{\prime}(z)\right| \leqslant e^{2 x|z|}$ for all z. Hence,

$$
\begin{aligned}
& \left|f\left(e^{i \theta}\right)\right|=\left|\int_{1}^{r} f^{\prime}\left(\varrho e^{i \theta}\right) e^{i \theta} d \varrho\right| \\
& \quad \leqslant \int_{1}^{r} e^{2 \alpha \varrho} d \varrho=\left(e^{2 \alpha r}-e^{2 \alpha}\right) / 2 \alpha
\end{aligned}
$$

It is known that, if f does not assume the value, w, then $|w| \geqslant 1 /\left(2+\left|\alpha_{2}\right|\right)$, where $a_{2}=f^{(2)}(0) / 2[5, \mathrm{p} .214]$.

Hence, $\left|f\left(e^{i \theta}\right)\right| \geqslant 1 /(2+\alpha)$. So,

$$
\log \left[e^{2 \alpha}+2 \alpha /(2+\alpha)\right] \leqslant 2 \alpha r
$$

or,

$$
1+\frac{1}{2 \alpha} \log \left[1+\frac{2 \alpha}{(2+\alpha) e^{2 \alpha}}\right] \leqslant r .
$$

This proves the left side of (1).
The right side of (1) is proved by using Lemma 1 to produce an appropriate example. We would like to choose β so that

$$
(2+\beta) /(1+\beta)<\left(2-4 \beta+\beta^{2}\right) / \beta(2-\beta)
$$

Letting $\beta=0.29$, this is satisfied. Let $z_{1}=(2+\beta) /(1+\beta)=1.77519 \ldots$ Lemma 1 then shows that $f_{1} \in E$. The proof of (i) is complete.
(ii) Now we prove the last part of the theorem. Let $g_{0}(z)=e^{z}-1$. Note that, in Δ, g_{0} and all its derivatives are convex and therefore, close-to-convex. Let $h_{1}(z)=z-\left(\int_{0}^{z} g_{0}(s) d s\right) / g_{0}(1)$. Then $h_{1}^{\prime}(1)=0$ and $\operatorname{Re}\left\{h_{1}^{\prime}(z)\right\} \geqslant 1-\left|g_{0}(z)\right| / g_{0}(1)>0$ for $z \in \Delta$. So, $h_{1} \in E$ and each derivative of h_{1} is close-to-convex in Δ. Now suppose $h_{N} \in E$ such that each derivative of h_{N} is close-to-convex in Δ and such that, for $1 \leqslant n \leqslant N$, there is some z_{N-n+1} with the properties that $\left|z_{N-n+1}\right|=1$ and $h_{N}^{(n)}\left(z_{N-n+1}\right)=0$. Let z_{N+1} be a number such that $\left|z_{N+1}\right|=1$ and such that $\left|h_{N}(z)\right|<\left|h_{N}\left(z_{N+1}\right)\right|$ for all $z \in A$. Let $h_{N+1}(z)=z-\left(\int_{0}^{z} h_{N}(s) d s\right) / h_{N}\left(z_{N+1}\right)$. Then $h_{N+1}^{\prime}\left(z_{N+1}\right)=0$ and $\operatorname{Re}\left\{h_{N+1}^{\prime}(z)\right\}$ $\geqslant 1-\left|h_{N}(z) / h_{N}\left(z_{N+1}\right)\right|>0$ for $z \in \Delta$. So, $h_{N+1} \in E$. In fact, each derivative of h_{N+1} is close-to-convex in Δ and for $1 \leqslant n \leqslant N+1$, there is some z_{N+2-n} with the properties that $\left|z_{N-n+2}\right|=1$ and $h_{N+1}^{(n)}\left(z_{N+2-n}\right)=0$. Thus, we inductively obtain a sequence, $\left\{h_{N}\right\}_{N=1}^{\infty}$, in E such that, for each N, each derivative of h_{N} is close-to-convex in Δ and, for $1 \leqslant n \leqslant N$, there is some z_{N+1-n} with the properties that $\left|z_{N-n+1}\right|=1$ and $h_{N}^{(n)}\left(z_{N+1-n}\right)=0$.

