Regularity Results for the Porous Media Equation (*).

E. D1 BExeDETTO (Austin Tx.)

Sunto. — In questo laveroe si considera il problema di Cauchy per Uequazione di filirazione
du/ot = dp(u)/ox? nella regione Rx (0, T], 0 < T < oo. Sotto oppertune ipotesi sulla fun-
zione @(u) si determina una stima dell’incremento temporale della soluzione u(w,t) (intesa
nel senso debole}. Nel caso politropico (g(u) = u™), quando m > 2 si trova in particolare
un comportamento holderiano di u(x,t) rispetto a & con Uesponente 1/(m — 1); viene anche
dimostrato che questo esponente & effettivamente assunto da wna particolare soluzions, per cui
la stima ottenuta & la migliore possibile.

1. — Intreduction.
The diffusion of a fluid in a porous medium is described by the equation
= U = Agp(u)

where A is the Laplace operator, # represents the distribution of density, and ¢(-)
is a non-negative eontinuously differentiable funetion such that

(1.1) p(0)=¢'(0)=10, ¢ (u)>0.

In the case of polytropic flow, the ¢(') can be specified as ¢(u)=wu», m>1. In
the physically relevant cases we have m>2. We will assume here that ¢(-) behaves
like w». In particular ¢”"(u) does not change its sign for #>0, and

(1.2) pel<c??,  eso

for some posgitive constant C.
If at the time f==0 the fluid occupies a bounded region of the space, and if
the motion is laminar-unidimensgional, we are led to the Cauchy problem

2

(1.3) u,zéaw—zqa(u), {7, )e8p=Rx(0,T], 0<T<oo
(1.4) %(0) = ()

u{x) >0 for ve(a, b)

(*) Entrata in Redazione il 18 luglio 1978.
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and
u(w) =0 for xeR~{a,b),
where

{a, b) is a finite inferval .

A consequence of the degeneracy of ¢'(-) when u =0, is that if the quantity
(1.5) p = f ‘i’—iﬂ ds
]

is finite, then the fluis diffuses with finife speed, and the solution u(z, ?) of (1.2)-(1.3)
is concentrated in the region

D= {[Cl(i) << &< Cz(t)] X (0, TJ}

where £,(t),4=1, 2, t€[0, T] are two Lipschitz-continuous curves, non-increasing
and non-decreasing respectively with {,(0) = a, £,(0)=b. In other words u(z,?)>0
for (w, 1) e D and u(w, 1) =0 for (»,1)e 8~ D.

It is known that problem (1.3)-(1.4), in general does not admit a classical solu-
tion but is solvable in a weak sense. This paper is concerned with some regularity
properties of the solution w(w, ) with respect to the time-variable, In particular,
in the polytropic case an Holder estimate of the form

lu(, t-- At) — w(z, 1)| < C(At)Ym-D

is obtained under certain monotonicity assumptions on |y,,| in the vicinity of the
interface o= ,(t), =1, 2. A related result is given by GiLpiNa [2].

The plan of the paper is as follows. In Section 2 we recall the construction of
the weak solution and certain relevant information. In Section 3 we prove Lemma 1
which is itself of interest, and will be exploited in Section 4, where it is shown that

V&W@x& € leoc(sf’) M

The point here is to consider the situation where |y,,| is permitted to grow to infinity
at the interface. In Section 5 finally we discuss time-regularity and the Holder
continuity expressed above. An example is given that shows that the Holder coef-
ficient 1/(m — 1), in the time-variable, is the best possible. I wish to thank Pro-
fessor R. E. SHOWALTER for having read the manuseript and for many valuable
suggestions.
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2. — The weak solution.
We say that a continuous non-negative function w(w,?) is a weak solution of
(1.3)-(1.4) in Sz, if
(i) (0/ox)p(u) exists in the weak gense and is summable in Sy;

(ii) u{x, t) satisfies the integral equation
I {%—« n%wu)} st +[fia, 0pue) = 0
8z R

for all f(z,t) with compact support in the space-variable, such that f,, f, exist in
the weak sense and are summable in 84, and such that f(z, T)= 0.

