Periodic Solutions for Coupled Systems
of Differential-Difference and Difference Equations (*) (*%).

PEDRO MARTINEZ-AMORES (Granada)

Summary. — The objective of this paper is to give necessary and sufficient conditions for the
existence of periodic solutions of coupled systems of differential-difference and difference
equations. By differentiating the difference equation, we oblain a system of neutral differential-
difference equations and we get the original problem by pulling a side condition on the neulral
equation; that is, by restricling the initial daia o lie on certain manifold in the space of all
initial data. This allows us o treat the problem using the methods of neutral functional dif-
ferential equations. In [8], Hale and Martinez-Amore exploited a certain change of variables
to oblain some resulls on the stability of this systems. In Section 2, we summarize those ideas.
The effect of the side condition is reflected in the variation of constants formula in Section 3.
In this section, the variation of constants formula is decomposed via eigenspaces. In Section 4,
we give a theorem on the Fredholm alternative for periodic solutions which is basic fo the
application of the usual theory to periturbed linear problems. I wani to express my mosi
deep gratitude to Professor J. K. Hale for his advice and suggestions which led to considerable
improvements of this poper.

1. — Notations and background.

Let R = (— oo, co) and let R" be an n-dimensional linear vector space with
norm |-|. For r>0, let C= O([—7, 0], R") be the space of continuous functions
mapping [— r, 0] into R» with the topology of uniform convergence. The norm in ¢
will also be designated by [¢|=sup_,<s<o|9(0)!, p € C. Suppose D, L are bounded
linear operators from C to R,

1]
(11) D(g) = Ho(0) — [[4u(0)]p(0)

-

Lig) = [Tan(6)1¢(6)

where H is an nXxn matrix, det H £ 0, u, n are # X »n matrix functions of bounded
variation on [— r, 0] with y nonatomic at zero. This latter hypothesis is equivalent
to the existence of a continuous nondecreasing function y:[0,#]— R such that

(*) Entrata in Redazione I'8 marzo 1978.
(**) Research was supported in the form of Grant from the Program of Cultural Exchange
between the United States and Spain.
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»(0)=0 and

| f)[dﬂ(ﬂ)]ﬂﬁ)' <y(e)lgl

for ¢e[0,r],pe .

If # is a function from [¢— 7, oo)to B, let @, te{o, co), be the function from
[— 7, 0] to .R* defined by #,0) = z(t-+0), 6 €[—r, 0]. An autonomous linear homo-
geneous neutral functional differential equation (NFIDE) is defined to be

(1.2) 2 D) = L@,

A solution o= a{p) of (1.2) through ¢ & C at {= 0 is a continuous function tak-
ing [— 7, A), 4 >0, into R* such that x,= ¢, D(x,) [not #(¢)] is continuously differ-
entiable on [0, A) and satisfies (1.2) on this interval. It is proved in [9] that there
is a unique solution z(¢p) through (0, ¢) defined on [— 7, co) and depends continuously
on ¢. If the transformation T(f): C — C,1>0, is defined by T'(¢)p = z,(¢), then it
is also skown in [9] that {T(¢), t>0} is a strongly continuous semigroup of linear
operators with infinitesimal generator 4: D(A)— 0, Ap(0) =¢(0), — r<f<0, D(A) =
= {peC:pe0, D(¢)= L{g)} and the spectrum o(A) of A consists of all those 1
which satisfy the characteristic equation

(1.3) det A(A)= 10, A(A) = AD(exp[A-]I) — L(exp[A-1I) =
1] 0
= AH — A[exp[A0]du(6) — f exp[A0] dn(0) -

o —€

DEFINTTION 1.1. — The operator D is said to be stable if there is a » >0 such
that all roots of the equation

det D(exp[A-]1I) =0

satisfy Rel<—1o.
From the results of Cruz and HALE [1] and HENRY [10] an operator D is stable
if and only if the zero solution of the functional equation

Diy)=0, t>0
is uniformly asymptotically stable; that is, there are constants K, «> 0 such that
lydp)l <K exp[—atllpl, 1>0, 90, D(p)=0.
If D(p)= He(0)— Jp(— r), then D is stable if the roots of the polynomial equation
(1.4) det[H— gJ]=0

satisfy |o|< 1.



