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Summary. - The objective o] this paper is to give necessary and su]]ieient conditions for the 
existence of periodic solutions oJ coupled systems o] di]]erential-di]]erence and di]ferencc 
equations. By  di]#rentiating the di]]e~'ence equation, we obtain a system o] neutral di]]e~'entiat- 
di]]erence equations and we get the original problem by putting a side condition, on the neutral 
equation; that is, by restricting the initial data to lie on certain mani]old in the space o] all 
initial data. This allows us to treat the problem using the methods o] neutral Junctional di]- 
]erential equations. I n  [8], Hale and Martinez-Amore exploited a certain change o] variables 
to obtain some results on the stability o] this systems. In  Section 2, we summarize those ideas. 
The e]]ect oj the side condition is re]lected in the variation o/constants Jormula in Section 3. 
I n  this section, the variation o] constants ]ormula is decomposed via eigenspaces. I n  Section 4, 
we give a theore~ on the _Fredholm alternative ]or periodic solutions which is basic to the 
application of the usual theory to perturbed linear problems. I want to express my most 
deep gratitude to t)rofessor J.  If .  Hale for his advice and suggestions which led to considerable 
improvements o] this paper. 

1. - Nota t ions  and background.  

L e t  R =  ( - - 0 %  c~) and  le t  / ~  be  an  n-dimensional  l inear  vec tor  space wi th  

no rm [ 'I .  F o r  r>O,  le t  C =  C([--  r, O], R ~) be the  space of cont inuous funct ions 
m a p p i n g  [--  r, 0] i n t o / ~ "  wi th  the  topology of un i fo rm convergence.  The no rm in C 

will also be  des ignated b y  [~[ ~ sup_,<0< o I~(0)I, ~ e C. Suppose D, L are bounded  

l inear  opera tors  f rom C to i~ ~, 

(1.1) 
0 

D(q~) = H ~ ( O ) - -  f[dtt(O)]~(O ) 
0 - - t  

L(~) = fEa~(o)]~(o) 
- - r  

where H is an n × n ma t r ix ,  det  H V= 0,/ t ,  U are n X n ma t r i x  funct ions of bounded  
var ia t ion  on [--  r, 0] wi th  # nona tomic  a t  zero. This  la t te r  hypothesis  is equivalent  
to  the  existence of a cont inuous nondecreasing funct ion y:  [0, r]--+R such t h a t  
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y(0) = 0 and 
0 

<r(8)l l 
- - $  

for s e [0, r], ~ e C. 
Tf x is a function from [ a - - r ,  ~ ) t o  ~ ,  let x~, t e [ a ,  c~), be the function from 

[-- r, O] to ~ *  defined by  xt(O) = x(t~- 0), 0 e l - -  r, 01. An autonomous linear homo- 
geneous neutral  functional  differential equation (3TFDE) is defined to be 

d 
(1.2)  D(x ) = 

A solution x = x(~) of (1.2) through ~ e C a t  t = 0 is a continuous function tak- 
ing [-- r, A), A > 0, into R ~ such tha t  xo= % D(x~) [not x(t)] is continuously differ- 
entiabte on [0, A) and satisfies (1.2) on this interval.  I t  is proved in [9] t h a t  there 
is a unique solution x(~) through (0, ~) defined on [-- r, c~) and depends continuously 
on ~. I f  the t ransformation T(t): C-~ C, t > 0 ,  is defined by  T(t)q~= x~(q~), then i t  
is also skown in [9] tha t  {T(t), t>~0} is a strongly continuous semigroup of linear 
operators with infinitesimal generator A : q)(A) -+ C, Acp(O) = ~(0), -- r < 0 < O, q)(A) = 
= {~e  C: ~ e C ,  D ( ~ ) =  Z(~)} and the spectrum a(A) of A consists of all those t 
which satisfy the characteristic equation 

(1.3) det  A ( t ) =  0 ,  A(t) = t:D(exp [ t  .]I)  -- Z(exp [ i  . ]I)  = 

O 0 

- -~ ,  - - $  

DEFINITIO~ 1.1. -- The operator D is said to be stable if there is a ~ > 0 such 
tha t  all roots of the equation 

a c t  1)(e p = o 

satisfy Re ~ < - -  ~,. 
l~rom the results of C~uz and HALE [1] and HENRY [101 an operator D is stable 

if and only if the zero solution of the functional  equation 

D(y~) = 0 ,  t > 0  

is uniformly asymptot ical ly stable; t ha t  is, there are constants K,  ~ > 0 such tha t  

lyt(q~)I<Kexp[--ztt]Iq~], t>~O, F e C ,  D(q~)= O. 