Now the functions in E are uniformly bounded on compact subsets of the complex plane. So Montel's Theorem shows that E is a normal family on the whole plane. Hence, $\left\{h_{N}\right\}_{N=1}^{\infty}$ has a subsequence that converges uniformly on all compact subsets of the plane. Without loss of generality, suppose $\left\{h_{N}\right\}_{N=1}^{\infty}$ itself converges, and let h be its limit function. Since a uniform limit of close-to-convex functions is either close-to-convex or constant, each $h^{(n)}$ is either close-to-convex in Δ or constant there.

For a fixed $n \geqslant 1, h_{N}^{(n)}\left(z_{N+1-n}\right)=0$ for all $N \geqslant n$. Because $\left\{z_{N+1-n}\right\}_{N=n}^{\infty}$ lies on the boundary of Δ, we may suppose $\left\{\tilde{N}_{N+1-n}\right\}_{N=n}^{\infty}$ converges. Let z_{n}^{\prime} be its limit. Since $\left\{h_{N}^{(n)}\right\}_{N=1}^{\infty}$ converges uniformly to $h^{(n)}$ on $|z|=1$, and since $\left\{h_{N}^{(n)}\right\}_{N=1}^{\infty}$ is an equicontinuous family on $|z|=1$, it follows that $h^{(n)}\left(z_{n}^{\prime}\right)=0$. Since this is true for all $n \geqslant 1$, and since $h(0)=0$, the only polynomial that h could be would be $h(z) \equiv 0$. But $h^{\prime}(0)=1$, so h is not a polynomial. Hence, $h \in E$. Since $\left|z_{n}^{r}\right|=1$ for all $n \geqslant 1$, the theorem is proved.

To prove the corollary to Theorem 1, note that the left side of the inequality follows from (1) since $\alpha<1.7208$. To prove the right side, let $\beta=0.29$ and $z_{1}=$ $=(2+\beta) /(1+\beta)$ in Lemma 1.

In what follows, we shall need several results. In particular, we shall use Lucas' Theorem [11, p. 218], Laguerre's Theorem, [1, p. 23] [10], and Walsh's Theorem [11, p. 219]. We state Walsh's Theorem in the form in which we need it. In what follows N is a member of $\{\infty, 0,1, \ldots\}$:

Walsh's Theorem. - Let $\left\{x_{k}\right\}_{k=1}^{N}$ be a sequence of real, non-zero numbers such that $\sum_{k=1}^{N}\left|x_{k}\right|^{-1}<\infty$. Let $t>0$. Let $\left\{z_{k}\right\}_{k=1}^{N}$ be a sequence of complex, non-zero numbers such that $\left|z_{k}-x_{k}\right| \leqslant t$ for all k. Define f and g by

$$
g(z)=z \prod_{k=1}^{N}\left(1-z / x_{k}\right)
$$

and

$$
f(z)=z \prod_{k=1}^{N}\left(1-z / z_{k}\right) .
$$

Let $\left\{x_{k}^{(1)}\right\}_{k=1}^{N}$ be the critical points of g. Then the critical points of f lie in the circles, C_{k}, where

$$
C_{k}=\left\{z:\left|z-x_{k}^{(1)}\right| \leqslant t\right\}
$$

Further, if T is a set of these circles, and if $\left\{z: z \in C_{t 6} \in T\right\}$ does not intersect any $O_{j} \notin T$, then the number of critical points, counted according to multiplicity, of f in $\left\{z: z \in C_{k} \in T\right\}$ is the sum of the multiplicities of the $x_{k}^{(1)}$, where $x_{k}^{(1)} \in C_{k} \in T$.

We shall also need one of our results in [10], restated in a more general way. The proof is unchanged, so we do not give it.

Lemma 2. - Let f be an entire function such that

$$
f^{\prime}(z)=c e^{\beta z} \prod_{k=1}^{N}\left(1-z / z_{k}^{(1)}\right),
$$

where c is a non-zero complex number, each of the $z_{k}^{(1)}$ is a non-zero complex number, and β is a complex number. If $N=0$, we require that $\beta \neq 0$.