PEDRO MARTINEZ-AMORES: Periodic solutions for coupled systems, ete. 173

An important property of equation (1.2) when D is stable is the following
(see [2]): If D is stable, then there is a constant a,< 0 such that for any a>a,,
there are only a finite number of roots A of (1.3) with Reli> a.

Let D be stable. If A = {i: det A(1) =0, ReA>0}, then 4 is a finite set and
it follows from [9] that the space € can be decomposed as U= P @ ¢ where P,Q
are subspaces of ¢ invariant under 7(f), the space P is finite dimensional and cor-
responds to the initial values of all those solutions of (1.2) which are of the form
p(t) exp[At], where p(¢) is a polynomial in ¢ and AeA4.

The fundamental matrix X(#) of (1.2) is defined to be the » X% matrix solution
of the equation

£
D(X,) =I—}—fL(Xs)ds, 0
0

0, —r<0<0
L) =\ g, g
, —

If F, G: R~ R” are continuous, a nonhomogeneous linear NFDE is defined as
(1.6) L (D) - 6} = Lw) + F ).

A solution through ¢ at {= ¢ is defined as before and is known to exist on
[6—7, c0).

The variation of constants formula for (1.6) (see [7], [3]) states that the solu-
tion of (1.6) through (o, @) is given by

¢ i+
WD) a(t)=Tt— 0)p(0) + [X(t— 5)F(s) ds — [, X (t— 5)][6(s) — 6(0)]

for t>0 where X is the fundamental matrix solution given by (1.5). Another
convenient equivalent form for equation (1.7) is the following:

i
1.8)  o(t)— X(0)6(t) = T(i— 0)g(0) — X(t — 0)G(0) -+ f X(i— 5)F(s) ds —
° £
— f [d.X(t—8)]G(s), t>a.

Let us make a few observations on the variation of constants formula which
suggest changes of variables which will be useful in later gections. Let PC be the
space of functions taking [— r, 0] into R» which are uniformly continuous on [— r, 0)

12 - Annali A& Malematica
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and may be discontinuous at zero. With the matrix X, as defined before, it is
clear that

PO=C+ (X

where {X,> is the span of y,; that is, any pe PC is given as y= ¢ X,b where
pe(,beR* We make PC a normed vector space by defining the norm
9] = SUD_, <50 |9(0)]-

Let us define x,{yp)= T({)y where pye PC and x(y) is the solution of (1.2)
through w. The operator 7'(t): PC > (functions on [— r, 0]) is linear, but 7'(t) does
not take PC — PC. The operator 7'({) is an extension of the original semigroup 7'(f)
on C. If we use this notation, then the variation of constants formula (1.8) can be
written as

¢
1.9)  @,— X,G(t) = T(i— o)[p — X,G(0)]+ f T(t— 8) X, F(s) ds —

i
— [[a.7(¢~ 9 X,)6()

for t>0,peC. As usual in the theory of functional differential equations, these
integrals are svaluated at each # in [— 7, 0] as ordinary integrals in E».
If ¢ is decomposed by 4 as C= P @ @, then equation (1.9) is equivalent to

a) @] — XG(t) = T(t— o)[¢"— X;G{0)]
[ $
+ f T(t— 5) X2 F(s) ds — f [d,T(t— $) XZ1G(s)

[

(1.10)
b) af— X26(1) = T[t— o)[g"— X$G(a)]

+f1’(t—s XOF(s s_ﬁjd T(t— 5) X G(s)

where the superscripts P and  designate the projections of the corresponding func-
tions onto the subspaces P and @, respectively.

Projection operators taking € onto P and @ are determined by means of the
adjoint differential equation

0

4]
(1.11) v —[ui— 6 H-2au0)| = ot = ) > an(0)

-1
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and the bilinear form

0 6
(112) (2 9) = a(O) Dilg) + | [itE— 0)B-1du(®)]p(&) a

—r 0

0o 6
— [ [ute— oy E-[an(o)Ip(e) ae

—7r 0

defined for all e C*= C([0, r], R™*), 6. C*, p e C,

1]

D) = p(0) — B [[dn(6)110)

-—7r

It &= (¢, ..., @,) is a basis for the initial values of those solutions of (1.2) of
the form p(t)exp[At] and W= col(yy, ..., p,) is a basis for the initial values of
those solution of (1.11) of the form p(#) exp[— A¢], then it is shown in [9] that the
p xp matrix (¥, @)= ((y;, 9,)), 4, =1, ..., p is nonsingular and, therefore, can be
agsumed to be the identity. If @, ¥ are defined in this way, then for any g e C, we
define ¢*, ¢® by ¢ = ¢”+¢% (¥, X,) = P(0)H. Hence, if we put X;= ®F(0)H 1,
X¢=X,— X; we get formulas (1.10).

