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Summary. - The higher order nonlinear deviating equations

)+ 8 3 1t Slga®], .. 2Lg(®)]) = h(t)

=1

are considered, where § = - 1. Owr main purpose is to characlerize the asymplotic behavior
of nonosctllatory solutions of above egquations.

1. — Introduction.
The purpose of this paper is to characterize the asymptotic behavior of non-
oscillatory solutions of nonlinear deviating equations
wm
B(§): a»(t)+ 62 folty 2[ga(t)], ..., 2[ga(®]) = B(), 6= 1.

de=1

In what follows, we are only going to consider continuous solutions of E(d) which

are extendable on some positive half-line I =[%,, o), #,> 0. We call a funetion on I

oscillatory if it has arbifrarily large zeros, otherwise it is called nonoscillatory.
Throughout this paper, we assume the following conditions always hold:

i) ¢.;,he 0L, B = (— oo, o0}, ilm g,;(t) = cofori=1,2,...,m;j=12,.., k.
(ii) ()= 0 or there exists an oscillatory function r(t) such that

() = h(t), imr®E) =0  for x =0,1,...,n—1.

t-»00
(iiiy f,e C[I X R* R}, for ;> 0,j=1,2, ..., %k and all t>1, imply

O < folty @y vuny By <— Filly — gy ooy — )

(*) Entrata in Redazione il 19 maggio 1978.
(**) This research was supported by the National Science Couneil.
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for i=1,2,...,m. Moreover there is an inder p, 1<p<n such that f,(t, x, ..., %)
is nondecreasing with respect to %y, @y, ..., &, and for all t>1,.
Using condition (ii), F(d) may be written as

L(0): 990+ 0 3 4, g0+ {galt] -,

yga(t)]-+ ?‘fgik(t)]) =0

where y(t) = 2(t) — r(t).

In order to obtain our main results, we need the following two lemmas. The
first lemma is an analog of a result due to K1cUrADZE [10], the other is due to
Srarkos and Srroas [19].

Lemma 1. - If @(t) is a positive (negative) solution of E(S) for t>>1,, then there is a
Tty for which y(t) = x(t)— r(t) 48 a positive (negative) solution of L(J) for t>T.
Also there is an integer 1, 0<<I<n with n+1 odd if y»(t)<0, n41 even if y"(4)>0
and such that for t>1

X 1> 0 imply y#(@) >0, x=0,1,..,0—1
(1) I<n—1 imply (— 1) y@ (@) >0, x=LI-+1,..,5
(2) 2y >0  for x=0,1,..,7m.

ProOF. ~ We only consider E(-1). We assume that o(f) and 2[g,;(f)] are posi-
tive for ¢>14,, i=1,2,...,m,i=1,2, ..., k, since x(t)< 0 can be discussed similarly.
Then y(t) = x(t) — r(¢) is a solution of L(4-1). Condition (iii) implies y"(f)< 0. If
y(1) <0 for ¢ large enough, then »{f)>— y{{)>0, a confradiction to the oscillatory
character of r(t). Hence y(t) > 0. By KIGURADZE's lemma [10], we have (1). Let
¥ 9(8) >0 (< 0). If 2™(t)< 0 (> 0), then r*(t)= 2™ () — "™ ()< 0 (> 0), a contra-
dietion. This confradietion proves (2).

LeMMA 2. - If y(f) is as in Lemma 1 and for some 0<%<n— 2, lim y# (1) = ¢,
ce R, then

limy™it) =0, x=%-+1,.,n—1.

{—>co

2, — Main results.

TaroreEM 1. — Let n be even. Assume that

(Cy) [ty 0ga(®) -y 0guult) dt = o0
for any constant ¢ =0, and

f,,(t, CYpi(8)y ooey cgwk(s)) <sfult, ¢y ..., 0) for c>0

(C,)
f,,(t, 0G5 (8}y <-es cgaﬂc(s)) >sfp(ty 0y .y0)  for  o<O
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for all large t and s> 0. Then eack mnonoscillatory solution of E(—1) has either
#9(t) =0 or [2¥()] — oo as t—>oco for x=10,1,...,n— 1.