Suppose that $R>0$ such that $R<\left|z_{k}^{(1)}\right|$ for each k. Suppose that $\left\{z_{l o}^{(1)}\right\}_{k=1}^{N}$ can be partitioned into two sets, A and B, and that $\beta=\beta_{1}+\beta_{2}$ such that

$$
\left|\beta_{1}\right| R+\sum_{z_{k}^{(1)} \varepsilon d} \frac{R}{\left|z_{k}^{(1)}\right|-R} \leqslant 1
$$

and, for each $|z|<R$,

$$
\operatorname{Re}\left\{\exp \left[\beta_{2} z\right] \prod_{\left.z_{k}^{11}\right)}\left(1-\frac{z}{z_{k}^{(1)}}\right)\right\}>0 .
$$

Then f is close-to-convex and, therefore, univalent in $|z|<R$. If $\beta_{2}=0$ and B is empty, then f maps $|z|<R$ onto a convex set.

Proof of Theorem 2. - Because of (2) and (3), we have that $\operatorname{Re}\left\{z_{k}\right\}>2+t$ for all k. Using this, (3), and (4), it follows that, if $z \in A$,

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>1-\sum_{z=1}^{\infty} \frac{1}{x_{k}-t-1}
$$

Therefore, from (2),

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{t}{1+t}
$$

Hence, f is starlike in Δ.
Let

$$
g(z)=z \prod_{i=1}^{\infty}\left(1-z / x_{k}\right) .
$$

Let $\left\{x_{k}^{(n)}\right\}_{k=0}^{\infty}$ be the zeros of $g^{(n)}$ arranged so that $x_{0}^{(n)} \leqslant x_{1}^{(n)} \leqslant \ldots$. Using Laguerre's Theorem and an induction argument, it follows that

$$
\begin{equation*}
x_{k}^{(n)} \leqslant x_{k}^{(n+1)} \tag{9}
\end{equation*}
$$

for all n and k. Further, using Walsh's Theorem and another induction argument, we have that the zeros, $\left\{z_{k}^{(n)}\right\}_{k=0}^{\infty}$, of $f^{(n)}$ can be so ordered that

$$
\begin{equation*}
\left|x_{k}^{(n)}-z_{k}^{(n)}\right| \leqslant t \tag{10}
\end{equation*}
$$

for all n and k.
Next, we wish to find a lower bound on $x_{0}^{(1)}$. As in the first part of this proof, we have that, for $z \in \Delta$,

$$
\operatorname{Re}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\}>1-\sum_{k=1}^{\infty} \frac{|z|}{x_{k}-|z|}
$$

Laguerre's Theorem shows that there is exactly one zero, $x_{0}^{(1)}$, of g^{\prime} in $\left(0, x_{1}\right)$. Further, if $|z|<1+t$, then (2) shows that

$$
1-\sum_{k=1}^{\infty} \frac{|z|}{x_{k}-|z|} \geq 0
$$

Hence, g^{\prime} cannot vanish in $(0,1+t)$, i.e., $1+t \leqslant x_{0}^{(1)}$.

Now we use this bound on $x_{0}^{(1)}$ to get information about the $z_{k}^{(n)}$. First of all, we note that $1+t \leqslant x_{k}^{(1)}$ for all k. Next, we note that (10) implies that $\operatorname{Re}\left\{z_{k}^{(1)}-x_{k}^{(1)}\right\} \leqslant t$ for all $\%$. Putting these together, it follows that $\operatorname{Re}\left\{z_{k}^{(1)}\right\} \geqslant 1$ for all k. This and Lucas' Theorem imply that

$$
\begin{equation*}
\operatorname{Re}\left\{z_{k}^{(n)}\right\} \geqslant 1 \tag{11}
\end{equation*}
$$

for all k and for $n \geq 1$.
We now finish the theorem. First of all, (11) shows that, if $z \in \Delta$ and if $n \geqslant 2$, then

$$
\begin{equation*}
\operatorname{Re}\left\{1-\frac{z}{z_{0}^{(n)}}\right\}>0 \tag{12}
\end{equation*}
$$

It follows from (2), (9), and (10) that, for $n \geqslant 2$,

$$
\sum_{k=1}^{\infty} \frac{1}{\left|z_{k}^{(n)}\right|-1} \leqslant \frac{1}{1+t}
$$

Using this, (12), and Lemma 2, it follows that $f^{(n-1)}$ is close-to-convex in Δ for $n \geqslant 2$, i.e., $f^{(n)}$ is close-to-convex in Δ for $n \geqslant 1$. The proof is finished.