The following result of HEN®Y [10] (see also[2]) will be fundamental to our
investigation.

Levma 1.1, — If Red<d for all 1 satisfying (1.3), then for any e> 0, there
is a K= K(e) such that

a) |T@#)pP| <K exp[(d + &)t]|¢?],

T0)X,], | T (0) XE| <K exp[d + el 1<0,
(1.13)
b IT() g% <K exp[(8— )11 |°],
TOX, | ST (0)X3| <K expl(d— )], 1>0.

Formula (1.9) certainly suggest the change of variables
(1.14) 2,— X G{t) = #,, p— X Go)=1p

from ¢ — P(C. If this is done, equation (1.9) becomes
£ t
(1.15) = T(t— o)p-+ f T(t— ) X F(s) ds — f [d,T(t— s)X,]6s)

a formula much simpler than (1.9).
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Let @, ¥ be the matrices defined as before for the decomposition C=P @ @,
(¥, @) = I, and let E be the p X p matrix such that T'(t)® = P exp[Et], t € (— oo, c0).
The spectrum of E is A. For any yePC one can define (¥, ¢) and therefore, it
is meaningful to put

py'=0W,y), yi=9p—v", pePC.

Then equation (1.15) ean be split as (1.10). If 2)= @u(t) then it follows from
(1.10) and the transformation (1.14) that equation (1.15) is equivalent to

2e=u(t)+ 4,

a(t) = Bu(t)+ PO)HF(1)+ EP0)H16()
(1.16)

t t
2= T(t— o)+ f T(t— ) XOF(s) ds — f [d,T(— $)XG(s) .

We are now in a position for the discussion of the mixed differential and difference
equations of the next section.

2. — A special equation.

In this section, we consider the equation

o1 a) d(t) = Au(t)-+ By(i—r)
@ b) y(t)— B'a(t) — Jy(t—r) =0

where #, y are n-vectors, all matrices are constants and B’ is the ranspose of E. For
any a e R® ye(, one can define a solution of (2.1) with initial value #(0) == a, y,= y.
Define 0= C([—r, 0], B")

— 'D1 . » X%
D——(Bz).R X0 >R

(2.2) Dya,p) = a

Dy(a, y) = p(0) — E'a — Jyp(—7)
For (a, p)eR"x 0, let

(2.3) L= (1(;)) BrxC B, Lya,p) = Aa 4 By(— 1)
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Equation (2.1) is a special case of the N.F.D.E.

(2.4 & D), 3) = el v)

and one obtains the equation (2.1) by requiring that
(2.5) Dy(a, p)=10.

Equation (2.4) defines a semigroup T(f) on R*"x . If we define (R*x ()=
= {{a, p) € R* x C: D,(a, p)= 0} then (R" x (), can be considered as a Banach space.
Furthermore, for any (a, y)e (B” xC),, the solution of (2.4) through (a, ¢) will be
in {B» x ), sinee it corresponds to the solution of (2.1) through {a, ¢). Consequently,

To(t) 8 T(8)| gm0y, (B" X O)g—> (B X O)g

is a strongly continuous semigroup. The infinitesimal generator £, of T (t) is

o= Al (gny ), Where s is the infinitesimal generator of 7'(Z). One easily shows that
. . M —A4 — Bexp[— /]

(2.8) o(&) ={AcO:det A(A) =0}, A(4) = [ B I—Jexp[— ]’