I f  D(~) = H~(0) -- J~(- -  r), then  ]9 is stable if the roots of the polynomial  equation 

(1.4) det  [ H - -  eJ]  : 0 

s tisfy < 1. 
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An impor t an t  p rope r ty  of equat ion (1.2) when D is stable is the following 
(see [2]) : I f  D is stable, then  there  is a constant  aD< 0 such tha t  for any  a ~ aD, 
there  are only a finite number  of roots A of (1.3) with R e A > a .  

Le t  D be stable. I f  A = {~: detA(~)---- 0, 1~e2~0}, then  A is a finite set and 
i t  follows f rom [9] t ha t  the space C can be decomposed as C ~ P (~ Q where P ,  Q 
are subspaees of C invar iant  under  T(t), the  space P is finite dimensionul and cor- 
responds to  the  ini t ial  values of all those solutions of (1.2) which are of the form 
p(t)exp[2t],  where p(t) is a polynomial  in t and ~ A .  

The  fundamenta l  ma t r ix  X(t)  of (1.2) is defined to be  the n × n  ma t r ix  solution 

of the  equat ion 

t 

D(X~) = I ÷ ~ ( X ~ ) d s ,  t > 0 
0 

(1.5) 
0, - - r < 0 < 0  

Xo(O) = H_ 1 0 = 0  

I f  F~ ¢ : / ~ - + / ~  are continuous,  a nonhomogeneous linear Iql~DE is defined as 

(1.6) P {D(xt) -- G(t)} = L(xt) ~- F( t ) .  

A solution through ~ at  t = a is defined as before and is known, to exist  on 
[(~- r, ~).  

The var ia t ion  of constants  formula  for (1.6) (see [7], [3]) states t h a t  the  solu- 
t ion of (1.6) th rough  (~  ~0) is given b y  

(1.7) 
t t + 

x(t) = r ( t -  ~ )~ (o )+ fx ( t -  s)~(~)a~--f[d,X(t-- s)][O(s)- O(~)] 
a (1 

for t > a  where X is the fundamenta l  ma t r ix  solution given b y  (1.5). Another  
convenient  equivalent  form for equat ion (1.7) is the  following: 

(1.s) 
t 

x(t)-  X(o)¢(t)= T( t -  z)q~(o)- x ( t -  (~)¢(~)÷~x(t- s)F(s) ds-- 

t 

-- f [d~X( t - -  s)]G(s) , t ~ / o " .  

Le t  us make  a few observations on the  var ia t ion  of constants  formula  which 
suggest changes of variables which will be useful in la ter  sections. Le t  PC be the  
space of functions taking [-- r, 0] into R ~ which are uni formly continuous on [-- r, O) 

1 2  - AnnaZi  di Mafemat iea  
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and may be discontinuous at zero. With the matrix Xo as defined before, it is 
clear that  

_PC = ¢ +  <Xo> 

where <Xo} is the span of Xo; that  is, any yJePC is given as ~-~ cf+Xob where 
~feC, b e R  ~. We make PC a normed vector space by defining the norm 

1~'] = sup_~<0~<o I~(o)1. 
Let  us define xt(w)= Y(t)yJ where F e P C  and x(F) is the solution of (1.2) 

through y~. The operator T(t) : _PC -> (functions on [-- r, 0]) is linear, but T(t) does 
not take PC-+ PC. The operator Y(t) is an extension of the original semigroup T(t) 
on C. If  we use this notation, then the variation of constants formula (1.8) can be 
written as 

(1.9) 

t 

zoo(t) = + f s)XoF(S) g s -  
ff 

t 

-f[a,T(t- s)Xo]~(s) 

for t > a ,  ?EC.  As usual in the theory of functional differential equations, these 
integrals are evaluated at each 0 in [--r ,  0] as ordinary integrals in R ~. 

I f  C is decomposed by A as C = P @ Q, then equation (1.9) is equivalent to 

(1.10) 

t t 

b) x~-- XQoG(t)-~ T[t--  a)[(p ~ -  Xo~G(a)] 

t t 

6 ¢ 

where the superscripts _P and Q designate the projections of the corresponding func- 
tions onto the subspaces P and Q, respectively. 