Existence, uniqueness and continuous dependence upon the data have been
established in [4]). The Lipschitz-continuity of g(u.(z)) is required. The solution
u{x, 1) satisfies

(2.1) O<ulz, )y <M, (x,t)eS:

M = sup uo(z),
zeR
while (9/9t)w, (2%/c¢x?)p(u), exist in the clagsical sense for (w,{)e D, and (1.3) is
satisfied in D.
The monotonicity of (-) in » suggests we write (1.3)-(1.4) as

(2.2) Y= <P’[H(?P)]%w+ iy (z, 1) €8
(2.3) P(0) = p(%,) = yo(®)
Po@) >0  we(e,b), Po@)=0 weR~(a,b),

where H[yp(u)]= 4, w>0. ARONsON in[1] shows that the equivalence between
(1.3)-(1.4) and (2.2)-(2.3) is not only formal; i.e., the weak solution of one of these
allows the recovery of the other.

Consider the sequence of problems

v, , o? .
—g); =Q (un)g&;Wn_{—wnz
(2.4) (@, 1) € (—n, n) X (0, T]
Yul®, 0) = ou(®) z€[—mn,n]

a0, t) =sUp e, =N &[0, T]
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where wu,= H(yp,) and {won}\wo(m), 0<1/n<Pon() < N, woulw)= N for
ze[—n, — (n—1)]Ul{(n—1), n]
and it is smoothly connected to y,.(-:n,?) in
[~ (1= 1), — (n—2)]U[(n — 2), (n— 1)].
For all n>2, neN, p,(, 1) the solution of (2.4) is O°[(— n,n)x (0, I']] and
{wal@, DN\ »(@, 1)

where wu(x, t) = H(y(x,t)) is the weak solution of (1.3)-(1.4). The convergence is
uniform on compacts K c 8.
By the maximum-principle

(2.5) P'(M)>¢'(H{y,) =¢'(#.) >0, neN,
and the inequality iz preserved at the limit. For (z,¢)e D we have
¢'(u)>0

so that from elassical Schaunder-type estimates it follows that for all A, ke NV

o oF o ok
T T @HED

and the convergence is uniform on compact sets contained in . In particular we
notice that

0 © 02 -
=9 0°(D), —pel=(D).

(2.6) o

Finally we observe the following sharp result due to ARONSON [1] and KALASH-
NIKOV [3]. Set

R={[m, m]x[7, T]}, ©>0;
then for every nelN

(2.7) ’%w(w, t)]<00, (z,t)e R

where 0, is a constant depending upon M, ¢, 7. The estimate (2.7) is preserved
at the limit, and C, does not depend upon v if

0
P Yolw) | < const .
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3. — Fundamental lemma.

From now on C will indicate a generic non-negative constant, depending upon
quantities that will be specified later.

LEMMA 1. - Let 0<fe C[(0,1]]N L0, 1] and ¢ >0, Lipschitz-continuous in [0, 1]
with @(0)=0. Assume moreover that there is a >0 such that f is non-increas-
ing in the interval (0, §]. Then

@ feL7[0,1].

Proor. — The Hardy-Littlewood maximal funetion defined by

a-+h

1
H(po) = sup 7 _f;(é) a

is an operator of weak-type (1, 1), [5], i.e. there is a constant € > 0 such that for
all ge LM(R) and all >0

¢
(31) m{w: M(g)@)> 7} <= gl
where m({2) indicates the Lebesgue measure of the set 2, and

lgl=]1g) @z .

By extending f to be zero oufside [0,1] we can apply (3.1) to the f. Notice that
for ze(0,1) in view of the continuity of f in x, by the Lebesgue theorem we have

z+h

L1
M(f)(@w) >lim — | f(£) dE = f(»)
>0 2h
x~—h
so that if 1 is any positive number and ze[0, 1]
{o: fl@) > A} C {w: M(f)(w)> 1} .
To prove the lemma we will show that there is a number M >0 such that
miz: p(a)f(@) > M}=0.
Let k be the Lipschitz-constant of ¢ and let 1 be so large that

fo: plo) fl@)> A} U {m: flx) > k%} crlo, 8.

17 ~ Annali di Matematica
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From the above remarks it follows that

{w: o) fz) > &}Q {m: flz) > k%} c {w:M (M) > 7%5} .
Hence

m {w: Hax) > k%}<giké Il -

Since f is monotone in (0, 4]

{x: ) > 70%}@[0, o).

Therefore

Ckd
@ gl 0> 2y <o, F2 7).
Using again the Lipschitz-continuity of ¢, we have

Z'Z
{: p(@) f(2) > A} g{m: fl@)> W}

and

o plo)fo> 1y < T,

Tterating, for all ne N
mi: g(@) f@) > 1} < [—O—k%ﬂl} 5.
Hence, it 4> Ck|f],
i g(@)f(@)> 2} = 0.