Observe that

a I 0 a
(2.7) Dia, ) = |:1/)(0) — EB'a—dJ p(— 1")] - [—— E I] [1/) 0)] B

0 0 [/ def

_[4da+ Byp(—r)] 4 0] o 0 B @ | et .
L‘“’”’)“[ 0 ]“[0 0][w(0)]+[0 OHW—M]‘N‘“OHM ")

and, therefore, if the eigenvalues of the matrix J have modulii less than 1, then D
ig stable.
Algo, from (1.5) we bave that the fundamental matrix solution X(#) of (2.4) is

I 0

| ==

and the other initial data << 0 necessary to define X{f) are zero.
If
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then X must be a solution of (2.4) with the initial data specified above. Therefore,
the matrices X,; must automatically satisfy

(2.9) Dy(X1(2), le,t) =0, t>0,

{2.10) Dy(X (1), Xpn ) =1, 1>0.

Notice that (2.9) implies Xy, X,, are solutions of (2.1). The funetions X,,, X,
do not satisfy (2.16), but a nonhomogeneous version of it. However, it is important
to notice that if these functions were differentiable, the derivatives would satisfy
(2.1b). This is an important remark since it essentially implies that the variation

of X(¢) satisfies the equation (2.1).
If we let w,= col (2(t), ¥), by (2.7), equation (2.4) may be written as

(2.11) c% [Hw(t) — Mw(t — )] = Nw(t) -+ Pw{t—r), wy =gpe R xC

which is equivalent to

(2.12) % [w(t) — Mw(t —r)] = Nw(t) - Pw(t — 1)

since H-* M = M and where H-*N = N, H-1P = P.
We define the adjoint equation to (2.12) as

(2.13) —% [o(t) — v(t + ) M] = —o(t) N — ot + 7) P

with the initial data v,= a= (b, §) € B™ X 0%,

From HALE and MAvYER[9] if follows that if « belongs to the corresponding
domain of #, then the solution v(x) of (2.13) on (— oo, 7] is continuously differ-
entiable and, therefore, we may write (2.13) in the form

(2.14) Bty — o+ ) M = —v(t)N — v(t+7)P .

Tor any xeR™xC*, let v(s,x) be the solution of (2.14) on (— oo, ¢+ 7] With
v(e, ) (o + 0) = (), 0 [0, r]. Also, let v¥(c, o) € R™* X (%, 1< 0, be defined by

(o, 2)(0) = v(o, @) (1+6), Oe[0,r].

For any geR"x 0, we define the following bilinear form

[

0
2.15) (2 ¢) = al0)[p(0) — Mpl— 1] — [0+ 1) Mp(0) @0 + [0+ r) Pp(0) @0

-7

for all those o€ R x C* for which the expression is meaningtul.
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LevMA 2.1, — If o(t) is a solution of (2.14) on (— co,0-7], 6> 0, and w{f) is a
solution of (2.12) on [—r, o) then

(2.186) (v?, w,) = constant, for all 1€{0,0].

PrOOF. — By (2.15), we have

i

1
(0%, w,) = v(B)[w(t) — Mw(t—r)]— f 50 ) Muw(6) 46 -+ [v(6 - ) Pw(6) d6 .
t—r

t—r

Then

& Wy w) = o(0) [ole) ~ Mot — )] + o(9) [No(t) -+ Poolt — )]~
— Bt -+ ) Mw(t) — 5(t) Mw(t — v) + v{t + r) Pw(t) — v(t) Pw(t —r) =
= 9(t)w(t) + [— 8t 4 ) M + o) N + o(t -+ r) Plo(t) = 0
by (2.12) and (2.14).
We consider now the nonhomogeneous equation
#(1) = Aw(t)+ Byt —r)+ f(1)
y() — B'a(t) — Jy(t—r)— g(t) =0

(2.17)

where f, g are continuous functions from [0, co) to R». With D, L defined as in (2.2),
(2.3), respectively,

0
G = [g] € Rrxn F = [(];] € Rrxn

the equation (2.17) is a special case of the NFDE

(2.18) %[D(wt) — G()] = Lw,) + F(t), w,=col(a(t),y:), wy=g¢eR %0

and one obtains the equation (2.17) by requiring that
(2.19) Dy(@) = ¢(0) .
As before we may write (2.18) in the form