Projection operators taking C onto P and a are determined by means of the 
adjoint differential equation 

0 0 
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and the bilinear form 

(1.12) 

0 0 

(~, ~) = ~(0)D~(v)+f fa(~-- 0)~-~[d~(0)]V(~) d~ 
--~" 0 

0 0 

--~' 0 

defined for all a ~  C * =  C([0, r], R'*),  ~ C*, 9 ~  C, 

0 

D~(q~) -~ ~(0 ) -- H-~ f [d~(O)]~(O) . 
- - t  

I f  q}~  (~1, ..., ~%) is a basis for the initial values of those solutions of (1.2) of 
the form p(t)exp[2t] and T =  eol(F~, ..., yJ~) is a basis for the initial values of 
those solution of (1.11) of the form p(t) exp[--  2t], then it is shown in [9] tha t  th~ 
p Xp matr ix  (T, q~) ~ ((F,, Fj)), i, j ~ 1, ..., p is nonsingular and, therefore, can be 
assumed to be the identi ty.  I f  q~, ~ are defined in this way, then  for any  ~ e C, we 
define ~ ,  ~o ~ by  ~----~oe-F ~ ~, (T, X o ) =  T(0)H -~. Hence, if we pu t  X~--  OT(0)H -1, 
X o ~ - X  o -  X~ we get  formulas (1.10). 

The following result  of H]~RY [10] (see also [2]) will be fundamenta l  to our 
investigation. 

L E n A  1 . 1 . -  I f  Re2~<8 for all ~t satisfying (1.3), then  for any  s > O ,  there 
is a K----K(e) such tha t  

(,1.13) 

a) 

b) 

]T(t) q~PI<~K exp [(8 -F e)t]l~t, 
d 

IT(t)Xo], -d-TT(t)X~ <~.Kexp[dzFe) t] ,  

IT(t)~QI<K c x p  E(~ - -  ~ ) t ]  Iq~QI, 

IT( t )x°I ,  ~ T ( t ) X ~ ,  <. . .Kexp[(d--e) t] ,  

t < O ,  

t ~ O  . 

Formula  (1.9) certainly suggest the change of variables 

(1.14) x ~ -  XoG(t) = z , ,  ~ -- XoG(a) = y, 

from C--->PC. If  this is done, equation (1.9) becomes 

f t 

(1.~5) ~,= T( t -  ~ ) ,p+f r ( t -  8)XoF(S) ds-f[d,r(t- slXo]G(s) 
{1 (; 

a formula much simpler than  (1.9). 
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Le t  ~,  ~ be the matr ices defined as before for the decomposit ion C----_P @ Q, 
(T,  ¢ )  ~ I ,  und let  E be the p ×p  ma t r ix  such t h a t  T(t)q5 ~ ~ exp [Et],  t e (-- c~, c~). 
The  spec t rum of E is A. For  any  F e 2 C  one c~n define (T,  yJ) and therefore,  i t  
is meaningful  to pu t  

Then  equat ion (1.15) can be split as (1.10). I f  z P-t_ qSu(t) then  it  follows f rom 
(1.10) and the  t ransformat ion  (1.14) t h a t  equat ion (1.15) is equivalent  to 

(1.16) 

z~=  u ( t ) +  z~ , 

i~(t) = F,u(t)+ T(O)H-~'( t )  + ET(O)~-~¢(t), 
t t 

We are now in a position for the discussion of the mixed differential and difference 

equations of the  nex t  section. 

2.  - A special  equat ion .  

In  this section, we consider the equat ion 

(2.1) 
a) 2(t) = Ax( t )  -~ B y ( t - -  r) 

b) y ( t ) -  E ' x ( t ) -  J y ( t - -  r) = 0 

where x, y are n-vectors,  all matr ices are constants  and E '  is the ranspose of E.  For  
any a e R  ~, ~f ~ C, one can define a solution of (2.1) with initial value x(0) ~ a, y o =  ~. 

Define C = C([-- r, 0], R ~) 

(2.2) 

D1) R~ R,×~ D - =  D~ : × C - >  

Dl(a~ y~) = a 

D~(a, ~) -~ ~p(O) --  E '  a -- J~f(-- r) 

For  (a, y ~ ) e t ~ X C ,  let  

Ll(a,  ~f) = A a  -~- B y ( - -  r) . 
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Equa.tion (2.1) is a special case of the N.F.D.E. 

(2.~) ~ 9@(0, w) = ~(x(t), w) 

~n4 one obtains the equation (2.1) by requiring that 

(2.5) D2(a, ~f) = O . 