REMARK. — If we had 0 <@, Holder continuous with exponent x € (0, 1), the same
argument would bave given for all nelN

miz: (@) flw) > A} g[gk_ﬁﬂ}]l“m Ra

and the series > «” is convergent for xe(0, 1).
n=0
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4. — The estimates.
LEMMA 2. - Let B = {[@, 4] X[71, 7]}, 0 << 1:<< 7, and y e C(R). Moreover let n

be so large that K c(— =, n) X (0, T, and let y,(x, t) be the classical solution of (2.4).
Then there is a constant C, depending upon ¢, 7, 7;, y, but not upon =, such that

1£fywn,-wnmdwdt!<0.

Proor. — Multiply the first of (2.4) by yy.., and integrate over E, to get

[[rpapeto dt={ [y (B prsspucde di+ [ [pyt.azar.
R R R

By virtue of (2.7), the last integral is uniformly bounded. For the first we have

T

szV‘P'[H(%)] VnaePno G0 At = | ypro@' [H(y,)]
R

"
Ty 5
—ff Vo' [H(pa) prodo di —*Hwﬁw . @ TH(p.)1dzdt .
R R

In thig last expression, the first two terms are uniformly bounded because of (2.5)
and (2.7). To derive uniform bound for the last term, observe that by (1.2), (2.5),
(2.7) we have

' Urng
<C ‘ ¢'(n) —

n

0 ) N
59;99’(5(%)) = G’f%w,,(as, t)1<00.

LevMA 3. — Let @ = {[&,, &] <[y, ©.]}, and let @ c R = {[#,, #,] X[71, 7,]}, Where
< E1 < Ea< @y, O0< 1<K 1< £, << 7,. Lt ul(a, 1), (@, t) be respectively weak solu-
tions of (1.3)-(1.4) and (2.2)-(2.3). Then
(4.1) Vo' (u) pe e LD N Q).

Proor. — Let ae Cy’(R) such that «=1 for (z,?)e@. Multiplying the first of
(2.4) by a(x, t)Wa..(2, t) and integrating over R, we getb

[Jor @) vhuedw < [ [0 puueda dt) + | [ [appavidoat) = L+ 1L,
B R R

Iz=f fawﬂmwimdxdt =———13— ffaxwimdmdt

T 2 T %
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$0 (2.7) implies that |I,] is uniformly bounded. For I, we have

Ty @y Z2 Ty %z Ta
lef fam,umz,unmdm dt = —f focgomzpmdx dt—~f focwgumwm .
Ty & Xy Ty @3 Ty

The second integral is uniformly bounded by virtue of Lemma 2, and the first equals
%y Tp Ty Tp
1 0 1
—— — 2 —— 2
5 ffoc Py (W) 2 din At 3 J‘fipwoctdxdt
@ Ty 2y Ty

which can be uniformly bounded applying (2.7). We conclude that there is a
constant ¢ depending upon «, R, ¢, but not upon n, such that

f f @' [H ()] prewdc di < f f o' [H(,) | phande dt < C .
and R

Taking now the liminf as n — oo, yields

ff(p’(u)y):;’mdwdt<0
QoD

by Fatou’s lemma because

oy, Oy
FYTRr e

H(y,)—~>u,
pointwise in D.

REMARK. — The argument being independent of @, Lemma 3 says that
v ‘Pl{%) ?P:cweleoc(ST) y

where y,, is defined to be zero outside D.
Lemma 3 and Fubini’s theorem imply that

£a(t)
1= | ¢'(w)yiia, 1) do
&

is finite for almost all te(t,, %,].

Set f=¢'(u)y2, (#,t)eQN D; then fe L(QN D). Since ¢'(u) is Lipschitz-con-
tinuous in the a-variable (uniformly on te[t, 1,]), and ¢'[#(C:(t), t)]= 0, if f is mon-
otone in the vicinity of the interface by Lemma 1 we have

(4.2) @'(w) f € L7[L1(1), La()]
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for almost all ¢e[t,,t,]. Moreover if (z,1?) is close enough to ([(?),?), then from
Lemma 1 and (2.7) it follows that there is a constant ¢ depending upon ¢, ¢, {, but
not upon telty, ], such that

(4.3) (@' N@)<Clfl.()  ae.  telt,t].