(2.20) % [w(ty — Mw(t — r) — H1G(t)] = Nw(t) 4 Pw(t — r) + HF(@)

and then can prove the following:
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LemMa 2.2. — If »(%) is a solution of the adjoint equation {2.14) on {— oo, o0)
and w(t) is a solution of (2.20) on [— 7, co), then

: ¢
(2.21) (v?, w,) == (V% w,)+ [v(s) H1F(s) ds—-f[dv(s)ﬂ—l}G(s) , t>0.
0 0

Proor. ~ By (2.15), we have

t i
(0, w,) = v()[w(t) — Mw(t— r)— H-16(t)]— f@(e+ ) Mw(B) a6+ f 0047 Pw() d0 .

t—r t—r

Then

% (0%, w,) = 9(8) [w(t) — Mw(t — r) — HG®)] + o(t) [Nw(t) + Puw(t —r)+ HF(#)]—

— (1t + #) Mw(t) — 6(t) Mw(t — ) + v(t + r) Pw(t) — v(t) Pw(t — r) =
= B w(t) + [— o + r) M - o) N - v (¢ + r) Plw(t) + o(t) H1F(t) — 5(¢) H-1G(t) =
= o(t) H-1F(t) — o(t) H-1G{t) .

Integrating this expression from 0 to ¢ yields the formula (2.21) which proves
Lemma 2.2.

3. — Decomposition of the variation of constants formula.

The general solution of (2.18) is given by the variation of constants formula

£
(3.1) wy— Xo6H(t) = T(t)[g — XoG(0)]+ f T(t— 8) X, F(s) ds

0

i
~[[a. 10— 9 X160, 10
0

where T(t) is an extension to R* X C - (X, ¥'Y of the original semigroup 7'(¢) on
R*x O and X(t)%f (T(1)X,)(0) is the corresponding fundamental matrix solution of
(2.4) given by (2.8).

As in Section 1, we will simplify the variation of constants formula. Let us
make a few observations which will be useful later. Let

X = [X“ X”]dé-f (o, vi, U = col(Xyy, Xyy), V =col(Xy, Xy,
X21 -X22
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By (2.9), D{U,)=0,1>0. Since ¥ = col(f, 0), it is reasonable to let
T(t— 8) X F(s)= T(t— 8) Upf(s) = To(t— ) Upf(s)

where T,(t) is the restriction of the semigroup 7'(¢) to (B x (), (X,> % ¥,; that
i, T {#) is an extension to Y, of the original semigroup Ty(f) on (B x (0),.
By (2.10), Dy(V,)=1I,1>0. Assume that D is stable and define the transforma-
tion V- W, W = col (X}, X,,), by
X,,= X3

127

(3.2) N
X,=XH+ (I—J)I.

We can prove that D,{W,)==0. In fact

D(Wi)=Do(Vy)— U= Iy I+ JI—J)'=I—-(I—-JHI—-J)*=0.

Hence, we can write
[d.T(t— 8) X,]6G(s) = [d,T(t— ) Vo]g(s) = [d. Ty(1— 5) Wo]g(s)

since G = col{0, g} and we are only inferested in the variation of T(f— ¢)X,.
We do now the change of variables

wi— X,G(H) =2, @—X,G(0)=¢&

from B*XC — R x O} (Xy». If &= col(a, §,), then

[?} - [:/j - [Xzz,ﬂo- g<0>] - [«p — ;;,oy(m} - Lp — (X + ZI ) g(m] '

If we define

(3.3) 6.0 _{w(e), —r<f<0
‘ (O =1 9(0) — (X5n(0) + (I — HD) g0), 6 =0
then D,{&)=0. In fact, by (3.2) and (3.3), we have
Dy(8) = E(0)— B'a— J&(— )
= p(0) — X3, ,(0)g(0) — (I — J)~1g(0) — B'a— Jp(—17)
= y(0) — X3, (0)g(0)+ (I — J)2g(0) — (I — J)~*g(0)
—Ba—Jp(—r)=10

after taking formula (2.19) into account.
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If these transformations are done, equation (3.1) becomes
¢ £
(3.4) = To(t)f‘}‘f’—po(t—s) U, 1(s) ds”f[dsTo(t_S)Wo]g(s) sy 130,
] 0