Equation (2A) defines a semigroup T(t) on R" ×C. If  we define (R ~ ×C)o= 
-~ ((a, y~ )eR '×  C: D~(a, y~)= 0} then (/~'× C)o can be considered as a Banaeh space. 
Furthermore, for any (a, o¢)e (R~× C)o, the solution of (2A) through (a, ~) will be 
in (R=× C)o since it corresponds to the solution of (2.1) through (a, F). Consequently, 

To(t) dg T(t)I(~o × o)°: ( R~' × ¢)o-+ (R- × ¢)o 

is a strongly continuous semigroup. The infinitesimal generator go of 1½(t)is 
g o :  Al(a. × o)° where A is the infinitesimal generator of T(t). One easily shows that  

(2.6) ¢(Ao) ----- (), e C: det A().) = 0}, 

Observe that  

[ o ] 
(2.7) D(a, ~f) = yJ(O) -- E1a -- J ~(--  r) 

Z(a, y~) = [Aa + By~(-- r)] = [ A 

A(;.) = [ ; ~  - A - -  B e x p  [--  ),r] ] 
-- E '  I -- J exp [-- )~r]j " 

o][ 
~ ( - r  

00] [yj(a0) ] + [~ B] [F(~ r)] ~f 2Vcf(0)+ P~(-- r )  

and, therefore , if the eigenvalues of the matrix J ha, re  modulii less than 1, then D 
is stable. 

Also, from (1.5) we have that the fundamental matrix solution X(t) of (2A) is 

(2.8) X ( 0 ) = [ / I  01] = H - 1  

and the other initial data < 0 necessary to define X(t) are zero. 
If  

[xll x=] 
x = LX~ x = j  
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then  X mus t  be ~ solution of (2.4) with the  initial d~ta specified above. Therefore, 
the matrices X~ must  automatical ly  satisfy 

(2.9) 

(2.10) 

D~(x~,(t), x~, , )  = o ,  t > o ,  

D~(X~(t) ,  X~2,~) = I ,  t>~O . 

~7otice tha t  (2.9) implies X~I,  X2~ ~re solutions of (2.1). The functions X~2, X~g 

do not  satisfy (2.1b), bu t  a nonhomogeneous version of it. However, it  is impor tan t  
to notice t h a t  if these functions were differentiable, the derivatives would satisfy 
(2.1b). This is an impor tan t  remark since i t  essentially implies tha t  the variat ion 
of X ( t )  satisfies the equation (2.1). 

I f  we let wt----- col (x(t) ,  Yt), by  (2.7), equation (2.4) m a y  be wri t ten as 

d 
(2.11) ~ [ t tw( t )  - -  M w ( t  - -  r)] -~ Nw( t )  + P w ( t  - -  r ) ,  w .  = ~ ~ R" × C 

which is equivalent to 

d 
( 2 . 1 2 )  d-t [w( t )  - -  M w ( t  - -  r ) ]  = _~w(t) + P w ( t  - -  r) 

since H - 1 M  ---- M and where H - 1 N  = N ,  H-~  P = P .  

We define the adjoint  equation to (2.12) ~s 

d 
(2.13) d-t [v(t) -- v(t  + r) M]  = - -  v(t)  N - -  v( t  + r ) P  

with the initial da ta  vo = :* -= (b, fi) e R ~* × C*. 

From HALE and ?SAYEI¢ [9] if follows tha t  if a belongs to the corresponding 
domain of A, then  the solution v(~) of (2.13) on (--0% r] is continuously differ- 
entiable and, therefore, we m a y  write (2.13) in the form 

(2.14) ¢)(t) - -  i~(t-~ r ) M  = - -  v ( t ) N - -  v(t-[- r ) P  . 

For  any  ~ e R ~ * x C  *, let v(g,o:) be the solution of (2.14) on (--0% a + r ]  with 
v(a, ~)(a-~ 0) ~- g(0), 0 e l0 ,  r]. Also, let v~(a, ~) e/2 ~* x C*, t <  a, be defined by  

v~(a, ~)(0)=v(a,~)( t+0) ,  0e[0, r].  

For  any  ~ e / t "  × C, we define the following bilinear form 

0 0 

(2.15) (~, ~) = ~(01[~(0) - M~(-- r l ] - f~(0  + r)M~(O) dO +f~(O + r)Pq~(O) dO 

for all those ~ e R~*× C* for which the expression is meaningful. 
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L ~ A  2.1. - I f  v(t) is a so lu t ion  of (2.14) on ( - -  c ~ , a ÷ r ] ,  ~ > 0 ,  a n d  w(t) is a 

so lu t ion  of (2.12) on [ - - r ,  oo) t h e n  

(2.16) (v ~, w~) = c o n s t a n t ,  fo r  all  t e [0, (r] .  