The above can be rewritten as

(4.4) () p, (@) < C¥l @ (w92, 1 E(2)
for almost all te[f,, ]

LeMMA 4. — Let y(x, t) a weak solution of (2.2)-(2.3). Suppose that for any rec-
tangle Q =[&,, &1 x[t, 6], 0 < <, < T, &< {illy), &> {,(2,), there is an e> 0 such
that the quantity ¢’(u)y:, is respectively non-increasing in {£,(¢), {1(f) -+ ¢] and non-
decreasing in [,(f) — &, £,(?)]. Then there is a constant ¢ depending upon ¢, ¢, #, &,
but not upon te[f,, 4], such that
L)

(4.5) 1= [gwytin<C
[#10)]

for almost all te[t,, ¢,].

Proor., — Without loss of generality, we can assume that £;(0)<C 0 << {,(0), Le.
a< 0<b. We will show that
Lo(t)
Ia(t) = f Py pile, ) do<C, ae. L[t t].
0

The proof for the analogous integral over ,(f) <x<0 will be similar.
By Fubini’s theorem I,(f) is finite for a.e. f€[t;, t,]; let ¢, be such a ¢ and let {w,}
be an inecreasing sequence such that

(xn) ty) ~ (52(50% to) .

Then
talte) o
(4.6) @' ()i do = lim |o'(u)yl,do
e 6 Lylte)—e Zn
:f¢'(%)¢3w dz + lim @ () e = I, + lm I, .
n->00 n—»o0
0 Lslty)—¢€

The first integral is bounded uniformly in t€[t, t,] since the compaet [0, Cy(f) — &] X
X[t, t;] is contained in D.
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For I, we have
&n &n En

i 7 o a 7 7
L, =fsv () Yoo Puu i = @' (U) Yo Yo foms f% PG (#) e do — f P’ (4) Woue A

Laltg) e Lo(te)—e Lalte)—e

So

*Iﬁl < I‘P’(’“) Q/)wqf”mm(xny to)t + {99!(71') zf’mw"/"wx(é—2(t0" 8)7 to)} _}_ (Iﬂ + tZ:{ .

Recalling (1.2), (1.5) we have

Xn &n

0 d
1 ! 3
FHES ) f% = () Pyl QO) f = pa(w, to)dml
Lalte)—e Calte)—¢

for some constant C independent of . Hence in view of (2.7), we conclude that there
is a constant € independent of  and » such that

i< C.

We estimate now |I2|. From the monotonicity assumptions on ¢'(u)yl, it follows
that for @ e ((u(ty) — &, Calty)

3 a 14 r
(i1)  .al, f,) has a fixed sign

()  pel@, o) and [y (x, ) — p.(la(te) — &, t,)] have the same sign.
Henece dividing the above inequality by v..(#, t,) and multiplying it by

L9a(®, To) — wo(Calte) — & to)]

yields
(4.7) -2 [%:(wy to) — %Uac(é‘z(to) — & to)] 99,(“) Yo 5
<[, to) — pu(Calte) — & t) ] T (%) YPas
‘We have
= — f [wal@, 1) — wallalte) — &, t6) 190" (%) Yopu d® —
Laltay—e¢ Zn

— [ et — & )9/ (W) panud = T3+ T
Lalto)—e
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Using (4.7), for J7] we have

&n

2
2J3 éf[%(w, fo) — Wa(Calte) — £, %) ] % @' (U) Yoo dx
Ealto)—e

and uniform upper bound on {J7| can be obtained employing the same procedure
used to estimate [I,].

For J3, integrating by parts and applying (2.7) we obtain

&n

0
Doalte)—e

where the last integral can be uniformly bounded by the method used for |I7j].
Now we observe that the quantity

" (w) Q/)m(Ca(tm) & io) |

iz uniformly bounded for £> 0 fixed by interior Schauder-type estimates, whereas
if @, is close enough to £,(¢,), by (4.4) we have

IQDI(“) y)xx(xn7 tﬁ)} < Oli(tﬁ) *
Carrying the above estimates in (4.6) gives
L(t,) <0, + CyIi(,)

where (;, i=1, 2 depend upon ¢, ¢, t,, t,, but not upon te[#, t,]. This proves the
lemma.

5. — Regularity results,

Next we will look for an essential bound on w,(, t). It is clear from (2.2) that
if ¢'(w)y..e L°{R x[7, T}, 7> 0, then so also does y.(z,t). The interesting case
occurs when |y..(®,t)] grows to infinity as (x,t) approaches the interface.