Suppose that the eigenvalues of J have modulii less than one. If A= {Aeo(A):
Re A0}, then A is a finite set and the space (R~ X (), can be decomposed as P @ ¢
where P, () are subspaces of (R" X (), invariant under T,(f) and the space P is finite
dimensional. If @ is a basis for the initial values of those solutions of (2.1) of the
form p(f)exp[At] and ¥ is a basis for the initial values of those solutions of (2.14)
of the form p(#) exp[— A¢], p a polynomial, A€ 4, then the matrix (¥, @) is non-
singular, by (2.16), and, therefore, can be assumed to be the identity. Let E be the
matrix defined by the relation 4,9 = @E. The spectrum of ¥ is /4. For any
EeY, we can define (¥, &) and put &= @V, &), &= ¢(— &, £eY,. Bach row of
exp[— Ef]¥, ¥(0) = exp[— EO]¥(0), 0<f<r, is a solution of the adjoint equation
on (— oo, oo) and, therefore, by (2.21),

3 t
(exp[— B]¥, 2) = (¥, §)+ [exp[— Hs]P(0) H-1F(s) ds — [[d, exp[— Bs]¥(0) H-1]G(s)
0

0

and

[
(¥, 2) = expl )%, §)+ [exp[B(t— 8)]P(0) HF(s) ds —
L]

t
~ [[d. expLB(t— 9)]#(0) H-16(5)
0

If =20 2% &) = D(¥, 2,), then

(3.5)  2f= O exp[E(D, &) —}—f@exp[Et——s]‘F H—1F< ) ds —

— f[oz @ exp[E(t— $)TP(0) H-[G(s)
|1
— T,(1) (P, §)+f11, (t— 8) BE(0 H"lF(s ds_f[d T, (i— 5)BP(0) H-1] 6 (s)

0

5P+fT (t— 8) UZH( ds.-f[dT s)Welg(s)

where UZf(s) = OP(0)H-1F(s) and [d,To(t— s)PV(0) H]G(s) = [dsTo $YWilg(s),
after taking the above observations into account. If we let z7= @u(t) then

(3.6) w(t) = Bu(t)+ P(0)H-1F(t)+ BP(0) H16(t)
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or

a(t) = Eu(t)+ P(0) Us(0)f(t) + BEP(0) Vo(0)9(2)

since H-1==[U,y(0), V,(0)], F = col(f, 0), G = col(0, g).
With <7 given above, define U¢= U,— Ug, Wi= W,— W{. Then

13 i
(3.7) = T8+ [T,(t— 5) U3f(s) ds — [[4,T,(t— 5) Wg(s)
0 0

We have proved

THEOREM 3.1, — If the eigenvalues of J have modulii less than one and (R»x (),
is decomposed by A= {Aco{#A,): Rel>0} as P © ¢, then the solution of (2.17)
satisfies (3.5) and (3.7). Furthermore, if 27 = @u(t), then u(t) satisfies (3.6).

Since the semigroup 7,(¢) is defined on Y,= {p € Y: D,y(¢) = 0} we can state an
analogous lemma to Lemma 1.1 which is obtained by applying the same arguments
in HeNrY [10].

Lemma 3.1. — If the eigenvalues of J have modulii less than one and all roots
of (2.6) satisfy Rel<— d<C 0, then are positive constants K, « such that

a) |Tyt)eP| <K exp[at] |E7], |To(t) U?|, %T(,(t)wg <K explat], <0

(3.8)
b) |To(t) &< K exp[at] [£%], [To(t) U3, 2 % To(t) W§ | <K exp[—at], t>0.

4. — Fredholm alternative for periodic solutions,

In this section, we shall study the necessary and sufficient conditions that (2.17)
has periodic solutions (see Hale [4], [6]). We assume that f, g& $, the set of bounded
continuous functions mapping (— oo, oo) into RB* with the topology of uniform con-
vergence. ILet 97 be the subset of $ of periodic functions of period T.