PI~OOF. - B y  (2.15), we  h a v e  

t t 

(v~, ~ )  = v(t)[~,,(t)- ~ w ( t -  r ) ] - t ~ ( 0  + r)Mu,(O) dO + t ~(O + dO. 
t - - r  t--c" 

T h e n  

d 
d] (vt' wt) = ~)(t) [w(t) - -  Mw(t  - -  r)] ÷ v(t) [_~w(t) ÷ Pw( t  - -  r)] - -  

- -  ¢;(t + r) Mw(t )  - -  i~(t) M w ( t - -  r) ÷ v(t ÷ r )Pw( t )  - -  v ( t ) f fw( t  - - r )  -~ 

= i~(t)w(t) ÷ [ -  ~(t + r) ~ ÷ v(t)F + v(t ÷ r)P] w(t) := o 

b y  (2.12) a n d  (2.14). 
W e  cons ider  n o w  the  n o n h o m o g e n e o u s  e q u a t i o n  

:~(t) = Ax ( t )  ÷ B y ( t - -  r) ÷ / ( t )  
(2.17) 

y(t) - -  E ' x ( t ) -  J y ( t - -  r ) -  g(t) = 0 

w h e r e / ,  g a re  con t inuous  func t ions  f r o m  [0, co) to  R ". W i t h  D~ L def ined us in (2.2), 
(2.3)~ r e spec t ive ly ,  

t he  e q u a t i o n  (2.17) is a specia l  case of t h e  N F D E  

d 
(2.18) ~ [D(wt) - -  G(t)] = L(w~) -t- .F( t ) ,  w~ = col (~(t), y~) , Wo = q~ E R ~ × C 

a.nd one ob t a in s  t he  e q u a t i o n  (2.17) b y  r equ i r i ng  t h a t  

(2.19) D~(~) = g (0 ) .  

As  be fo re  we m a y  wr i t e  (2.18) in t he  f o r m  

d 
(2.20) ~ [w(t) - -  Mw( t  - -  r) - -  H-aG(t)] --~ _/Vw(t) ÷ f fw( t  - -  r) ÷ H-~E( t )  

a n d  t h e n  can  p r o v e  t h e  fo l lowing:  
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LEZvL~I 2.2. -- I f  v(t) is a solution of the adjoint  equation (2.14) on (-- c~, c~) 
and w(t) is a solution of (2.20) on [--r~ c~), then  

t t 

(2.2]-) (V t, Wt) : (V °, wo)-~ f v ( s ) H - l ~ ( 8 )  d s - - f [ a ~ ( s ) H - q ~ ( s )  , t >  0 .  

o o 

PI~0OF. - By  (2.15), we have 

t t 

(v t, wt) -~ v ( t ) [ w ( t ) -  M w ( t -  r ) -  H-~G(t)]- -  f¢)(O + r)Mw(O) dO-}-fv(O-~- r)Pw(O) dO . 
t--r t--r 

Then 

d 
d~ (v~' w~) = ~(t) [w(t) -- Mw(t  -- r) --  g - iO( t ) ]  + v(t) [Fw(t) -+- Pw( t  -- r) + H - i f ( t ) ] -  

- "O(t -t- r) Mw(t)  -- ~(t) Mw( t  -- r) + v(t ÷ r )Pw(t )  -- v ( t )Pw( t  -- r) = 

= i~(t)w(t) -]- [-- i~(t + r) M -[- v(t) N -+- v (t q- r )P]w( t )  q- v ( t )H- IF( t )  -- i~(t)H-~G(t) = 

-~ v(t) H-~ F(t)  -- b(t) H-aG( t) . 

Integrat ing this expression from 0 to t yields the formula (2.21) which proves 
Lemma 2.2. 

3. - Decomposit ion of  the variation of  constants formula.  

The general solution of (2.18) is given by  the variat ion of constants formula, 

(3.1) 
t 

w~-- XoG(t) = T(t)[~--  Xoa(0)] + fY(t-- s)XoF(S) ds 
0 

t 

- - f [ d ~ T ( t - -  s)XoJG(s) , t>O 
0 

where T(t)  is an extension to R " ×  C ~  (Xo} ~ Y of the original semigroup T(t)  on 

R ~ × C and X(t) ~ (T(t)Xo)(O) is the corresponding fundamenta l  matr ix  solution of 
(2.4) given by  (2.8). 