Proor. — Without any loss of generality, we can assume that x(¢) and x[g.(t)]
are positive for ¢t>¢, and i=1,2,...,m,j=1,2,..., k. Let y(t)=x(t)— r(f). Then
we have L(—1). Condition (iii) implies y"(¢)> 0. It follows from Lemma 1 that
there exist a #,>%, and an integer ! (even) such that (1) and (2) hold for ¢>¢,. If
2'(£) > 0, then by Lemma 1, #"(f)> 0. Therefore x(f) - oo as t— co and

tim 28 gy 20 = 2(0)

f—>o00 f—>o00 t— 1

>2'(t) >0

Let «'(t,) = 2¢. Then there is a #,>¢ such that x(t)/t>¢ for t>%,. By (i) there
is a T>t, such that g,(¢)>1, for t>T. Thus for t>17

(3) alg.i(0)]>egis(t), i=1,2,...,m, j=1,2,..., k.

Integrating L(— 1) from 7T to ¢ and using (3), (iii), we have
1
YOI > YD)+ [1,(5, 0Gin(8), - 6gun(s)) ds — o0
7

as t->oco. Thus y™(t)—> co as t— oo for x=0,1, ..., n— 1. Condition (ii) implies
gggowm(t): oo for x=0,1,...,n— 1.

If #'(t)<< 0, then Jim (%) exists and is nonnegative. Hence by Lemma 2,
Jim #(t)=0 for x=1,2,...,n— 1. Since 2'(t)< 0, by Lemma 1, (— 1)"z*(t) > 0,
for t>t0, x=1,2,...,n If tl_l;lgd}(i): 2¢> 0, then there exists a 7>1, such that

for t>T
(4) dgut)]>e, i=1,2,..,m, j=1,2,..,k.

Integrating L(— 1) from 7 to ¢

[
(%) y00) =y +| 3 1105, 01ga ()], ., olgals)]) ds
T

Hence

co

(©) YT ffn&m%)].wmmmm.
T

i=1
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Integrating (5) from 7' to ¢ and using (i), (iii), (5) and (6), we have

yon(t) = yo(T) + (t— T)y==(T) +

3
—}"f(t_ s) igl fi(Sy 2[gal8)]y ey wEgzk(S)]) ds =
T

[
m

— yo(T) - f (@9 3 1(5,alga(s)], ., 0] ds—

j=
T
=

—(t— T)j :”1 fi(sa [g:a(8)]5 oves w[gik(s)]) ds <
t

k]

¥
<ym‘2’(T) - TZI(“*D(T) "“ffm(sy Ogm(s): seey @gmk(s)) ds —— oo
T

as {— oo, a contradiction. Hence ¢= 0.

FExamers 1. — Consider the equation for t>7
@' (t) — enw(t— ) = e~4(e*r sint — 2 cost)

which has #(t)= et e~*sint as a nonoscillatory solution.
ExampLE 2. — Equation

2" (t) — ema(t— m) = ¢~4(2 cos § — sint)

has #(f)= ¢~%2— sint) as a nonoscillatory solution.

THEOREM 2. — Let n>3 be odd and conditions (Cy), (C,) hold. If x(%) 8 @ non-
oscillatory solution of E(+1), then a*)(t)—>0 as t—> oo for x=0,1,...,n— 1.

PROOF. — As in the proof of Theorem 1, we only discuss the case where z(t) and
2[g.;(t)] are positive for t>1,, i=1,2,..,m j=1,2,..,k Let y(t) = o(t) — r{f).
Then E(--1) can be written as L(--1). Condition (iii) implies y™(#)<<0 for t>1,.
Tt follows from Lemma 1 that there is a ¢, >%, and an integer I (even) such that (1)
and (2) hold for t>t,. If 2'(t)>0 for ¢>1,, then 1>2. Thus as in the proof of
Theorem 1, there is a ¢>0 and 7>t such that (3) holds for ¢>T. Integrating
L(+1) from T to ¢ and using (iii), (4), we have

|2
Y00 <YLY — [1,(5, 00a(8); o3 0ae(s)) d5 > — 00
T
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as t— co, a contradiction. Hence #'(¢) << 0 for {>1,, then %LIE‘O #(f) exists and is non-
negative. By Lemma 2, }i@cw(”}(t) =0 for x=1,2,...,n—1. If lima(t)=2¢>0,
then there exists a 7>, such that (4) holds for 1> T. Since #'($)<< 0 for {>7T by
Lemma 1, (— 1y2™(t)> 0 for t>T, x=0, 1, ..., n. Integrating L(--1) from T to ¢,
we have