For any o€ (— oo, co) we know from the variation of constants formula (3.4)
that the solution z of (2.17) with initial value z, at ¢ must satisfy

t £
(1) se= To(t— 0) 2o [Tolt— 5) Uofls) ds — [ Dot — &) Wilg(s) ,  t>0-

We shall be interested in solutions of (4.1) which are bounded on (— o, o).
It D is stable, then it follows from [6] that the solution is continuous and con-
tinuously differentiable. Suppose

A=A,V 4, A= {Aeo(hy): Red=0}, \,= {Aea(#£): Reli >0},
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P,, P, are the generalized eigenspaces of (2.1) associated with A,, 4;, respectively,
and that (R, xC), is decomposed by A as P,@ P,® Q. If z,=z]"+ 2]* 2% then,
equation {(4.1) is equivalent to

4
a) o= To(t—a)z§»+fm (t— 5) UZo f( ds-.f[dT t— 8) W2 g(s)
(42)  b) &= T,(1— o)+ f T(t— 5) UZ f(s) ds — f [d,T(1— 5) W2i1g(s) ,
e) & =T, (t— o) zfﬁ—}-JTo(t— ) ULf( ds—f[d T(t—s)W&g(s), t>o.

Levma 4.1. — Equations (4.2b) and (4.2¢) have unique solutions, 2%, 2¢, which
are bounded for e (— oo, co) and these functions are given by

3 3
=1t~ 9) Uf5(s) ds— [[,T,(t— 5) Welg(s)
(4.3) ”, %
b) # = [Tyt~ ) ULf(s) ds— [[6,T(t— ) Wila(s), 1€ (— o9, 09).

Furthermore, zf’, # are continuous linear functions on B in the sense that there
is a constant L >0 such that

), <L+ g -

Algo, it f, ge Fr, then 20, 2% Iy,

t 1%

PrOOF. — The same as in HAarm [4] by using Lemma 3.1.

TEEOREM 4.1 (Fredholm alternative [5]). — If the eigenvalues of J have modulii
less than one, f, g€ 9, then the equation (2.17) has a solution in &, if and only if

T T
(4.4) f w() H-1F(s) ds — f [do (1) H-*]6(s) =
1]

0
for all T-periodic solutions » of the adjoint equation (2.14).

PrOOF. — From Lemma 4.1, it is clear that we only need to consider equation
(4.2a). Furthermore, if z/°= Pu(t), then (4.2a) is equivalent, by (3.6), to

(4.5) a(t) = Bult)-- P0)H-1F(t)+ BF0)H-16()
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where @ is a basis for P,, ¥ is a basis for the generalized eigenspace of the adjoint
equation associated with A, and F is defined by A,P = OE. The eigenvalues of #
coincide with A, and thus have real parts equal to zero. Equation (4.5) is equivalent to

t 2
u(t) = exp[Bt]u(0) +- f exp[ B(t— s)]%(0) H-LF(s) ds — f [d, exp[B(t— s)T¥(0) H-1]6Xs) .
0 1]

As exp[Ht]u(0) is T-periodic, in order to have u(t) T-periodic it is necessary and
sufficient that

4 i
f exp[E(t — 5)]P(0) H-2F(s) ds — f [d, exp[B(t— $)]P(0)H-1]6(s)

0 0

be T-periodic; that is, we require that

i T
f exp[— Es]P(0)H-*F(s) ds — f [d, exp[— Bs]¥(0)H-1]G(s) =0 .
0

0

But exp[— Es]P(0)= W(s) and ¥ is a basis for the T-periodic solutions of the
adjoint equation. This completes the proof of the theorem.

It follows from [5] that Theorem 4.1 implies there is a continuous projection
operator §: Jp— F such that the set of all F, & satisfying (4.4) is the null space
of %, that is, RUI—F=T— 5 9.

Equation (2.17) is equivalent to

i

t
D(w,)— Dig)— [L(w,) ds = 6(t)— G(0) + [F(s) ds .
0

0

Let X: §,— 9, be defined by

&
3(t) = D{w;)— D(g)— fL(ws) ds .
0

J€ is continuous and linear and the null space N () is the range of some continuous
projection 8: 9,— Ty. Also, there is a continuous linear operator X: (I — F)Fpr— T»
such that J(F, G) is a solution of (2.17) for each F, Ge(I— %9, and the solution
Jo(F, G) will be unique if we require that 83 = 0. Furthermore, the range R(¥)=
= R{I — §) and J&K = I, that is, X has a bounded right inverse J on the range of 1.

This remark is important because it would allow one to study perturbed linear
problems.
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