As in Section 1, we will simplify the varia'tion of consta'nts formula. Le t  us 
make a few observations which will be useful later. Le t  

l-X,, x = LX~l x ~ J  [~ ,  v ] ,  ~r = col(X11, x~1),  v = coi(Xl~,  x ~ ) .  
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By (2.9), D~(U, ) :  O, t>~O. Since F----col(l, 0), it is reasonable to let 

T( t -  S)XoF(S) = T(t-- s) Uo/(S) = To(t- s) Uol(S) 

where To(t) is the restriction of the semigronp T(t) to (R~x C)0+ <Xo)def v : ~o ; that  
is, To(t) is an extension to !7o of the original semigroup To(t) on (R~x C)o. 

By (2.10), D~(V~): I ,  t>~O. Assume tha t  D is stable and define the transform~- 
* 

tion V-+ W, W =  col (XI* , X~2), by 

, 
XI~----- X12 , 

(3.2) 
X2~-~ X2~-~ ( I - -  J ) - l I  . 

We can prove that  D~(W~)----0. In  fact 

D2(W~) = D2(V~) -- ( I - -  J)-~I-~ J ( I - -  j ) - l =  1--  ( I - -  J ) ( I - -  J)-~= O . 

Hence, we can write 

[dsT(t-- s)Xo]G(s)---- [dsT(t-- s)Vo]g(s)= [d~To(t-- s)WoJg(s) 

since G----col(0, g) a.nd we a.re only interested in the variation of T(t - -s )Xo.  
We do now the change of variables 

w~-- XoG(t) = z~ , q~-- XoG(O ) = 

from R ' x C - + R ~ x C + < X o > .  If  ~----eol(a,~), then 

[ a ] = [ ; ] _ [  0 ] = [  a ] = [  a ] 
~ x~,o.g(o)  ~ - x~,og(O) ~ - ( x ;~ ,o  + ( I  - J ) - ~ i )  g (o )  " 

If  we define 

] V(O) ,  - -  r < O  < 0 
(3.3) ~1(o) / V ( 0 )  - -  (X*~,o(0)  -~ ( I  - -  J ) - ~ I )  g ( 0 ) ,  0 ---- 0 

then D~(~)-~ 0. In fact, by (3.2) and (3.3), we have 

= y~(O)- X2*z,o(O)g(O ) -- ( I - -  g)-~g(O)- E 'a--  Jv(- -  r) 

---- %0(0)- X2* o(O)g(O ) -f- ( I -  J)-~g(O)- ( I -  J)-~g(O) 

- -  E ~ a - -  J~f(- -  r)  --- 0 

after taking formula (2.,19) into account. 
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If these transformations are done, equation (3.1) becomes 

t t 

(3.~) z~= ~.(t)~+fro(t- s) Vo/(8)~8-][~o(t- 8)Wo]g(8), t>0.  
0 0 

Suppose that  the eigenvalues of J have modulii less than one. If A----{~ea(A0): 
Re2>0} ,  then A is ~ finite set and the space (R~× C)o can be decomposed as P • Q 
where £u, Q are subspaces of (R ~ × C)o invariant under To(t) and the space P is finite 
dimensional. If  # is a basis for the initial values of those solutions of (2.1) of the 
form p(t) exp[~t] and kg is a basis for the initial values of those solutions of (2.1~) 
of the form p(t)exp[--At],  p a polynomial, ~eA,  then the matrix (T, q~) is non- 
singular, by  (2.16), and, therefore, can be assumed to be the identity. Let E be the 
matrix defined by  the relation AoCb= ¢E .  The spectrum of E is A. For any 

e Yo we can define (~, 2) ~nd put  ~ P :  ~b(~, $), ~Q = ~-- SP, ~ ~ lz o. Each row of 
exp [ - -E t ]T ,  5u(0)= exp[--E0]k~(0), 0 < 0 < r ,  is a solution of the adjoint equation 
on (--0% co) ~nd, therefore, by  (2.21), 

t t 

(exp[- Et]~, ~) = (~, ~)+ fe~p[- ~s]~(0)H-IF(8)~8--jE~o- e x p [ - -  Es]~(O)H-~JG(s) 
0 0 