{
) s = 3D = 3 1.6, 010a(01, .y olgale)) ds
T
Hence
(®) yoT) = $ 1o, 1galo)) s ol 0.
T

Integrating (7) and using (4), {8), (iii) we have

13
YD) >yT) — Tye(T)+ [1,(5, 09a(5); .., 6gua(s) ds = oo
T

a8 {— oo, a contradiction. Hence ¢= 0,

Examere 3. — Equation
2" () -+ e mx(t — 7)) = — 6~42 cost -} sinf)

has #(t) = ¢~%2 — sint) as a nonoscillatory solution.

THEOREM 3. — Let n>2 be even. Assume that

o

ft”—lf,,(t, Gy .., C)dt= Foo for any consiant c¢#0.

If z(t) is a nonoscillatory solution of H(+-1), then x(f) — J-oo as {->oco.

Proor. ~ Without loss of generality, we may assume that #() and 2[g,(f)] are
positive for t>1,, i=1,2,...,m,j=1,2, ..., k. Let y(t) = @(¢) — 7(t). Thus as in the
proof of Theorem 2, we have y™(t)< 0 for t>¢,. By Lemma 1 there exist a T'>1,
and an integer I (odd) such that (1) and (2) hold for ¢>T. If I=3, then we see
easily that y(¢) - co. Hence () — oo as t—oco. If I=1, then

(9) (— 1y ™y >0  for x=0,1,..,%.
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If y(¢) is unbounded, then we have our theorem. Now consider the case y(i) is
bounded. Multipling L(-+1) by i** and integrating it from 7 to ¢

(10) Q) —QT) + (— 1) V(n— 1)} (y(1) — y(T)) +

i
—{—fs“‘“n ‘21 fz(sy 2[gals)], .-, x[gm(s)}) ds =0
T
n—2

where Q(t)= 3 (— 1y ]®ylr==Dyy

x=0

By (9), @(t)> 0. Hence

¢
Yy > Q(T) -+ |s"2fy(sy €y ..y 0)ds—c0 a8 10
T

where ¢= 2(T'), a eontradiction. Hence our proof is complete.
ExAMPLE 4. - Equation #"(1) -} (1 /432).%*{3) — 0 has a nonoscillatory solution z(f) = .

THEOREM 4. — Let n>>3 be odd and condition (C,) hold. Assume that

ffm(t, Cyvory 6)At= d00  for amy constant c¢*0.

If x(t) is a nonoscillatory solution of B(— 1), then |#¥(t)| - co as t —> oo for =0, 1, ...,
n— 1.

PrOOF. — Without any loss of generality, we assume that x(f) and @[g,(t)] are
positive for t>t, and i=1,2,...,m, j=1,2,..., k. Let y(f)= a(t)—r(f). Asin the
proof of Theorem 1, we have y®(¢)> 0 and (1), (2) hold for ¢>1,, where i, is large
enough. If y-D()> 0, then as in the proof of Theorem 1, y%)(t) — co thus #*(f) - oo
as t—co for x=1,2,..,n—1. If y»D(4)< 0, then y'(f) > 0. There exist a I'>1,
and a constant ¢> 0 such that afg,{f)]>e¢ for i>T. Hence

t
yoI(t) =y (T +- J‘ .i fils, #[ga(s)1, -, 2lgu(s)]) ds >
7

i
> g L) + 16,0,y )5 00
7
as {—> oo, a contradiction.

EXAMPLE 5. — Equation 2”(f)— em2(t— 7) = e~ %2 cost- 2 sint-} e~ ginf) has a
nonoscillatory solution w(f) = et-}- e~*sint.
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