Finally, we prove Theorem 3. The assumptions about f imply that, if $z=1$ or $z=-1$, then $z f^{\prime}(z) / f(z) \geqslant 0$. So,

$$
\begin{aligned}
0 & \leqslant f^{\prime}(1) / f(1)-f^{\prime}(-1) / f(-1) \\
& =2\left[1+\sum_{k=1}^{N} 1 /\left(1-z_{k}^{2}\right)\right] \leqslant 2\left[1+1 /\left(1-z_{1}^{2}\right)\right]
\end{aligned}
$$

Hence, $z_{1} \geqslant \sqrt{2}$. If $z_{1}=\sqrt{2}$, we must have $N=1$. This means $f(z)=z e^{\beta z}(1-z / \sqrt{2})$. However, we must also have $f^{\prime}(1)=0$. This forces $\beta=\sqrt{2}$. For this f and for $|z|=1$, $\operatorname{Re}\left\{z f^{\prime}(z) \mid f(z)\right\}=2 \operatorname{Re}\left\{1-z^{2}\right\} /|\sqrt{2}-z|^{2}$. Hence, f is starlike in Λ.

Further, for this $f, f^{\prime \prime}(0)>0$ and $f^{\prime \prime}(1)<0$. So, $f^{\prime \prime}$ vanishes on $(0,1)$, and f^{\prime} cannot be univalent in D. Hence, f is not in E. This proves the corollary.

To prove the rest of the theorem, suppose $N=1$ and $\beta z_{1} \leqslant 1$. Then $f(z)=$ $=z+a_{2} z^{2}+\ldots$ where, for $n \geqslant 2, a_{n}=\beta^{n-2}\left[n-1-\beta z_{1}\right] / z_{1}(n-1)!$. Hence,

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right|=1+e^{\beta}\left[(2+\beta) / z_{1}-1-\beta\right]
$$

Since, for $n \geqslant 2, a_{n}$ is negative, it follows that $f \in S$ if and only if $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqslant 1[c f ., 6]$. The desired result follows. Further, since $1 / \beta \geqslant z_{1} \geqslant(2+\beta) /(1+\beta)$, we have that $\beta^{2}+\beta-1 \leqslant 0$, or, $\beta \leqslant(\sqrt{5}-1) / 2$. Hence, $z_{1} \geqslant(\sqrt{5}+1) / 2$.

BIBLIOGRAPHY

[1] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
[2] W. Kaplan, Close to convex schlicht functions, Mich. Math. J., 1 (1952), pp. 169-185.
[3] S. S. Macinfyre, An upper bound for the Whittaker constant, London Math. Soc. J., 22 (1947), pp. 305-311.
[4] S. S. Macintyre, On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc., 67 (1949), pp. 241-251.
[5] Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1925.
[6] A. Schild, On a class of functions schilcht in the unit circle, Proc. Amer. Math. Soc., 5 (1954), pp. 115-120.
[7] S. M. SHaH, Univalent derivatives of entire functions of slow growth, Arch. Rational Mech. Anal., 35 (1969), pp. 259-266.
[8] S. M. Shaf - S. Y. Trimble, Univalent funetions with univalent derivatives, Bull. Amer. Math. Soc., 75 (1969), pp. 153-157.
[9] S. M. Shah - S. Y. Trimble, Univalent functions with univalent derivatives III, J. Math. and Mech., 19 (1969), pp. 451-460.
[10] S. M. Shat - S. Y. Trimble, Entive functions with univalent derivatives, J. Math. Anal. and Appl., 33 (1971), pp. 220-229.
[11] J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Coll., 34 (1950).

Added in proof. - The first part of Theorem 3 can be extended as follows: Let f be defined by (5), where we assume only that β and all z_{k} are real and $1 \leqslant\left|z_{1}\right| \leqslant\left|z_{k}\right|$. Then $f \in S$ if and only if $f^{\prime}(1) \geqslant 0$ and $f^{\prime}(-1) \geqslant 0$. Further if $f \in S$, then f is starlike in A and $\sqrt{2} \leqslant\left|z_{1}\right|$. If $\beta \geqslant 0$, equality occurs only for the given function.