and 

t 

(T, zt)---- exp [Et](T, 2 ) ÷ J e x p [ E ( t - -  8 ) ] ~ [ x ( O ) H - 1 F ( 8 )  d8-- 
0 

t 

-- t[d~ exp [E(t-- s)]T(O)H-~]G(8). 
0 

v z Q P-- O(T, zt), then 

(3.5) 
t 

zV=t ~b exp [Et](#, 2) ~-f~b exp [E(t -- s)]T(O)H-XF(s) ds -- 
0 t 

-- f [ds¢ exp[E( t - -  s)]T(O)H-~[O(s) 
t 0 t 

= To(t)~)(~, 2) + f ro ( t - -  s ) ~ ' ( o ) ~ - I f ( s )  as -  f[a~ro(t- 8)~(o)H-~]a(8) 
t 0 t 0 

= To(t)~eq-fTo(t - s)U~J(8)ds--f[d~Yo(t-- 8)W~Jg(8) 
9 0 

where U~l(s)= qb}P(O)H-IF(s) and [d~To(t-- s)qb}[](O)H-~]G(s)= [d~To(t-- s)W~Jg(s), 
after taking the above observations into account. If  we let ~ =  ~bu(t), then 

(3.6) 4(t) = Eu(t)-~ ~(O)H-1F(t) + E~(O)H-1G(t) 
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o r  

it(t) = Eu(t) d- ~(O) Uo(O ) /(t) + E~P(O) Vo(O)g(t) 

since H - ~ =  [Uo(O), V0(O)], F =  col(/, O), G =  col(0, g). 
Wi th  z P given above, define Uo q = U o -  U~, Wo ~ =  W o -  W~. Then 

t 

(3.7) 

t 

z? = To(t)~¢ + f To(t - s) U~oJ(s)ds--f[d To(t- s)Wo ]g(s). 
0 0 

We have proved 

TI~EOlCm'r 3.1. - I f  the eigenvalues of J have modulii  less than  one and (/~"x C)o 
is decomposed by  A = {). E a(Ao) : t~e 2,> 0} as P @ Q, then  the solution of (2.17) 
satisfies (3.5) and (3.7). Fur thermore ,  if zP=~ ¢u(t), then  u(t) satisfies (3.6). 

Since the semigroup To(t) is defined on Y0---- {~e :Y: D~(9)----- 0} we can state an 
analogous ]emma to Lemma 1.1 which is obtained by  applying the same arguments 
in H ~ ¥  [10]. 

LE~r~A 3.1. - I f  the  eigenvalues of J have modulii less than  one and M1 roots 
of (2.6) satisfy l ~ e 2 < - - ( ~ <  0, then  are positive constants K,  ~ such tha t  

lTo(t)  l<K exp [~zt] ]~PI, ]To(t) UP], 

b) ITo(t)~Ql<~Kexp[at]j~Qt, iTo(t) U~oI, 
(3.8) 

d W0 dt To(t) < K  exp [:¢t], t < 0 

dTo(t)W~o < K e x p [ - - z t t ] ,  t > O .  

4. - Fredholm alternative for periodic solutions.  

In  this section, we shall s tudy the necessary and sufficient conditions tha t  (2.17) 
has periodic solutions (see Hale [4], [5]). ~Ve assume tha t  ], g e 35, the set of bounded 
continuous functions mapping (-- c% oo) into R ~ with the topology of uniform con- 
vergence. Le t  fir be the subset of 35 of periodic functions of period T. 

For  any  a e ( - -c% c~) we know from the variat ion of constants formula (3A) 
tha t  the solution z of (2.17) with initial value % at  a must  satisfy 

t t 

(,4.1)  o(t- Go](S) ds-f[d, ro(t-- s)Wo3a(s), 
a o' 

We shall be interested in solutions of (4.1) which are bounded on (--0% oo). 
I f  D is stable, then i t  follows from [6] tha t  the solution is continuous and con- 
t inuously differentiable. Suppose 

A = A o u A x ,  A o =  (2e~(Ao): I~e~.= 0}, A t =  {,~ea(Ao): t~e) .>  O}, 
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Pc, P~ are the  generalized eigenspaces of (2.1) associated with Ao,A~, respectively,  
P0 X and tha t  (R,, × C)° is decomposed b y  A as P0 @ P~ @ Q. I f  zt = zt + ~ + ~ ,  then,  

equat ion (4.1) is equivalent  to 

(4.2) 

t t 

a) z~°= T.(t-- a)~°+ f To(t - s)U~'/(8)ds-fEdTo(t-  8) w$.]g(8) ,  
ct 

t t 

b) ~f,= ~,°(t- o)~+fT°(t -  s)V~l(s)ds-~[d f°(t-  8)W~]g(8), 
6 O" 

t t 

~) .~ = r°( t -  ~)~g+ ffo( t -  s) ~r~.](8) ds-f[d fo(t-  s)W~]g(s), t~o'. 