Our main result deals with this case. However, we were unable to separate
completely the behavior of v, (2, ) and y,(#, ) in a neighborhood of the interface.

THeEOREM 1. — Suppose that y(z,t) is a weak solution of (2.2)-(2.3) and assume
that for any rectangle

QE{[§1:§23X[tI7tZJ}: 0< <<t < T,
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£, < Lill) < Lo(t) < &y, there is an &> 0 such that gp’(u)zp:w(x, t), (7, ) D is non-in-
creasing in [{,(2), £1(8)+ &] and non-decreasing in [{,(1) — &, {,(¢)]. Then y,(x, ) exists
almost everywhere in Sy and

p.eL*{Rx[7, T}, Vr>0.

Proor. — It will be enough to show that for almost all te[t, 4]

Lmsup |p,(2,8)|<C, (2,H)eD
(,6)~>(&: (D), 8)

and the bound does not depend upon ¢. Let’s show this for {,(t); the proof for {,(#)
is similar.
For (z,t) e D, (2.2) is satisfied in the classical sense, hence

lim sup |z, 1)|< Hmsup |@' () y..(2, 1) -+ limsap yi(e, 1) .
(2,0)—>(La(8),8) (,0)=>(La(1), 1) (w,8)—>(L2(0),1)

The last term is bounded because of (2.7) and a control on the first is supplied by
(4.4) and Lemma 4.

We will now exploit the results of Theorem 1 to deduce some regularity properties
for the solution of (1.3). Let’s put ourselves in the assumptions of Theorem 1. Since

ts

(@, ) — pl@, bl < [lpldt, >0,
by

Theorem 1 and (2.7) imply that y(w,?) is Lipschitz-continuouns in R x[7, T}, 7> 0,
i.e. there is a constant O such that

[p(@yy ) — p (22, t)] <C{|W1 — &y| - [t — tz]} .

THEOREM 2. — Consider the () defined by (1.5) as a function of u.

(i) If o"(u)> 0 for u [0, M], then for all h> 0 and (, )€ {Rx[7, T]}, 7> 0
there is a constant O such that

(5.2) [, -+ h) — u(z, t)| < H(Ch)

where H(:)-is such that H[y(u)]= w.

(i) If (%) <0, u [0, M], then for all A>0 and (,?) e{Rx[% T}, t>0,
there is a constant € such that

(5.3) (@, t-+ h) — u(@, )| < Ch .
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Proor. — (i) ¢"{%)>0 is a convexity condition which can be expressed in the
form

w(|u(@, t4 ) — w(@, 1)]) < [ (u(z, 4 ) — p(u(z, 1)) .

Applying (5.1) and observing that H(-) is monotone increasing, yields (5.2).
(ii) If »"(u)<0, [0, M], we have

!
v (M) = ‘pl(;[)>a> 0
and sinece y'(-) is decreasing
(5.4) p'(u)>y (M) >a>0.

Notice that (5.3) holds for « replaced by u,, for n large enough, so integrating bet-
ween u,(x,t) and u.(x, t-+ k) and applying (5.1) gives

| U (@y T4 h) — Un(B, )] < [9(Ua(@, 14 1)) — p(ualz, 1)) | < Oh

letting n — co proves (5.3).
It is interesting to observe the results of Theorem 2 in the situation of poly-
tropic flow. In this case we have

plu) = —— wri(a, 1)
p'(u) = (m — 2)wr=(x, 1)
therefore if m>2, v"(u)>0 and
(5.5) [, t+ h) — u(z, 1)| < ChYm—1
I m<2, v {u)<0, hence by Theorem 2

(5.6) |y £ B) — u(w, 1) < Ok .

The Hoélder exponent 1/(m— 1) in (5.5) iz the best possible. This is shown by the
following example

1 x |2)m-11
w(@,t) = 7@{1 B [Z'(-ti] } || < A(t)
’ o] > 200

A = {Zm(m »1; 1) m>1

t>0,

t+ 1)}”’"—1
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Such a wu(z, ) is the unique solution of (1.3), with initial value

1 z |2

It is not difficult to see that if x= A(f), then

[u(A(t), t+ At) — w(A(2), 1) = F(m, t)(At)vm—n

where

O<a<F(im,t)<f

for some o, § positive constants. The above explicit solution of (1.3)-(1.4) is due
to PATTLE [6].
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