LE~a:~A 4.1. -- Equat ions  (4.2b) and (~.2c) have unique solutions, ~ ,  z ~t, which 
are bounded  for t e (-- 0% c~) and these functions are given b y  

(4.3) 

t t 

~,) ¢.=]T0(t- s) ~1~.(8)ds--j'[d~To(t-- 8)~':°]g(8), 
o¢~ co 

t t 

b) ~,~ =~T°(t- ~) Vy(8)ds--~[dy.(t-- 8)W~g(s), 
- - o o  - - o o  

t e ( -  0% o~) .  

p~ Fur thermore ,  z~, z~ are continuous linear functions on ~B in the sense tha t  there 
is a constant  L > 0 such tha t  

Iz~'l, i~,~l<~(lll+ lgl). 

Also, if ], g e  '$:., then z~ 1, z~e ~ .  

PI~ooF. - The same as in HALE [4] by  using Lemma 3.1. 

THEOlCE~ 4.1 (Fredholm al ternat ive [5]). - I f  the eigenvalues of J have modulii 
less than one, ], geffT, then the equation (2.17) has a solution in fit if and only if 

T T 

(4.4) ~(t)H-1p(8) ds-~[d~(t)~-l](~(8)= 0 
0 0 

for all S-periodic solutions v of the adjoint  equation (2.14). 
Pl~OOF. - F r o m  L e m m a  4.1, i t  is clear tha t  we only need to consider equat ion 

(4.2a). Fur thermore ,  if ~°----- (Pu(t), then (4.2a) is equivalent,  by  (3.6), to 

(4.5) it(t) = Eu(t) + ¥~(O)It-IF(t) -~- EW(O)H-1G(t) 
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where fi5 is a basis for -Pc, k~ is a basis for the generalized eigenspace of the adjoint 
equation associa, ted With Ao and E is defined by  A o ¢ =  OE. The eigenvalues of E 
coincide with Ao and thus have real parts equal to zero. Equation (4.5) is eq~dvalent to 

t t 

u(t) : cxp [Et]u(O) + fexp[E(t - s)]~(o)H-*F(s) as -- f exp [E(t -- s)]T(O)H -~] G(s) . 
0 0 

As exp[EtJu(O) is T-periodic, in order to have u(t) T-periodic it is necessary and 
sufficient that  

t t 

fexp [E(t -- s)]}[1(O)H-~F(s) ds -- f [d~ exp [E(t -- s)]T(0)H -~] G(s) 
0 0 

be T-periodic; that  is, we require that  

T T 

fexp [-- Es]~(O)H-~F(s) ds -- f[d~ exp [-- Es]~(O)H -~] G(s) 
0 0 

= 0 .  

But  exp[-- Es]T(O) = T(s) and k~ is a basis for the T-periodic solutions of the 
adjoint equation. This completes the proof of the theorem. 

I t  follows from [5] that  Theorem 4.1 implies there is a continuous projection 
operator ~: fir-> fit such that the set of all F ,  G satisfying (4.4) is the null space 
of ~, that is, 2 ( 1 -  ~) - -  ( I -  9) ¢T. 

Equation (2.17) is equivalent to 

t t 

D ( w ~ ) -  D(q~)-- fZ(wd) ds = G(t)-- G(O) + fF(s)  ds . 
0 0 

Let JC: fiT-> fit be defined by  

t 

Je(t) = D(w~)-- I)(~)--fZ(w~) as. 
0 

JE is continuous and linear and the null space J~(JC) is the range of some continuous 
projection 8: fiT-> FT. Also, there is a continuous linear operator ~ :  ( I --9)ff~-> fit 
such that 3C(F, G) is a solution of (2.17) for each F,  G e (I--~)ffT and the solution 
5~(F, G) will be unique if we require that  8~---- 0. l~urthermore, the range :R(JC)= 
= :g(I--  9) and JEJ~ = I ,  that  is, ~ has a bounded right inverse J5 on the range of ;E. 

This remark is important because it would allow one to study perturbed linear 
problems. 
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